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Abstract

In a costly state verification model under commitment, the paper shows that jointly financing
multiple independent projects reduces the deadweight loss of ineffi cient audits. This is true
for both simultaneous and sequential audit, since each system reveals the same information
about the project outcomes at the same cost. Moreover, the audit combination under
sequential audit is indeterminate. Audits are decreasing in the reported income and, for
suffi ciently high projects profitability, deterministic for lower income reports.
Keywords: contracts, auditing, diversification.
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1 Introduction

In costly state verification models, costly audit is required to implement financial contracts.

Borrowers must report their revenue outcomes and, under commitment, random audit is

often suffi cient to elicit truth-telling and cheaper than universal audit on all debtors who

report default. However, even if stochastic, an audit still involves a deadweight loss, as it

always just reveals a truthful report. An issue then arises of whether it is possible to reduce

this deadweight loss.

In this paper we investigate one possible venue for reducing ineffi cient audits through

multiple project financing. In particular, we consider an entrepreneur who has several

projects but no financial resources to carry them out. He can apply for a separate loan

for each project, or instead combine the various projects under one roof and apply for a

loan from a single lender to finance all projects. The outcome of each project is ex-post

private information to the entrepreneur, who, upon its realisation, has to send a report to

the lender. The truthfulness of the report can be verified by the lender at a cost, who, in the

case of joint project financing, has to decide also whether to audit one or both projects, and,

in this latter case, whether to audit them sequentially or simultaneously. We study under

what circumstances it is optimal to combine distinct projects under one roof, as opposed

to setting them up as stand-alone projects each raising external financing on their own. In

doing this, we explore the relative merits of three systems: individual project finance and

random audit of individual project reported outcomes; sequential individual random audit

of all the projects which are part of the joint loan based on a joint report of the number of

defaults; simultaneous audit of all the projects which are part of the joint loan. We provide
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a detailed characterization of the optimal contract.

Our principal conclusions are that the joint loan has lower deadweight loss than the

individual loans, but that the two forms of the optimal contract, simultaneous or sequential

audit of all the projects, are indifferent. This is because putting the projects under one

roof allows the expected return to the lender across projects taken together to be set at

its fair level, while with single project loans the lender would require the expected fair

return on each project separately. In this sense, joint financing allows cross-subsidisation

between the two projects. It also allows the policy space for audit to be enlarged, so

that policing can be concentrated on states where it is most productive. Thus, the cross

subsidisation (diversification) across loans and the richer audit policy lowers the default risk

for the lender on multiple relative to individual loans. However, the order with which the

audits occur, whether simultaneously or sequentially, is immaterial since, because of projects’

independence, there is no gain from conditioning the audit of one project on the result of

prior audit of another. Thus, there is an equivalence between simultaneous and sequential

audit. Moreover, with sequential audit there is an indeterminacy in the audit combination

for steps in the sequence. What matters is the overall net probability of the audit of a

reported list of fails. For example with a report of two fails, a sequential audit strategy

sets an audit probability for the first fail and then another audit probability (conditional

on the audit outcome of the first fail) on the second reported fail. The overall probability

of auditing the two fail report is the product of these two audit probabilities and only this

matters in the deadweight loss. Hence auditing the first fail intensively and then the second

fail with a light touch is equivalent in welfare to auditing the first lightly and the second
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intensively.

Audits are decreasing in the reported income and, depending on projects profitability,

random or deterministic for lower income reports. In particular, when the project revenues

are suffi ciently high, then it is possible to cover the lender’s investment and observation

cost by auditing stochastically only lower income reports and never auditing higher income

reports. However, when projects’profitability is not too high, then it is necessary to collect

resources also from auditing higher income reports. In this case, lower income reports are

audited deterministically, while higher income ones are audited randomly. These results

recall some of the features of a standard debt contract and complements some early literature.

Townsend (1979) and Gale and Hellwig (1985) establish that the optimal repayment and

audit strategy in a costly state verification framework with commitment form a standard

debt contract. That has deterministic monitoring of all states below some critical level, but

all states above this level are not audited. Below the critical level repayments take the total

project return and in all higher states (which are not audited) there is a constant repayment.

Here we have pooling in the high states.

In addition, the result reflect also some of the features of costly state verification models.

Allowing for stochastic monitoring, Border and Sobel (1985) and Mookherjee and Png (1989)

show that generally the audit probabilities are interior and fall with the profitability of the

state. In particular the highest revenue state is not audited. In our case the ordering of

states is effectively by the number of projects which have failed. We find that states with a

lower number of fails are audited less frequently than states with a higher number of fails.

With relatively unprofitable projects we find that audit of the worst state must be with
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certainty but with more profitable projects overall, audit of the worst state can be random.

In the two results of equivalence of simultaneous and sequential audit and indeterminacy

in the audit combination under sequential audit, independence of the project returns matters.

If returns on different projects are correlated, then knowing the outcome on one project gives

information about the expected outcomes (and hence the need to audit) others. Within a

no commitment setting, Phelan (2017) shows if there is correlation, sequential audit may

dominate simultaneous audit. Our results imply that a non zero correlation is necessary

for this (not just suffi cient). If the project returns are uncorrelated, knowing the outcome

on one project gives no information about the outcome of the other. Hence, auditing both

project outcomes simultaneously is as desirable as auditing them sequentially.

There are various areas of relevant application. There is a literature on how

multidivisional firms should finance and control the activities of their units. The firm secures

finance for projects in its divisions. It should allow cross-subsidisation between divisions in

appropriate circumstance. And if overall the firm is suffi ciently profitable, it may be that

light touch auditing and regulation of the divisions is socially best.

The remainder of the article is organised as follows. Section 1 discusses the related

literature. Section 2 lays out the model assumption. Section 3 develops a standard costly

state verification problem in which several individual projects are financed as standalones in

the arm’s length external capital market. Section 4 considers the case of two independent

projects to illustrate the basic role of joint project financing in reducing the deadweight

loss of audits, distinguishing between the case in which audits are sequential (Section 4.1)

and simultaneous (Section 4.2). Section 4.3 compares the two scenarios. Section 5 extends
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the model to consider the effects of relaxing the main assumption of the model. Section

6 compares the individual and joint project financing setting. Section 7 discusses some

robustness issues. Section 8 concludes.

2 Related literature

The paper is related to several strands of the literature. The first and most obvious relation

is with the literature on costly state verification. Some of the earliest papers in this field

are Townsend (1979) and Gale and Hellwig (1985). With deterministic monitoring they find

that the optimal contract involves a standard debt contract. There is zero monitoring of the

highest state report, but certain monitoring of reports which do not cover the cost of the

loan and the lender takes all the borrower’s resources. In any state where the debtor can

repay the loan there is a common repayment.

Allowing for stochastic monitoring, Border and Sobel (1985) and Mookherjee and Png

(1989) show that generally the audit probabilities are interior and fall with the profitability

of the state. In particular the highest revenue state is not audited.

Another strand of the literature considers multiple projects and the ways in which a

lower expected audit cost can be achieved. Delegated monitoring (Diamond, 1984) is one

such approach. Diamond shows that with many projects and many lenders there is a benefit

to using an intermediary to perform audit partly because it eliminates the duplication of

audit by different lenders, but also partly because the probability of getting multiple fails

is smaller than the probability of getting a single fail. As the number of projects tends

to infinity in Diamond’s world, the chance of all projects failing tends to zero. With only

a finite number of projects, Krasa and Villamil (1992) show that some restriction on the
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distribution of project returns is necessary for the total audit cost on all projects to become

small. In a multiple project world, Phelan (2017) shows that if the project outcomes are

correlated, then the best audit policy is sequential, so that selected audits on a few projects

can reveal useful information about outcomes on non-audited projects.

An alternative to reduce deadweight loss of costly audit is Menichini and Simmons (2014),

who show that acquiring a costly public signal correlated with the project outcome is a

valuable tool.

3 The Model Assumptions

An entrepreneur/borrower has two investment projects with uncorrelated returns, each

costing I, which can be funded from a risk neutral investor. Each project gives a random

return s, s ∈ {H,L}, with H > I > L > 0, with probabilities p,and 1 − p respectively,

that is freely observable only to the entrepreneur and not to the investor. Once the return

is realised, the borrower makes a report to the investor. Because of output unobservability,

the entrepreneur has an incentive to report s = L. But since I > L, the only way for the

investor to recoup the investment cost is to carry out an audit. Audit is observable and the

result of it verifiable, and involves a cost c > 0.

When the two projects are brought under a single roof, four outcomes are possible: two

successes, with probability p2, two failures, with probability (1− p)2 , one success and one

failure, with probability 2p (1− p) . Thus, s ∈ {LL,HL,LH,HH} with 2H > L+H > 2I >

2L.The reports can be i ∈ {0, 1, 2} , where i = 0 denotes a report of zero successes, i = 1

denotes a report of one success (and one failure), and i = 2 denotes a report of 2 successes.

If a single success is reported, the borrower also reports which project has failed.
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In the following we consider two possible levels of ex-ante profitability of the project. In

the first, we assume that the expected project returns using the revenues of two failures and

those of one-success-one-failure with certain audit of every report in which there may be

cheating covers the cost of the two loans fully, i.e., [p2 + 2p(1 − p)](H + L) + (1 − p)22L >

2I + 2 (1− p)2 c. This is equivalent to assuming:

Assumption 1

p (2− p) (H − L)− 2 (1− p)2 c > 2 (I − L) . (1)

In the second case, there is suffi cient expected profitability from the revenues of the

three states for a contract to give a fair return to the lender even with audit for sure of

the bottom two states, and for sure monitoring a single and a zero success report, i.e.,

2p2H + 2p (1− p) (H + L− c) + 2 (1− p)2 L > 2I + 2 (1− p)2 c. This is equivalent to

assuming:

Assumption 2 The NPV of each project net of its expected audit cost is strictly positive,

i.e.,

pH + (1− p)L− I − (1− p) c > 0. (2)

This assumption ensures that the project is ex-ante profitable even if enforcement involves

auditing every low state report.

Last, we assume that the left hand side of condition (2) is larger than the left hand side

of condition (1), i.e.,

2 [pH + (1− p)L− I − (1− p) c] >
[
p (2− p) (H − L)− 2 (1− p)2 c− 2 (I − L)

]
.

This is equivalent to assuming:
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Assumption 3

p [p (H − L)− 2 (1− p) c] > 0 (3)

This means that there are pairs of projects which satisfy condition (2), but not condition

(1). Throughout the paper we assume that condition (2) holds.

We first derive the optimal contract under Assumption (1) holding (Sections 5.1 and

6). We then relax Assumption (1) and derive the optimal contract (Section 7). For each

of these scenarios we consider the case in which the borrower makes a report on the joint

outcome of the two projects and, conditional on the report, the investor audits, sequentially

or simultaneously. We take as a benchmark the standard case of single project financing,

and, by comparing the expected values of these contracts, we determine whether projects

should be financed as standalones or jointly, and, in the latter case, the optimal timing of

audit.

4 Single project financing

Under single project financing, each project is funded as a stand-alone. A contract specifies

repayments and the probability with which an audit will occur. Let Rσ|s be the repayment

due following a report σ ∈ {H,L}, and an audit which reveals that the state is s ∈ {H,L} ,

and Rσ|· be the repayment with report σ, but with no audit. Let mσ be the probability of

auditing a report of σ. Assume, without loss of generality that mH = 0, so we can write

mL = m without confusion.1

The contract has commitment so that in the play of the game the random monitoring

1Since L < I, RH , RL|H > L > RL|·, i.e., repayments are non-decreasing with the state. Thus, any report
of the high state must be truthful and it is a dominant strategy never to audit the H report.
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must actually occur even though the lender knows that a low report must be truthful. This

monitoring has a deadweight loss which must be paid. All repayments are non-negative and

the agent has limited liability.

The sequence of events is as follows.

1. A financing contract is offered and, if accepted, the borrower is committed to the

investment.

2. Nature chooses the project outcome, s = {H,L}. This is only observed by the borrower,

who makes a report σ to the investor.

3. If σ = L is reported, the investor can audit with probabilitym to discover the true project

outcome, or not audit, with probability 1 − m. If he does not audit, he gets a repayment

RL|· If he does audit, instead, he gets RL|L if the report is found to be true, and RL|H if the

report is found to be false.

4. Payoffs are distributed. A game tree is sketched in Fig. 1.

� �

H L

m 1­m
� P

Ĥ L̂ L̂

N

A

�

�

�

�

�

A

� �

Discover
H

Discover
L
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RL|H RL|L

RL|·
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The contract is set to solve

maxEΠS = p (H −RH) + (1− p)
[
m
(
L−RL|L

)
+ (1−m)

(
L−RL|·

)]
(4)

pRH + (1− p) [(1−m)RL +m (RLL − c)] ≥ I (5)

RH ≤ mRLH + (1−m)RL (6)

0 ≤ RH , RLH ≤ H and 0 ≤ RL, RLL ≤ L (7)

where (4) is the objective function, constraint (5) is the participation constraint, ensuring

that the lender breaks even in expected terms on each project, (6) is the truth-telling

constraint, ensuring that, upon a high state occurring, the borrower prefers to report

truthfully, rather than cheating and be audited with probability m, and (7) are the limited

liability conditions.

Generally the participation constraint (5) must bind since otherwise the objective could

be increased by reducing RH . Substituting RH from the participation constraint gives the

objective function as the expected return net of the expected audit cost:

EΠS = pH + (1− p)L− I − (1− p)mc (8)

Proposition 1 When each project is funded as a stand-alone, the optimal contract has:

RL|H = H

msin = I−L
p(H−L)−(1−p)c < 1 (9)

RL|L = RL = L

RH = (H−L)I−(1−p)L(H−L+c)
p(H−L)−(1−p)c
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and expected return to the borrower

pH + (1− p)L− I − (I − L)

p (H − L)− (1− p) c︸ ︷︷ ︸
msim

(1− p) c. (10)

The intuition behind these results is the following. The deadweight loss of monitoring is

minimised by raising RLH to its maximum level of H and reducing m until (6) holds with

equality. In addition 0 < m < 1 (since if m = 0, RH = RL|· ≤ L and there is then insuffi cient

revenue to meet the investment cost). Moreover, low state repayments whether monitored

or not are set to give zero surplus to the borrower: RL|·, RL|L = L. However, since RH < H

(H − RH = (H − L)[pH + (1− p)L− (1− p)c], she gets a reward in the high state. These

results are analogous to those obtained by Khalil and Parigi (1998), except here investment

is exogenous.

5 Joint project financing

We now introduce the possibility of jointly financing two projects with independent ex-post

private returns costlessly observed by the borrower. The two projects may give four possible

outcomes: s ∈ {LL,HL,LH,HH} . We assume that the borrower makes a single report to

the lender stating the number of successes, and which project has succeeded, in case only

one has. To simplify the notation, we write the report as σ ∈ {0, 1, 2} .

Any report the borrower makes must be feasible in that she has to have funds to make

the appropriate repayment. Conditional on the report, the lender can audit. The contract

has to list an audit strategy that overcomes the temptations to cheat in the report. In

particular, in case of a report of zero successes, the lender can audit sequentially, i.e., first

audit one project and then, possibly, conditional on the outcome of the first audit, the other,
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or simultaneously, i.e., audit both projects reported to have failed. In both cases we assume

there is commitment in the contract so the lender has to carry through the audit policy

although he knows that he will never catch a cheat.

5.1 Sequential audits

We first consider the case of sequential audits. In this case the borrower can report two

successes, one success, or no success, σ ∈ {0, 1, 2} .

In case of a report 2, because the reports must be feasible, the lender knows that both

projects have been successful. So, there is no audit: m2 = 0.

In case of a report 1, the lender knows that at least one project has been successful, and

which one has, while the other may have succeeded or failed. So, to minimise audit cost, the

lender can target monitoring on the failed project only, with probability m1, or not audit at

all, with probability 1−m1. In the case in which he does not audit, he demands a repayment

R1|· in total on the two projects, where the first subscript denotes the report σ ∈ {0, 1, 2},

while the second denotes whether there has been an audit, and the outcome of it, if any

(so, a dot stands for no audit). So, upon an audit of a report 1 with probability m1, if the

lender finds that the project has truly failed, he demands repayment R1|L, where the second

subscript denotes that the outcome of the audit has been L. If he discovers a success on the

reportedly failed project, he demands repayment R1|H .

In case of a report 0, knowing that the borrower claims that both projects have failed,

the lender can randomly choose which one to audit, if any, with probability 1/2 on each

(by the principle of insuffi cient reason). Denote with m0 the probability to audit one of

the two projects, and with 1 − m0 the probability of no audit. In case in which he does
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not audit, he demands a repayment R0|· and the game ends. In case in which the lender

does audit and discovers the outcome for the selected project, then he decides whether to

go further and audit the second project, with probability m0,i, i = H,L, where the second

subscript denotes the outcome of the first audit. Denote moreover with R0|ij, i, j = H,L, the

repayment when the lender first discovers the state of one project is i and then goes on to

audit the second project discovering its state to be j.That is, with zero reported successes,

learning the outcome of one project gives no immediate information about the outcome of

the other. In case of no second stage audit, with prob. 1 −m0,i, i = H,L, the repayments

are R0|i·, i = H,L.

HH

P

HLLL
G GG

P

Discover
H

Discover
L

Discover
H

Discover
L

Discover
L

N

Discover
H

R2

R1|·

R1|H

R0|·

R0|H· R0|L·

R0|HH R0|HL R0|LLR0|LH

R1|L

m0

1 − m0,L m0,L

1 − m0,H

m0,H

1 − m0

1 − m1
m1

2̂ 1̂ 1̂0̂ 0̂ 0̂

Discover
H

Discover
L

The borrowers joint payoff function is

EΠJ = p2 (2H −R2) + 2p (1− p)
{
H + L−m1R1|L − (1−m1)R1|·

}
(11)

+ (1− p)2
{

2L−m0

[
m0,LR0|LL + (1−m0,L)R0|L·

]
− (1−m0)R0|·

}
.
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The lender’s payoff function when financing two joint projects is:

EΠL = p2R2 + 2p (1− p)
{
m1

(
R1|L − c

)
+ (1−m1)R1|·

}
(12)

+ (1− p)2
{
m0

[
m0,L

(
R0|LL − c

)
+ (1−m0,L)R0|L· − c

]
+ (1−m0)R0|·

}
− 2I

With two true successes, there are two ways of cheating. To declare one success, or to declare

none. Thus, the incentive constraints that ensure that a borrower with two successes reports

truthfully are:

R2 ≤ (1−m0)R0|· +m0

[
m0,HR0|HH + (1−m0,H)R0|H·

]
if report 0 (13)

R2 ≤ (1−m1)R1|· +m1R1|H if report 1 (14)

With one true success, the only way of cheating is to declare zero successes. The incentive

constraint is:

(1−m1)R1|· +m1R1|L ≤ (1−m0)R0|·+ (15)

m0

[
1

2

(
m0,HR0|HL + (1−m0,H)R0|H·

)
+

1

2

(
m0,LR0|LH + (1−m0,L)R0|L·

)]
if report 0

The first two incentive constraints ensure that an HH type prefers to make a report 2 rather

than 0 or 1. Similarly, the third incentive constraint ensures that an HL type prefers to make

a report 1 rather than 0.

Last, the limited liability conditions are

R2, R0|HH , R1|H ≤ 2H, (16)

R1|·, R1|L, R0|H·, R0|HL, R0|LH ≤ H + L,

R0|·, R0|L·, R0|LL ≤ 2L.
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The contract problem is to choose R2, R1|·, R1|L, R0|H·, R0|HL, R0|LH , R0|·, R0|L·, R0|LL,

R0|HH , R1|H , m0, m0,H , m0,L, m1 to maximise (11), subject to the participation constraint

(12) being non-negative, to the incentive constraints (13), (14), and (15), and to the limited

liability conditions (16).

The participation constraint must bind since otherwise R2 could be reduced. Using the

participation constraint to eliminate R2 gives the objective function as the expected return

net of the expected audit cost:

2p2H + 2p (1− p) (H + L) + 2 (1− p)2 L− 2p (1− p)m1c− (1− p)2m0 (1 +m0,L) c− 2I,(17)

2 [pH + (1− p)L− I]− 2p (1− p)m1c− (1− p)2m0 (1 +m0,L) c

By setting all the m’s equal to one, the expected group payoff reduces to :

2 [pH + (1− p)L− I]− 2 (1− p) c. (18)

which we know to be positive from Assumption 2. Hence this condition ensures that, even

with full monitoring of all state reports, the joint projects have positive NPV.

The solution to the above problem is summarised in Proposition 2:

Proposition 2 With joint contracting and sequential monitoring the optimal contract has:

1. maximum punishment for false reporting:

R0|HH = R1|H = 2H;

R0|H· = R0|HL = R0|LH = H + L;

2. zero rent to the borrower in the lowest true state (both projects fail):

R0|L· = R0|· = R0|LL = 2L;
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3. probability of monitoring at the second stage having discovered a cheat by first stage

audit set at its highest value, m0,H = 1;

4. the repayment after a report of a single success giving a truth-telling reward since

R1|L = 0 and R1|· < H + L;

5. m0,m0,L not uniquely defined but 0 < m0 (1 +m0,L) < 1, with m0 > 0, and

m0,L ∈ [0, 1] . In particular, any combination m0,m0,L along the curve satisfying

m0 (1 +m0,L) =
4 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c
(19)

is optimal;

6. probability of auditing reports of one success set at its lowest value, m1 = 0. Because

of this, R1|L is never paid and it can be set to any value between zero and H + L.

7. repayments pooled in the top two states, so that there is a common repayment after a

report of two successes or a single success. This gives a reward to truthfully reporting

one or two successes:

R1|· = R2 =
2 (I − L) (H − L)

p (2− p) (H − L)− 2 (1− p)2 c
+ 2L < H + L;

8. borrowers indifferent between truthfully reporting one or two successes, getting a zero

return only from reporting no success but a positive return from reporting a single or

two successes that is equal to

2 [pH + (1− p)L− I]− 4 (1− p)2 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c
c. (20)
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The intuition behind these results is the following. Maximum punishment and zero rent

to the borrowers in the lowest truthfully reported states maximises the incentives for truth-

telling whilst also keeping the observation cost of low reports as small as possible.

There must always be some audit of a report of 0 successes, since, if not, the borrower

could always report 0 and get away with cheating. But this would lead to repayments which

do not cover the investment cost.

The incentive to cheat between a report of one success or zero successes is controlled by a

binding incentive constraint in which R1|· is set at the lowest possible level compatible with

the lender’s participation constraint. Thus, repayments and audit probabilities are set so as

ensure that the borrower is indifferent between declaring one success and zero successes.

The incentive to cheat between a report of one or two successes is controlled by a binding

incentive constraint again, which involves pooling the repayments due after reporting one or

two successes, R1|· = R2. These repayments must both be above 2L, since otherwise there

would be insuffi cient revenue to the lender to recoup the loans cost.

The reasons for setting m1 = 0 is that condition (1) allows pooling the repayments in

the top two states, thus removing any cheating incentives. So audit costs can be minimised

by setting m1 = 0.

Conversely, there are many combinations of effi cient monitoring of a zero success report

and they lie along the curve satisfying Eq. (19). One extreme possibility has zero

monitoring at the second stage, m0,L = 0, and m0 =
4 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c
. The

other extreme possibility has m0,L = 1, and m0 =
2 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c
, so that

m0 (1 +m0L) =
4 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c
. At the extremes, monitoring only the first
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stage but with twice the intensity is equivalent in deadweight loss to monitoring both stages,

the second stage with probability one. The intuition for the irrelevance of the timing of

monitoring a zero report is that the repayments are both equal to 2L after the first or

second stage of monitoring.

m0,L

m0

1

1

Note that the borrower is indifferent between a point on the curve and an alternative contract

which has a lower m0 but a more than proportionately higher m0,L. m0 is a more powerful

instrument than m0,L in controlling the incentive to cheat because it affects incentives

directly, at the first stage monitoring following a zero report, and indirectly, through the

effect that it has at the second stage monitoring, after first stage monitoring has occurred

upon a zero report. The combinations have the same expected audit cost.

Thus, some of the basic properties of the solution mirror those of the fundamental

literature: maximum punishment on detected cheats; zero rent for the borrower in the

lowest state. But there are many novelties. If a cheat is found at stage 1 then optimally the

lender should seriously look for another cheat (m0,H = 1). But if in the first round there is

a report of one success then it is best not to monitor the second project at all (m1 = 0).

If the projects taken together are suffi ciently profitable then optimally there is a common

repayment from reports of one or two successes. And finally only the net repayment from a
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report of zero successes matters; it can be built up from different combinations of first and

second stage audit.

6 Simultaneous audits

We now consider the case of simultaneous audits. The reporting and auditing structure

are similar to the those seen in the previous section. In case of a report 2, or 1, the audit

and repayment structure is analogous to the sequential one. In particular there is no audit

following a report of two successes, while it is only necessary to audit the project reported to

have failed in case of report of just one success. Different is the case in which no success is

reported. In this case the lender will audit both projects simultaneously with probabilitym0,

and neither of them with probability 1−m0. As for the sequential case, if he does not audit,

he demands a repayment R0|· and the game ends. When the lender does audit, instead,

he can discover that both projects have failed, that only one has failed, or that none has,

getting respectively R0|LL, R0|LH , R0|HH .

HH

P

•

HLLL

2 1 0 0 0 1

A AA

•

m0 m0

P

•

m1

•

Discover
HH

Discover
LL

N

R2

R1|· R0|·

• •• •
Discover HL

Discover
L

Discover
H

R1|LR1|H
R0|HH R0|HL R0|LL

1­m1
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As for the sequential case, we have the following incentive compatibility conditions:

1. declare zero rather than two successes

R2 ≤ (1−m0)R0|· +m0R0|HH (21)

2. declare one rather than two successes

R2 ≤ (1−m1)R1|· +m1R1|H (22)

3. declare zero rather than one success

m1R1|L + (1−m1)R1|· ≤ (1−m0)R0|· +m0R0|HL. (23)

Thus, the first two IC’s ensure that a borrower with two successful projects (HH) prefers to

report 2 successes rather than 0 or 1. Similarly, the third incentive constraint ensures that a

borrower with a successful and a failed project (HL) prefers to report 1 success rather than

0.

The objective function is

p2 (2H −R2)+2p (1− p)
[
H + L−m1R1|L − (1−m1)R1|·

]
+(1− p)2

[
2L−m0R0|LL − (1−m0)R0|·

]
.

(24)

The participation constraint requires the expected return to the lender from both projects

to cover the two loan costs and the expected audit costs:

p2R2+2p (1− p)
[
m1

(
R1|L − c

)
+ (1−m1)R1|·

]
+(1− p)2

[
m0

(
R0|LL − 2c

)
+ (1−m0)R0|·

]
≥ 2I.

(25)
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Last, the limited liability conditions are

R0|HH , R1|H , R2 ≤ 2H, (26)

R1|·, R1|L, R0|HL ≤ H + L,

R0|·, R0|LL ≤ 2L.

The contract problem is to choose R2, R1|·, R1|L, R1|H , R0|·, R0|LL, R0|HL, R0|HH , m0, m1

to maximise (24), subject to the participation constraint (25), to the incentive constraints

(21), (22), and (23), and to the limited liability conditions (26).

In the following we show that the optimal simultaneous contract is closely related to the

optimal sequential one, as stated in Proposition 3.

Proposition 3 (Irrelevance of the timing of monitoring) If we set mseq
0

(
1 +mseq

0,L

)
= 2msim

0 ,

the two contract problems are identical.

This follows just from inspecting the two contract problems. Since the contract problems

are identical (and we know that only the combined value mseq
0

(
1 +mseq

0,L

)
matters in the

sequential problem), the optimal audit strategies in both problems must coincide with

mseq
0

(
1 +mseq

0,L

)
= 2msim

0 .

Corollary 1 Optimal sequential and simultaneous audits have identical ex-ante welfare.2

Choosing msim
0 =

2 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c
=

1

2
mseq
0 (1 +m0,L) (their optimal

values), the optimal ex-ante welfare coincide in the two contracts.

The equivalence arises because the returns on the two projects are independent. So,

knowing the outcome on one project does not change the information about the distribution
2With n project we would still expect to get an equivalence between simultaneous and sequential contracts.

21



of returns on the other project. There is no gain from auditing one project first to learn its

outcome. By contrast, if the returns were correlated, there would be a potential information

gain in sequential audit (Phelan, 2017).

7 Violation of the strong feasibility condition (1)

In the previous section we have seen that if the strong feasibility condition (1) holds, then

only reports of two fails are audited randomly, while reports of only one fail are never audited

(m1 = 0). The intuition is that there are enough revenues from bottom and intermediate

states to cover the investment and audit cost, so that there is no need to collect resources

from the top state. The repayment from either of the top two states is identical. In the

present section we consider what happens if the strong feasibility condition (1) is violated,

i.e., if

p (2− p) (H − L)− 2 (I − L)− 2 (1− p)2 c ≤ 0.

To this aim, consider the reduced form contract problem with variables

R2, R1|·, R1|L,m0,m0,L,m1 :3

EΠJ = p2 (2H −R2) + 2p (1− p)
[
H + L−m1R1|L − (1−m1)R1|·

]
st EΠL = p2R2+2p (1− p)

[
m1

(
R1|L − c

)
+ (1−m1)R1|·

]
+(1− p)2 [2L−m0 (1 +m0,L) c] = 2I

R2 ≤ 2m0 (H − L) + 2L

R2 ≤ m12H + (1−m1)R1|·

m1R1|L + (1−m1)R1|· =
1

2
m0 (1 +m0,L) (H − L) + 2L

3The remaining variables, whose value is set by maximum punishment and zero rent in the low state, are
independent of the precise feasibility condition being used.
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In the first part of the paper, to prove that m1 = 0, we have used a variational argument.

Starting from any feasible position in the variables, we have locally varied them in ways which

kept each constraint unchanged, seeing which directions of change improved the objective

function. We have seen that this required reducing m1 as far as possible. However, the

implied optimal values of msim
0 (and mseq

0 (1 +m0,L)) and R1|· required that condition (1)

was satisfied.

If the parameter values are such that condition (1) is violated, then the optimal values of

msim
0 (and mseq

0 (1 +m0,L)) and R1|· implied by m1 = 0 are infeasible, namely R1|· ≥ H + L

andmsim
0 ≥ 1 (mseq

0 (1 +m0,L) ≥ 2). Thus, we could at most setmsim
0 (mseq

0 (1 +m0,L) in the

sequential case) and R1|· at their corners and “collect”the missing resources from monitoring

reports of one success (m1 > 0) and from not pooling the top two states (R2 > H + L).

Using the corner values of m0 (1 +m0,L) = 2 and R1|· = H + L in the reduced form

optimisation problem above, the contract problem becomes (Pweak):

EΠJ = p2 (2H −R2) + 2p (1− p)m1

(
H + L−R1|L

)
st EΠL = p2R2 + 2p (1− p)

[
H + L−m1

(
H + L−R1|L + c

)]
+ (1− p)2 2 (L− c) = 2I

R2 ≤ 2H (27)

R2 ≤ m12H + (1−m1) (H + L) (28)

m1

(
R1|L −H − L

)
= 0 (29)

Notice that if constraint (28) is satisfied, then certainly constraint (27) is. So we can ignore

(27). Moreover, from the binding incentive constraint (29), we see that there are two mutually
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exclusive cases, m1 = 0 or R1|L = H +L. We analyse these two cases and find the results in

Proposition 4.

Proposition 4 If condition (1) is violated, with joint contracting and simultaneous or

sequential audits the optimal contract has:

1. maximum punishment for false reporting:

R0|HH = R1|H = 2H;

R0|HL = H + L;

2. zero rent to the borrower in the lowest true state (both projects fail):

R0|L = R0|· = R0|LL = 2L;

3. m0 = m0,L = 1;

4. R1|L = R1|· = H + L;

5.

m1 =
2 (I − L)− p (2− p) (H − L) + 2 (1− p)2 c

p2 (H − L)− 2p (1− p) c ≥ 0;

6.

H + L ≤ R2 = 2H − 2 (H − L)
[pH + (1− p)L− I − (1− p) c]

p2 (H − L)− 2p (1− p) c < 2H;

7. Expected return to the borrower

2 [pH + (1− p)L− I]−2p (1− p) 2 (I − L)− p (2− p) (H − L) + 2 (1− p)2 c
p2 (H − L)− 2p (1− p) c c−2 (1− p)2 c

(30)
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The intuition behind these results is that, since the revenues from just one success or no

successes do not cover the investment plus audit cost of the two projects, additional revenues

in excess of H+L must be raised from the report of two successes. But in this case, to ensure

truthful reports of two successes and prevent cheating by declaring one success, reports of

only one success must sometimes be audited (m1 ≥ 0).

Notice that the optimal audit probabilities are decreasing in the profitability of the

state. In particular, while a report of zero successes is always audited deterministically

(m0 = m0,L = 1), a report of one success is audited with a probability strictly less than one.4

The intuition behind this result is that setting the audit probabilities far apart improves the

incentive to truthfully declare one success instead of no successes.

8 Comparisons

In the present section we compare the relative effi ciency of the various contract problems.

Under single project financing, the expected profits obtainable from two stand-alone

projects are

2 [pH + (1− p)L− I]− 2 (1− p)msinc, (31)

where msin =
I − L

p (H − L)− (1− p) c is the probability of monitoring a low state report under

single project financing, as defined in (9).

When all the projects are financed by a unique lender, under sequential audit, from (17),

expected profits are

2 [pH + (1− p)L− I]− 2p (1− p)m1c− (1− p)2m0 (1 +m0,L) c. (32)

4Having m1 = 1 would violate condition (2).
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If condition (1) is satisfied, m1 = 0, m0 (1 +m0,L) =
4 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c
from (19).

By comparing the expected audit cost under single (31) and joint project finance (32),

we see that joint project financing dominates single project financing iff:

2 (1− p)msinc > (1− p)2m0 (1 +m0,L) c

2 (1− p) c (I − L)

p (H − L)− (1− p) c︸ ︷︷ ︸
msin

− (1− p)2 c 4 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c︸ ︷︷ ︸
m0(1+m0,L)

> 0

The difference reduces to

2p2 (H − L) (1− p) (I − L)

[p (H − L)− (1− p) c]
[
p (2− p) (H − L)− 2 (1− p)2 c

]
which is always positive so long as condition (1) holds. Thus, under our assumptions, joint

project financing always has lower audit cost and so dominates single project financing.

To see where this result comes from, we compare the audit probabilities, and see that

m0 (1 +m0L) > 2msin (their difference reduces to p2 (H − L) − 2p (1− p) c, positive by

Assumption 3). Thus, despite the lower audit probability of the single project finance,

the joint random audit is applied with a suffi ciently lower frequency, (1− p)2 rather than

(1− p) , for joint finance to dominate stand-alone finance.

If condition (1) is violated, m0 = m0,L = 1 and m1 = 2(I−L)−p(2−p)(H−L)+2(1−p)2c
p2(H−L)−2p(1−p)c ≥ 0. By

comparing the expected audit cost under single (31) and joint project financing (32), we get:

2 (1− p)msinc︸ ︷︷ ︸
single

−
[
2p (1− p)m1c+ (1− p)2m0 (1 +m0,L) c

]︸ ︷︷ ︸
joint

i.e.,

p (H − L) [pH + (1− p)L− I − (1− p) c]
[p (H − L)− 2 (1− p) c] [p (H − L)− (1− p) c] > 0.
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which is strictly positive under Assumptions (2) and (3). Similar considerations of balancing

differences in the m’s and the probabilities with which they are applied (the p’s) arise here

as in the case above. The lower monitoring probability of single project finance is dominated

by the lower frequency with which they are applied in the joint finance case. Thus, even in

the case in which condition (1) is violated and a pooling contract is infeasible, joint-project

financing dominates single-project financing, as it involves lower audit costs.

The intuition behind this result is that with joint project finance only the total revenue

of the two projects is relevant, so that one project can cross-subsidise the other. The value of

this depends on the chance that the project outcomes differ and the size of the difference (the

amount of possible cross-subsidisation). In the literature this is also called the diversification

gain of joint project finance. In addition, if condition (1) holds, there is also a saving of audit

cost since an audit is only necessary following a report of zero successes. Conversely, when

projects are financed as standalones, each single report of fail has to be audited stochastically.

Summarising these results, we can state Proposition 5.

Proposition 5 Under Assumptions (2) and (3), joint project financing dominates single

project financing.

The proofs follow from the arguments set out above.

9 Robustness

In this section we consider what happens if, upon a report of one success, the lender does not

know which one it is. She has then to choose at random which one to audit, and chooses an

arbitrary one to monitor with probability 1/2 again by the principle of insuffi cient reason.
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This makes the monitoring chance m1 above conditional on the selection of a project to

monitor replacing m1 by mA
1 and m

B
1 for the two projects A and B respectively. If the lender

discovers the monitored project i (i = A or B) is a fail, it also reveals that the other project

must be a success, since the borrower reported one success. Conversely, if the monitored

project i is a success, there is a chance that the remaining project could be a success as well,

in which case it could be monitored with probability mi
1|H . The obvious way to control the

cheating incentive in this case is to set mi
1|H = 1. This is by analogy with m0|H = 1 above.

We have assumed commitment. That is the lender carries out his audit strategy as

announced in the contract even though he knows that there is always truthtelling. If the

lender is an intermediary in turn financed by shareholders, then they can hold the lender

to account to ensure audits are fulfilled. On a repeated contract setting, the lender could

get away once with not carrying out his announced audit strategy. But in the next round

the borrower should start anticipating that maybe if he cheats the lender will not monitor

as stated in the contract. Phelan (2017) finds that with sequential audit of several projects

whose outcomes are correlated, the correlation can provide an incentive to audit at least some

projects to gain information about the chances of good outcomes on unaudited projects.

10 Conclusion

The costly state verification literature established some general principles in the context of a

single risky borrower and lender where only the borrower knows his ex-post outcome. Since

then many studies have examined whether these principles hold up under different settings.

One part of this has looked at some issues arising with many borrowers and lenders. In

this paper we add to these contributions by seeing how the principles extend to a single
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risky borrower seeking finance from a single lender for several risky projects. Should such a

borrower seek a single loan for all the projects collectively or instead distinct loans for each

project? And how should the borrowers incentive to cheat be controlled, namely, what is

the cheapest audit strategy?

This problem relates to the ideas of joint project finance and internal capital markets in

multidivisional firms. We find that some of the detailed principles of the optimal contract

stand up, e.g., monotonicity of the audit probabilities with the profitability of states of the

world (defined as the combination of possible outcomes across the projects), zero monitoring

of the top state and others. Under some circumstances we find results analogous to a

standard debt contract. But there are also some new forces. The joint finance is preferable

to multiple single loans because it allows both parties to the loan to cross-subsidise over

the different projects. This lowers the fair return to the lender and allows a lower expected

audit cost to ensure truthtelling. Partly this works in a way similar to Diamonds theory of

delegated monitoring (1984). With joint finance for many projects the tails of the probability

distribution of the number of successful or failed projects are less likely to occur.

As far as the audit strategy is concerned, with joint finance there are richer possibilities

than with multiple single project loans. With the latter each single bad project outcome

must be audited to ensure truthtelling on all projects. But with joint project finance the

projects can be audited sequentially one by one. This allows later audits to be conditioned

on the results of earlier ones. Phelan shows that if returns are correlated across projects

then sequential audit allows updating of probability distribution of returns on unaudited

projects allowing a cheaper overall audit strategy. So sequential audit will socially dominate
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simultaneous audit. A further possible advantage of sequential audit with multiple projects

could be that only as many projects will need to be audited as will ex-post cover the lenders

costs across all projects. Hence ex-post the lender can stop auditing as soon as his costs are

covered. With uncorrelated projects and commitment to audit we find that these advantages

disappear and sequential and simultaneous audit incur the same expected deadweight loss

of audit. But joint financing is still preferable to individual project finance.

There are various future research directions. First there are areas of application such

as to multidivisional firm finance: firms with multiple semi-independent projects. But this

raises the idea immediately of correlated projects, e.g. if such a firm is operating in a broad

single sector (transport, say) then aggregate transport shocks are likely to affect all divisions.
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A Appendix

Proof of Proposition 1. Using maximum punishment in the optimisation problem
(RLH = H) and forming a Lagrangian with multiplier λ and µ, the FOC’s wrt RH , RL, RLL

and m are

∂L
∂RH

: (λ− 1) p− µ ≥ 0, RH ≤ H

∂L
∂m

: (1− p) (RL −RLL) (1− λ)− λ (1− p) c+ µ (H −RL) ≥ 0,m ≤ 1
∂L

∂RLL
: (λ− 1)m (1− p) ≥ 0, RLL ≤ L

∂L
∂RL

: (1−m) [(λ− 1) (1− p) + µ] ≥ 0, RL ≤ L

λ > 1. Suppose λ = 1. Then by ∂L
∂RH

, µ = 0. By ∂L
∂m
, this implies −λ (1− p) c ≤ 0, a

contradiction, since ∂L
∂m
≥ 0. By λ > 1, ∂L

∂RLL
, ∂L
∂RL

> 0 and RLL = RL = fL. Using
RLL = RL = L, RLH = H and m = RH−L

H−L from the incentive constraint, the contract
problem becomes

max
RH

p (H −RH)

s.t. pRH + (1− p)
(
L− RH−fL

fH−fL c
)

= I

The objective function is decreasing in RH , while the participation constraint is increasing
in it (∂PC

∂RH
= 1

H−L [p (fH − fL)− (1− p) c]). RH is then obtained by solving the

participation constraint, giving RH = (H−L)I−(1−p)L(H−L+c)
p(H−L)−(1−p)c . Substituting out in m, gives

m = I−L
p(H−L)−(1−p)c .

For m < 1, pH + (1− p)L − I − (1− p) c > 0, which certainly holds under Assumption 2.
This in turn implies from (6) that RH < H.

To work out the expected return to the borrower, take the objective function

EΠS = p (H −RH) + (1− p) [m (L−RLL) + (1−m) (L−RL)]

and use the solutions to the programme set out above: zero revenue in the low state
(RLL = RL = L):

EΠS = pH − pRH
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From IC:

RH = mRLH + (1−m)RL

= m (H − L) + L

Replace in objective function

EΠS = pH − p (m (H − L) + L)

p (H − L)− pm (H − L)

Add and subtract (I − L)

p (H − L)− pm (H − L) + (I − L)− (I − L)

pH + (1− p)L− I − pm (H − L)− (L− I)

Using m = I−L
p(H−L)−(1−p)c from (9)

pH + (1− p)L− I + (I − L)− p I−L
p(H−L)−(1−p)c (H − L)

and collecting (I − L)

pH + (1− p)L− I − (I − L)

p (H − L)− (1− p) c︸ ︷︷ ︸
msim

(1− p) c

as (8).
Proof of Proposition 2. The proof proceeds as follows. First, with the binding

participation constraint and the binding incentive constraint giving indifference for the
group between truth-telling and cheating when the group has one success, we solve out for
values of 1 ≥ m0 > 0 and 2H ≥ R2 > 2L. That leaves a reduced problem of choosing
m1,m0,L, R0|·, R1|L to maximise the group return within the two incentive constraints
controlling truth-telling when the group actually has two successes. Of course we have to
check that any solution we reach for m1,m0,L, R0|·, R1|L leads to values of m0, R2 satisfying
1 ≥ m0 > 0 and 2H ≥ R2 > 2L. Using a local variational argument we show that from
any initial feasible point m1,m0,L, R0|·, R1|L there are small changes which will continue to
satisfy the incentive constraints and will increase the objective function if m0,L and m1are
both reduced. The obvious solution is then m1 = m0,L = 0. If m1 = 0 then the value of
R1|L is immaterial (it is never paid) and so can be set equal to zero. Since m1 = 0 there is
a solution in which the top two state repayments are pooled: R2 = R1|·.The final step then
checks that R1|· is feasible and that the resulting m0, R2 are feasible.
The contract problem is to choose R2, R1|·, R1|L, R0|H·, R0|HL, R0|LH , R0|·, R0|L·, R0|LL,

R0|HH , R1|H , m0, m0,H , m0,L, m1 to maximise

p2 (2H −R2) + 2p (1− p)
{
H + L−m1R1|L − (1−m1)R1|·

}
+ (1− p)2

{
2L−m0

[
m0,LR0|LL + (1−m0,L)R0|L·

]
− (1−m0)R0|·

}
.
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subject to the participation constraint

p2R2 + 2p (1− p)
{
m1

(
R1|L − c

)
+ (1−m1)R1|·

}
+ (1− p)2

{
m0

[
m0,L

(
R0|LL − c

)
+ (1−m0,L)R0|L· − c

]
+ (1−m0)R0|·

}
= 2I

the incentive constraints

R2 ≤ (1−m0)R0|· +m0

[
m0,HR0|HH + (1−m0,H)R0|H·

]
R2 ≤ (1−m1)R1|· +m1R1|H

(1−m1)R1|· +m1R1|L ≤ (1−m0)R0|·+

m0

[
1

2

(
m0,HR0|HL + (1−m0,H)R0|H·

)
+

1

2

(
m0,LR0|LH + (1−m0,L)R0|L·

)]
and the limited liability conditions:

R2, R0|HH , R1|H ≤ 2H,

R1|·, R1|L, R0|H·, R0|HL, R0|LH ≤ H + L,

R0|·, R0|L·, R0|LL ≤ 2L.

Punishment repayments R0|HH , R1|H , R0|H·, R0|HL, R0|LH only enter the incentive constraints.
So by setting maximum punishment can raise RHS of these and so lower either m0 or m1

or both. For example if R0|HH < 2H then we can increase R0|HH and reduce m0 keeping
m0m0HR0|HH constant. This raises the RHS of IC1 because it raises (1−m0)R0|· and
slackens PC due to the decreased frequency of the audit cost m0c. In turn this allows a
reduction in R2. Similar arguments apply to variations keeping (1−m0,H)R0|H· and variations
keeping m1R1|H constant (which has the added benefit of coeteris paribus reducing the
left hand side and so slackening IC3. And finally variations keeping successively each of
m0m0,HR0|HL,m0(1 − m0,H)R0|H· constant. Thus R0|HH = R1|H = 2H, R0|H· = R0|HL =

R0|LH = H + L.

We can moreover see that the right hand side of IC1 and IC3 is increasing in m0,H , but
this is neither in the objective nor in the participation constraint. So we can set m0,H = 1,

to slacken IC1 and IC3.
We can subsequently write the contract problem as:

maxEΠJ = p2 (2H −R2) + 2p (1− p)
{
H + L−m1R1|L − (1−m1)R1|·

}
+ (1− p)2

{
2L−m0

[
m0,LR0|LL + (1−m0,L)R0|L·

]
− (1−m0)R0|·

}
st EΠL = p2R2 + 2p (1− p)

{
m1

(
R1|L − c

)
+ (1−m1)R1|·

}
+ (1− p)2

{
m0

[
m0,L

(
R0|LL − c

)
+ (1−m0,L)R0|L· − c

]
+ (1−m0)R0|·

}
= 2I

R2 ≤ m02H + (1−m0)R0|·

R2 ≤ m12H + (1−m1)R1|·

m1R1|L + (1−m1)R1|· ≤ m0

[
1

2
(1 +m0,L) (H + L) +

1

2
(1−m0,L)R0|L·

]
+ (1−m0)R0|·

33



1. The participation constraint must be binding. If it was slack, R2 could be reduced,
which would relax all IC’s and increase the objective.

2. R0|L· = R0|· = 2L.
If R0|L· < 2L and R2 > 0 we can reduce R2 and raise R0|L· so that p2R2 +

(1− p)2m0 (1−m0,L)R0|L· stays constant, leaving both the objective function and the
participation constraint unchanged. This slackens the first two incentive constraints
and the right hand side of the third incentive constraint, again allowing a reduction
in m0. Similarly, we can reduce R2 and raise R0|· so that p2R2 + (1− p)2 (1−m0)R0|·
stays constant, leaving both the objective function and the participation constraint
unchanged, while slackening the three incentive constraints. We know R2 > 2L > 0

since if R2 ≤ 2L there is insuffi cient revenue to recoup the investment cost. Hence
such reductions in R2 are always possible. The result is R0|L· = R0|· = 2L.

3. R0|LL = 2L

With R0|· = R0|L· = 2L, the problem becomes:

EΠJ = p2 (2H −R2) + 2p (1− p)
{
H + L−m1R1|L − (1−m1)R1|·

}
+ (1− p)2

{
2L−m0

[
m0,LR0|LL + 2 (1−m0,L)L

]
− 2 (1−m0)L

}
st EΠL = p2R2 + 2p (1− p)

{
m1

(
R1|L − c

)
+ (1−m1)R1|·

}
+ (1− p)2

{
m0

[
m0,L

(
R0|LL − c

)
+ 2 (1−m0,L)L− c

]
+ 2 (1−m0)L

}
= 2I

R2 ≤ m02H + 2 (1−m0)L

R2 ≤ m12H + (1−m1)R1|·

m1R1|L + (1−m1)R1|· ≤ m0

[
1

2
(1 +m0,L) (H + L) + (1−m0,L)L

]
+ 2 (1−m0)L

R0|LL only appears in the objective function and the participation constraint. Lowering
R2 and raising R0|LL so as to keep p2R2+(1− p)2m0m0,LR0|LL constant leaves both the
objective and the PC unchanged, while slackening IC1 and IC2. So, also R0|LL = 2L.

4. With R0|· = R0|L· = R0|LL = 2L, the problem becomes:

EΠJ = p2 (2H −R2) + 2p (1− p)
{
H + L−m1R1|L − (1−m1)R1|·

}
st EΠL = p2R2 + 2p (1− p)

{
m1

(
R1|L − c

)
+ (1−m1)R1|·

}
+ (1− p)2 {2L−m0 (1 +m0,L) c} = 2I

R2 ≤ m02H + 2 (1−m0)L

R2 ≤ m12H + (1−m1)R1|·

m1R1|L + (1−m1)R1|· ≤
1

2
m0 (1 +m0,L) (H − L) + 2L
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5. m0 > 0 and IC3 binding.
If m0 = 0, the first and third IC’s would be R2, R1|L, R1|· ≤ 2L. Then the available
revenue to repay 2I is no higher than 2L − 2p (1− p)m1c, which is less than 2I. So
we must have m0 > 0. Moreover, IC3 must be binding. Suppose not. It would then be
possible to lower m0,L slackening the PC, thus allowing a reduction in R2.

EΠJ = p2 (2H −R2) + 2p (1− p)
[
H + L−m1R1|L − (1−m1)R1|·

]
(33)

st EΠL = p2R2+2p (1− p)
[
m1

(
R1|L − c

)
+ (1−m1)R1|·

]
+(1− p)2 [2L−m0 (1 +m0,L) c] = 2I

R2 ≤ 2m0 (H − L) + 2L

R2 ≤ m12H + (1−m1)R1|·

m1R1|L + (1−m1)R1|· =
1

2
m0 (1 +m0,L) (H − L) + 2L

6. m1 = 0

The variables areR2, R1|·, R1|L,m0,L,m1,m0.We know that the participation constraint
and IC3 must bind and also thatm0 > 0, R2 > 2L to provide suffi cient expected revenue
to repay the debt. So we can eliminate these two variables using binding PC and IC3:

m0 = 2
(1−m1)R1|· +m1R1|L − 2L

(1 +m0,L) (H − L)

R2 =
2 (1− p)

{
(1− p)

[
m1R1|L + (1−m1)R1|· − 2L

]
+m1p (H − L)

}
c

p2(H − L)

−
2 (1− p)

[
m1R1|L + (1−m1)R1|·

]
p

+
2
[
I − (1− p)2 L

]
p2

Substituting out m0 and R2 in the objective function and in IC1 and IC2 leaves the
variables R1|·, R1|L,m0,L,m1. Starting from any feasible position in the variables, we
can locally vary all the variables butm0,L in ways which keep each constraint unchanged
(thus requiring dICI = dIC2 = 0) and see which directions of change will improve the
objective function. This requires the variations to satisfy

∂IC1
∂R1|·

dR1|· +
∂IC1
∂R1|L

dR1|L +
∂IC1
∂m1

dm1 = 0

∂IC2
∂R1|·

dR1|· +
∂IC2
∂R1|L

dR1|L +
∂IC2
∂m1

dm1 = 0

We use this to express local variations in R1|·, R1|L in terms of the variations in m1,

holding m0,L constant. Finally we see the effect on the objective:

dobj = dobjR1|LdR1|L + dobjR1|·dR1|· + dobjm1dm1.
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Substituting in the variations in dR1|· and dR1|L which insure that IC1 and IC3 hold,
we get:

dobj

dm1

=
−2p2(1− p)c [1 +m0,L + p (1−m0,L)] (H − L)

p [1 +m0,L + p (1−m0,L)] (H − L)− (1 +m0,L) (1− p)2 c

The above expression is negative. To see this, notice that the numerator is always
negative, while the denominator term is positive. This can be seen by noticing that
the derivative of the denominator with respect tom0,L, (1− p) [p (H − L)− (1− p) c)] ,
is always positive, and at m0,L = 0 the value of the denominator is positive.
Thus, the objective function can be increased by reducing m1 as far as possible, whilst
preserving feasibility.
A solution will then have m1 = 0 so long as the implied R1|·, R1|L, R2 ≥ 0, R2 <

2H,R1|L, R1|· ≤ H +L, 0 < m0 < 1, and there are suffi cient revenues to repay the debt
cost.5 This amounts to say that condition (1) is satisfied.
Setting m1 = 0 allows pooling the repayments in the top two states, thus removing
any cheating incentives. So audit costs can be minimised.
With m1 = 0, the problem reduces to

EΠJ = p2 (2H −R2) + 2p (1− p)
(
H + L−R1|·

)
st EΠL = p2R2 + 2p (1− p)R1|· + (1− p)2 {2L−m0 (1 +m0,L) c} = 2I

R2 ≤ 2m0 (H − L) + 2L

R2 ≤ R1|·

R1|· =
1

2
m0 (1 +m0,L) (H − L) + 2L

7. R2 = R1|·.

From IC2, because of monotonicity of repayments, we deduce that R2 = R1|·. Also
since m1 = 0, R1|L is never paid and it can be set to any value between 0 and H + L.
Thus, IC1 becomes

R1|· ≤ m02H + 2 (1−m0)L

≤ 2m0 (H − L) + 2L

By comparing IC1 and IC3 we see that if IC3 is satisfied, then certainly IC1 is. So, we
can ignore IC1 and the contract problem becomes:

EΠJ = p2 (2H −R2) + 2p (1− p)
(
H + L−R1|·

)
st EΠL = p2R2 + 2p (1− p)R1|· + (1− p)2 {2L−m0 (1 +m0,L) c} = 2I

R1|· =
1

2
m0 (1 +m0,L) (H − L) + 2L

5Notice this holds for any non-negative fixed value of m0,L.
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8. Determination of R1|· and m0 (1 +m0,L)

Notice that the remaining monitoring probabilities only enter the constraints and
only through the composite variable m0 (1 +m0,L) . There is then a redundancy of
instruments.
In the participation constraintR1|· needs to be high enough to cover the investment plus
audit cost, but in the incentive constraint low enough to make cheating unprofitable
between 1 and 0 zero successes. Similarly, the audit probability m0 (1 +m0,L) has
to be high enough to control the cheating incentive but low to minimise the audit
cost. The balance between the two comes from solving the remaining binding

constraints for m0 and R1|·. We get m0 (1 +m0,L) =
4 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c
,

R1|· =
2 (I − L) (H − L)

p (2− p) (H − L)− 2 (1− p)2 c
+ 2L.

We next verify that m0 (1 +m0,L) ≤ 2. Indeed, since there are many combinations of
monitoring a zero success report, the condition that guarantees that any combination

is feasible is that m0 (1 +m0L) =
4 (I − L)

p (2− p) (H − L)− 2 (1− p)2 c
≤ 2. For this, we

need
0 < 2 (I − L) < p (2− p) (H − L)− 2 (1− p)2 c,

which certainly holds under Assumption (1). When the condition (1) holds with
equality or is violated, then m0 (1 +m0L) ≥ 2

9. We next verify that R1|· ≤ H + L.

R1|· −H − L =
1

2
m0 (1 +m0,L) (H − L) + 2L−H − L ≤ 0

1

2
m0 (1 +m0,L) (H − L) ≤ H − L

m0 (1 +m0,L) ≤ 2

which is non-positive iff m0 (1 +m0,L) ≤ 2. Thus, R1|· ≥ H + L when condition (1)
holds with equality or is violated.
Hence this is then a feasible solution which also maximises the borrowers objective.

Proof of Proposition 4. To prove this, let us consider programme Pweak. From that
we see that there are two mutually exclusive cases:

• m1 = 0

In this case, from (28) R2 = H + L. Moreover, if m1 = 0, R1|L is never paid. Using
m1 = 0, R2 = R1|· = H + L in the participation constraint gives[

p2 + 2p (1− p)
]

(H + L) + (1− p)2 2 (L− c) = 2I.
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• R1|L = H + L

In this case the contract problem becomes

EΠJ = p2 (2H −R2)

st EΠL = p2R2 + 2p (1− p) (H + L−m1c) + (1− p)2 2 (L− c) = 2I

R2 ≤ m12H + (1−m1) (H + L)

Solving PC and IC2 for m1 and R2,(show binding)

m1 =
2 (I − L)− p (2− p) (H − L) + 2 (1− p)2 c

p2 (H − L)− 2p (1− p) c > 0

which is positive (because condition (1) is violated) and less than one:

m1 − 1 = −2
pH + (1− p)L− I − (1− p) c
p [p (H − L)− 2 (1− p) c] < 0

R2 = 2
− (H − L) [pH + (1− p)L− I − (1− p) c] +H [p2 (H − L)− 2p (1− p) c]

p2 (H − L)− 2p (1− p) c

= 2H − 2 (H − L)
[pH + (1− p)L− I − (1− p) c]

p [p (H − L)− 2 (1− p) c]

which is smaller than 2H. It is also larger than H +L. Indeed, R2− (H + L) can also
be written as

H + L+

{
2 (I − L)− p (2− p) (H − L) + 2 (1− p)2 c

p [p (H − L)− 2 (1− p) c]

}
(H − L)

Substituting out in the objective function p2 (2H −R2) gives:

2 [pH + (1− p)L− I]−2p (1− p) 2 (I − L)− p (2− p) (H − L) + 2 (1− p)2 c
p2 (H − L)− 2p (1− p) c c−2 (1− p)2 c
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