
Discussion Papers in Economics 

Department of Economics and Related Studies 
University of York 

Heslington 
York, YO10 5DD 

No. 18/09 

Efficient Ascending Menu Auctions with 
Budget Constrained Bidders 

Zaifu Yang and Jingsheng Yu 



 

 

 



Efficient Ascending Menu Auctions with Budget

Constrained Bidders∗

Zaifu Yang† and Jingsheng Yu‡

26 July 2018

Abstract

An auctioneer wishes to sell multiple heterogeneous indivisible items among many

bidders. Each bidder has valuations over his interested bundles of items but may not

be able to pay up to his valuations because of his budget constraint. We propose two

ascending menu auctions in which bidders determine their own bids on their inter-

ested bundles. We prove that the first auction finds a core allocation when bidders

are budget constrained, and it finds a strong core allocation when bidders face no

budget constraints. The second auction improves the first one and finds a strongly

Pareto efficient core allocation when bidders are budget constrained. The core alloca-

tion consists of an assignment of items and its associated supporting price for every

assigned bundle and cannot be improved by any coalition of market participants.
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1 Introduction

This paper addresses the problem of how to efficiently allocate multiple heterogeneous

inherently indivisible commodities among a group of bidders who can be financially

constrained. To be more precise, an auctioneer (or seller) wants to sell n indivisible goods

to m potential bidders. Each bidder wishes to acquire several goods and has private

valuations over his interested bundles of goods and may view some goods as substitutes

and some other goods as complements. Valuation patterns of goods can be very general

and arbitrary and may vary from one bidder to another. Every bidder is initially endowed

with a budget but his budget is very limited and may not match his valuation over his

interested bundles. In this setting, it is not possible to follow the traditional approach of

using market-clearing prices as an effective means to allocate goods, as market-clearing

prices are not guaranteed to exist due to budget constraints. We aim to develop a dynamic

menu auction mechanism as an alternative way to overcome the nonexistence problem of

market-clearing prices and still achieve an efficient market outcome.

Auctions have been long used for the sale of a variety of items since 2,500 years ago

when they were applied by the Babylonians. Nowadays auctions can be conducted online

and off-line. They are powerful market mechanisms and have been widely explored

by both private and public sectors to carry out a broad range of and a huge volume

of economic activities. For instance, at the heart of every stock market lie the double

auctions. Auctions are used by governments to sell treasury bills, timber rights, off-shore

oil leases, mineral rights and pollution permits, and to procure public projects including

goods and services, and to privatize state companies (in the former Soviet Unions and

other eastern European socialist states), and by firms and individuals to sell all kinds of

commodities and services ranging from antiques, art works, flowers and fish, to airline

routes, takeoff and landing slots, and keywords. The staggering sale of radio spectrum

licenses in the United States and the United Kingdom and elsewhere in the 1990s and

2000s (see e.g., Klemperer (2004) and Milgrom (2004)) has seized public attention and

made dynamic auction design for multiple items very popular.

A key assumption in auction theory has been that all potential bidders are not

subject to any budget constraints so that they can pay up to their valuations on their

interested item or bundles of items. Under this assumption a number of efficient dy-
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namic auctions have been proposed, such as Crawford and Knoer (1981), Demange et al.

(1986), and Andersson and Erlanson (2013) for the cases in which there are multiple

items but each bidder demands at most one item, Kelso and Crawford (1982), Gul and

Stacchetti (2000), Milgrom (2000), and Sun and Yang (2009) for the cases in which there

are multiple items and each may demand several items. Ausubel (2004, 2006), Perry

and Reny (2005), and Sun and Yang (2014) have introduced both efficient and strategy-

proof dynamic auctions for multiple items. In the models just mentioned prices are the

same for every bidder and market-clearing prices exist. Ausubel and Milgrom (2002)

have introduced package auctions for the environment where each bidder’s valuations

are not restricted to any particular pattern. In this case, prices have to be personalized

and market-clearing personalized prices still exist. In all these models, prices are used

in the auction process and are adjusted according to well-designed rules until market-

clearing prices are reached to clear the markets.

Unfortunately, in reality, buyers may not always have enough cash or credit to buy

those goods or bundles of goods that they want to buy. It is well-known that financial or

budget constraints pose a serious obstacle to the efficient allocation of resources; see Che

and Gale (1998), Laffont and Robert (1996), Maskin (2000) and Krishna (2010) among

others. A longstanding guiding economic principle is that efficient allocation of goods

can be achieved through market-clearing or Walrasian equilibrium prices. In the presence

of budget constraints, this principle can no longer be applied, because market-clearing

prices are not guaranteed to exist.

To overcome the absence of market-clearing prices caused by financial constraints,

we have to adopt a more general approach—the notion of core—to the current challeng-

ing allocation problem. The concept of core is a generalization of Edgeworth’s contract

curve and is one of the most fundamental solution concepts in game theory and general

equilibrium theory; see Gillies (1953), Debreu and Scarf (1963), Scarf (1967), Shapley and

Shubik (1971), Shapley (1973), Shapley and Scarf (1974), Quinzii (1984), and Predtetchin-

ski and Herings (2004) among others. A core allocation consists of an assignment of items

and its supporting price system and is Pareto efficient. It specifies a feasible distribution

of items and incomes among all market participants that is stable against every possible

deviation from any coalition. Because of budget constraints, agents will not be able to

transfer part of their utilities to others. In spite of budget constraints and non-transferable
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utilities we prove that there exists at least one core allocation in the market and thus a

Pareto-efficient allocation can be still achieved. Our major contribution goes further by

designing auctions for actually locating such an efficient allocation.

We propose two ascending menu auctions in which bidders determine their own

bids on their interested bundles of items. We prove that the first auction finds a core

allocation when bidders are budget constrained, and it finds a strong core allocation when

bidders face no budget constraints. The second auction improves the first one and finds a

strongly Pareto efficient core allocation when bidders are budget constrained. Briefly

speaking, in both auctions, initially every bidder sets a high enough target utility he

aims to achieve and determines his bids on all his interested bundles according to this

target utility and his budget. All bidders report their initial bids to the auctioneer. Then

the auctioneer selects a provisional assignment based on reported bids from all bidders

and her own valuations over all bundles. If a bidder gets no item from the provisional

assignment and can reduce his current target utility to make new bids (such a bidder is

called a provisional loser), then at least one of such bidders reduces his target utility and

all other bidders keep their target utilities unchanged. Every bidder then updates his

bids on his interested bundles according to his current target utility and his budget and

reports his renewed bids. The auctioneer chooses again a provisional assignment based

on currently reported bids and her own valuations. This process stops at the time when

there is no provisional loser anymore.

In both auctions, every bidder’s bidding price on each his interested bundle is weakly

increasing over the time and is reported to the auctioneer and therefore the auction is

called an ascending menu auction, whereas his target utility is weakly decreasing and

is used by himself privately. It will be also shown that the core allocation found by

our proposed auctions gives every bidder at least his target utility at the time when the

auctions terminate. By definition, a core allocation need not be strongly Pareto efficient.

To improve market efficiency, we modify our first ascending menu auction so that a

strongly Pareto efficient core allocation can be always found. This modification requires

each bidder to report his untransferable value, i.e., his valuation on his interested bundle

minus his budget, when his bidding price on the bundle exceeds his budget. It should

be stressed that a strongly Pareto efficient core allocation is not necessarily a strong core

allocation, as the strong core may be empty, although the core is always nonempty.
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A long-established pricing rule is that a seller will sell her good only if the price

is no less than her valuation or reserve price. Because our current model allows the

seller to have any kind of valuation on every bundle of items, we need to generalize

this conventional rule in a way that a bundle can be sold only if its price is no less than its

marginal value to the seller. We prove that at every core allocation the price of every sold

bundle is at least equal to its marginal value to the seller when no condition is imposed

on the seller’s valuations, and that at every core allocation the price of every sold bundle

is at least equal to the seller’s valuation when her valuations are super-additive. Besides,

our ascending auctions share several common features with other ascending auctions.

In practice, business people are extremely reluctant to reveal their costs or values and

may not always have complete information on the situation. Compared with the famous

sealed-bid VCG auction mechanism, our ascending auctions have the advantage of de-

manding less information from bidders, allowing them to learn and adjust, being detail-

free, and being independent of any probability distribution. According to the literature,

see Wilson (1987), Rothkopf et al. (1990), Ausubel (2004, 2006), Perry and Reny (2005),

Bergemann and Morris (2007), Milgrom (2007), and Rothkopf (2007) among others, this

feature is very important and attractive for auction design.

Our auction model is a natural generalization of Ausubel and Milgrom (2002)’s sem-

inal model without budget constraints to the one with budget constraints. In their model

without budget constraints, they assume that the seller values every bundle of items at

zero. We show that this assumption can be also dropped by using a generalization of

the conventional pricing rule. Our first ascending menu auction can be viewed as an

appropriate generalization and improvement of their package auction from the setting

without budget constraints to the setting with budget constraints. Although most part of

their paper focuses on the analysis of their auction without budget constraints, Ausubel

and Milgrom also briefly discuss a model with budget constraints in their Section 8.

In their model, bidders’ budgets and utility functions are not explicitly given instead

they require that every bidder and the seller each have a strict preference relation over

a finite set of choices. They suggest to use the concept of core as solution and propose a

procedure for finding a core element. Their model is different from ours and their auction

cannot be applied to our current model, because our model permits every bidder to have

a continuum of choices and be indifferent between many choices and examples of our
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model will be given to show that their auction cannot guarantee to find a core allocation.

Our article also closely connects with Day and Milgrom (2008), Erdil and Klemperer

(2010), Mishra and Parkes (2007), Talman and Yang (2015) and van der Laan and Yang

(2016). Day and Milgrom (2008), Erdil and Klemperer (2010) have refined and improved

the ascending package auctions of Ausubel and Milgrom (2002) without budget con-

straints. Mishra and Parkes (2007) introduce an ascending package auction for finding a

Vickrey outcome which need not be a core allocation but has the strategy proof property.

See also Bernheim and Whinston (1986) for an sealed-bid menu auction. Talman and Yang

(2015) and van der Laan and Yang (2016) have examined the assignment market with

budget constraints in which there are multiple items for sale but each bidder consumes

only one item. The former paper proposes a dynamic auction that finds a core allocation.

The latter one introduces an ascending auction that locates a constrained equilibrium. The

constrained equilibrium possesses several interesting properties but is not necessarily a

core allocation.

This article further relates to the literature on auctions of selling one or two items

with budget constrained bidders. Che and Gale (1998), Laffont and Robert (1996), Maskin

(2000), Krishna (2010), and Zheng (2001) have examined the cases of selling a single item

when bidders face budget constraints. Hafalir et al. (2012) have studied a sealed-bid

Vickrey auction for selling one divisible good to budget constrained bidders. Benoit and

Krishna (2001), Brusco and Lopomo (2008), and Pitchik (2009) have analyzed auctions

for selling two items under budget constraints. Pai and Vohra (2014) have considered

the sale of a single item to ex-ante homogeneous bidders who have private information

about their own valuations and budgets. They derive expected revenue maximizing and

constrained efficient symmetric auctions and show an implementation through a mod-

ified all-pay auction. Beker and Hernando-Veciana (2015) have investigated an infinite

horizon bidding market model with two financially constrained firms competing for a

procurement project. They show that the effect of budget constraints does not disappear

even if bidders can accumulate profits along time to alleviate them.

The rest of the paper is organized as follows. Section 2 presents the model and basic

concepts. Section 3 introduces and analyzes the auctions. Section 4 concludes.
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2 The Model

An auctioneer (seller) wishes to sell a set of heterogeneous indivisible goods (items) N =

{1, . . . , n} to a group of potential bidders M = {1, . . . , m}. Let 0 represent the seller (she)

and let M0 = M∪{0} stand for all agents in the market. Let 2N denote the collection of all

subsets of N, and an element A ∈ 2N is called a bundle of goods. For every bidder i ∈ M,

let F i ⊂ 2N represent the family of bundles in which he is interested. We assume that

consuming nothing can be one of his options, i.e., ∅ ∈ F i. Bidder i attaches a monetary

value (units of money) to each interested bundle of items, namely, each bidder i has a

valuation function vi : F i → Z+ with vi(∅) = 0. Every bidder i is endowed with an

amount mi ∈ Z+ of money. We say that bidder i is budget or financially constrained if

mi < maxA∈F i vi(A), that is, the valuation of bidder i for some bundles exceeds what

he can afford. Otherwise, bidder i is not budget constrained. The seller has a valuation

v0(S) ∈ Z+ for every bundle S ∈ 2N and an initial income m0 = 0. Observe that for the

seller we have F 0 = {S | S ⊆ N}. As in the literature,1 we also assume that money is a

perfectly divisible commodity. Because all vi(S) and mi are integers, we shall prove that

there will be an integral solution by using our proposed auctions and the size of price

adjustment in the auctions can be 1. It should be, however, pointed out that vi(S) and mi

are allowed to be any real numbers.

A bundle S can be sold only if its price p(S) is no less than its marginal value to the

seller, i.e., p(S) ≥ v0(S ∪ T)− v0(T), where T is the bundle that will not be sold but kept

by the seller. This pricing rule is a natural and practical generalization of the traditional

one that the seller is willing to sell her good only if its price is not below her reserve price.

This new rule is needed because we allow the seller to have a very general pattern of

valuations on her bundles of items. In the literature it is typically assumed that the seller

has a valuation of zero on every item or bundle of items.

The following mild assumptions are imposed upon the model:

(A1) Private Values: Every bidder i ∈ M knows privately his own feasible bundles F i,

valuation function vi, and budget mi.

(A2) Quasilinear Utility: For any bidder i ∈ M, if he pays p(A) in exchange for bundle

1Koopmans and Beckmann (1957), Shapley and Shubik (1971), Crawford and Knoer (1981), Kelso and
Crawford (1982), Quinzii (1984), Demange et al. (1986), and Gul and Stacchetti (1999, 2000) among others.

7



A ∈ F i, he gets utility of vi(A) + mi − p(A) for p(A) ≤ mi and utility of −∞ for

p(A) > mi.

(A3) Monotonicity of the Seller Values: The seller’s valuation function v0 is weakly increas-

ing with v0(∅) = 0, i.e., v0(S) ≤ v0(T) for S ⊆ T ⊆ N.

Note that the valuation function of each agent (bidder or seller) can be arbitrary and

very general. This can accommodate a variety of cases including the one in which some

agents may view the items as substitutes but the other may see them as complements.

We use (vi,F i, mi, i ∈ M0) to represent this auction model. Observe that when no

bidder is budget constrained, this model reduces to a more general version of the well-

known model of Ausubel and Milgrom (2002) without budget constraints; see also Day

and Milgrom (2008), and Erdil and Klemperer (2010). They assume that no bidder is

budget constrained and the seller valuates every bundle of items at zero and free disposal

holds for every bidder. These three basic assumptions are dropped in the current model.

An assignment of items in N is a partition π = (π(i))i∈M0 of items among all agents

in M0 such that π(i) ∩ π(j) = ∅ for all i 6= j and
⋃

i∈M0
π(i) = N. Note that π(i) = ∅

is allowed. An assignment π assigns the bundle π(i) to agent i. If π(0) 6= ∅, then the

bundle π(0) is not sold and thus stays with the seller. An assignment π is feasible if

π(i) ∈ F i for every bidder i ∈ M. Let A denote the family of all feasible assignments. A

feasible assignment π is fully efficient if for every feasible assignment ρ, we have

∑
i∈M0

vi(π(i)) ≥ ∑
i∈M0

vi(ρ(i)). (1)

Given a fully efficient assignment π∗, let w(N) = ∑i∈M0
vi(π∗(i)). We call w(N) the

potential market value. Clearly, this value is the same for any fully efficient assignment.

A vector r = (r0, r1, · · · , rm) ∈ Rm+1
+ is a feasible income distribution if ∑m

i=0 ri =

∑m
i=1 mi. A pair (π, r) of a feasible assignment π and a feasible income distribution r is

called an allocation. At (π, r), agent i ∈ M receives bundle π(i) and holds ri a total

amount of income. Then the utilities that the bidders and the seller achieve are given by

ui(π, r) = vi(π(i)) + ri, ∀i ∈ M,
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and

u0(π, r) = v0(π(0)) + r0 = v0(π(0)) + ∑
i∈M

(mi − ri),

respectively.

When there is no budget constraint, the Walrasian equilibrium has been the most

widely used solution for auction and equilibrium models and Walrasian equilibrium or

market-clearing prices are used in auction design.

Given a price vector p ∈ Rn which specifies a price for each item, the demand set of

bidder i is defined by

Di(p) = {S ∈ F i | vi(S)−∑
j∈S

p({j}) = max
T∈F i

(vi(T)−∑
j∈T

p({j})}.

So Di(p) is the collection of his most preferred bundles at prices p.

Definition 1. A Walrasian equilibrium is a pair (p, π) of prices p and assignment π such that

π(i) ∈ Di(p) with ∑j∈π(i) p({j}) ≤ mi for every bidder i ∈ M and v0(π(0)) = ∑j∈π(0) p({j})
for the seller.

At equilibrium, every bidder gets his best bundle at the prices within his budget

and the price of the unsold bundle is equal to the seller’s valuation of the bundle.

If (p, π) is a Walrasian equilibrium, then p is called an equilibrium or market-clearing

price vector and π a Walrasian equilibrium allocation. It is well-known from Koopmans

and Beckmann (1957) and Kelso and Crawford (1982) that there will be at least one

Walrasian equilibrium when all indivisible goods are substitutes and traders face no

budget constraints.

The following example shows, however, that when buyers are budget constrained

and even if their budgets are different, the Walrasian equilibrium still cannot be guaran-

teed to exist.

Example 1. A seller has two items for sale and a valuation of zero on each item. There are three

bidders 1, 2 and 3. Each bidder demands no more than one item and has valuation and budget as

given in Table 1. We have F i = {∅, {1}, {2}} for every bidder i. Observe that each bidder has a

different budget and both bidders 2 and 3 are financially constrained.

We will prove there exists no Walrasian equilibrium due to budget constraints. Sup-

pose there would be a Walrasian equilibrium price vector p = (p1, p2). It is easy to see
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Table 1: Valuation and budget

Bidder ∅ Item 1 Item 2 Budget mi

Bidder 1 0 8 6 9
Bidder 2 0 7 0 5
Bidder 3 0 0 6 3

that both items must be sold. This means that it is necessary to have p1 ≤ 8 and p2 ≤ 6.

We need to consider the following cases in which the two inequalities hold.

Case 1. When p1 = p2 + 2, we have D1(p) = {{1}, {2}}. If p1 ≤ m2 = 5, then

we have D2(p) = {{1}} and D3(p) = {{2}} and both items are over-demanded. If

p1 > m2 = 5, then D2(p) = D3(p) = {∅}, then one item is over-supplied. In either case,

there is no equilibrium.

Case 2. When p1 < p2 + 2, we have D1(p) = {{1}}. In order to have an equilibrium

we must have p2 ≤ m3 = 3, which implies p1 < 5 = m2. Then we have D2(p) = {{1}}.
So item 1 is over-demanded and we cannot have an equilibrium.

Case 3. When p1 > p2 + 2, we have D1(p) = {{2}}. In order to have an equilibrium

we must have p1 ≤ m2 = 5, which implies p2 < 3 = m2. Then we have D3(p) = {{2}}.
So item 2 is over-demanded and we cannot have an equilibrium.

This example motivates us to make use of a more general solution: the core. The

notion of core has been widely used in general equilibrium theory and cooperative game

theory. We now introduce this concept.

An allocation (π, r) is individually rational if every agent i ∈ M0 achieves no less

utility than they stand alone, i.e., for every i ∈ M, ui(π, r) ≥ mi and for the sell u0(π, r) ≥
v0(N). An allocation (π, r) is Pareto efficient if there does not exist another allocation (ρ, t)

such that ui(π, r) > ui(ρ, t) for all i ∈ M0; otherwise, we say that (π, r) is strongly Pareto

dominated by (ρ, t). An allocation (π, r) is strongly Pareto efficient if there does not exist

another allocation (ρ, t) such that ui(π, r) ≥ ui(ρ, t) for all i ∈ M0 with at least one strict

inequality; otherwise, we say that (π, r) is Pareto dominated by (ρ, t). A nonempty subset

S ⊆ M0 is called a viable coalition if S consists of either the seller with any number of

bidders or a single bidder. Given a viable coalition S, an allocation (ρS, tS) with tS ∈ Rm+1
+

and ∑m
i=0 tS

i = ∑m
i=0 mi is feasible for S if ρS(i) = ∅ and tS

i = mi for every bidder i ∈ M0 \S.

An allocation (π, r) is blocked by a viable coalition S if there exists a feasible allocation
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(ρS, tS) such that ui(ρS, tS) > ui(π, r) for all i ∈ S; the allocation (π, r) is weakly blocked

by a viable coalition S if there exists a feasible allocation (ρS, tS) such that ui(ρS, tS) ≥
ui(π, r) for all i ∈ S and with at least one strict inequality.

Definition 2. An allocation (π, r) is in the core and is called a core allocation if it is not blocked

by any coalition. It is in the strong core and is called a strong core allocation if it cannot be weakly

blocked by any coalition.

Clearly, every core allocation or element is Pareto efficient and every strong core

allocation is strongly Pareto efficient. It can be shown that if no bidder is budget con-

strained, then every strongly Pareto efficient allocation is fully efficient. However, when

bidders face budget constraints, a strongly Pareto efficient need not be fully efficient.

Let us return to Example 1 which has no Walrasian equilibrium due to budget

constraints. However, it is easy to verify that this example has the following core alloca-

tions (π1, r1) = ((∅, {1}, ∅, {2}), (9, 3, 5, 0)), and (π2, r2) = ((∅, {2}, {1}, ∅), (9, 5, 0, 3)).

These are not in the strong core as they can be weakly blocked by a coalition.2

In Example 1, every bidder consumes at most one item. Next we we consider a more

general case in which bidders may consume more than one item.

Example 2. There are three items {a, b, c} and three bidders {1, 2, 3}. Each bidder’s interested

bundles, corresponding valuations, and budget are given in Table 2. Observe that for ease of

notation, we express a bundle {a, b} as ab.

Table 2: Valuations and budgets.

Bidders F i vi

1 {ab, ac, ∅} v1(ab) = 4, v1(ac) = 4
2 {b, ab, ∅} v2(b) = 3, v2(ab) = 4
3 {c, ac, ∅} v3(c) = 4, v3(ac) = 6

We first consider the case with budgets (m1, m2, m3) = (4, 4, 6). In this case no bidder

is budget constrained. The market value is w(0123) = 9, and the corresponding efficient

assignment is π∗ = (∅, ∅, b, ac) which allocates b to bidder 2 and ac to bidder 3. By

giving a feasible income distribution r∗ = (9, 4, 1, 0), we construct a strong core allocation

(π∗, r∗). To show this, consider the utility distribution (u0, u1, u2, u3) = (9, 4, 4, 6), which

2 The strong core of this problem is not empty. For example, allocations (π1, r3) =
((∅, {1}, ∅, {2}), (10, 2, 5, 0)) and (π2, r4) = ((∅, {2}, {1}, ∅), (10, 4, 0, 3)) are both strong cores.
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satisfies ∑i∈M0
ui = 23 = w(0123) + ∑i∈M0

mi and ∑i∈S ui ≥ w(S) + ∑i∈S mi for any

proper subset S ⊂ {0, 1, 2, 3}.3

We now show that the market has no strong core under budgets (m1, m2, m3) =

(3, 2, 2). Since any wasteful allocation, in which the seller holds a bundle unsold, can

be Pareto improved by assigning the unsold object(s) to the right person without chang-

ing the income distribution, so we focus on the four non-wasteful assignments: π∗ =

(∅, ∅, b, ac), π′ = (∅, ac, b, ∅), π′′ = (∅, ab, ∅, c), and π′′′ = (∅, ∅, ab, c).

We first consider the fully efficient assignment π∗ = (∅, ∅, b, ac). For any feasible

income distribution r = (7 − r1 − r2 − r3, r1, r2, r3), individual rationality implies that

r1 ≥ m1 = 3. (π∗, r) is weakly blocked by coalition {0, 1, 2}, and the blocking allocation

is (π′, t(r)) with t(r) = (8− r1 − r2, r1 − 3, r2, 2) and

u0(π′, t(r)) = 8− r1 − r2 > 7− r1 − r2 − r3 = u0(π∗, r),

u1(π′, t(r)) = v1(ac) + r1 − 3 > r1 = u1(π∗, r),

u2(π′, t(r)) = v2(b) + r2 = v2(b) + r2 = u2(π∗, r).

In a similar way, we can show that any individually rational allocation (π′, r) is weakly

blocked by coalition {0, 1, 3} and the proposed allocation is
(
π′′, (7− r1− r3, r1, 2, r3− 2)

)
.

The individually rational allocation (π′′, r) will be weakly blocked by coalition {0, 1, 2}
with the proposed allocation

(
π′, (7− r1− r2, r1, r2− 2, 2)

)
. Finally, (π′′′, r) will be weakly

blocked by coalition {0, 1, 3} with allocation
(
π′′, (8− r1 − r2, r1 − 3, 2, r3)

)
.

By contrast, the core is not empty. In fact,
(
π′, (5, 0, 0, 2)

)
and

(
π′′, (5, 0, 2, 0)

)
are

both in the core. Because there is always a bidder receiving nothing and thus holding his

budget by individual rationality, the seller cannot get more than an income of 5. Then no

coalition can improve the seller’s revenue based on the two given core allocations.

We will establish the following core existence theorem for our auction model.

Theorem 1. There exists at least one core allocation in the auction model (vi,F i, mi, i ∈ M0).

In the next section we will propose a dynamic auction mechanism which always

finds a core allocation, thus giving a constructive proof of the theorem.

3 The values of all the coalitions are listed here: w(0) = w(1) = w(2) = w(3) = w(12) = w(13) =
w(23) = w(123) = 0, w(01) = 4, w(02) = 4, w(03) = 6, w(012) = 7, w(013) = 8, w(023) = 9, and
w(0123) = 9.
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3 The Design of Dynamic Auction

In this section we will present two dynamic auctions for our auction model. The first

auction can always find a core allocation under budget constraints and find a strong core

allocation when no bidder is financially constrained. The second auction modifies the

first one but needs to use more information from bidders and can always find a strongly

Pareto efficient core allocation. Roughly speaking, in both auctions, at each round every

bidder determines his bids on his interested bundles according to his current target utility

and his budget and reports his bids. Then the auctioneer selects a provisional assignment

based on reported bids from all bidders and her own valuations. If a bidder gets no item

from the provisional assignment and his current target utility is still above his budget

(such a bidder is called a provisional loser), then at least one of such bidders reduces

his target utility and other bidders keep their target utilities unchanged, and the auction

continues until there is no provisional loser.

3.1 The First Dynamic Auction

At each round of the auction, every bidder i ∈ M has a target utility ûi being at least as

high as his budget mi and will bid according to this target utility as follows. For every

feasible bundle A ∈ F i, he sets an intermediate price as p̂i(A|ûi) = vi(A) + mi − ûi, and

proposes his bidding price on A as

pi(A|ûi) =


0, if p̂i(A|ûi) < 0,

min
{

p̂i(A|ûi), mi}, if p̂i(A|ûi) ≥ 0.

For example, suppose that bidder i is interested in bundles A and B with vi(A) = 10 and

vi(B) = 5, and his budget is 2. We list all the target utilities and bidding prices in Table 3.

Bidder anchors his bidding prices to his target utility, so he increases his bids by

decreasing his target utility. We define the decrement of target utility, ∆i(ûi), as the

minimal integer that leads to a new bidding profile. Formally,

∆i(ûi) = min{k ∈ Z+ | pi(A|ûi − k) 6= pi(A|ûi) for some A ∈ F i}.
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Table 3: Illustration of the target utilities and bidding prices.

ûi p̂i(A | ûi) p̂i(B | ûi) pi(A | ûi) pi(B | ûi)

12 0 −5 0 0
11 1 −4 1 0
10 2 −3 2 0
9 3 −2 2 0
8 4 −1 2 0
7 5 0 2 0
6 6 1 2 1
5 7 2 2 2
4 8 3 2 2
3 9 4 2 2
2 10 5 2 2

Commonly, the decrement is one. However, when the bidding price of some bundle

reaches the budget, the decrement may be larger than one. And when all the bidding

prices reach the budget or the target utility reaches the budget, his bids cannot be in-

creased further and consequently there will be no decrement and we denote this by

∆i(ûi) = ∅. For instance, the minimal decrement of the above example is ∆i(ûi = 11) = 1

since pi(A|10) = 2 6= pi(A|11) = 1. The bidding prices keep unchanged when the target

utility decreases from 10 to 9, 8, and 7, so ∆i(ûi = 10) = 4 because pi(B|6) = 1 6=
pi(B|10) = 0. When ûi = 5, all the bidding prices reach the budget and no further bid

increase is possible, so ∆i(ûi = 5) = ∅.

Now we give a complete description of the rules of the first dynamic auction mech-

anism.

Initialization: Every bidder i ∈ M sets a target utility ûi
1 ∈ Z+ that he wishes to achieve

ûi
1 ≥ max

A∈F i
vi(A) + mi.

Set t = 1 and go to the Bidding Step.

Bidding Step: For any bidder i ∈ M, if it is the first round t = 1 or he revises his target

utility ûi
t < ûi

t−1, he makes new bids as follows. For every feasible bundle A ∈ F i,

bidder i sets an intermediate bidding price p̂i
t(A|ûi

t) = vi(A) + mi − ûi
t and adjusts
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his bidding prices as

pi
t(A|ûi

t)(= pi
t(A)) =


0, if p̂i

t(A|ûi
t) < 0,

min
{

p̂i
t(A|ûi

t), mi}, if p̂i
t(A|ûi

t) ≥ 0.

Let pj
t = pj

t−1 for any t > 1 and any other bidder j ∈ M who does not revise his

target utility ûj
t = ûj

t−1. Then all prices ph
t for h ∈ M are reported to the auctioneer.

Go to the Assigning Step.

Assigning Step: Based on the current bidding prices Pt = (p0
t , p1

t , . . . , pm
t ) with p0

t (S) =

v0(S) for every S ∈ 2N, the auctioneer announces a provisional assignment πt

yielding the highest revenue, i.e., an element of the following optimal set:

C(Pt) =
{

π ∈ A | π = arg max
ρ∈A

(
∑

i∈M0

pi
t(ρ(i))

)
s.t. pi

t(ρ(i)) > 0 ∀ρ(i) 6= ∅ and i > 0
}

.

We require pi
t(ρ(i)) > 0 because zero-price offers lead less utilities to bidders4 and

no revenue to seller. Then go to the following step.

Continue or Stop: At the provisional assignment πt, if there is a bidder i ∈ M with

πt(i) = ∅ and ∆i(ûi
t) 6= ∅ (which means that this bidder still has incentive to

make new bids), at least one such bidder i updates his target utility by setting

ûi
t+1 = ûi

t−∆i(ûi
t), and every other bidder j ∈ M keeps his target utility unchanged

as ûj
t+1 = ûj

t. Then set t = t + 1 and go back to the Bidding Step. Otherwise, the

auction stops with the provisional assignment πt. Then every bidder i ∈ M receives

bundle πt(i) and pays his bidding price pi
t(πt(i)). If a bidder i gets no item, he

updates his target utility by setting ûi
t = mi. The seller keeps bundle πt(0) and

receives all payments from bidders for sold items.

In the auction, bidder i ∈ M is called a provisional loser (at round t) if he gets no

item from the provisional assignment πt and his target utility ûi
t can be further reduced

to offer new bids, i.e., ∆i(ûi
t) 6= ∅. Observe that in the auction, every bidder reports only

4 Commonly bidder i sets pi
t(A) = 0 because of 0 > p̂i

t = vi(A) + mi − ûi
t. So assigning i the bundle A

with zero-price is harmful to him, i.e., vi(A) + mi < ûi
t.
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his bidding prices to the auctioneer and does not need to reveal any other information,

and that no bidder will be assigned a nonempty bundle with a zero bidding price.

To have a better understanding of our proposed auction mechanism, we illustrate it

through Example 2 with the constrained budgets (m1, m2, m3) = (3, 2, 2). Table 4 collects

the data generated by the proposed auction mechanism and shows that the auction finds

the core allocation
(
π′′, (5, 0, 2, 0)

)
.5 At the end of the auction, bidder 2 gets no item and

adjusts his target utility as û2
10 = m2 = 2.

Table 4: Illustration of the proposed auction mechanism via Example 2.

t û1
t p1

t (ab, ac, ∅) û2
t p2

t (b, ab, ∅) û3
t p3

t (c, ac, ∅) πt(0, 1, 2, 3) rt(0, 1, 2, 3)
1 7 (0, 0, 0) 6 (0, 0, 0) 9 (0, 0, 0) (abc, ∅, ∅, ∅) (0, 3, 2, 2)
2 6 (1, 1, 0) 5 (0, 1, 0) 9 (0, 0, 0) (c, ab, ∅, ∅) (1, 2, 2, 2)
3 6 (1, 1, 0) 4 (1, 2, 0) 9 (0, 0, 0) (∅, ac, b, ∅) (2, 2, 1, 2)
4 6 (1, 1, 0) 4 (1, 2, 0) 7 (0, 1, 0) (∅, ac, b, ∅) (2, 2, 1, 2)
5 6 (1, 1, 0) 4 (1, 2, 0) 6 (0, 2, 0) (∅, ∅, b, ac) (3, 3, 1, 0)
6 5 (2, 2, 0) 4 (1, 2, 0) 6 (0, 2, 0) (∅, ∅, b, ac) (3, 3, 1, 0)
7 4 (3, 3, 0) 4 (1, 2, 0) 6 (0, 2, 0) (∅, ac, b, ∅) (4, 0, 1, 2)
8 4 (3, 3, 0) 4 (1, 2, 0) 5 (1, 2, 0) (∅, ab, ∅, c) (4, 0, 2, 1)
9 4 (3, 3, 0) 3 (2, 2, 0) 5 (1, 2, 0) (∅, ac, b, ∅) (5, 0, 0, 2)

10 4 (3, 3, 0) 3 (2, 2, 0) 4 (2, 2, 0) (∅, ab, ∅, c) (5, 0, 2, 0)

Having the above discussion we will prove that our proposed auction mechanism

is well-designed and will always find a core allocation in finite rounds.

Lemma 1. The proposed auction terminates in finitely many rounds with each bidder’s target

utility no less than his budget.

Proof. Observe that for every bidder i ∈ M, his initial target value ûi
1 is an integer no

less than maxA∈F i vi(A) + mi ≥ mi. His target utility decreases at least by 1 if he is a

provisional loser and his target utility can be further reduced so that he can make new

bids. Because mi is an integer and the target utility is also an integer, the target utility can

at most reduce to mi. Therefore, the auction must terminate in finitely many rounds.
5 Another core allocation

(
π′, (5, 0, 0, 2)

)
is also possible to be selected in step t = 10. If so, the auction

also terminates at this step. Then bidder 3, as a loser, updates his target utility by û3
10 = m3 = 2.
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In the auction process, every bidder i’s bidding price pi
t is an increasing function of

time t. Because ûi
t ≥ mi for all t, by the pricing formula his bidding price for every feasible

bundle will never be higher than his valuation of the bundle nor above his budget, i.e.,

pi
t(A) ≤ min{mi, vi(A)} for all t and A ∈ F i.

Suppose the auction stops in round T. The final assignment is πT, and the cor-

responding income distribution is r0
T = ∑i∈M pi

T(πT(i)) for the seller, and ri
T = mi −

pi
T(πT(i)) for every bidder i ∈ M. Bidder i ∈ M is said to be a loser if his assigned bundle

πT(i) is empty; otherwise, he is a winner. Let (πT, rT) denote the final outcome generated

by the auction. Clearly, a loser gets no item and pays nothing.

The next result shows that the price of every sold bundle by the auction is at least as

high as its marginal value to the seller.

Lemma 2. At the outcome (πT, rT) generated by the proposed auction, every bidder i ∈ M

pays a price for his assigned bundle no less than its marginal value to the seller, i.e.,

pi
T(πT(i)) ≥ v0(πT(0) ∪ πT(i))− v0(πT(0)).

Proof. It follows immediately from the Assigning Step of the auction that the seller is

maximizing her revenue.

Recall that we do not impose any condition upon the valuation functions of bidders

and the seller. The following result as a corollary of Lemma 2 proves that when the seller’s

valuation function is super-additive, the price of every sold bundle by the auction is at

least as high as the seller’s valuation or reserve price of the bundle.

Corollary 1. When the seller’s valuation function v0 is super-additive, i.e., v0(K ∪ L) ≥
v0(K) + v0(L) for any two disjoint sets K and L of items, then at the outcome (πT, rT) generated

by the proposed auction, every bidder i ∈ M pays a price for his assigned bundle no less than the

seller’s valuation or reserve price, i.e., pi
T(πT(i)) ≥ v0(πT(i)).
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Proof. It follows that

pi
T(πT(i)) ≥ v0(πT(0) ∪ πT(i))− v0(πT(0))

≥ v0(πT(0)) + v0(πT(i))− v0(πt(0))

= v0(πT(i)).

Lemma 3. The outcome (πT, rT) generated by the proposed auction is individually rational

and gives every bidder i at least his target utility ûi
T.

Proof. Observe that each loser i achieves utility ui(πT, rT) = vi(∅) + mi = mi = ûi
T.

Each winner i’s final target utility ûi
T ≥ mi. We prove that each winner achieves his final

utility ui(πT, rT) ≥ ûi
T. To see this, let A = πT(i) denote i’s assigned bundle. Since

the winner’s price is not zero, we have pi
T(A) = min{vi(A) − ûi

T + mi, mi}. We need

to consider the following two cases. Firstly, if it holds 0 < p̂i
T(A) ≤ mi, then bidder i’s

utility is ui(πT, rT) = vi(A) + mi − pi
T(A) = vi(A) + mi − p̂i

T(A) = ûi
T. Secondly, if it

holds p̂i
T(A) > mi implying vi(A) > ûi

T, then pi
T(A) = mi and bidder i’s utility equals

ui(πT, rT) = vi(A) + mi −mi = vi(A) > ûi
T.

For the seller, consider the no-sale assignment ρ̄ such that ρ̄(0) = N and ρ̄(i) = ∅

for all i ∈ M. It is feasible, i.e., ρ̄ ∈ A, and gives her the utility of ∑i∈M0
pi

T(ρ̄(i)) =

p0
T(N) = v0(N). The seller’s optimal choice guarantees her rationality, u0(πT, rT) =

maxρ∈A ∑i∈M0
pi

T(ρ(i)) ≥ v0(N).

We are ready to establish the first major result concerning the auction. It states that

the outcome generated by the auction is in the core and thus is a Pareto efficient allocation.

Theorem 2. The outcome (πT, rT) yielded by the proposed auction is in the core and thus Pareto

efficient.

Proof. By Lemma 3, the outcome (πT, rT) is individually rational. Suppose to the contrary

that (πT, rT) is not in the core. Then there exists a coalition S consisting of the seller

and at least one bidder with an allocation (ρS, t) such that ui(ρS, t) > ui(πT, rT) for all

i ∈ S. Without loss of generality, we can assume that ti ≤ mi for all i ∈ S \ {0}. To see
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this, suppose that there is a nonempty subset of bidders J ⊆ S \ {0} such that tj > mj

for all j ∈ J. Then some bidder in S must transfer his money to bidders in J. Let K

be the set of all such bidders. We can construct a new blocking coalition S′ = S \ J,

which obviously contains the set K. Let every agent in S′ keep the same bundle and

the same income as at (ρS, t), while for every bidder i ∈ K ∩ S′, beside his income ti let

him also take back his transferred income from the set J, and let the seller get back her

items from the bidders in J. In this way we obtain a new allocation (ρS′ , t′) at which

ui(ρS′ , t′) ≥ ui(ρS, t) > ui(πT, rT) for every i ∈ S′ and ti ≤ mi for all i ∈ S′ \ {0}.
For each bidder in the coalition i ∈ S \ {0}, if he is a winner of the auction, then his

final target utility in the auction is lower than the improved utility, i.e.,

ûi
T ≤ ui(πT, rT) < ui(ρS, t) = vi(ρS(i)) + ti.

This implies that he sets a higher intermediate price on ρS(i), i.e.,

p̂i
T(ρ

S(i)) = vi(ρS(i)) + mi − ûi
T > mi − ti ≥ 0,

and proposes a higher bidding price on ρS(i), i.e.,

pi
T(ρ

S(i)) = min{mi, p̂i
T(ρ

S(i))} ≥ mi − ti.

If i ∈ S \ {0} is a loser of the auction, he is also improved in the coalition, i.e.,

mi = ui(πT, rT) < ui(ρS, t) = vi(ρS(i)) + ti.

The loser cannot increase his bids anymore, i.e., ∆i(ûi
T) = ∅, so either his bidding prices

on all the feasible bundle reach his budget, which implies that

pi
T(ρ

S(i)) = mi ≥ mi − ti,
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or his target utility reaches his budget, which implies that p̂i
T(ρ

S(i)) = vi(ρS(i)) and

pi
T(ρ

S(i)) = min{mi, vi(ρS(i))} ≥ mi − ti.

Then for the seller we have

∑
i∈S

pi
T(ρ

S(i)) ≥ p0
T(ρ

S(0)) + ∑
i∈S\{0}

(mi − ti)

= u0(ρS, t)

> u0(πT, r)

= ∑
i∈M0

pi
T(πT(i)).

It contradicts that πT maximizes the seller’s revenue based on bidding prices PT.

The previous theorem shows that the auction always generates a core allocation no

matter whether bidders are budget constrained or not, yielding a constructive proof of

Theorem 1. We know that when bidders face budget constraints, we can guarantee to

find a core and Pareto efficient allocation but we cannot expect to have a strong core

allocation and therefore we have to accept some loss of market efficiency. This raises an

important question whether the auction can find a strong core allocation when bidders are

not budget constrained. Our next result establishes that the auction will always generate

a strong core allocation if bidders can afford to pay up to their valuations. Every strong

core allocation must be strongly Pareto efficient. When no bidder is budget constrained,

every strongly Pareto efficient allocation must be fully efficient and thus every strong core

allocation must be fully efficient.

Theorem 3. When no bidder faces a budget constraint, the outcome (πT, rT) yielded by the

proposed auction is in a strong core and thus strongly Pareto efficient and fully efficient.

Proof. We first prove that at the final outcome (πT, rT) every bidder i ∈ M achieve his

target utility ui(πT, rT) = ûi
T. If a bidder i ∈ M is a loser, he receives nothing such

that ui(πT, rT) = mi. According to the definition of the auction, when the loser is not

budget constrained, he stops to decrease his target utility until ûi
T = mi. We then prove

20



that each winner’s final utility ui(πT, rT) also equals his target utility ûi
T. To see this, let

A = πT(i) denote i’s assigned bundle. Since the winner’s price is not zero, we have

pi
T(A) = min{vi(A) − ûi

T + mi, mi}. There are two cases: We first consider the case of

0 < p̂i
T(A) ≤ mi. By the bidding rule we have pi

T(A) = p̂i
T(A) and then bidder i’s final

utility equals ui(πT, rT) = vi(A) + mi − pi
T(A) = vi(A) + mi − p̂i

T(A) = ûi
T. The second

case is p̂i
T(A) > mi, which implies vi(A) > ûi

T. By Lemma 1 we have ûi
T ≥ mi. By this we

would have vi(A) > mi. On the other hand, because bidder i is not budget constrained,

we must have vi(A) ≤ mi contradicting vi(A) > mi. Therefore this case is not possible.

We can conclude that for every bidder i ∈ M, no matter whether he is a winner or loser,

his final utility ui(πT, rT) equals his final target utility ûi
T.

Now suppose to the contrary that (πT, rT) is not in the strong core. By Lemma 3,

as the outcome (πT, rT) is individually rational, it cannot be blocked by any single agent.

Then there would exist a coalition S with the seller and at least one bidder and an imple-

mentable pair (ρS, t) such that ui(ρS, t) ≥ ui(πT, rT) for all i ∈ S with at least one strict

inequality. Without loss of any generality, we can assume that ti ≤ mi for all i ∈ S \ {0}.
Consider the case in which the seller is strictly improved, i.e., u0(ρS, t) > u0(πT, rT).

For every bidder i ∈ S \ {0}, the blocking condition implies that ûi
T = ui(πT, rT) ≤

ui(ρS, t) = vi(ρS(i)) + ti, and hence pi
T(ρ

S(i)) ≥ p̂i
T(ρ

S(i)) = vi(ρS(i)) + mi − ûi
T ≥

mi − ti ≥ 0. For the seller, we have

∑
i∈S

pi
T(ρ

S(i)) ≥ p0
T(ρ

S(0)) + ∑
i∈S\{0}

(mi − ti)

= u0(ρS, t)

> u0(πT, r)

= ∑
i∈M0

pi
T(πT(i)).

It contradicts the fact that πT maximizes the seller’s revenue on bidding prices PT.

Consider the other case in which at least one bidder is strictly improved. We have

the inequalities pi
T(ρ

S(i)) ≥ mi − ti for all i ∈ S \ {0}, and pi
T(ρ

S(i)) > mi − ti for the
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bidder being strictly improved. Then for the seller, we have the strict inequality

∑
i∈S

pi
T(ρ

S(i)) > p0
T(ρ

S(0)) + ∑
i∈S\{0}

(mi − ti)

= u0(ρS, t)

≥ u0(πT, r)

= ∑
i∈M0

pi
T(πT(i)).

It yields also a contradiction.

3.2 A Comparison with Ausubel and Milgrom’s Auction

As mentioned previously, although Ausubel and Milgrom (2002) focus on their package

auction without budget constraints, they also briefly discuss in their Section 8 a model

with budget constrained bidders; see also Milgrom (2004). Their model is different from

ours. The key assumption in their model is that every bidder has only a finite number

of choices and has strict preferences over those choices and the seller also has strict

preferences over her choices. Each choice may include a bundle of items and an amount

of money. The basic idea of their auction bears some similarity with the Gale-Shapley

deferred acceptance procedure. At each round of their auction, each bidder makes his

most preferred offer to the seller. The seller compares the offers she has in hand, including

the offers she has received from the previous rounds, and rejects all but her most preferred

offers. At the next round, each bidder whose offer was rejected previously offers his next

most preferred choice on his preference list to the seller. Offers not rejected remain in

force. The process continues until no new offers are made. And when the process stops,

those offers in force become finally accepted.

We use Example 1 (a simple example) and Example 2 (a bit more general example) to

show that Ausubel-Milgrom auction is too restrictive to work properly, as in the current

model and also in any practical model, bidders and the seller can be often indifferent

between many choices.

We use our Example 1 to demonstrate that the outcome of Ausubel-Milgrom auction
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lies outside the core. This is not because of integer prices. In fact, using the same tie-

breaking rule below, the outcome of their auction still lies outside the core even if the

increment of offer prices is 0.5 or other smaller number. Consider the following tie-

breaking rules: (i) every bidder i always bids for item 1 first when he is indifferent

between item 1 and another item, and (ii) when several assignments yield same revenue,

the seller chooses the one in which bidder 3 is a winner. If there are still ties, the seller

chooses the assignment in which bidder 1 is a winner.6 Table 5 shows the process of the

Ausubel-Milgrom auction under the tie-breaking rule.

Table 5: Illustration of the Ausubel-Milgrom auction via Example 1.

Round Bidding Prices Assignment Income
Winners

t p1(1, 2, ∅) p2(1, 2, ∅) p3(1, 2, ∅) πt(0, 1, 2, 3) rt(0, 1, 2, 3)
1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (123, ∅, ∅, ∅) (0, 9, 5, 3)
2 (1, 0, 0) (1, 0, 0) (0, 1, 0) (∅, 1, ∅, 2) (2, 8, 5, 2) 1,3
3 (1, 0, 0) (2, 0, 0) (0, 1, 0) (∅, ∅, 1, 2) (3, 9, 4, 2) 2,3
4 (2, 0, 0) (2, 0, 0) (0, 1, 0) (∅, 1, ∅, 2) (3, 7, 5, 2) 1,3
5 (2, 0, 0) (3, 0, 0) (0, 1, 0) (∅, ∅, 1, 2) (4, 9, 2, 2) 2,3
6 (3, 0, 0) (3, 0, 0) (0, 1, 0) (∅, 1, ∅, 2) (4, 6, 5, 2) 1,3
7 (3, 0, 0) (4, 0, 0) (0, 1, 0) (∅, ∅, 1, 2) (5, 9, 1, 2) 2,3
8 (3, 1, 0) (4, 0, 0) (0, 1, 0) (∅, ∅, 1, 2) (5, 9, 1, 2) 2,3
9 (4, 1, 0) (4, 0, 0) (0, 1, 0) (∅, 1, ∅, 2) (5, 5, 5, 2) 1,3

10 (4, 1, 0) (5, 0, 0) (0, 1, 0) (∅, ∅, 1, 2) (6, 9, 0, 2) 2,3
11 (4, 2, 0) (5, 0, 0) (0, 1, 0) (∅, 2, 1, ∅) (7, 7, 0, 3) 1,2
12 (4, 2, 0) (5, 0, 0) (0, 2, 0) (∅, ∅, 1, 2) (7, 9, 0, 1) 2,3
13 (5, 2, 0) (5, 0, 0) (0, 2, 0) (∅, 1, ∅, 2) (7, 4, 5, 1) 1,3

Let (πAMA, rAMA) = ((∅, 1, ∅, 2), (7, 4, 5, 1)) denote the allocation yielded by Ausubel-

Milgrom auction. To show that (πAMA, rAMA) is not in the core, consider the coalition

6A different tie-breaking rule can also be used by adding small perturbations to bidding prices. For
example, we can add −0.02 to bidder 1’s bidding prices of offers related to item 1, −0.01 to his bidding
prices of offers related to item 2, and −0.03 to bidder 2’s bidding prices.
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{0, 1, 2} and the blocking allocation (π2, t) = ((∅, 2, 1, ∅), (7.5, 6.5, 0, 3)) in which

u0(π2, t) = 7.5 > 7 = u0(πAMA, rAMA),

u1(π2, t) = 12.5 > 12 = u1(πAMA, rAMA),

u2(π2, t) = 7 > 5 = u2(πAMA, rAMA).

Our dynamic auction runs as follows, and finds a core allocation. The auction of

Talman and Yang (2015) finds also the same core allocation.

Table 6: Illustration of the proposed auction mechanism via Example 1.

t û1
t p1

t (1, 2, ∅) û2
t p2

t (1, 2, ∅) û3
t p3

t (1, 2, ∅) πt rt

1 17 (0, 0, 0) 12 (0, 0, 0) 9 (0, 0, 0) (12, ∅, ∅, ∅) (0, 9, 5, 3)
2 16 (1, 0, 0) 11 (1, 0, 0) 8 (0, 1, 0) (∅, 1, ∅, 2) (2, 8, 5, 2)
3 16 (1, 0, 0) 10 (2, 0, 0) 8 (0, 1, 0) (∅, ∅, 1, 2) (3, 9, 3, 2)
4 15 (2, 0, 0) 10 (2, 0, 0) 8 (0, 1, 0) (∅, ∅, 1, 2) (3, 9, 3, 2)
5 14 (3, 1, 0) 10 (2, 0, 0) 8 (0, 1, 0) (∅, 1, ∅, 2) (4, 6, 5, 2)
6 14 (3, 1, 0) 9 (3, 0, 0) 8 (0, 1, 0) (∅, 1, ∅, 2) (4, 6, 5, 2)
7 14 (3, 1, 0) 10 (4, 0, 0) 8 (0, 1, 0) (∅, ∅, 1, 2) (5, 9, 1, 2)
8 13 (4, 2, 0) 10 (4, 0, 0) 8 (0, 1, 0) (∅, 2, 1, ∅) (6, 7, 1, 3)
9 13 (4, 2, 0) 10 (4, 0, 0) 7 (0, 2, 0) (∅, 2, 1, ∅) (6, 7, 1, 3)
10 13 (4, 2, 0) 10 (4, 0, 0) 6 (0, 3, 0) (∅, 1, ∅, 2) (7, 5, 5, 0)
11 13 (4, 2, 0) 9 (5, 0, 0) 6 (0, 3, 0) (∅, ∅, 1, 2) (8, 9, 0, 0)
12 12 (5, 3, 0) 9 (5, 0, 0) 6 (0, 3, 0) (∅, ∅, 1, 2) (8, 9, 0, 0)
13 11 (6, 4, 0) 9 (5, 0, 0) 6 (0, 3, 0) (∅, 1, ∅, 2) (9, 3, 5, 0)

Let us turn to Example 2 with the constrained budgets (m1, m2, m3) = (3, 2, 2). The

following tie-breaking rules will be used.

• If bidder i is indifferent between many offers, he prefers the offer(s) containing item

a to those without a. If there are still ties, he prefers the offers containing item b to

those without b, and so on.

• If multiple outcomes yield the same revenue, the seller always prefers an outcome

in which she can keep c unsold to any choice without c. If still multiple outcomes
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yield the same revenue and allow the seller to hold the same items, the seller prefers

bidder 1 to bidder 3, and to bidder 2.

Table 7: Illustration of the Ausubel-Milgrom auction via Example 2.

t p1(ab, ac, ∅) p2(b, ab, ∅) p3(c, ac, ∅) πt(0, 1, 2, 3) rt(0, 1, 2, 3) Winner
1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (abc, ∅, ∅, ∅) (0,3,2,2)
2 (1, 0, 0) (0, 1, 0) (0, 1, 0) (c, ab, ∅, ∅) (1,2,2,2) 1
3 (1, 0, 0) (0, 2, 0) (0, 2, 0) (c, ∅, ab, ∅) (2, 3, 0, 2) 2
4 (1, 1, 0) (0, 2, 0) (1, 2, 0) (∅, ∅, ab, c) (3, 3, 0, 1) 2,3
5 (2, 1, 0) (0, 2, 0) (1, 2, 0) (∅, ab, ∅, c) (3, 1, 2, 1) 1,3
6 (2, 1, 0) (1, 2, 0) (1, 2, 0) (∅, ab, ∅, c) (3, 1, 2, 1) 1,3
7 (2, 1, 0) (2, 2, 0) (1, 2, 0) (∅, ∅, b, ac) (4, 3, 0, 1) 2,3
8 (2, 2, 0) (2, 2, 0) (1, 2, 0) (∅, ∅, b, ac) (4, 3, 0, 1) 2,3
9 (3, 2, 0) (2, 2, 0) (1, 2, 0) (∅, ab, ∅, c) (4, 0, 2, 1) 1,3

Table 7 shows the operation of the Ausubel-Milgrom auction. Their auction ends

with accepting bidder 1 and 3’s offers. The outcome is given by the assignment πAMA =

π′′ and the corresponding income distribution rAMA = (4, 0, 2, 1). This outcome is,

however, not a core allocation as it is blocked by coalition {0, 1, 2} and allocation (π′, t)

with t = (4.5, 0.5, 0, 2), and

u0(π′, t) = 4.5 > u0(πAMA, rAMA) = 4,

u1(π′, t) = 4.5 > u1(πAMA, rAMA) = 4,

u2(π′, t) = 3 > u2(πAMA, rAMA) = 2.

3.3 A Modified Dynamic Auction

The proposed auction mechanism in the previous can always find a core allocation. This

allocation need not be strongly Pareto efficient, as it is a core allocation. In this section

we improve the auction so that a strongly Pareto efficient core allocation can be always

found. As a result, more efficiency will be gained. This modification requires each bidder

to report his untransferable value when he is constrained by his budget. Observe that in

this modified auction the bidding process is simpler for bidders than the first auction, but
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the bidding process will take more rounds as in each round a provisional loser reduces

his target utility just by one.

We are going to describe the rules of this modified dynamic auction mechanism.

Initialization: Every bidder i ∈ M sets a target utility ûi
1 ∈ Z+ that he wishes to achieve

ûi
1 ≥ max

A∈F i
vi(A) + mi.

Set t = 1 and go to the Bidding Step.

Bidding Step: For any bidder i ∈ M, if it is the first round t = 1 or he revises his target

utility ûi
t < ûi

t−1, he makes new bids as follows. For every feasible bundle A ∈ F i,

bidder i sets an intermediate bidding price p̂i
t(A) = vi(A) + mi − ûi

t and adjusts his

bidding prices as

pi
t(A) =


0, if p̂i

t(A) < 0,

min
{

p̂i
t(A), mi}, if p̂i

t(A) ≥ 0.

Let pj
t = pj

t−1 for any t > 1 and any bidder j 6= i. Beside this, every bidder h ∈ M

calculates his untransferable value v̂h
t (A) on bundle A ∈ F h at price ph

t (A). That is

v̂h
t (A) =


0, if p̂h

t (A) ≤ mh;

p̂h
t (A)−mh, if p̂h

t (A) > mh.

The prices ph
t and untransferable utilities v̂h

t for all bidders h ∈ M are reported to

the auctioneer. Go to the Assigning Step.

Assigning Step: Based on the current bidding prices Pt = (p0
t , p1

t , . . . , pm
t ) with p0

t (S) =

v0(S) for every S ∈ 2N, the auctioneer announces a provisional assignment πt

yielding the highest revenue, i.e., an element of the following optimal set:

C(Pt) =
{

π ∈ A | π = arg max
ρ∈A

(
∑

i∈M0

pi
t(ρ(i))

)
s.t. pi

t(ρ(i)) > 0 ∀ρ(i) 6= ∅ and i > 0
}

.
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If C(Pt) contains only one assignment, the assignment will be a provisional as-

signment. If C(Pt) contains more than one assignment, the auctioneer chooses an

assignment with the highest total untransferable utility. That is

πt = arg max
π∈C(Pt)

∑
i∈M

v̂i
t(π(i)).

Then go to the following step.

Continue or Stop: At the provisional assignment πt, if there is a bidder i ∈ M with

πt(i) = ∅ and ûi
t > mi, at least one such bidder i updates his target utility by setting

ûi
t+1 = ûi

t − 1, and every other bidder j ∈ M keeps his target utility unchanged

as ûj
t+1 = ûj

t. Then set t = t + 1 and go back to the Bidding Step. Otherwise, the

auction stops with the provisional assignment πt. Then every bidder i ∈ M gets

bundle πt(i) and pays his bidding price pi
t(πt(i)). The seller keeps bundle πt(0)

and receives all payments from bidders in exchange for her sold bundles of items.

In the auction, bidder i ∈ M is called a provisional loser (at round t) if he gets no

item from the provisional assignment πt and his target utility ûi
t is still above his budget

mi. Suppose the auction stops in round T. The final assignment is πT, and the correspond-

ing income distribution is r0
T = ∑i∈M pi

T(πT(i)) for the seller, and ri
T = mi − pi

T(πT(i))

for each bidder i ∈ M. Bidder i ∈ M is a loser of the auction if he is assigned nothing

when the auction ends; otherwise, he is a winner. Each loser i sets his final target utility

as ûi
T = mi and achieves utility ui(πT, rT) = ûi

T = mi; while each winner i achieves utility

ui(πT, rT) = ûi
T + v̂i

T(πT(i)), which may be larger than his final target utility. Clearly,

each bidder achieves a utility no less than his budget, so the outcome is individually

rational.

Lemma 4. The modified auction stops in finitely many rounds with an individually rational

outcome that gives every bidder at least his target utility being no less than his budget.

We are now ready to prove the following major theorem concerning the modified

auction.

Theorem 4. When bidders are financially constrained, the outcome (πT, rT) yielded by the pro-

posed modified auction is strongly Pareto efficient and in the core.

Proof. Suppose to the contrary that (πT, rT) is Pareto dominated by an allocation (ρ, t)
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such that ui(ρ, t) ≥ ui(πT, rT) for all i ∈ M0 with at least one strict inequality. Because

every bidder is (weakly) better off at (ρ, t), similar to the coalition members in proof of

Theorem 2, in the auction each bidder i ∈ M sets a comparatively lower target utility

ûi
T ≤ ui(ρ, t) = vi(ρ(i)) + ti such that a higher intermediate price p̂i

T(ρ(i)) = vi(ρ(i)) +

mi − ûi
T ≥ mi − ti. If ti ≤ mi, we have that p̂i

T(ρ(i)) ≥ mi − ti ≥ 0 and pi
T(ρ(i)) =

min{mi, p̂i
T(ρ(i))} ≥ mi − ti; if ti > mi, it is obvious that pi

T(ρ(i)) ≥ 0 > mi − ti. Anyhow,

we have pi
T(ρ(i)) ≥ mi − ti. The seller is also (weakly) better off, so we have

∑
i∈M0

pi
T(ρ(i)) ≥ p0

T(ρ(0)) + ∑
i∈M

(mi − ti)

= u0(ρ, t)

≥ u0(πT, r)

= ∑
i∈M0

pi
T(πT(i))

≥ ∑
i∈M0

pi
T(ρ(i)).

The last inequality comes from that πT maximizes seller’s utility on prices PT. So we

have ∑i∈M0
pi

T(πT(i)) = ∑i∈M0
pi

T(ρ(i)), and pi
T(ρ(i)) = mi − ti for all i ∈ M. These

imply that, in the final round of the auction, ρ yields the same highest revenue as πT does

(i.e., ρ ∈ C(PT)), and if ρ is chosen, the corresponding income distribution is just t.

Let’s come back to Assigning step of the final round. The seller is indifferent be-

tween the two assignments, ρ and πT. For each bidder i ∈ M, his utility of assignment ρ

equals ui(ρ, t) = ûi
T + v̂i

T(ρ), and his utility of πT is given by ui(πT, rT) = ûi
T + v̂i

T(πT(i)).

Allocation (ρ, t) Pareto dominates (πT, rT), it implies that v̂i
T(ρ) ≥ v̂i

T(πT(i)) for all i ∈ M

with at least one strict inequality. Then we have

∑
i∈M

v̂i
T(ρ(i)) > ∑

i∈M
v̂i

T(πT(i)).

It contradicts that πT yields the highest total untransferable utility among the assignment

in C(PT).

We will use the following simple example to show that the modified auction can find
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a strongly Pareto efficient core allocation. Perhaps more importantly, we will demonstrate

that this core allocation is not a strong core allocation, although the strong core is not

empty.

Example 3. There are two items a and b, and two bidders 1 and 2. Valuations and budgets of

bidders are given in Table 8.

Table 8: Valuation and budget with two items.

Bidder ∅ Item a Item b Package ab Budget
1 0 2 0 10 5
2 0 0 5 6 5

Table 9 shows the process of the modified auction in the example. The numbers in

parentheses are untransferable utilities reported by the bidders.

Table 9: Illustration of the modified auction via Example 8.

t û1
t p1

t (∅, a, ab) û2
t p2

t (∅, b, ab) πt(0, 1, 2) rt(0, 1, 2)
1 15 (0, 0, 0) 11 (0, 0, 0) (ab, ∅, ∅) (0, 5, 5)
2 14 (0, 0, 1) 10 (0, 0, 1) (∅, ab, ∅) (1, 4, 5)
3 14 (0, 0, 1) 9 (0, 1, 2) (∅, ∅, ab) (2, 5, 3)

...
11 10 (0, 0, 5) 6 (0, 4, 5) (∅, ∅, ab) (5, 5, 0)
12 9 (0, 0, 5(1)) 6 (0, 4, 5) (∅, ab, ∅) (5, 0, 5)
13 9 (0, 0, 5(1)) 5 (0, 5, 5(1)) (∅, ∅, ab) (5, 5, 0)
14 8 (0, 0, 5(2)) 5 (0, 5, 5(1)) (∅, ab, ∅) (5, 0, 5)

When the auction ends with the allocation (πT, rT) = ((∅, ab, ∅), (5, 0, 5)). This

outcome assigns the two items to bidder 1, maximizes the seller’s revenue and the total

untransferable utility and yields utilities (u0, u1, u2) = (5, 10, 5). The assignment is fully

efficient.

The allocation (πT, rT) is in the core but not in the strong core. To see this, consider

the coalition {0, 2} with a feasible allocation ρS = (∅, ∅, ab) and a feasible income distri-

bution t = (5, 5, 0). The new allocation yields utilities (5, 5, 6) weakly blocking (πT, rT).

Actually, allocations (πT, rT) and (ρ, t) weakly block each other.
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To show that the strong core is not empty, consider the allocation

(π, r) = ((∅, a, b), (6, 4, 0)).

It offers utilities (u0, u1, u2) = (6, 6, 5). Clearly, it is individually rational. We show why

it cannot be weakly blocked by any coalition. The first viable coalition is S = {0, 1}. In

this bidder 1 cannot pay more than 5 and thus the seller’s revenue decreases. The second

viable coalition S = {0, 2} faces a similar problem. In it bidder 2 cannot pay more than

5 and so the seller gets less. The final viable coalition is S = {0, 1, 2}. In this case, each

bidder pays money to sustain the seller’s revenue no less than 6; in return, each bidder

gets one item. The only possible assignment is π = (∅, a, b). Using the same assignment,

any redistribution of income favors one but also hurts someone else in the coalition.

It is interesting to notice that the strong core assignment π is not fully efficient. In

contrast, the assignment πT found by the modified auction is fully efficient.

The above example shows that under budget constraints, the modified auction can

always find a strongly Pareto efficient core allocation but may not guarantee to locate a

strong core allocation even if it exists. This does not contradicts Theorem 3, which says

that the proposed auction can always find a strong core allocation when no bidder is

financially constrained.

4 Concluding Remarks

In this paper we have studied a package auction model, in which bidders may demand

several objects but have budget constraints. Besides the absence of substitution in de-

mand, budget constraints can also fail the existence of a Walrasian equilibrium, so we

adopt a more general solution—the core which is one of the most widely used and most

fundamental solution concepts in the fields of game theory and general equilibrium the-

ory. A core allocation consists of an assignment of items and a supporting price sys-

tem and is a prime strategic equilibrium solution that is robust against any possible

coalition deviation. We prove that the core of our auction model is always nonempty

via a constructive proof through our proposed two ascending menu auctions which can

guarantee to find a core allocation. Our first auction finds a core allocation when bidders
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are budget constrained, and it finds a strong core allocation when bidders are not bud-

get constrained. The second auction improves the first one and finds a strongly Pareto

efficient core allocation when bidders are budget constrained. Our auctions can be seen

as a natural generalization of the auctions proposed by Ausubel and Milgrom (2002) and

further studied by Day and Milgrom (2008) and Erdil and Klemperer (2010) from the set-

ting without budget constrained bidders to the setting with budget constrained bidders.

The current auctions can be used to tackle more challenging and more practical resource

allocation problems involving significant indivisibilities, heterogeneity in preferences and

shortage of financial resources.
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BEKER, P. F. AND Á. HERNANDO-VECIANA (2015): “The Dynamics of Bidding Markets

with Financial Constraints,” Journal of Economic Theory, 155, 234–261.

BENOIT, J.-P. AND V. KRISHNA (2001): “Multiple-Object Auctions with Budget Con-

strained Bidders,” The Review of Economic Studies, 68, 155–179.

BERGEMANN, D. AND S. MORRIS (2007): “An Ascending Auction for Interdependent Val-

ues: Uniqueness and Robustness to Strategic Uncertainty,” American Economic Review

Papers and Proceedings, 97, 125–130.

BERNHEIM, B. D. AND M. D. WHINSTON (1986): “Menu Auctions, Resource Allocation,

and Economic Influence,” The Quarterly Journal of Economics, 101, 1.

31



BRUSCO, S. AND G. LOPOMO (2008): “Budget Constraints and Demand Reduction in

Simultaneous Ascending-Bid Auctions,” Journal of Industrial Economics, 56, 113–142.

CHE, Y.-K. AND I. GALE (1998): “Standard Auctions with Financially Constrained

Bidders,” Review of Economic Studies, 65, 1–21.

CRAWFORD, V. P. AND E. M. KNOER (1981): “Job Matching with Heterogeneous Firms

and Workers,” Econometrica, 49, 437.

DAY, R. AND P. MILGROM (2008): “Core-Selecting Package Auctions,” International

Journal of Game Theory, 36, 393–407.

DEBREU, G. AND H. SCARF (1963): “A Limit Theorem on the Core of an Economy,”

International Economic Review, 4, 235.

DEMANGE, G., D. GALE, AND M. SOTOMAYOR (1986): “Multi-Item Auctions,” Journal of

Political Economy, 94, 863–872.

ERDIL, A. AND P. KLEMPERER (2010): “A New Payment Rule for Core-Selecting Package

Auctions,” Journal of the European Economic Association, 8, 537–547.

GILLIES, D. B. (1953): “Some Theorems on N-Person Games,” Ph.D. thesis, Princeton

University.

GUL, F. AND E. STACCHETTI (1999): “Walrasian Equilibrium with Gross Substitutes,”

Journal of Economic Theory, 87, 95–124.

——— (2000): “The English Auction with Differentiated Commodities,” Journal of Eco-

nomic Theory, 92, 66–95.

HAFALIR, I. E., R. RAVI, AND A. SAYEDI (2012): “A near Pareto Optimal Auction with

Budget Constraints,” Games and Economic Behavior, 74, 699–708.

KELSO, A. J. S. AND V. P. CRAWFORD (1982): “Job Matching, Coalition Formation, and

Gross Substitutes,” Econometrica, 1483–1504.

KLEMPERER, P. (2004): Auctions: Theory and Practice, Princeton, NJ: Princeton University

Press.

32



KOOPMANS, T. C. AND M. BECKMANN (1957): “Assignment Problems and the Location

of Economic Activities,” Econometrica, 25, 53.

KRISHNA, V. (2010): Auction Theory, Burlington, MA: Academic Press/Elsevier, 2nd ed

ed.

LAFFONT, J.-J. AND J. ROBERT (1996): “Optimal Auction with Financially Constrained

Buyers,” Economics Letters, 52, 181–186.

MASKIN, E. S. (2000): “Auctions, Development, and Privatization: Efficient Auctions

with Liquidity-Constrained Buyers,” European Economic Review, 44, 667–681.

MILGROM, P. (2000): “Putting Auction Theory to Work: the Simultaneous Ascending

Auction,” Journal of Political Economy, 108, 245–272.

——— (2004): Putting Auction Theory to Work, Cambridge, UK: Cambridge University

Press.

——— (2007): “Package Aucitons and Exchange,” Econometrica, 75, 935–965.

MISHRA, D. AND D. PARKES (2007): “Ascending Price Vickrey Auctions for General

Valuations,” Journal of Economic Theory, 132, 335–366.

PAI, M. AND R. VOHRA (2014): “Optimal Auctions with Financially Constrained Bid-

ders,” Journal of Economic Theory, 150, 383–425.

PERRY, M. AND P. J. RENY (2005): “An Efficient Multi-Unit Ascending Auction,” Review

of Economic Studies, 72, 567–592.

PITCHIK, C. (2009): “Budget-Constrained Sequential Auctions with Incomplete Informa-

tion,” Games and Economic Behavior, 66, 928–949.

PREDTETCHINSKI, A. AND P. HERINGS (2004): “A Necessary and Sufficient Condition for

Non-Emptiness of the Core of a Non-Transferable Utility Game,” Journal of Economic

Theory, 116, 84–92.

QUINZII, M. (1984): “Core and Competitive Equilibria with Indivisibilities,” International

Journal of Game Theory, 13, 41–60.

33



ROTHKOPF, M. (2007): “Thirteen Reasons Why the Vickrey-Clarke-Groves Process Is not

Practical,” Operations Research, 55, 191–197.

ROTHKOPF, M., T. TEISBERG, AND E. KAHN (1990): “Why Are Vickrey Auctions Rare?”

Journal of Political Economy, 98, 94–109.

SCARF, H. E. (1967): “The Core of an N Person Game,” Econometrica, 35, 50.

SHAPLEY, L. (1973): “On Balanced Games without Side Payments,” in Mathematical

Programming, Amsterdam, Holland: Elsevier, 261–290.

SHAPLEY, L. AND H. SCARF (1974): “On Cores and Indivisibility,” Journal of Mathematical

Economics, 1, 23–37.

SHAPLEY, L. S. AND M. SHUBIK (1971): “The Assignment Game I: The Core,” International

Journal of Game Theory, 1, 111–130.

SUN, N. AND Z. YANG (2009): “A Double-Track Adjustment Process for Discrete Markets

With Substitutes and Complements,” Econometrica, 77, 933–952.

——— (2014): “An Efficient and Incentive Compatible Dynamic Auction for Multiple

Complements,” Journal of Political Economy, 122, 422–466.

TALMAN, A. J. J. AND Z. YANG (2015): “An Efficient Multi-Item Dynamic Auction with

Budget Constrained Bidders,” International Journal of Game Theory, 44, 769–784.

VAN DER LAAN, G. AND Z. YANG (2016): “An Ascending Multi-Item Auction with

Financially Constrained Bidders,” Journal of Mechanism and Institution Design, 1, 107–

147.

WILSON, R. (1987): “Game-Theoretic Analyses of Trading Processes,” in Advances in

Economic Theory: Fifth World Congress, Ed. (T. Bewley), Cambridge, UK: Cambridge

University Press, 33–70.

ZHENG, C. Z. (2001): “High Bids and Broke Winners,” Journal of Economic Theory, 100,

129–171.

34


	1809
	Auction FCB Yang-Yu 2018
	Introduction
	The Model
	The Design of Dynamic Auction
	The First Dynamic Auction
	A Comparison with Ausubel and Milgrom's Auction
	A Modified Dynamic Auction

	Concluding Remarks

	Auction FCB Yang-Yu 2018 (1).pdf
	Introduction
	The Model
	The Design of Dynamic Auction
	The First Dynamic Auction
	A Comparison with Ausubel and Milgrom's Auction
	A Modified Dynamic Auction

	Concluding Remarks


