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Abstract

Within a modified N person dictator game, we test the extent to which giving behaviour changes

as the number of recipients varies. Using a within-subject design, in an incentivised laboratory

experiment, individual-level preference parameters are estimated within five alternative utility

functions. Both goodness-of-fit and predictive accuracy of each model are analysed, with the

‘best’ model identified for each individual. The Dirichlet distribution is proposed as a random

behavioural model to rationalise noise; with parameters accounting for differential error aris-

ing from the complexity of decision problems. Results show that, on average, participants are

willing to give more total payoffs to others as the number of players increase, but not maintain

average payoffs to others. Extensive heterogeneity is found in individual preferences, with no

model ‘best’ fitting all individuals.

Keywords: Distributional Preferences, Prosocial Behaviour, Group Size, Experimental Eco-

nomics, Altruism, Social Welfare Function.

JEL Classification: C72, C91, D63, D64, I31.

†Corresponding Author: Matthew Robson, Department of Economics and Related Studies, University of York.
Email: matthew.robson@york.ac.uk. Website: www.mrobson92.com.
‡We would like to thank Richard Cookson and John Hey for offering invaluable comments and guidance. Thanks

also to Andrew Jones, Peter Moffatt and Erik Sørensen, alongside seminar participants at the Young Economists’
Meeting, Masaryk University; SSSI, University of Bonn; Nordic Conference on Behavioural and Experimental Eco-
nomics, University of Southern Denmark; and FUR, University of York for their helpful comments and enlightening
discussions. For the financial support from the ESRC White Rose DTC (ES/J500215/1) and the Department of
Economics and Related Studies, University of York, we also give our thanks. All errors remain our own.

mailto:matthew.robson@york.ac.uk
www.mrobson92.com


1 Introduction

Often our behaviour has consequences for the happiness or misery of others in society. In those

instances our behaviour is shaped not only by our preferences, but by the number of others whom we

affect. This is particularly the case in the context of prosocial behaviour. In giving to a particular

individual we forego potential payoffs to ourselves and others. As the number of others increase, so

to does the complexity of the decisions we have to make. Not only must we consider the trade-offs

we are willing to make between our self and others, but between-others. Are we willing to let the

average amount to others decrease, in order to maintain the same amount for ourselves, or is there

a minimum acceptable level we must give to all others?

This paper seeks to model prosocial behaviour as the number of recipients of giving increases.

Individual-level preference parameters are estimated within five alternate CES utility functions.

Preferences accounting for inequality aversion, the trade-off between equality and efficiency, and

self-interest, the weight on the self in relation to others, are central to each functional form. How-

ever, additional preference parameters are incorporated within extended models, to account for

alternative behavioural responses to changes in N . The first models the distinction between self-

other and between-other inequality aversion. The second incorporations congestion, the trade-off

between average and total payoffs to others. The third accounts for minimum threshold levels of

giving, denoting absolute levels of payoffs which are deemed necessary to distribute to each player.

The relative goodness-of-fit and predictive power of each model is tested, allowing for the iden-

tification of ‘types’ of individuals. This approach allows the flexibility to explain heterogeneity in

individual behaviour not only through preference parameters within a particular assumed model,

but between different behaviour assumptions made in alternative models. To account for noise

in decision making, the Dirichlet Distribution is formulated as a random behavioural model. Ad-

ditional error parameters are incorporated, which allow for differential error as the complexity of

decision making increases.

To observe prosocial behaviour an incentivised laboratory experiment is run, in the form of a

modified N-person dictator game. The within-subject design of the experiment varies the number

of players, over 45 rounds of decision problems. Two treatments are conducted, the multiple slider

and single slider treatments. The former allows for complex between-other distributional decisions

to be made, in addition to self-other decisions, for 2, 3 and 4 player games. The latter simplifies the

decision problem, but allows for an increased variation in the number of players: 2, 3, 4, 6 and 12.

The experimental design specifically allows for the testing of both goodness-of-fit and predictive

accuracy of the alternative utility functions to be compared.
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Within the literature surrounding dictator games, the number of players within the experiment

is often held constant.1 Some papers have, however, varied the number of players within the

experiment. Charness and Rabin (2002) run a host of “simple” experimental games, within which

are two and three person dictator games. Fisman, Kariv, and Markovits (2007) investigate modified

two and three person dictator games, using budget sets, while Macro and Weesie (2016) use batteries

of pairwise questions for two-player and four-player dictator games. The increase in the number of

recipients allows for the identification of prosocial behaviour relating to between other trade-offs,

alongside the usual self-other trade-offs. Panchanathan, Frankenhuis, and Silk (2013) increase the

number of dictators, and find that dictators transfer less when there are more dictators, while Cason

and Mui (1997) run both team and individual dictator games. Schumacher et al. (2017) motivate

well an experiment where a ‘decider’ chooses the provision of a good between themselves and a

‘receiver’, where such provision comes at a cost to a group of ‘payers’. They utilize a general form

of the Andreoni and Miller (2002) utility function, and identify a substantial fraction of subjects

which are “insensitive to group size”, through a between-subject treatment design which varies the

number of ‘payers’.

The effect of changes in group size on behaviour has also been investigated in parallel litera-

tures. Papers by Isaac and Walker (1988) and Isaac, Walker, and Williams (1994), amongst others,

identify group size effects in the context of public goods games. N-person prisoner’s dilemmas are

studied by many, including Marwell and Schmitt (1972) and Bonacich et al. (1976). The exper-

imental oligopolies literature identifies the effects of group size on cooperation, such as Fouraker

and Siegel (1963) and Dolbear et al. (1968). The size of the group, clearly plays an important role

in the decision making process. It is, therefore, an integral component within models which strive

to explain behaviour.

Andreoni (2007) addresses this observation, proposing a CES utility function to explain prosocial

behaviour as the number of recipients of giving increases. A modified N-person dictator game was

run, where participants chose to hold a number of tokens (from a set budget), passing the remainder

to a group of other players. The budget sets, prices of giving and number of other participants

varied through the 24 rounds. Preferences were estimated within the utility function proposed,

which incorporated a congestion parameter, b, signifying the extent to which the total or average

payoffs to others were considered.

While the model proposed in Andreoni (2007) allows for extensive heterogeneity amongst indi-

viduals, alternative models could better explain the behaviour of particular individuals. Preference

1Two player dictator games are frequently used to identify prosocial behaviour, for example: Forsythe et al. (1994),
Hoffman et al. (1994) and Andreoni and Miller (2002). Extensions of such dictator games to incorporate multiple
players (for a review see Engelmann and Strobel (2007)) include: Engelmann and Strobel (2004), Fehr, Naef, and
Schmidt (2006) and Karni, Salmon, and Sopher (2008). Erkal, Gangadharan, and Nikiforakis (2011) and Barr et
al. (2015) also utilise four-person dictator games, where entitlements are earned.
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parameters can be estimated within alternative functions and the relative goodness-of-fit of each

model tested at an individual level. Hey and Orme (1995) compare the goodness-of-fit of five

alternative models in the context of risk. Hey and Pace (2014) conduct similar work, focusing

upon ambiguity, but highlight the importance of considering both the goodness-of-fit and predic-

tive power of each model. By comparing alternative models the ‘best’ model can be identified for

each individual; enabling the observation of ‘types’ of individual based on the differing behavioural

assumptions made.

This research seeks to contribute to the above literature, by intertwining important consider-

ations of the papers above. We propose a within-subject design which allows for the complexities

of self-other and between-other trade-offs to be observed as the number of recipients increase.

Individual-level preference parameters are estimated within five alternative models, allowing for

both the goodness-of-fit and predictive power of the respective models to be analysed. In addition,

the Dirichlet Distribution is formulated to account for noise in decision making, incorporating

parameters which model stochastic responses to the complexity of decision problems.

2 Experiment

The general form of the experiment is a modified N -person ‘dictator’ game; where individuals

are required to make distributional decisions amongst participants within a group. ‘Dictators’ are

given a budget, m, which they must distribute amongst N players; themselves and n others, the

‘recipients’. Dictators choose allocations, xi, for each player in the group; where i ∈ [1, ..., N ] and∑N
i xi = m. These allocations are then divided by the corresponding divider, 1/πi, to give the

payoff, πixi, to each Player i.2 It is the multipliers (πi) which make the dictator game ‘modified’, as

through them the relative prices of giving to each player can vary; meaning that equality-efficiency

trade-offs need to be made by participants.

There are two within-subject treatments, across 45 rounds of the experiment; the multiple slider

treatment (30 rounds) and single slider treatment (15 rounds). In each round the participants are

randomly assigned to groups, made up of N participants. Between rounds the dividers, 1/πi,

change, ensuring the relative price of giving to each player varies. The budget, m, also changes,

varying the average (per player) and total amounts available to distribute.

Participants made their decisions on a computerized Z-Tree interface. They were given extensive

paper instructions (found in Appendix A.1), followed by an interactive on-screen tutorial to enable

them to use the interface. A screenshot of the interface, from the multiple slider treatment, is

shown in Figure 1. In this example, there are three players, Player 1, 2 and 3, amongst whom the

2The reason that dividers (1/πi) are used, rather than multipliers (πi) are due to visual constraints on the Z-Tree
interface. Multipliers are, however, used throughout the theory, for notational ease.
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‘dictator’ must make allocations, so that the remaining budget reaches zero. Each player has a

divider (changing every round), which is used to calculate the payoff to that player. Allocations

can be made by using: the slider, arrow keys and written input. The slider (the black bar) can

be dragged to make allocations, the arrow keys clicked to make incremental changes (0.01 or 0.1),

and the written input used to type exact amounts. The single slider treatment differs in that there

is only one slider, written input and set of arrow keys; that determines the allocations (and hence

payoffs) to the self. The remaining budget is then split equally between the recipients. Calculations

of the payoffs are made automatically, and are shown by both the orange numbers and by the height

of orange bars. The payoff gap, the highest payoff minus the lowest payoff, and the total payoffs,

the sum of all payoffs, are shown. All allocations, payoffs and budgets are shown in pounds and

pence.

Figure 1: Z-Tree Interface

Within each of the seven experimental sessions there were twelve participants. Each participant

made individual decisions; as if they were the ‘dictator’. One individual’s decisions, from each

group, was randomly selected (at the end of the experiment) to determine the payoffs of each

member of their group. Then one round was randomly selected to determine the ‘dictators’, and

their distributional decisions determined the payoffs of the participants in their group. In this

way, each distributional decision participants made had an equal chance of determining their payoff

and the recipients payoffs, and hence they were fully incentivised. Players within each group were

randomly matched each round. Each decision made was entirely anonymous and without feedback;

participants neither knew the decisions of any other participants nor the identity of the ‘dictator’

in any round. Removing considerations of reputation and reciprocity, allowing for the identification

of ‘pure’ altruism.
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The experiments were run in the EXEC laboratory at the University of York. Randomised

invites were sent out, using hroot (Hamburg Registration and Organisation Online Tool), amongst

a pool of 2,692 users. Seven experimental sessions were run between the 28th of March and the 6th

of April 2017, with twelve participants in each session, to reach a sample size of 84 participants.3

Each session required twelve participants in order to run. Due to a lack of participants one session

had to be cancelled. A further 30 users were invited, as reserve participants. Nine users who

showed up could not take part in the experiment, so they (and the six in the cancelled experiment)

received show-up fees. The average payoff per participant was £15.45. Details of the demographic

characteristics of the sample can be found in Appendix A.2.

2.1 Multiple Slider Treatment

Table 1 shows how the design parameters change throughout the 30 rounds of the multiple slider

treatment. The number of players, N , changes every ten rounds. The change in the budget, m,

is shown alongside the change in the budget per player, m/N . The dividers, 1/πi, for each player

(1 to 4) are shown, alongside the relative cost (of giving). The relative cost, p, shows the cost in

payoffs to the ‘self’ of increasing the payoffs to each of the ‘others’, where p = π1(
∑N

j=2 1/πj). The

average relative cost, p/n, shows this cost per ‘recipient’.

Particular variations in the design parameters is ensured, to enable better identification of

preferences parameters, in the models shown in Section 3. Between differing N , both overlap and

variation is ensured in the budget variables, dividers and relative costs. This ensures that equality-

efficiency, self-other and between-other trade-offs need to be made, alongside considerations of

average vs total payoffs to others and minimum levels of payoffs to be given to recipients. In

particular the design allows for some design parameters to remain identical between problems with

differing N , while varying others. The sets (of rounds) [1,20,30], [3, 16, 23], [3, 16, 23] and [2, 22]

remain constant in m and p/n. Sets [10, 13], [11, 25] and [2, 15] are constant in m and p. Both

m/N and p/n remain constant in [17, 26] and [1, 11, 21], while m/N and p is constant in [6, 27].

Rounds in each set of N maintained the order shown in Table 1, to ensure that the grouping

procedure was feasible and transparent to participants. The order of N was, however, randomised

between experimental sessions, to enable the testing of order effects on decision making. Further

randomisation was applied to the screen order of the players, allowing for the effect of screen

position (i.e. left, middle, right) and player name (i.e. 2, 3, 4) to be tested.

3One participant had to be dropped from the analysis due to concerns of contamination.
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Table 1: Experiment Design Parameters

Round
Players,
N

Budget Dividers, 1/πi Relative Cost

m m/N P1 P2 P3 P4 p p/n

1 2 30 15 1 1 . . 1 1
2 2 40 20 1 2 . . 2 2
3 2 40 20 2 1 . . 0.5 0.5
4 2 22 11 1 3 . . 3 3
5 2 22 11 3 1 . . 0.33 0.33
6 2 70 35 1 4 . . 4 4
7 2 70 35 4 1 . . 0.25 0.25
8 2 12 6 1 3 . . 3 3
9 2 12 6 3 1 . . 0.33 0.33
10 2 35 17.5 1 1 . . 1 1

11 3 45 15 1 1 1 . 2 1
12 3 35 11.67 1 2 2 . 4 2
13 3 35 11.67 2 1 1 . 1 0.5
14 3 40 13.33 1 2 3 . 5 2.5
15 3 40 13.33 2 3 1 . 2 1
16 3 40 13.33 3 1 2 . 1 0.5
17 3 105 35 1 2 4 . 6 3
18 3 105 35 2 4 1 . 2.5 1.25
19 3 105 35 4 1 2 . 0.75 0.38
20 3 30 10 1 1 1 2 1

21 4 60 15 1 1 1 1 3 1
22 4 40 10 1 2 2 2 6 2
23 4 40 10 2 1 1 1 1.5 0.5
24 4 45 11.25 1 2 1 2 5 1.67
25 4 45 11.25 2 1 2 1 2 0.67
26 4 140 35 1 2 3 4 9 3
27 4 140 35 2 3 4 1 4.0 1.33
28 4 140 35 3 4 1 2 2.3 0.78
29 4 140 35 4 1 2 3 1.5 0.5
30 4 30 7.5 1 1 1 1 3 1

2.2 Single Slider Treatment

The single slider treatment is a simplified version of the above, which increases the variation in

the number of players, N . There are 15 rounds within the treatment, where N ∈ [2, 3, 4, 6, 12]

and each N has a set of three rounds. Rather than the more complex decision problem, where the

participant must make distributive decisions separately for each player, only one slider (written

output and set of arrow keys) is used to make decisions. This slider denotes the share between the

self and others, where each of the others will get an equal share of the remainder of the budget,

not allocated to the self. As before the budgets and dividers change each round, however, there are

only the divider to the self 1/π1, and divider for each other, 1/πo, as the dividers are the same for

each other player.
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Both budget and divider set were randomly generated in each round, for each participant. Each

set of three rounds, for each N , consisted of three sets of dividers [1/π1, 1/πo]: in the first [1,1],

the second [1, A] and the third [B, 1]. The dividers A and B are uniformly and independently

drawn from the set [2,3,4]. The budget, m, is similarly uniformly drawn. The set, M̈ , from which

m is drawn differs between rounds, each M̈ = {m̈ − 8N + 2N.i , i ∈ {0, 1, ..., 8}}. The m̈, within

the calculation of the set differs between rounds, for each N . For the first rounds of each N ,

where [1/π1, 1/πo] = [1,1], m̈ = [24, 26, 48, 72, 144], for N = [2, 3, 4, 6, 12], respectively. In both the

second and third rounds of each N , m̈ = [40, 60, 80, 120, 240], for N = [2, 3, 4, 6, 12], respectively.

This random selection of design parameters is used as the number of rounds is limited by time

constraints, but through it the variation allows for aggregated analysis to be undertaken.

The two treatments are run as within-subject treatments to allow both goodness-of-fit and pre-

dictive accuracy to be analysed. The data from the multiple slider treatment is used to estimate

preference parameters, allowing for goodness-of-fit measures to be constructed. The estimated pref-

erence parameters are then used to predict behaviour in the single slider treatment, where variation

in N is increased. The combination of fit and prediction is then analysed for each individual to

test between proposed utility models, which are formulated in the following section.

3 Utility Functions

Utility functions are proposed below to model behaviour in the experiment. All are within the

family of constant elasticity of substitution (CES) models, incorporate preference parameters as-

sociated with prosociality and account for variation in N . Five alternative models are proposed.

The first is the standard function, derived from Andreoni and Miller (2002), which incorporates

preference parameters for inequality aversion, r, and self-interest, α. The three subsequent extended

utility functions build upon the standard function by incorporating addition preference parameters,

which account for alternative behaviours. The first of these is derived from Fisman, Kariv, and

Markovits (2007), it distinguishes self-other inequality aversion, r1, from between-other inequality

aversion, r0. The second accounts for congestion, b, and is a generalised form of the model in

Andreoni (2007). The third takes the form of a Stone-Geary utility function, which originates from

Geary (1950) and Stone (1954), accounting for a minimum threshold level, τ . In addition to these

models, the amalgamated function incorporates each of the above preference parameters into a

general model. The models are formally presented below, while graphical analysis in Appendix A.3

illustrates the intuition behind the models.
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3.1 Standard

The models assume that decisions are based upon distributing allocations: xi according to a set of

preferences parameters and the multiplication factors: πi, the reciprocals of the dividers, 1/πi. It

is, then, the payoffs, xiπi, amongst the ‘self’ (i = 1) and ‘others’ (i 6= 1) which determine individual

utility. Note that the total number of players, N , is distinct from the number of recipients, n. The

standard utility function is as follows:

U1 =

(
N∑
i=1

(
αi(πixi)

−r))− 1
r

(1)

Inequality Aversion is represented by r, where −1 ≤ r ≤ ∞ and r 6= 0. When r = −1 preferences

reflect ‘Utilitarianism’, where utility is determined by summing payoffs. As r increases more weight

is placed upon the payoff of the worst-off, indicating ‘Weighted Prioritarianism’ (Parfit, 1997), until

r =∞ which represents ‘Maximin’ preferences, where only increases to the worst-off increase utility

(Rawls, 1999). Self-interest is represented by α1, and αj = (1− α1)/n, ∀j ≥ 1 denotes the weight

for each ‘other’, where ∀i 0 ≤ αi ≤ 1 and
∑N

i=1 αi = 1. As α1 → 1, preferences reflect egoism,

where utility is purely a function of the payoffs to the self. As α1 decreases αj increases, reflecting

an increased regard for others. ‘Cobb-Douglas’ preferences are represented when r → 0; which

implies that optimal distributions reflect the proportions set by α. Intuitively, r can be thought of

as the trade-off individuals are willing to make between efficiency and equality, across the entire

distribution, while α1 can be thought of as the extent to which the individual weights themselves,

in relation to others.

Given the above utility function and the budget constraint m =
∑n

i=1 xi, where m is the budget,

the following optimal allocations (which maximise utility) can be obtained, ∀i:

x∗i =
m

1 +
N∑
j 6=i

(
πi
πj

(
αjπj
αiπi

) 1
1+r

) (2)

3.2 Extended

Building upon the standard model are the three extended models. Each model adds an additional

behavioural assumption, which effects how optimal allocations change as N increases.
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3.2.1 FKM

The first model, derived from Fisman, Kariv, and Markovits (2007) henceforth FKM, adds as-

sumptions regarding inequality aversion. Two parameters distinguish between self-other inequality

aversion, r1, and between-other inequality aversion, r0. This allows for flexibility in decision making,

as different equality-efficiency trade-offs can be made, depending on who the trade-off concerns.

For example, an individual may prioritise efficiency between the self and others, but want to ensure

equality between others. The model is below:

UF1 =

(
α1(π1x1)

−r1 + α0

N∑
i=2

(
α′i(πixi)

−r0)r1/r0)− 1
r1

(3)

Similar to the standard model −1 ≤ r1, r0 ≤ ∞ and r1, r0 6= 0. As r1, r0 → −1 efficiency is

prioritised, while when r1, r0 →∞ equality becomes paramount. Self-interest, α1, is as before, but

now α0 shows the aggregate regard for others (1−α1). Individual between-other weights are given

by α′i, where α′i = υi/
∑N

j 6=1 υj , ∀i > 1; denoting the relative weight given to each other player, the

expected case, which is used throughout the analysis, is that υi = 1,∀i > 1, meaning α′i = 1/n.

When r1 = r0 and α′i = 1/n, or N = 2 the FKM and standard models are equivalent.

Optimal allocations are as follows:

x∗1 =
m

1 +
N∑
j 6=1

π1
πj

(
α0α′jπj
α1π1

) 1
1+r1

( N∑
k=2

(
α′k

(
α′jπj
α′kπk

) r0
1+r0

)) r1−r0
r0(1+r1)




(4)

x∗j 6=1 =
m

1 +
πj
π1

(
α1π1
α0α′jπj

) 1
1+r1

(
N∑
k=2

(
α′k

(
α′jπj
α′kπk

) r0
1+r0

)) r0−r1
r0(1+r1)

+

N∑
l 6=1,j

(
πj
πl

(
α′lπl
α′jπj

) 1
1+r0

) (5)

3.2.2 Andreoni

Second is the andreoni model, a generalised form the model in Andreoni (2007). Here, a ‘congestion’

parameter, b, is incorporated in the model, where b ∈ [0, 1]. The ‘congestion’ parameter allows for a

distinction between considering the average or total payoffs to others. As an example, if a ‘dictator’

distributes £5, out of £10, to themselves in subsequent decision problems with N = [2, 3, 4] then the

total payoffs to others are [£5, £5, £5] while the average payoffs are [£5, £2.5, £1.67], respectively.

If a ‘dictator’ wanted to maintain the same average payoffs to others, say £2, they would have

to alter the payoff to the self to be [£8, £6, £4], meaning the total payoffs to others would be
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increasing, as [£2, £4, £6]. The inclusion of b allows preference for trade-offs between the self

and average (b = 0) or total (b = 1) payoffs to others to be incorporated, allowing for the above

differential behaviour as N increases. The utility function is as follows:

UA1 =

(
α1(π1x1)

−r +

N∑
i=2

(
αi(n

bπixi)
−r
))− 1

r

(6)

The difference between this and the standard model is the inclusion of nb, which is a multiplier

of the payoffs to others. If b = 0, the models are equivalent, but as b → 1 the two diverge as N

increases. The model is identical to that of Andreoni (2007) when πixi = πjxj ,∀i, j > 1 & j 6= i,

and indeed is as such for the single slider treatment. The optimal allocations are as follows:

x∗1 =
m

1 +

N∑
j 6=1

(
π1
πj
n−b

(
αjπj
α1π1

nb
) 1

1+r

) (7)

x∗j 6=1 =
m

1 +

(
πj
π1
nb
(
α1π1
αjπj

n−b
) 1

1+r

)
+

N∑
k 6=1,j

(
πj
πk

(
αkπk
αjπj

) 1
1+r

) (8)

3.2.3 Stone-Geary

Third is the stone-geary model, with a more general CES form to that derived in Geary (1950).

The function incorporates a minimum threshold level, τ . This is a level below which negative (or

undefined) utility would be obtained; therefore, ensuring τ is distributed to each participant is

paramount. Above τ indifference curves take the form of the standard function, indeed if τ = 0

the two are equivalent. Below is the model:

USG1 =

(
N∑
i=1

(
αi(πixi − τi)−r

))− 1
r

(9)

The model is specified with individual τi, but in the analysis we assume τi = τ,∀i, to reduce the

number of estimated parameters. The parameter τ thus signifies a minimum threshold of payoffs

for all N . The inclusion of τ allows for behaviour which differs from that in the standard model,

as the budget, m, and N change. The higher τ is relative to m the more equally the payoffs will be

distributed. Those who have a higher level of self-interest (α1) will take more for themselves, but

only after the minimum threshold has been distributed to all players. The optimal allocations, ∀i,
are as follows:
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x∗i =

m+

N∑
j 6=i

((
τi
πj

(
αjπj
αiπi

) 1
1+r

)
− τj

πj

)

1 +
N∑
j 6=i

(
πi
πj

(
αjπj
αiπi

) 1
1+r

) (10)

Due to the form of the model, one particular issue emerges. Given that we assume individuals

have a ‘true’ minimum threshold, say τ∗, it is foreseeable that due to budget restrictions, in a

particular decision problem, there is not a sufficient budget in order to meet τ∗. In this case utility

is undefined (if |r| < 1) as τ∗ > xiπi, ∀i. A natural assumption to then make is that if τ∗ is greater

than the minimum feasible payoff, say x′iπ
′
i, then τ = x′iπ

′
i. The solution: x′iπ

′
i = m/

∑N
i (1/πi),

ensures that xiπi = xjπj ,∀i, j.4 In each decision problem then τ = min(τ∗,m/
∑N

i (1/πi)). It is

then the ‘true’ minimum threshold, τ∗, which is estimated. An alternative solution, using non-

negativity constraints, is in Appendix A.4.

3.3 Amalgamated

While the above separately extend the standard model to include r0, b and τ , it is feasible that

participant’s behaviour can be explained by a combination of those factors. Here the above utility

functions are amalgamated into a general functional form, which is as follows:

U1∗ =

α1(π1x1 − τ1)−r1 + α0

N∑
j=2

(
α′j

(
nb(πjxj − τj)

)−r0)r1/r0− 1
r1

(11)

The parameters are as explained above. With particular preference parameters the amalgamated

model reduce to the previous functional forms. If r1 = r0, b = 0 and τ = 0, the model is equivalent

to the standard model. Differing combinations of these simplifications can draw out which of these

considerations are important. For notation we use i to denote the individuals within the set N ,

j within the set n and k for those in set n excluding j. Given the above utility function and the

budget constraint m =
∑N

i=1 xi the following optimal allocations can be obtained:

x∗1 =

m+

N∑
j=2

(
Φj

τ1
πj
− τj

πj

)

1 +

N∑
j=2

(
Φj

π1
πj

) (12)

4To relax the assumption of τi = τ,∀i, giving individual τi, if there is only a subset of τi where τj 6=i = 0, then
the set of i is reduced to not include j, in the above solution.
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x∗j 6=1 =

m+ Φ−1j
τj
π1

+

N∑
k 6=1,j

(
τj
πk

(
α′kπk
α′jπj

) 1
1+r0

)
−

N∑
k 6=j

(
τk
πk

)

1 + Φ−1j
πj
π1

+
N∑

k 6=1,j

(
πj
πk

(
α′kπk
α′jπj

) 1
1+r0

) (13)

Where:

Φj = 1
nb

(
α0nbπjα

′
j

α1π1

) 1
1+r1

(
N∑
k=2

(
α′k

(
α′jπj
α′kπk

) r0
1+r0

)) r1−r0
r0(1+r1)

4 Dirichlet Error Modelling

While the above utility models provide precise optimal allocations, x∗i , for a particular decision

problem and preference set, participants are assumed to make ‘error’ when calculating, or choosing,

these allocations. Instead, we assume they draw their actual allocations, xi, from the Dirichlet

distribution (Dirichlet, 1839); where the expected values, E[Xi], equal the optimal allocations, x∗i .

The Dirichlet distribution is a multinomial Beta distribution, allowing for N variables, which

here correspond to individual allocations (i.e. x1, x2, ..., xN ), where xi ∈ (0, 1) and
∑N

i=1 xi = 1. The

below formulates the Dirichlet distribution as a random behavioural model, the work follows from

Robson (2017), here altering the variance assumption to allow for varying degrees of complexity,

κ.5 The following assumptions are made: (1) E[Xi] = x∗i , and (2) V ar(Xi) =
(x∗i (x

∗
0−x∗i ))
sκγ , therefore:

E[Xi] =
ai
a0

= x∗i (14)

V ar(Xi) =
(ai(a0 − ai))
(a20(a0 + 1))

=
(x∗i (x

∗
0 − x∗i ))
sκγ

(15)

Where:

a0 =

N∑
i=1

ai, x∗0 =

N∑
i=1

x∗i

It follows that, ∀i:
x∗i (sκ

γ − 1) = ai (16)

The ai’s determine the shape of the Dirichlet probability density function (pdf ) and represent

the weight given to a particular i. Precision is represented by s, and is multiplied by κγ . The

5This assumption is relaxed, with two alternative assumptions regarding the variance tested, in Appendix A.5.
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higher the value of sκγ , and therefore the higher α0, the lower the variance will be. The parameter

γ allows for flexibility in the estimation procedure, to identify if variance increases or decreases as

the degree of complexity, κ, increases, independently of the optimal allocations, where γ ∈ [−1, 1].

The degree of complexity, κ, denotes how difficult the decision problem is, by accounting for how

many allocation decisions are needed to be made (minus that which is the remainder); here for the

2, 3 and 4 player multiple slider rounds κ = 1, 2, 3, respectively, while κ = 1, within the single slider

treatment. When γ = 0, n has no effect on variance, independently of x∗i , while γ < 0 implies sκγ

decreases with κ and if γ > 0, sκγ increases.

To illustrate the above, Figure 2 shows the pdf ’s of alternative Dirichlet distributions, where

N = 3, γ = 0 and x3 = 1 − x1 − x2. The left shows an imprecise individual, s = 10, who aims

to allocate equally E[X] = [0.33, 0.33, 0.33], with A = [3, 3, 3]. Second, with A = [10, 6, 6], an

individual allocating slightly more to themselves, E[X] = [0.45, 0.27, 0.27], with a greater deal

of precision, s = 23. Third, with A = [4, 1, 1] more self-interested preferences, here E[X] =

[0.67, 0.17, 0.17], can be represented; with a mode where x1 → 1 (here precision is low (s = 7) but

precision can be increased). The flexibility of the Dirichlet distribution is a useful property, and

the above derivations allow for easily interpretable parameters to be estimated.

Figure 2: Dirichlet Distribution: Probability Density Function

The preference parameters: α, r, s and γ (alongside r0, b and τ in their respective models) are

estimated, for each individual, through maximising the following log-likelihood function. The pref-

erence parameters determine the optimal allocations, x∗it, and consequently the shape parameters,

ait, in each round t ∈ T . The multiple integral of the pdf, determined by ait, is taken over the

n-dimensional ‘rounding’ interval Vt. Vt is determined by the observed decisions, xit; where the

‘rounding’ interval, around the observed decision, is necessary as decisions are not strictly continu-
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ous (only to the nearest pence). Estimated parameters are those which maximise the log-likelihood

function, hence are the ‘most likely’ fit for the observed data.

T∑
t=1

log

∫ · · · ∫
Vt

(
1

B(a0t)

Nt∏
i=1

ẍait−1it

)
dẍ1t . . . dẍnt

 (17)

Where:

B(a0t) =

∏Nt
i=1 Γ(ait)

Γ
(∑Nt

i=1 ait

) , ẍNt = 1−
nt∑
i=1

ẍit,

Vt =

{
(ẍ1t, . . . , ẍnt) ∈ Rnt : xit −

0.5

mt
≤ ẍit ≤ xit +

0.5

mt
,∀i ∈ [1, nt]

}
The multiple integral is reduced to n dimensions (hence ẍNt = 1 −

∑nt
i=1 ẍit) as

∑Nt
i=1 xit = 1.

This ensures the above condition is met and computational demands are lowered. A penalty func-

tion is also applied if ai < 0.5,∀i, due to the increase in computational demands when calculating

triple integrals, at the bounds, when ai < 0.5. In the single slider treatment the number of dimen-

sions of the decision problem is two (hence κ = 1) for all N, and so allocations to the self (x1) and

total allocations to others (xo) are modelled, rather than the allocation to each other (xj). For

sample parameter estimates, the log-likelihood contributions for the decisions of every individual

within that sample are summed.

5 Results

5.1 Proportional Payoffs

The Proportional Payoff to Player i (PP to Pi), represents the share of payoffs given to a particular

player (i). Table 2 shows the mean proportional payoffs to each player, given a particular group size

and the type of slider used. In general we observe a decrease in the PP to P1 (the self ) as the group

size increases. On average, participants are willing to sacrifice their own payoffs to increase the

total given to the others. This increase to others does not, however, maintain the same average level

of giving to each other. Payoffs between multiple and single sliders are not significantly different

(10% level) for any player or group size.

Figure 3 shows the distribution of PP to P1, given the group size and slider type, at the per

round level (n = 3,611). The top panel shows results from the multiple slider, while the bottom

panel shows those from the single slider. The underlying reasons for the differences in the averages,

shown above, emerge. In both panels, as N increases the PP to P1 decreases. The shift in the

average is, however, predominantly due to those who are sharing equally between themselves and
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Table 2: Average Proportional Payoffs; Players and Sliders

Multiple Slider Single Slider

N Players P1 P2 P3 P4 PS PO

2 0.709 0.291 0.712 0.288
3 0.624 0.188 0.188 0.626 0.187
4 0.586 0.139 0.138 0.137 0.604 0.132
6 0.562 0.088
12 0.489 0.046

others. The modal spike at 1 (an average of 23.5% and 26.4% of the sample, for multiple and

single sliders, respectively) shifts little as N increases. However, the second model spike, at equal

sharing (≈ 1/N) shifts proportionately as N increases. Indeed, the same shift is found in both

slider treatments.

Figure 3: Distribution of PP to P1: Differing Sliders and N

Table 3 shows results from two random effects models, with the Proportional Payoff to Player 1

(the self ) and Player j (each other) as dependent variables. Results show that as N increases there
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are large and significant effects on the PP to P1 and Pj. With N = 2 as the reference category,

we observe that an increase in the number of others leads to a reduction of the PP to P1 and a

decrease in the PP to Pj. This reveals that, on average, participants are willing to significantly

reduce their own payoffs, and therefore increase the total payoffs to others, but not to the extent

that the average payoffs to others remain constant. We observe that switching from the multiple

to single slider has no significant effect on behaviour, and neither does the round number. The

relative multiplier for P1 (π1/(
∑N

j=2 πj/n)) is included as a control, and is positively correlated.

An increase in the budget, standardised within each N, is shown to have a negative effect on PP to

P1, and a positive effect on PP to Pj. Neither the sign nor significance of any coefficient changes

when those who on average keep more than 0.99 of the proportional payoffs to themselves are

excluded from the analysis. The same is true when an extensive list of demographic characteristics

(excluding parental income), ‘oneness’ levels and opinion questions are included as controls; with

the exception of the significance levels of the budget levels, which decrease.

Table 3: Random Effects Model: Proportional Payoff to P1

(1) (2)
PP to P1 PP to Pj

Coef. Std. err. Coef. Std. err.

N Players
- 3 -0.0717∗∗∗ (0.0103) -0.1100∗∗∗ (0.0092)
- 4 -0.1037∗∗∗ (0.0134) -0.1625∗∗∗ (0.0116)
- 6 -0.1493∗∗∗ (0.0203) -0.2023∗∗∗ (0.0146)
- 12 -0.2137∗∗∗ (0.0245) -0.2476∗∗∗ (0.0172)

Single Slider Dummy 0.0092 (0.0163) 0.0050 (0.0095)
Relative Multiplier P1 0.0560∗∗∗ (0.0077) -0.0316∗∗∗ (0.0046)
Standardised N Budget -0.0270∗∗ (0.0119) 0.0124∗∗ (0.0057)
Round Number -0.0003 (0.0006) -0.0002 (0.0004)
Constant 0.6406∗∗∗ (0.0244) 0.3354∗∗∗ (0.0213)

N 83 83
Observations 3611 5985
R2 Within 0.2019 0.2659
R2 Between 0.0023 0.1044
R2 Overall 0.0839 0.1667
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Further analysis of the design parameters, including the player name (i.e. 2, 3, 4), screen

position (i.e. left, middle, right) and the randomised order of N (all of which are found to have

insignificant effects) are found in Appendix A.2, alongside analysis of the effects of demographic

characteristics, ‘oneness’ levels and opinion questions on giving behaviour.
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6 Preference Parameters

While the above analysis describes the observed aggregate-level behaviour and treatment effects,

it lacks an explanation of why such behaviour is observed. Behaviour depends on preferences,

and aggregate-level behaviour ultimately depends on the nature and distribution of individual

preferences. Through estimating preference parameters, by assuming participants are behaving

as if they are (noisily) maximising a utility function, the preferences held by participants can

be characterised. This characterisation enables intuitive insights into the reasons why we observe

such behaviour. Below, aggregate-level preference parameters are estimated to characterise the

preferences of the representative agent. Then, individual-level preference parameters are estimated;

the distribution of which accounts for the aggregate trends observed.

6.1 Aggregate Preference Parameters

At the aggregated level preference parameters can be estimated for a representative agent, within

each of the utility functions proposed. The following results characterise how the sample behaves

on average, but also identify how additional preference parameters affect the estimates of those in

the simpler models. Table 4 shows the estimated preference parameters and parameters within the

error model.

Results from the standard model shows α = 0.328 and r = 0.143, showing a high regard for

others and weakly weighted prioritarianism. Self-interest parameters are similar for both FKM

and andreoni models, but are lower than those estimated in the stone-geary and amalgamated

models. This difference is perhaps explained by the inclusion of τ , as behaviourally individuals

will allocate equally until each player have more payoffs than the minimum threshold, and then

distribute according to their α (and other parameters).

We observe that the estimates for r are lower than the estimates of r1 value of 6.652, within

the FKM model. This difference perhaps accounts for the split of r into r1 and r0, showing that

individuals are more averse to inequality between themselves and others, but will slightly prioritise

efficiency between individuals. Estimates of b, show that participants will increase the total payoffs

to others as N increases, but will not maintain the same average payoff. The inconsistency within

the estimated parameters lie in the estimated r1 in the FKM and amalgamated models, where the

r1 in the latter implies efficiency prioritisation between the self and others.

Estimates of the error parameters, are relatively consistent. We observe low values of s, which

are expected due to the pooled nature of the data. The elasticity of precision, γ, is positive and

relatively high in each estimation. This implies that as the degree of complexity increases the

variance of Xi will decrease.
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Table 4: Sample Level Estimates of Parameter Values

Preference Parameters Error Parameters

α r r0 b τ s γ

Standard 0.328 0.143 . . . 3.547 0.600
FKM 0.331 6.652 -0.093 . . 3.880 0.516
Andreoni 0.346 0.685 . 0.821 . 4.802 0.547
Stone-Geary 0.492 0.793 . . 2.451 2.927 0.958
Amalgamated 0.490 -0.594 -0.087 0.515 5.839 4.319 0.581

6.2 Individual Level

Preference parameters are estimated at the individual level, for each of the five models. For the anal-

ysis that follows there are seven individuals who are excluded, as they made purely self-interested

decisions in every round. They are classed as ‘egoists’ who have α = 1. The remaining 76 partici-

pants have individual-level preference parameters estimated.

Figure 4 shows the distribution of inequality aversion, r, and self-interest, α, estimated with

the standard model. The top-left and bottom-right panels show histograms (and cdf plot) of r

and α, respectively, while the bottom-left shows a scatter plot of the two variables. According to

r the individuals classified into five different categories. There are 22.37% classified as ‘Efficiency

Prioritarians’ (r < −0.01), 4.95% exhibit preferences close to ‘Cobb-Douglas’ (−0.01 ≥ r ≤ 0.01),

55.26% who are ‘Weighted Prioritarians’ (0.01 > r < 15) and 18.42% who are ‘Maximin’ (r ≥ 15).

The median value of r = 1.08. As r increases α becomes increasingly difficult to interpret, as

a result the histogram of α shows a stacked histogram, where the lighter grey plot shows the

distribution of α where r > 10 and the darker plot where r <= 10. Of those, where r <= 10,

15.5% have α < 0.5, 44.8% have α < 0.75 and 70.7% have α < 0.9. Note that, in addition to

this, seven ‘egoists’ are omitted, who have α = 1. These results show that, the majority of the

sample have a substantial regard for others and are willing to sacrifice total payoffs in order to

increase the payoffs of the worst-off. Yet there are significant minorities within the sample who are

predominantly self-interested alongside others who prioritise efficiency.

Alongside preference parameters, the error parameters s and γ are estimated for each individual.

Figure 5 shows the distribution of the two parameters. The left panel shows s, the precision

parameter. The higher is s the lower the variance Xi. There are 23.68% of the sample with s ≤ 5,

42.11% with s ≤ 10 and 71.05% with s ≤ 50. Elasticity of precision, γ, identifies how the variance

of Xi changes as N increases; if γ < 0, ceteris paribus, variance decreases as N increases, while if

γ = 0 there is no change, and if γ > 0 there is an increase. The right panel show the distribution

of γ. Only 7.89% of the sample have γ < 0, γ > 0 for 92.11%, and γ > 0.99 for 40.79%. These

results imply that, for the majority, as N increases, the variance of Xi decreases. In other words,
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Figure 4: Distribution Standard Preference Parameters

individuals draw their actual allocations, xi, closer to the optimal allocations, x∗i , more frequently

as the number of recipients increases.

Figure 5: Distribution Standard Precision Parameters
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6.2.1 Between Model Parameter Comparisons

Within each of the five utility functions preference parameters for inequality aversion, r, and self-

interest, α, are estimated, alongside other parameters of interest. Of interest, is the difference

between the estimated parameters, as the incorporation of alternative (potentially omitted) pa-

rameters may effect the estimates. Table 5 shows the p-values of a one-sided Sign-Test of Matched

Pairs, between pairs of estimates from alternate utility functions. The test is used as it accounts

for the matched nature of the data, and makes no assumptions about the distribution of the pa-

rameters. The null hypothesis is that the median of differences, between the parameters, is zero.

The alternative hypothesis is that the median of the difference in parameters is less than zero. A

low p-value, therefore, rejects the null, showing that the parameters estimated from the first model

(denoted in the column) are lower than the second model (denoted in the row).

Table 5: Between Model Comparison of r and α: Sign-Test of Matched Pairs (p-values)

Self-Interest, α
Std Fis And SG Amal

Std 1.000 0.849 0.789 0.849 0.634
FKM 0.211 1.000 0.634 0.546 0.546
And 0.283 0.454 1.000 0.546 0.546
SG 0.211 0.546 0.546 1.000 0.454
Amal 0.454 0.546 0.546 0.634 1.000

Precision, s
Std Fis And SG Amal

Std 1.000 0.008 0.151 0.849 0.004
FKM 0.996 1.000 0.932 0.986 0.008
And 0.897 0.103 1.000 0.789 0.000
SG 0.211 0.025 0.283 1.000 0.000
Amal 0.998 0.996 1.000 1.000 1.000

Inequality Aversion, r
Std Fis And SG Amal

Std 1.000 0.634 0.717 1.000 0.986
FKM 0.454 1.000 0.634 1.000 0.998
And 0.366 0.454 1.000 1.000 1.000
SG 0.000 0.000 0.000 1.000 0.151
Amal 0.025 0.004 0.001 0.897 1.000

Elasticity of Precision, γ
Std Fis And SG Amal

Std 1.000 0.634 0.789 0.454 0.897
FKM 0.454 1.000 0.789 0.283 0.932
And 0.283 0.283 1.000 0.366 0.634
SG 0.634 0.789 0.717 1.000 0.932
Amal 0.151 0.103 0.454 0.103 1.000

Results show that there are no significant differences between estimates of either α or γ, for

any pair of models. There are also no significant differences in r between the standard, FKM and

andreoni models. We do, however, observe that the estimates of r for stone-geary are significantly

lower than those in the standard, FKM and andreoni models. Likewise the estimates for the

amalgamated model are shown to be significantly lower than those in the standard, FKM and

andreoni models. This difference is apparent when considering the proportion of the sample classed

as ‘maximin’ (r ≥ 15), by each model; with only 9.3% and 7.9% for stone-geary and amalgamated,

respectively, compared to 18.4%, 14.5% and 17.1%, for standard, FKM and andreoni respectively.

The stone-geary and amalgamated estimates of r are not significantly different. These results imply

that the inclusion of τ partially accounts for the equal-sharing behaviour, which the other models

explain through a higher r.
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Results from comparisons of s show that the parameters estimated from the standard model

are higher than those in the FKM model, and those estimated in the stone-geary model are lower

than those in the FKM model. The parameters within the amalgamated model are significantly

higher than those in each of the other models, indicating that the additional parameters within the

model allow for the flexibility for a more precise fit.

6.3 Extended

In addition to the preference parameters described above, the extended preference parameters

r0, r1, b and τ are estimated; the distributions of which are shown in Figure 5. The left panel shows

the distribution of r0 and r1, estimated from the FKM model, the middle panel shows b, from the

andreoni model, and the right, τ , from the stone-geary model.

The distributions of r0 and r1 show potential differences in self-other and between-other equality-

efficiency trade-offs. The distributions are similar, but r0 tends to take more extreme values. 23.68%

of the sample have r0 < −0.01, compared to 15.79% for whom r1 < −0.01. Similarly, r0 ≥ 15 for

17.11%, while 14.47% have r1 ≥ 15. The two preferences are strongly correlated, with a spearman’s

rank correlation coefficient of 0.786. Those who have r0 and r1 with the same sign make up the

majority of the sample; for 53 individuals r0, r1 ≥ 0, while r0, r1 < 0 for 9 individuals. There are,

however, 4 for whom r0 ≥ 0 and r1 < 0 and 10 for whom r0 < 0 and r1 ≥ 0.

Figure 6: Distribution Additional Preference Parameters

The distribution of b shows that the ‘average’ and ‘total’ payoffs to others matter for different

individuals. For a large proportion of the sample (39.47%) it is ‘average’ payoffs which matter

(b < 0.01), however, a significant amount (13.16%) consider the ‘total’ payoffs (b > 0.99) and do

not reduce the payoffs to the self as n increases. Those who have a parameter between 0.01 and
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0.99 make up the remaining 47.37%. The mean value of b is 0.336. Minimum thresholds, τ , also

vary between individuals. For 73.68% τ > 0.01, τ > 1 for 38.16%, τ > 3 for 17.11% and τ > 5 for

5.26%. Showing that for the majority of the sample there is a minimum threshold which they will

allocate before considering other self-other and equality-efficiency trade-offs. The median value of

τ is 62p.

The differences in r1 and r0, alongside parameter values of b and τ show that the behaviour of

participants diverges from that predicted in the standard model. Indeed, by performing likelihood-

ratio tests (to identify if the additional preference parameters increase the goodness-of-fit sig-

nificantly, at the 10% level) individuals can be separated into either standard or (one of the)

extended types. The preference parameters (estimated from the extended model) can then be

compared. We observe a median τ of 1.881 for those the stone-geary model fits best, with a

lower 0.127 for those for whom the standard model fits best. The median congestion, b, is 0.672

and 0.000 for those in the andreoni and standard models respectively. For comparing r1 and

r0, we are interested in the difference between the parameters, so calculate the weighted eu-

clidean distance from the estimated (r0, r1) to the closest point on the line where r0 = r1 as:

d = (((r0 − r1)/2)2 + ((r1 − r0)/2)2)1/2/((|r1| + |r0|)/2 + 1). We observe a median distance, d, of

0.616 and 0.220, for those in the FKM and standard models, respectively. The preference param-

eters which ensure the extended model diverges most from the standard, are observed to a greater

degree when the extended models fit individual behaviour better than the standard model.

6.4 Amalgamated

Of interest is not only the distribution of individual level preference parameters, but their relation

with one another. Figure 11 shows the histograms (combined with cumulative frequency plots)

of each preference parameter on the diagonal. In the bottom-left triangle, are the scatterplots of

each corresponding pair of preference parameters. The top-right triangle shows Spearman’s rank

correlation coefficients. Loess (local regression) fitted curves are shown (with 95% ci) if coefficients

(from the mirrored panel) are significant at the 5% level. The distribution of preference parameters,

is somewhat similar to those from the above individual utility functions. As shown in the between

model comparisons, there are no significant differences in α, but r(1) is significantly lower.

Correlations between preference parameters can also be established. First, inequality aversion

parameters, r0 and r1, are positively correlated (0.72∗∗∗); participants between-other preferences

appear to be closely related to their self-other preferences. Congestion, b is negatively correlated

with both r1 and r0 (−0.429∗∗∗ and −0.322∗∗∗, respectively), this implies that as the number of

others increases, those who are more efficiency seeking would sacrifice their own payoffs to maintain

the total to others. The minimum threshold, τ , is negatively correlated to α, −0.44∗∗; this result
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Figure 7: Distribution and Correlation of Amalgamated Preference Parameters

is partially driven by the few individuals with very high τ , as they are almost precisely equally

distributing payoffs equally each round.

To summarise the estimated preference parameters, and to relate the estimations to the in-

creased complexity that the amalgamated model incorporates, Table 6 tabulates individuals for

whom the extended parameters are ‘negligible’ or not. The ‘negligible’ extended preference param-

eters are those which would collapse the amalgamated function to a more simple functional form.

Those classed as ‘negligible’ are when b ≤ 0.01, τ ≤ 0.1 and d ≤ 0.25, the eight possible combi-

nations of parameters being ‘negligible’ or not are shown in Table 6. The top-left results shows

that all parameters are ‘negligible’ for 3 individuals, while the bottom-right shows 14 individuals for

whom all parameters are ‘non-negligible’. Results between the two extremes show the combinations
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of which extended preferences are important. There are 36 for whom differences in r0 and r1 are

large enough, 47 for whom b > 0.01 and 52 for whom τ > 0.1. For those with only d > 0.25 and

b > 0.01 there are 8, only d > 0.25 and τ > 0.1 there are 6, while there are 20 with only b > 0.01

and τ > 0.1. This heterogeneity points to models which could distinguish between either having

any one, a combination of two or all three extended preference parameters accounted for.

Table 6: Summary of Amalgamated Preference Parameters

Minimum Threshold, τ

τ ≤ 0.1 τ > 0.1
Congestion, b Congestion, b

Total
b ≤ 0.01 b > 0.01 b ≤ 0.01 b > 0.01

Inequality Aversion, d
d ≤ 0.25 3 5 12 20 40
d > 0.25 8 8 6 14 36

Total 11 13 18 34 76

Further analysis in Appendix A.6 uses a finite mixture model to identify ‘clusters’ of individuals.

This allows for an intuitive summary of the high dimensional preference parameters, characterising

groups of participants with similar preferences.

7 Goodness-of-Fit and Predictive Accuracy

Analysis can be conducted on both goodness-of-fit and predictive accuracy to determine how well

the utility functions proposed explain individual behaviour. The ‘best’ utility model can be identi-

fied for each individual, splitting the sample into different ‘types’. The alternative utility functions

can be ranked, by comparing the maximised log-likelihood (MLL) values. The MLL is a measure

which accounts for the stochastic nature of individual behaviour, as the measures are constructed

of the likelihood of observing the actual behaviour, given the preferences estimated and error model

assumed.

Due to the experimental design both goodness-of-fit and predictive accuracy can be analysed.

MLL values can be calculated for multiple slider treatment on which the preference parameters are

estimated, determining goodness-of-fit, and for the single slider treatment, using those estimated

parameter values, to determine predictive accuracy. The ability of a model to both fit and predict

behaviour is important, therefore, analysis of the two separately and as a combined measure ‘Both’

(a weighted average of the two) is conducted to identify if particular models are ‘best’ in either

criteria.
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An issue with comparing the ‘raw’ MLL is that alternative models may have a differing number

of parameters. Models with a larger number of parameters are more flexible so should fit behaviour

better; yet, if the difference is small the additional complexity of the model is perhaps not war-

ranted. Several measures of information criterion seek to address this trade-off between fit and

model complexity. Three commonly used alternatives are the Akaike information criterion (AIC)

(Akaike, 1998), Bayesian information criterion (BIC) (Schwarz et al., 1978) and Hannan–Quinn

information criterion (HQI) (Hannan and Quinn, 1979).6 The three criterion may give slightly

alternative rankings, due to differences in their calculation and different implicit trade-offs being

made between the fit and model complexity. To sidestep such differences, the three criterion are

calculated for each of the five models, for each individual, and a composite criterion, the informa-

tion criterion (IC), is constructed whereby a model is ‘best’ if two or more of the criteria rank that

model highest.

Table 7 tabulates the above. Results from the MLL are shown to the left of the IC, each split

into three columns: goodness-of-fit, predictive accuracy and both. The results show the importance

of comparing goodness-of-fit and predictive accuracy, as well as accounting for the trade-off between

fit and complexity, as mismatches in the rankings occur. The amalgamated model shows this most

starkly. In the MLL GOF it is the modal ‘type’, with 29 individuals for whom it fits ‘best’.

This number drops to only six and seven in predict and both, respectively. The higher number

of parameters allows the flexibility to fit data well, but this comes at a cost of predictive power.

Furthermore, when penalising the function for the higher number of parameters the information

criteria finds there are no individuals for whom the amalgamated function is ‘best’, in either ‘Predict’

or ‘Both’. Results are opposite for the standard model, there are less for whom the model is ‘best’

in GOF compared to ‘Predict’, and in MLL compared to IC. The three models with five parameters,

tend to lie somewhere in between these extremes.

The results of most interest are in the final column. These rankings are those which will be

used to determine the ‘type’ of each individual. The modal ‘type’ is the standard model and no

individuals are classed within the amalgamated model. A substantial proportion of the sample are

classed as extended types, with 13 FKM types, 21 andreoni type and 9 stone-geary types.7

7.1 Likelihood Proportions and R2

While the above analysis shows how the models do relative to one another, it reveals little about

how well the model performs in absolute terms. The standard metric to analyse performance of

6The information criteria statistics are as follows: AIC = 2k − 2(MLL), BIC = ln(n)k − 2(MLL) and HQI
= 2k. ln(ln(n))− 2(MLL), where k = number of estimated parameters and n = number of observations.

7Appendix A.7 discusses and analyses mismatches between rankings; firstly by using RSS and secondly with
preferences estimated using alternative error modelling.
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Table 7: Utility Types: Ranked by Log-Likelihood and Information Criterion

Log-Likelihood Information Criterion
GOF Predict Both GOF Predict Both

Standard 9 16 19 27 41 33
FKM 14 17 17 11 11 13
Andreoni 21 24 23 26 19 21
Stone-Geary 3 13 10 9 5 9
Amalgamated 29 6 7 3 0 0

a model is R2, which determines how much of the sample variation in the variable of interest, is

explained by the model. The likelihood proportion, ι, is an alternative metric, which focuses on

likelihood contributions. In each decision problem, t, the likelihood contribution, lt, is calculated as

the area under the probability density function (given by estimated preference and error parameters)

within the ‘rounding’ interval, around the observed decision (see Section 4). Intuitively, lt, denotes

the likelihood of observing the decision made, given the error model. The uniform likelihood

contribution, lUt, can likewise be derived from assuming that the probability density function takes

the form of a uniform distribution. This denotes the likelihood of observing the decision made,

given uniformly random draws are made. The likelihood proportion in each decision problem is

defined as, ιt = lt/(lt + lUt). The measure shows how much ‘more likely’ the observed behaviour

is in the specified model, in relation to the uniform distribution. If ιt > 0.5 the proposed model

does ‘better’ at explaining behaviour than uniformly random draws, if ιt = 0.5 then the two are

equal, while if ιt < 0.5 the uniform distribution ‘better’ explains behaviour. The summary measure

ι =
∑T

1 (ιt)/T shows how well the proposed model explains behaviour, on average.

Figure 8 shows the distribution of ι, in the left panel, and R2, in the right, across individuals

in the sample. The model assumed for each individual is that based on their ‘type’, established

in Table 7. The measures are calculated for each the goodness-of-fit, predictive accuracy and both.

For both ι and R2 the measures within the goodness-of-fit measures tend to be higher than the

predicted accuracy, with both lying between. The mean values for ι = 0.806, 0.696 and 0.751, for

GOF, pred and both, respectively, with mean R2 = 0.806, 0.770 and 0.796, respectively. There are

2, 11 and 5 individuals for whom ι < 0.5 and 1, 3 and 2 for whom R2 < 0, for GOF, Pred and Both,

respectively. The central panel shows a scatter plot of ι and R2, highlighting the strong correlation

between the two measures (with Spearman’s rank correlation coefficients of 0.90, 0.88 and 0.87 for

GOF, Pred and Both, respectively).

The two measures similarly aim to measure the strength of the models proposed. R2 focuses

on how close observed decisions are to the optimal decisions proposed by the utility function. The

likelihood proportion, ι, however, incorporates the stochastic assumptions made, identifying how

more often the model proposed would predict the observed behaviour. Both measures show that
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Figure 8: Distribution of ‘Best’ Likelihood Proportions and R2

for the majority of the sample, the models proposed and preferences estimated explain well the

observed behaviour.

8 Discussion

8.1 Comparing Giving

Results from the single slider treatment are particularly comparable with those from Andreoni (2007).

Table 8 shows the mean PP to P1 and PP to PO, where PO represent the average payoff to others,

for differing N .8 Results show that in the two-player game participants in our experiment are

less generous, than those in Andreoni (2007). As N increases, however, while participants give a

lower proportion to themselves in our results, the PP to P1 do not decrease, and indeed appear to

have an upward trend, in Andreoni. The PP to PO follow a similar, but opposite, trend, with the

average PP to others being approximately equal in our twelve-person treatment as the six-person

treatment in Andreoni (2007).

While these differences are interesting, they should be approached with caution. The distri-

butional decisions of participants is heavily dependant upon the experimental design parameters,

the particular choice of dividers/multipliers, budgets and incentives will have differential effects

on raw giving, depending on the preferences of participants. Indeed, this is one important reason

why estimating preference parameters is important; if preferences are estimated then behaviour

8Results from Andreoni (2007) are calculated from individual level data from: http://econweb.ucsd.edu/ jan-
dreon/WorkingPapers/GARPN%20cesEstimates%20APX%20table.htm
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in differing experimental designs can be predicted to identify differences not purely based on ex-

perimental design. One difference between the designs is the difference in average budgets as N

increases; within our design the average budget remains the same, while in Andreoni’s design it

decreases. Similarly, the incentive structure leads to different behaviour. In Andreoni’s set-up the

participant knows they will receive the payoff they give to themselves, plus the ‘Pass’ payoffs from

each of the n other participants in their group.

Table 8: Comparing Average Proportional Payoffs

Andreoni (2007) Robson

N Players P1 PO P1 PO

2 0.622 0.378 0.712 0.288
3 0.710 0.145 0.626 0.187
4 0.688 0.104 0.604 0.132
5 0.695 0.076 . .
6 0.756 0.049 0.562 0.088
10 0.727 0.030 . .
12 . . 0.489 0.046

Results from Fisman, Kariv, and Markovits (2007), do however, appear to be more in line with

our results. Comparing results to the multiple slider treatment, the equivalent mean PP to P1 is

0.79 and 0.75, in the two and three person treatments, of their experiment. Comparing this to our

0.71 and 0.62, we observe that ‘dictators’ take less for themselves as N increases; however, both

the absolute level of generosity and the change in giving are higher in our experiment.

8.2 Comparing Preference Parameters

8.2.1 Self-Other and Between-Other Inequality Aversion

While Fisman, Kariv, and Markovits (2007) (FKM) run both two and three-person dictator games,

preference parameters are estimated separately for each treatment. We compare classifications of

r1 and r0 with those estimated in their three-person treatment, and the r estimated in their two-

person treatment. To make estimates comparable, we use their classifications, and exclude those

‘selfish’ individuals with an average PP to P1 greater than 0.95 or who are not ’consistent’.9 Our

total sample of participants with “consistent nonselfish preferences” is 63, with 33 from the three-

person and 45 from the two-person treatments in FKM; the percentages shown below in Table 9

refer to these totals.

9In their paper they calculate Afriat’s Critical Cost Efficiency Index (CCEI) and exclude those individuals with
CCEI < 0.8, as they behave in a manner ’inconsistent’ with utility maximisation. We do not calculate CCEI values,
but instead use the likelihood-proportion value, ι to exclude those with ι < 0.5; which (while it is a test dependent
upon the utility function chosen) excludes individuals for whom random behaviour better explains their behaviour.
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Results in Table 9 show the categorisation of inequality aversion parameters in FKM and this

study. We observe that for FKM the majority of the sample are either ‘utilitarian’ or ‘efficiency

prioritarians’ for both r1 (66.7%) and r0 (66.7%), although there is a lower proportion within this

categorisation in the two-player experiment for r (53.3%). The opposite is true from our results,

with the majority of the sample being either ‘weighted prioritarians’ or ‘maximin’, for r1 (85.7%)

and r0 (74.6%). This reversal shows a much higher weight on efficiency concerns for the FKM

sample, in contrast to a higher concern for equality in our sample.

Table 9: Comparison of Inequality Aversion, r1 and r0
FKM RB

r (2P) r1 (3P) r0 (3P) r1 r0

Utilitarian (r < −0.9) 4.4% 12.1% 15.2% 0.0% 0.0%
Efficiency Prioritarian (−0.9 < r < −0.1) 48.9% 54.6% 51.5% 6.4% 9.5%
Cobb-Douglas (−0.1 < r < 0.1) 11.1% 3.0% 9.2% 7.9% 15.9%
Weighted Prioritarian (0.1 < r < 0.9) 31.1% 21.2% 6.1% 22.2% 14.3%
Maximin (r > 0.9) 4.4% 9.0% 18.2% 63.5% 60.3%

There could be several reasons for these differences. The first, is the sample. Participants in the

UK are perhaps more averse to inequality than their US counterparts. The second, the differences

in experimental design alter individual behaviour. In our design participants had to individually

allocate to each individual, with a slider, while in their design a single point on a budget line was

clicked. The latter allows for quicker and easier decisions to be made, while the former requires

more effort. In itself, this could lead to different responses; on the one hand the former method

could lead to more ‘considered’ distributions, accounting for each of the other participants, on

the other the ease of clicking a single point could allow for more time to consider the efficiency

implications of the choices made. This, however, should then appear in the distributional decisions

between the single and multiple slider treatment, which it does not.

A further difference in design, is the incentive structure. In our design one ‘dictators’ choice

is picked at random to determine the payoffs of all in the group, while in FKM each participant

receives the payoffs they gave to themselves, plus the payoffs others gave them. This may have

an impact on average giving, but also on trade-offs between equality and efficiency. On average,

participants know that if everyone distributes efficiently then payoffs will be greater, but in FKM

this carries a much lower risk of particular individuals receiving a low payoff. Other difference

include: the explicit statement of the ‘Payoff Gap’ and ‘Total Payoffs’ (representing the trade-off

between equality and efficiency) in our design; the explicit statement of the ‘Dividers’ opposed to

the difference in graphical representation; and the difference in language between ‘allocations’ to
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each player (implying the budget is a common good) compared to ‘hold’ and ‘pass’ (implying the

budget belongs to the ’dictator’, which they can choose to share).

Consistent between our findings is that there are strong within-subject correlation between r1

and r0. With FKM there was 63.6% of the sample with r0, r1 ≤ 0, while r0, r1 < 0 for 24.2%. With

only 6.1% with r0 ≥ 0 and r1 < 0 and 6.1% with r0 < 0 and r1 ≥ 0. In our (similarly reduced)

sample there are 81.0% of the sample with r0, r1 ≥ 0, while r0, r1 < 0 for 4.8%. With 4.8% with

r0 ≥ 0 and r1 < 0 and 9.5% with r0 < 0 and r1 ≥ 0. This means that there are 87.9% and 85.7% of

the sample, for FKM and our study respectively, with both self-other and between-other inequality

aversion in the same direction.

8.2.2 Congestion

Andreoni (2007) estimates the congestion parameter, b, at both the sample and individual level. At

the sample level, the representative b estimated was 0.68, which is slightly lower than our estimated

value of 0.82, but not extensively so. At the individual level Andreoni (2007) estimates preferences

for 109 participants, with 11 participants identified as ‘perfectly selfish’. Of those 109 participants

b = 0 was estimated for 25%, while b = 1 for 17% and 0 < b < 1 for the remaining 58%. From our

estimates, there are 39.5% of the sample for whom b < 0.01, 13.2% with b > 0.99 and the remaining

47.4% with 0.01 ≤ b ≤ 0.99. The results are somewhat similar, spikes at either extreme, where the

modal group has b→ 0; but the majority exhibits some degree of congestion.

8.2.3 Minimum Threshold Levels

Comparison with the τ preference parameter within the Stone-Geary function is limited. Its

use is more common in other literatures, such as the time and risk preferences. Andreoni and

Sprenger (2012) estimate Stone-Geary “consumption minima” (ω1), within a CRRA utility function

with quasi-hyperbolic discounting. While contextually different, the experimental set-up is some-

what similar, with convex time budgets. Their aggregate estimate of ω1 = $1.35, when ω1 = ω2

is assumed (the hypothesis of which is not rejected), which lies somewhere between our median

individual estimate of 62p and aggregate estimate of £2.45. Of interest, however, is that they find

the estimates of other preference parameters (especially curvature) depend on the assumed ωi, a

result we also find (with significantly lower estimates of r in the stone-geary in comparison to the

standard model, in Table 5). Andersen et al. (2008) also use a similar functional form, but do not

estimate a minimum threshold, instead utilising the average value of daily consumption in Denmark

as the threshold.
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8.3 Charity Fundraising

While the main focus of this paper is somewhat technical and abstract, the methods used can

readily be applied to the domain of charity fundraising. This section provides an illustration of

how the estimation of preferences could increase charitable giving, if projects rather than people

are assumed to be the others.

Imagine a charity. Within the charity there are four projects: Water, Education, Shelter and

Medication. The aim of the charity is to raise money to enable the projects to be funded. In order

to do so, there are alternative fundraising campaigns which can be undertaken, which encourage

people to donate. Each campaign advertises alternate bundles of the projects. There are sixteen

possible campaigns which can be delivered to potential donors:

Water1. Education2. Shelter3.

Medication4. Water, Educ5. Water, Shelter6.

Water, Medication7. Education, Shelter8. Education, Medication9.

Shelter, Medication10. Water, Education, Shelter11. Water, Education, Medication12.

Water, Shelter, Medication13. Education, Shelter, Medication14. All Projects15.

Do Nothing16.

In order to advertise a campaign there is a cost of £3 per person, with the exception of (16) in

which no campaign is run. Within each campaign information will be provided about the respective

projects. Each project has differential fixed costs which determine the ‘cost-effectiveness’ of that

project; stated as “for every pound given the amount of money going directly to that project is

X”, where X is 50p for Water, 33.3p for Education, 25p for Shelter and 25p for Medication. The

charity’s task is then to deliver the campaigns which raise the most amount of money. The following

analysis addressed this problem.

Donors are assumed to have a budget, m, which they can distribute between consumption

(which is entirely cost-effective) and donations to particular charity projects. Using estimated pref-

erences parameters for each of the 83 participants of the experiment (according to each individual’s

‘type’) predictions of how they would optimally allocate between themselves (the ‘donors’) and

each project, within a given campaign, can be made. The advertising costs of the campaigns can

be deducted and the average profit per person calculated.

The left panel of Figure 9 shows the calculation of average profit, for varying levels of m, for

three alternative methods of choosing the fundraising campaign. The random method denotes

the profits that would be made if the charity had no information about the preferences of the

donors. Here, as there is no information, charities would randomly choose a campaign to send. The

sample method uses the representative agent preferences (from the standard model in Table 4) to
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identify the optimal campaign to advertise, for each m. The individual method uses individual-

level preference parameters to establish the optimal campaign to advertise to each individual. The

results show that the profits from the individual method is always greater or equal to the sample

method, which is turn is always greater or equal to the random method. For low values of m

the random, and even sample, method give negative profits, as the low budget means that the

advertising costs are not exceeded by the donations. As m increases the random method diverges

from the sample and individual, making relatively lower profits.

Figure 9: Fundraising Profit and Distribution of Campaigns

The right panel shows the proportion of each campaign advertised, under the individual method,

for differing m. The four campaigns selected are: (1) Water; (10) Shelter, Medication; (15) All

Projects; and (16) Do Nothing. At very low m the optimal campaign is to do nothing, as the

donations do not exceed advertising costs. As m increases campaigns (1), (10) and (15) are sent

to particular individuals, when m = 50, the campaign with the largest proportion is (15), with

59.04%, next is (1) with 21.69%, followed by (16) with 15.66% with 3.61% being selected for (10).

The reasons for the differences lie in individuals preferences. Those for whom (16) is optimal tend to

be self-interested, the mean self-interest parameter of the group is 0.976. Individuals who donate

most in (1) are all efficiency prioritarians, with a mean inequality aversion parameter of -0.112.

The three individuals within (10) are all classed as andreoni types, who are (slightly) weighted

prioritarians with high values of b (0.965 on average), meaning they consider total rather than

average payoffs to others. Those within (15) tend to be weighted prioritarians, with substantial

regard for others; 26 of whom are standard types with positive r, 8 are FKM types with positive

r1, 7 are andreoni types with low b, and 7 who are stone-geary types with a positive τ . Being able
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to account for individual preferences allows for selection, which in turn allows for an increase in

profit per person.

While this section is primarily illustrative, there are a number of extensions which could be

conducted to make it more applicable and realistic. The first relates to error. In the analysis

above the assumption is that donors act optimally and according to the preferences estimated,

however, there could be error in those predictions. By incorporating the error model proposed,

then a monte-carlo simulation could be ran, to establish the optimal campaigns to run, given the

error made. The second extension relates to the fundraising aim of the charity. Two types of

funding are commonly found in charitable giving, restricted and unrestricted funding. The above

assumes that donations are unrestricted, meaning that the charity can allocate resources to any

project they need. However, (especially with a move towards the tracking and accountability of

individual donations) donors may give restricted funding, meaning that only those projects they

give directly to can be allocated that funding. These considerations can be incorporated into the

analysis, selecting the optimal set of campaigns to increase the funding of the ‘worst-off’ charity,

rather than maximising the total profits (equality vs efficiency criteria). Finally, the incorporation

of the value of acquiring information is important. While it is clear that the individual method

performs the best it may be more costly to acquire information on individual level preferences.

Collecting information at an aggregate level (perhaps one decision problem, rather than 30) could

prove to be less costly, but if this information cost exceeds the gains made above the random

method then it is counter productive to gather such information. By accounting for the value of

information the choice of method optimised at different budget levels.

While experiments ran in the laboratory may appear abstract, external parallels do emerge.

By utilising the methods proposed and accounting for individual preferences real world charitable

giving could perhaps be increased.

9 Conclusion

To conclude, through running a modified N-person dictator game both between-other and self-other

distributional trade-offs have been investigated as the number of players increases. Results have

found that, on average, the proportional payoffs given to the self decrease, as the number of others

increases, but not to the extent that the proportion of payoffs to each others remains constant.

The majority of the sample are shown to have other-regarding preferences (91.6%), where the

majority are classed as ‘Weighted Prioritarians’ (55.3%), with significant proportion classed as

either ‘Efficiency Prioritarians’ (22.4%) or ‘Maximin’ (18.42%).

The importance of estimating preferences within alternative utility functions has been shown,

with intuitive extended preference parameters of: self-other and between-other inequality aversion,
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congestion and minimum thresholds; better explaining the behaviour of particular individuals. The

importance of incorporating both goodness-of-fit and predictive accuracy has been shown, alongside

considerations of ‘information criteria’. The amalgamated model (the most complex) provided the

‘best’ fit for the modal group of participants; however, when accounting for predictive accuracy and

‘information criteria’ it performed ‘best’ for no individuals in the sample. Splitting the sample into

‘types’, of the 83 participants, we observe 33 individual’s behaviour is best explained by the standard

model, 13 by the FKM, 21 by andreoni and 9 by stone-geary ; with 11 individuals being classed as

egoists. Values from the likelihood proportion reveal the ‘best’ utility functions, combined with the

Dirichlet error model, well fit and predict individual-level behaviour, with only 5 participants with

ι < 0.5.

Prosocial behaviour and distributional preferences have been shown to be extremely hetero-

geneous. Not only do particular preferences within utility functions best explain their certain

individual’s behaviour, but alternative models best suit different individuals. Varying the number

of players to whom participants can give to may complicate modelling decision making, but it is

something we regularly do as humans and is, therefore, something worthy of striving to explain.
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A Appendices

A.1 Instructions

Instructions

Welcome. Thank you for coming today.

Please Read These Carefully.

Everyone Will Receive the Same Instructions.
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General Instructions

In this experiment you will be making decisions about the distribution of

payoffs between yourself and other participants in this room. These pay-

offs are in addition to your turn-up fee of £3.

There will be two different stages, each made up of multiple rounds. Your

actual payoff will be determined from one randomly selected round. It

is from this one round that all participants will receive their payoff. This

means that every round has an equal chance of determining your final

payoff, so consider each choice you make carefully. Everyone will finish at

the same time, as you will need to wait for every participant to finish each

round before you can move onto the next.

The individual choices you make will involve payoffs for multiple players.

You will make choices which concern the distribution of payoffs between

those players. In each round, you will be randomly grouped with some other

players. Each of you will make your choices independently of one another,

but only one of the player’s individual choices will be selected, randomly, to

provide the payoffs for all players within that group. You will not know

whose decision has been chosen and will receive your payoff, in private, at the

end. This means that every decision you (and the others) make is entirely

anonymous. There are no right or wrong answers, the decisions you make

are entirely up to you and will determine the potential payoffs for you and the

others in that group.

The money you have to allocate amongst the group will come from a Budget.

You must decide how to allocate all of the money from the Budget. For each

player in your group, the Allocation that you make to them will then be

divided by a Divider to give their Payoff in that round. The Payoff can be

thought of as the final amount of money that each player gets in that round.
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To make your decisions you will be using a computer interface, a screenshot

of one of the rounds is shown on the next page. Importantly, you will always

be Player 1, and the other players are real other participants in the room.

The on-screen order of each player will vary. In the example shown here,

Player 1 is in the middle.

You will be given a Budget to Allocate amongst the group. This is shown on

the left of the screen, and in this example is £50. You must spend the entire

budget in each round. This means the Remaining Budget must be zero.

You will be able to make the allocations in three ways. The first is with the

sliders; you can drag the sliders to any allocation that you want. The second

is with the arrow keys. They allow you to make increases and decreases of

10p and 1p, respectively. The third is the written input; you can click in each

of the blue boxes, type your desired allocations and click update.
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Within each of the rounds there will be different Dividers for each player.

The actual Payoff that each player will get will be the Allocation you give,

divided by the Divider. For example, if you give an Allocation of £10, and

the Divider is 2, the Payoff will be £5. These Dividers are important as they

change every round, but are predetermined and not dependent upon

your choices.

The Payoffs are the final amount of money which will be given to each

participant; they will be always be in pounds and will be shown by the height

of the orange bars, the orange numbers beside them and the numbers at

the top of the screen.

Throughout the rounds, two elements will change. The first is the Budget,

so be sure to consider exactly how much the Budget is before beginning each

decision, as it will vary by a considerable amount. The second is the number

of players in your group. This will change as you go through the experiment.

You will see 2, 3, 4, 6 and 12 players in the groups, throughout various

rounds. So remember that each of these players is a real participant in the

room, who will be anonymous and randomly chosen for each round.

There are two stages in this experiment. The first is where you will have

multiple sliders, one for each Player. The second is where you will have a

single slider which determines the share of the Budget you choose to give to

Player 1, where the other players allocations are equalised.

Remember you are always Player 1. Take note especially in the first stage, as

the order of the players on-screen changes between rounds.

You will also see the Total Payoffs and the Payoff Gap. The Total Payoffs

is the Payoffs of all players added together. The Payoff Gap is the highest

Payoff minus the lowest Payoff. Notice how these change when making your

decisions. You must make a decision in every round, and then click Next or

Finish to confirm your decision.
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A minimum time will be displayed in the top right corner in every round,

in black. This time must have elapsed before you progress to the next round.

There will also be a maximum time, in red, which will be double the mini-

mum time, you must make a decision in this time and click Finish. If not,

will receive a Payoff of zero for that round and one of the other participants

in your group will be the individual whose decisions will count for that round.

After the experiment you will be asked to fill out a questionnaire. Your

responses from the questionnaire, and from the entire experiment, will be

treated anonymously.

After reading these instructions you will go through an on-screen tutorial,

which will explain how to use the computer interface and the exact nature

of the experiment. You will then be allowed several practice rounds (which

will not affect your payoff) before making your decisions for real.

If you require help at any time, please raise your hand.

Please proceed to the On-Screen Tutorial.
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A.2 Design and Demographic Differences in Proportional Payoffs

A.2.1 Design

By running separate random effects models for each N , and focusing upon the multiple slider
treatment, further analysis can be conducted on more specific design effects. Table 10 models PP
to Pj, for N = 2, 3 and 4, incorporating player specific multipliers, time taken, screen position,
the player name and the order of N, alongside the standardised budget. The index j denotes a
particular ‘other’ player, where j 6= 1,∈ N . Considering the multipliers (πi), k and l are the
‘alternative others’, where k, l ∈ N , k is the lowest number that satisfies k 6= 1, j, and l 6= 1, j, k.

Table 10: Random Effects Model: Proportional Payoff to Pj, Design Effects

(1) (2) (3)
2 Players 3 Players 4 Players

Coef. Std. err. Coef. Std. err. Coef. Std. err.

Multiplier
- Player 1 -0.1569∗∗∗ (0.0354) -0.0908∗∗∗ (0.0180) -0.0557∗∗∗ (0.0123)
- Player j 0.0631∗∗∗ (0.0198) 0.1140∗∗∗ (0.0201) 0.1004∗∗∗ (0.0193)
- Player k -0.0526∗∗∗ (0.0184) -0.0368∗∗∗ (0.0124)
- Player l -0.0342∗∗∗ (0.0106)

Time Finished
- Average 0.3757∗∗∗ (0.1299) 0.3273∗∗∗ (0.0847) 0.1927∗∗∗ (0.0692)
- Mean Diff: Positive 0.1393∗∗∗ (0.0454) 0.0238 (0.0226) 0.0315 (0.0251)
- Mean Diff: Negative -0.0729 (0.0814) -0.0332 (0.0324) -0.0144 (0.0226)

Screen Position
- 2 -0.0000 (0.0124) 0.0083 (0.0075) 0.0024 (0.0063)
- 3 -0.0038 (0.0059) 0.0027 (0.0042)
- 4 -0.0014 (0.0056)

Player Name
- Player 3 0.0015 (0.0037) -0.0003 (0.0027)
- Player 4 -0.0023 (0.0023)

N Order
- Second 0.0598 (0.0419) -0.0404 (0.0306) -0.0214 (0.0253)
- Third -0.0224 (0.0478) -0.0156 (0.0314) 0.0035 (0.0221)

Standardised N Budget 0.0041 (0.0126) 0.0016 (0.0069) -0.0022 (0.0073)
Constant 0.2288∗∗∗ (0.0605) 0.1312∗∗∗ (0.0383) 0.1056∗∗∗ (0.0301)

N 83 83 83
Observations 818 1576 2379
R-squared 0.1452 0.1496 0.1228
Between-Subject Variance 0.1662 0.1057 0.0840
Within-Subject Variance 0.1588 0.1117 0.0880
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Results show that as πj increases the PP to Pj increases, and conversely as πi 6=j increases
the PP to Pj decreases. The average time participants took to finalise their decision is shown to
be strongly positively correlated with the PP to Pj. However, this correlation is perhaps one of
reverse causality. The time it takes to allocate all to the self, is much less than ensuring payoffs
are distributed equally. The mean difference variables, are constructed to identify within-subject
timing differences. For the decisions which participants took longer than their individual average
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time (within each N) participants give more to others, while when they take less than their average
the give less. This relationship is, however, only significant for positive differences in the two player
treatment. The effect of the screen position, on giving, is also tested. The base case, is where the
screen position is on the left (1), while increasing numbers denote a position further to the right.
Results show that there are no significant differences for screen position within either N , for any
position. Similar results hold for the name of the ‘other’ player. The order in which participants
made decisions for each N was also varied, the dummy variables show if the order of the N (of
that model) was either second or third, with the base case being first. Results show there are no
significant order effects. Within N , the budget (which is standardised within each N) has no effect
of giving.

A.2.2 Demographics

Alongside the experiment a questionnaire was conducted to establish the demographic characteris-
tics of the participants, alongside questions regarding ‘oneness’, political persuasion, altruism and
beliefs of others giving. The demographic composition of the sample is shown in Table 11. Further
to this results from simple random effects models are shown in Table 12. The models include design
control variables (number of players, single slider dummy, relative multiplier for P1, standardised
budget within each N and round number) and a ‘demographic’ variable of interest, in order to
determine if such variables explain the PP to P1 (over all 45 rounds). A separate model is ran
for each, and the resulting coefficient for the variable of interest, alongside standard errors, num-
ber of participants and R2. These are run as separate models for two reasons. The first, missing
data. For particular questions a significant proportion of the sample did not answer (in particular
parental income and degree subject). The second, is multicollinearity between particular variables,
in particular the final four variables concerning altruism and beliefs of the payoffs others gave. As
a result a simple modelling approach has been taken, allowing for the comparison of coefficients,
significance and model fit; while being wary that these results are prone to omitted variable bias.

Results show that neither age, being an undergraduate, studying science, being of British or
Asian nationality, having parents with higher incomes or education, being more right wing have
a significant effect on giving to the self. Surprisingly, neither does hypothetical donations, nor
willingness to donate to good causes. Females are somewhat more generous, as are art/humanities
students, those who are religious, who come from a larger family or are more liberal. While having
more friends in the session does not increase giving, a greater ‘oneness’ (the closeness of connection
to others) to the group does. The hypothetical slider questions on “how do you believe the others in
this session distributed payoffs” and “what do you believe is a fair distribution of payoffs between
yourself and one other” are highly correlated with giving. Those regressors which give the most
explanatory power are the fair payoffs, beliefs of payoffs given by others and the ‘oneness’ to others
in the group.
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Table 11: Sample Characteristics

No. %

Gender
Male 38 47.5%
Female 42 52.5%
Total 80 100.0%

Age
18-21 24 29.6%
22-25 30 37.0%
26-29 13 16.0%
30+ 14 17.3%
Total 81 100.0%

Nationality
Asian 37 46.3%
British 32 40.0%
European 8 10.0%
Other International 3 3.8%
Total 80 100.0%

No. %

Subject
Arts and Humanities 18 27.3%
Science 22 33.3%
Social Science 26 39.4%
Total 66 100.0%

Degree Level
Postgraduate 39 49.4%
Undergraduate 40 50.6%
Total 79 100.0%

Religion
Agnostic/Atheist 10 14.3%
Christian 10 14.3%
Muslim 12 17.1%
None 32 45.7%
Other 6 8.6%
Total 70 100.0%

Table 12: Random Effects Model: Proportional Payoff to P1, Demographic Effects

(1)
PP to P1

Coef. Std. err. N R2

Age 0.0022 (0.0045) 81 0.0757
Gender -0.1043∗∗ (0.0520) 80 0.1034
Undergraduate Dummy 0.0447 (0.0519) 79 0.0891
Arts/Humanities -0.1110∗ (0.0607) 66 0.0897
Science -0.0324 (0.0660) 66 0.0650
Social Science 0.1223∗∗ (0.0583) 66 0.1008
British 0.0786 (0.0540) 80 0.0920
Asian -0.0722 (0.0520) 80 0.0890
Religious -0.1149∗∗ (0.0562) 70 0.1034
Parental Income -0.0001 (0.0232) 49 0.0718
Parental Education 0.0533 (0.0782) 70 0.0874
Family Size -0.0236∗∗ (0.0116) 80 0.0923
Oneness - Group -0.0449∗∗∗ (0.0137) 83 0.1275
Friends in Session -0.0082 (0.0184) 80 0.0779
Liberal - Authoritarian -0.0369∗∗∗ (0.0130) 80 0.1128
Left - Right -0.0098 (0.0144) 80 0.0764
Donate -0.0001 (0.0001) 82 0.0855
Good Cause -0.0152 (0.0095) 83 0.0986
Fair Payoffs 0.8202∗∗∗ (0.0844) 82 0.3660
Belief Others Payoffs 0.5937∗∗∗ (0.1347) 82 0.1455

Controls YES
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.3 Graphical Intuition of Utility Functions

In addition to the formal notation in Section 3 the following surface plots illustrate the graphical
intuition behind the preference parameters. Each figure plots the optimal proportional payoffs for
each player i (πix

∗
i ) for particular preference sets and numbers of recipients.

Figure 10 plots π1x
∗
1 in the left panel and π2x

∗
2 for different parameter values of self-interest,

α1, and inequality aversion, r. For simplicity the design parameters are set as: N = 2, π1 = 1
and π2 = 0.5. In general as α1 increases the payoffs to Player 1 increase, while those to Player 2
decrease. Indeed at the extremes, when α1 = 1 then π1x

∗
1 = 1 and when α1 = 0 then π1x

∗
1 = 0.

The extent to which α1 changes behaviour depends on r. When r → −1 efficiency concerns are
important and so optimal payoffs reflect the highest weighted payoffs that can be obtained. As
r → 0 preferences approach Cobb-Douglas, where allocations (x∗1) are directly proportional to α1.
As r →∞ equality is the primary concern, and so payoffs become more equal.

Figure 10: Inequality Aversion and Self-Interest: Standard Model

The FKM model allows for the distinction between self-other and between-other inequality
aversion. As the experimental design allows N > 2 (and enables participants to distribute between
others) this allows for differential behaviour to be observed, and explained by the model. To
illustrate this Figure 11 shows the optimal PP to P1, P2 and P3 for varying values of r1 and r0;
where α1 = 0.5 and the design parameters are: N = 3, π1 = 0.5, π2 = 1 and π3 = 0.25. The
variation in π1 allows for differing behaviour to be predicted. As r1 → ∞ the payoffs are equally
distributed between the self and others, and as r0 → ∞ payoffs are equally distributed between
others. When r1, r0 → 0 allocations are proportionate to α, so π1x

∗
1 = 0.25, π2x

∗
2 = 0.25 and

π3x
∗
3 = 0.0625. If r0 → −1 the most efficient allocation between-others is preferred, so the share

between Player 2 and Player 3 goes entirely to Player 2. If r0 > −1 and r1 → −1 then all payoffs
are allocated to Player 1. At the extreme when r1 = r0 = −1 individuals are technically indifferent
between payoffs to P1 and P2, as π2 > π3 and α1 = π1/π2 = 0.5. When r1 = r0 then behaviour
follows that in the standard model.

To illustrate how the andreoni function models behaviour as n increases Figure 12 plots π1x
∗
1

for differing levels of congestion, b, and number of participants n. To simplify, we assume that
α1 = 0.5, π1 = 1 and πj = 0.5 (∀j > 1) but vary r across the three panels, where r = −0.5 in the
left, r → 0 in the middle and r = 2 in the right. If b = 1, participants consider the total given
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Figure 11: Self-Other and Between-Other Inequality Aversion: FKM Model

to others, and so as n increases π1x
∗
1 remains the same, and therefore πjx

∗
j decreases. Indeed, the

payoffs to Player 1 are the same for any n if b = 1 as when n = 1, for any value of b. The different
absolute levels between the three panels emerge, as π1 > π2; as those prioritising efficiency give
more to Player 1, Cobb-Douglas preferences mean that allocations are proportionate to α1 = 0.5
and total payoffs are sacrificed in order to reduce inequality when r > 0. As b increases changes
in behaviour depend on n and r. If r < 0 payoffs to the self increase, if r → 0 then π1x

∗
1 remains

the same, while if r > 0 payoffs to the self decrease. Total payoffs to others actually decrease as n
increases when r < 0 and b > 0 because the weight to each other ((1 − α1)/n) decreases, and so
the more ‘efficient’ choice is to give more to the self. Conversely, when r > 0 and b > 0, the total
payoffs to others increases, as individuals consider the weighted payoff to each other and prefer to
weight higher the worst-off.

Figure 12: Congestion: Andreoni Model
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The above CES models concern only relative payoffs, and so assume distributions are propor-
tionate to the budget. By incorporating an absolute minimum threshold, τ∗, the effects of a change
in the total and average budgets, on behaviour, can be modelled. Figure 13 illustrates how π1x

∗
1

changes in relation to τ∗ and n (note that the n axis is reversed). An increase of n entails a reduc-
tion in the average budget available, and so the effects of differing τ∗ can be observed for each n.
As above we assume α1 = 0.5, π1 = 1 and πj = 0.5 (∀j > 1), with r varying across the three panels
(r ≈ −0.5, 0, 2). In each panel for high levels of τ∗ the distribution of payoffs are equal between
each participant, which ensures π1x

∗
1 decreases as n increases as m = 1 throughout. When τ∗ = 0

the predictions converge to the predictions of the standard function. For values of τ∗ between the
two points, r affects decisions made. The minimum threshold level, in effect, allows for participants
to distribute equally to a point, and then distribute according to their other preferences. The scope
for this latter distribution depends on the available total and average budget.

Figure 13: Minimum Threshold Levels: Stone-Geary Model

The above illustrates the intuition behind the derivations of the optimal distributions of pay-
offs, for each of the four models. The amalgamated model allows for these standard and extended
behavioural concerns to be combined. This flexibility in modelling enables the extensive hetero-
geneity in behaviour to be accounted for; when the budget, number of recipients and prices of
giving change.
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A.4 Stone-Geary Non-Negativity Conditions

Due to the inclusion of τ some optimal allocations may lead to allocations where πixi − τi <
0,∀i, which is not feasible. To solve this issue in the main analysis the assumption that τ =
min(τ∗,m/

∑N
i

1
πi

) is used. An alternative solution is to make no such assumptions and instead
incorporate non-negativity conditions. This does not restrict τi ≤ xiπi explicitly, but provides a
set of optimality conditions, within which a subset will ensure τi ≤ xiπi. Through this approach,
the optimal allocations are as follows:

x∗i 6=k =

m+
N∑

j 6=i,k

((
τi
πj

(
αjπj
αiπi

) 1
1+r

)
− τj

πj

)
−

N∑
k 6=i,j

(
τk
πk

)

1 +

N∑
j 6=i,k

(
πi
πj

(
αjπj
αiπi

) 1
1+r

) , x∗k =
τk
πk

(18)

The set of optimality conditions can be concisely written by incorporating k. To solve, we use a
solution similar to Lagrange’s theorem with non-negative variables (see Dixit (1990) p. 28), which
provides equations ∂L/∂xi ≤ 0, xi ≥ τi/πi, ∀i, with complementary slackness, and ∂L/∂λ = 0, in
order to solve for optimal allocations. In other words, ∀i either ∂L/∂xi = 0 or xi = τi/πi (or
both). There are 2N − 1 combinations of equations, which provide optimal allocations (i.e. for
N = 2: [∂L/∂x1 = 0, ∂L/∂x2 = 0], [∂L/∂x1 = 0, x2 = τ2/π2], [x1 = τ1/π1, ∂L/∂x2 = 0]). Vector
k, then, indexes all those instances where xk = τk/πk. In order to find the optimal, a series of if
conditions are formulated (from each 2N − 1 combinations of Equation (18)) to enable the optimal
to be found, while not violating the above conditions. The ordering of the if statements is, however,
crucial as often several optimality condition ensure τi ≤ xiπi, ∀i. While this approach is feasible,
the additional complexity, computing time needed and issues of ordering meant that it was not
used.
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A.5 Alternative Error Modelling

Within the specification of the error modelling two main assumptions are made. (1) E[Xi] = x∗i ,

and (2) V ar(Xi) =
(x∗i (x

∗
0−x∗i ))
ŝ . While (1) is not particularly controversial, objections could be made

to (2) when considering the nature of the problem, with differing degrees of complexity, κ. The
variance of Xi could indeed depend on how many allocation decisions need to be made, independent
of x∗i . As a result three alternative error models, which define s differently, have been used to
estimate preference parameters:(A) ŝ = s, (B) ŝ = s.κ and (C) ŝ = s.κγ . The three specifications
allow for differing variance assumptions to enter into the error modelling. (A) estimates s, with
no consideration of the differing κ, while (B) assumes a positive linear relationship between the
precision parameter ŝ and κ. (C) parameterises this relationship, including an additional parameter
for estimation, γ, where γ ∈ [−1, 1], allowing for flexibility which can be captured by γ. The choice
of the error model has consequences for the estimation of preference parameters, through its effect
on the shape of the probability density functions from which the log-likelihood is calculated.

Figure 14 shows individual-level goodness-of-fit results for the three error models, from estimates
within the standard model. The left panel shows the distribution of the likelihood proportion, ι, for
each error model. The higher ι the better the model is explaining individual behaviour, relative to
the uniform distribution, where ι < 0.5 implies that drawing randomly (from a uniform distribution)
better explains an individual’s behaviour. The distribution shows that (A) performs worse that
(B) and (C), while (B) and (C) are closely matched, with the exception of the worst explained, for
which (B) performs somewhat better. There are 10.53% of the sample for whom ι ≤ 0.5, in (A),
1.32% in (B) and 5.26% in (C).

Figure 14: Goodness-of-Fit for Alternative Error Models; Standard Model

While these distributions show only the aggregate distributions the middle panel shows the
distribution of the difference in ι between the models, for each individual. Take the solid line for
example, (A-B) shows the difference between ιA and ιB, the lower (and negative) the value the
better B performs, the higher (and positive) the better A performs. Both (A-B) and (A-C) show
that A tends to perform worse, with 61.84% and 63.16% higher ι values for B and C, respectively.
The third cdf (B-C) shows a similarity of performance between the two, with C outperforming
B for 52.63%. To identify for whom the error models perform better the right panel shows the
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aforementioned differences plotted against the mean PP to P1. Here we observe that it is the more
self-interested individuals for whom A tends to perform worse. B outperforms A to a greater extent
than C, for those individuals, however, it also tends to perform worse than A for those who share
more equally. C does not tend to have this latter issue.

The reason for the differences in the right panel, can be explained by considering the formula
ai = x∗i (ŝ − 1). Model (A) has an issue when participants have a high degree of self-interest. It
models well behaviour for a particular N , as a1 > 1 and aj>1 < 1, meaning the pdf asymptotes
at x1 = 1. However, as x∗j>1 may be higher in rounds with lower N , aj>1 > 1, meaning the pdf
becomes uni-modal at an interior allocation, meaning at the bound (where x1 = 1) the likelihood
value is very low. Model (B) solves this issue, allowing ai to vary with κ, however, it does so at the
expense of those who are allocating more equally. For them variance is perhaps not decreasing as
κ increases, as indeed their decision problem becomes more difficult to distribute equally. Model
(C) then allows for the flexibility of estimation, which ensures that the behaviour of the more self-
interested is not modelled badly, but that compensating for that does not lead to worse estimates
for those who share more equally. An additional parameter does need to be estimated in (C), but
due to the above issues and the additional information that γ carries (C) has been chosen for the
main analysis.
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A.6 Clustering Amalgamated Preferences

Due to the high dimensionality of the preferences in the amalgamated utility function visualising and
describing the estimated parameters can be difficult. An alternative method of understanding the
distribution of preferences is through cluster analysis. A ‘mixture’ of individual density functions
which accurately fit the data can be estimated within a finite mixture model. The multidimensional
ellipses, with specific mean and variance in each dimension, capture patterns in the distribution
of preferences. Below results are shown from finite mixture model results for r1, α, r0, b and τ .10

Table 13 shows results where three clusters are optimal (allowing mclust to search between 0 and 5
clusters), while Table 14 shows results where eight clusters are optimal (allowing mclust to search
between 0 and 15 clusters).

In Table 13 we observe that the sample is split into three clusters, the largest is Cluster C
(49%), followed by Cluster A (30%), with Cluster B as the smallest (21%). Cluster A consists
of those who are slightly averse to inequality, with a high level of congestion and some concern
for a minimum threshold. This cluster are the most tightly packed, with the lowest variance for
all parameters, bar b, in particular with regard to the inequality aversion parameters. Cluster B
consists of weakly ‘weighted prioritarians’, who have zero congestion and, again, and some concern
for a minimum threshold. For b variance is very low, but for each other parameter it lies between
A and C. Cluster C captures those who are the most averse to inequality and have the largest τ .
There is a degree of congestion, more than B, but less than A, while the variance is the largest for
all preferences. The mean self-interest remains similar across the clusters, but is the lowest in C.
The mean levels and variance of r1 and r0 are similar within each cluster.

Table 13: Finite Mixture Model for Amalgamated Preference Parameters: Three Clusters

Cluster

A B C
Mean Mean Mean
(Var.) (Var.) (Var.)

Ineq. Aversion, r1 -0.17 1.77 7.03
(0.07) (2.76) (26.31)

Self-Interest, α 0.77 0.77 0.65
(0.03) (0.04) (0.08)

Ineq. Aversion, r0 -0.26 1.59 7.57
(0.11) (3.24) (28.50)

Congestion, b 0.69 0.00 0.33
(0.12) (0.00) (0.13)

Min. Threshold, τ 1.04 0.84 3.69
(1.02) (1.28) (33.24)

Proportions 0.30 0.21 0.49

In Table 14 an extended number of clusters accounts for a greater extent of the heterogeneity in
preferences. As above the clusters are ordered in relation to r1, with Cluster A capturing a efficiency
prioritarian standpoint, while Cluster H encompassed an extreme aversion to inequality. As before
r0 and r1 appear similar within most clusters, with the exception of Cluster E which captures

10To reduce issues of outliers the r1 and r0 estimates greater than 15, where capped at a value of 15.
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those who have a higher self-other inequality aversion and Cluster H within which between-other
inequality aversion is higher. Self-interest varies to a greater extent between clusters, with the
lowest α in Cluster F, this is however, mainly due to the large τ which we observe. Congestion is
very low in Clusters D and G and high in Cluster A, while the minimum threshold levels are highest
in C and F. Interesting differences between similar clusters can be observed. Clusters D and G
have similarly low b and τ , but G has higher inequality aversion and lower self-interest. Cluster C
and D have similar levels of inequality aversion, but C has much higher congestion, higher τ and
lower α. Clusters G and H have similar levels of r1, but H has much higher α and a higher r0,
while congestion is higher and τ is lower in H.

Table 14: Finite Mixture Model for Amalgamated Preference Parameters: Eight Clusters

Cluster

A B C D E F G H
Mean Mean Mean Mean Mean Mean Mean Mean
(Var.) (Var.) (Var.) (Var.) (Var.) (Var.) (Var.) (Var.)

Ineq. Aversion, r1 -0.29 0.04 1.29 2.10 6.18 8.25 10.01 10.35
(0.04) (0.11) (3.70) (2.77) (25.64) (19.16) (0.65) (22.83)

Self-Interest, α 0.68 0.88 0.50 0.72 0.89 0.27 0.45 0.99
(0.03) (0.00) (0.00) (0.04) (0.01) (0.02) (0.00) (0.00)

Ineq. Aversion, r0 -0.25 0.05 1.76 1.81 3.82 9.43 10.47 14.37
(0.11) (0.66) (6.69) (3.57) (8.51) (15.13) (6.98) (2.38)

Congestion, b 0.97 0.30 0.66 0.00 0.41 0.28 0.00 0.24
(0.00) (0.08) (0.05) (0.00) (0.11) (0.14) (0.00) (0.11)

Min. Threshold, τ 1.03 0.96 3.05 0.81 1.10 12.14 1.49 0.38
(0.32) (1.57) (6.72) (1.33) (4.10) (48.01) (1.02) (0.29)

Proportions 0.16 0.19 0.08 0.17 0.14 0.11 0.07 0.09

Through using finite mixture models the complexities of heterogeneous multidimensional pref-
erences can be more easily summarised, and through it interesting differences within the sample
observed.
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A.7 Mismatches Between Rankings

While the main analysis identifies ‘types’ of individuals by considering the information criteria for
a combined measure of goodness-of-fit and prediction, there are concerns related to the mismatch
in the ‘ranking’ of alternative utility functions. Here a deeper look into the mismatches between
rankings based on the differences between Residual Sum of Squares and Log-Likeihood and amongst
alternative error models.

A.7.1 Residual Sum of Squares or Log-Likelihood

The Residual Sum of Squares (RSS), identifies the difference between the optimal and observed
allocations. Likelihood, identifies the probability that the allocation is observed, given the utility
and error model assumed. The former asks how close, the second how probable. Through this
alternative criteria differences in which model is considered best will inevitably emerge. In the
main analysis the log-likelihood was the metric used, as indeed the estimation procedure was based
on maximising the log-likelihood. Here, the differences between the two can be analysed.

Table 15 shows the rankings of utility functions, if the utility functions had been compared
using RSS, rather than the log-likelihood values (in Table 7). Comparing Table 15 with Table 7, we
observe similar trends. The amalgamated model does better within raw RSS fit, than prediction,
and in RSS compared to IC, while the standard model does the opposite. Final IC results for both
are somewhat similar, the modal type is standard, with the lowest being amalgamated. Standard,
stone-geary and amalgamated are ‘best’ for more individuals, while FKM and andreoni are best for
fewer individuals (compared to the log-likelihood IC). When comparing matching within-individuals
we observe 51.31%, 59.21% and 59.21% of the sample have matched rankings for GOF, Pred and
Both, respectively.

Table 15: Utility Types: Ranked by Residual Sum of Squares and Information Criterion

Residual Sum of Squares Information Criterion
GOF Predict Both GOF Predict Both

Standard 6 20 9 39 46 40
FKM 21 18 19 5 10 10
Andreoni 12 14 13 16 12 13
Stone-Geary 12 12 14 11 5 11
Amalgamated 25 11 20 5 3 2

A.7.2 Alternative Error Modelling

In Appendix A.5 three alternatives error models, (A) ŝ = s, (B) ŝ = s.κ and (C) ŝ = s.κγ are
discussed. Using preference estimates from each of (A), (B) and (C), similar rankings to those in
Table 7 can be conducted. The result of assuming an alternative error model may, lead to different
compositions of ‘types’ in the sample. Table 16 shows the composition of ‘types’, by using the
information criteria, for each alternative error model.

Results show that, in comparison to (C) which is used in the main analysis, there is one more
amalgamated type in (A), five more in (B). There are lower numbers of andreoni types in both
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Table 16: Mismatches in Error Models: Ranked by Information Criterion

(A) (B) (C)

Standard 49 42 33
FKM 9 14 13
Andreoni 11 12 21
Stone-Geary 6 3 9
Amalgamated 1 5 0

alternatives, while the number FKM types is the lower in (A), and higher in (B). The number
of standard types is higher in both (A) and (B), while stone-geary types are both lower. While
these results are sample aggregates, of most interest is how many subjects are classed as the same
‘type’ in the alternative models. Those of the same ‘types’ in (A) and (B) are 65.8%, with 55.3%
between (A) and (C) and 59.2% between (B) and (C). There are 69.7% for whom two or more
models designate the same ‘type’, with 44.7% who have the same type in all three.

While it is clear that mismatches between rankings do occur, whether that be the metric used
to identify the ‘goodness’ of the model or from differing estimates according to alternate error
models, one main result remains. There is still heterogeneity in which models are ‘best’. In none
of the specifications does one particular utility function dominate and best explain all individual’s
behaviour.
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