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Abstract

The existing contributions on endogenous taxation, and balanced budget rules,

suggest that countercyclical taxes should be avoided, because they may lead to

aggregate instability (i.e. sunspot equilibria); on the other hand, procyclical taxes

have always been praised for their stabilizing role. In this paper, we re-examine this

issue in an endogenous growth model with productive government investment, and

we prove that an economy with procyclical taxes, and a su�ciently large income

e�ect, can still be characterized by i) global indeterminacy because two balanced

growth paths may exist; ii) aggregate instability around the balanced growth path

with the lowest growth rate. Finally, we show that this dynamics may emerge for

reasonable choices of the parameters.
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1 Introduction

Several contributions in the literature have shown that a balanced-budget rule to-

gether with endogenous distortionary taxes may lead to aggregate instability, once

embedded in a neoclassical growth model.1 Endogenous labor income taxes and

capital income taxes are responsible of aggregate instability if su�ciently counter-

cyclical with respect to output growth (Schmitt-Grohe and Uribe [13]). Although

endogenous consumption taxes are preferred in such a setting, because they reduce

the range of parameters leading to an indeterminate steady state and, therefore, to

sunspot equilibria (Giannitsarou [5]), this sharp result cannot be extended to more

general utility functions, as those proposed by Jaimovich [6] and Jaimovich and Re-

belo [7]. In fact, local determinacy is guaranteed only if the consumption taxes are

assumed to be countercyclical and the elasticity of intertemporal substitution in con-

sumption is su�ciently large (Nourry et al. [10]). A common characteristic of these

models is that government spending is never productive. Investigating the same

issue in an endogenous growth model à la Barro [2], where government spending is

productive, leads to a global form of indeterminacy when the consumption taxes are

endogenous and countercyclical (Bambi and Venditti [1]).2 Sunspot equilibria and,

then aggregate instability, emerge also in this context, once extrinsic uncertainty is

introduced.

Therefore, the existing literature points to procyclical endogenous taxes as the

right policy to rule out aggregate instability in models where the government bal-

ances its budget in each period. Such a policy advice is relevant for at least two

reasons.

First, balanced budget rules have been more and more advocated and even im-

plemented as constitutional requirements in several European countries after the

2008 crisis (e.g. Art.81 of the Italian Constitutional Law 1/2012). In the period

2009-2013, for example, 16 European countries had a de�cit as percentage of GDP

below 3%.

Second, the same European countries and, in fact, several OECD countries have

adopted and still adopt countercyclical taxes with respect to output growth (see

Lane [8] among others).3 Figure 1 shows, for example, how consumption taxes have

1Aggregate instability emerges because of the existence of (stationary) sunspot equilibria.
2The global indeterminacy found in this contribution is characterized by a unique stationary

equilibrium in the variables consumption over capital and tax rate and a continuum of no-stationary

equilibria in the same two variables.
3Consistently with the previously mentioned literature, we say that taxes are conutercyclical if
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been adjusted countercyclically in several EU countries in the period 2009-2013,

speci�cally those with a red and grey circle. Interestingly, eight of them kept a

de�cit as percentage of GDP below 3%.4
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Figure 1: Evidence on Countercyclical VAT

For these reasons, these countries could bene�t by switching to procyclical �scal

policies. In fact, this change would lead to a reduction of output volatility according

to the prediction of existing contributions, that, as previously explained, have agreed

on the stabilizing role of procyclical taxation.

The aim of this paper is to investigate how robust this prediction is in an endoge-

nous growth model. More speci�cally, our setting di�ers from previous contributions

on two dimensions.

First, the government �nances productive public investments by levying endoge-

nous consumption taxes; government spending is then a stock variable, not a �ow

as in Barro [2] and in Bambi and Venditti [1].5 Consumption taxes are considered,

instead of other types of taxation, because it is more di�cult to generate local in-

the tax rate expands when output shrinks and viceversa. See also footnote 6.
4According to Eurostat, these countries are Czech Republic, Italy, Latvia, Lithuania, Hun-

gary, Netherland, Romaina and Finland. Moreover, the countries adjusted often gradually the

consumption tax rate in the period 2009-2013.
5Endogenous growth as a result of productive public investment �nanced by �at income taxes

was originally investigated by Futagami et al. [4].
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determinacy, and because consumption taxes have been adjusted countercyclically,

as shown in the previous empirical evidence.

Second, the government sector is characterized by two equations: a balanced

budget rule and a �scal policy. The reason for the latter is that in our context

both the government spending and the taxes are endogenous; therefore, we need to

specify a �scal policy, in addition to the balanced budget rule, to avoid a trivial form

of global indeterminacy. Observe that this is a departure from what usually done

in exogenous or no-growth models, where the government spending is exogenously

given and the tax rate is endogenous, because it has to adjust, period by period, to

balance the government budget.6

To design the �scal policy, we follow Persson and Tabellini [12] and we consider

a state-contingent and time-invariant �scal policy rule and, speci�cally, a functional

form which guarantees the existence of a balanced growth path.

The main �nding of this article is that our economy may admit, for reasonable

values of the parameters, two balanced growth paths and that the one characterized

by the lowest growth rate can be locally indeterminate, even though the consumption

tax is procyclical with output growth. Consequently, procyclical taxation may lead

an economy to a poverty trap characterized by all the aggregate variables to �uctuate

around the balanced growth path with the lowest growth. This result is surprising

and it suggests to be cautious because the existing results in favor of procyclical

taxation does not necessarily extend to an endogenous growth setting.

It also clari�es that in the presence of multiple balanced growth path a trade-

o� between output growth and output volatility may not exist because aggregate

instability may emerge around the balanced growth path with the lowest growth

rate.

Interestingly enough, the existence of multiple BGPs depends on the existence

of a La�er curve-type relationship between the tax rate and the (detrended) tax

revenue. More precisely two balanced growth paths exist because detrended public

investments may intersect twice the La�er curve. The intersection is shown to

6For example, Schmitt-Grohe and Uribe [13] consider, at page 980, the balanced budget rule

G = τtwt`t with G an exogenously given constant; the tax rate is endogenous because it has to

adjust, in every period, to compensate the changes in labor income and to balance the government

budget. Similarly, Giannitsarou [5] considers, in a model without growth, the balanced budget rule

G = τtct; the tax rate is, again, endogenous because G is an exogenously given constant and the

budget needs to be balanced by varying the consumption tax. Clearly, in both cases, the taxation

is, by construction, countercyclical respectively with output and consumption. In fact, if output

or consumption increases the tax rate has to be reduced to keep the same government spending.
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emerge on the left side of the La�er curve and therefore both balanced growth paths

can be empirically plausible. Although the existence of a La�er curve was recently

found by Nourry et al. [10], but in this contribution there is only one empirically

plausible steady state. In addition, the reason behind its existence of a La�er curve

is very di�erent since, in their case, it depends on the preferences' speci�cation,

while, in our case, the utility function is a standard CES and the existence of the

La�er curve depends on the combination of productive public investment together

with the designed �scal policy rule. In this framework, multiple BGPs emerge for a

su�ciently large income e�ect together with a su�ciently large procyclical taxation.7

In addition,

Similarly, our result on local indeterminacy is proved for a su�ciently large

income e�ect together with a not too large procyclical taxation.

The paper is organized as it follows. In Section 2, we describe the economy

and we identify the two key equations which describe the intertemporal equilib-

rium. Section 3 focuses on the existence of a balanced growth path and su�cient

conditions, for global indeterminacy to emerge, are found in Proposition 2. The

existence of a La�er curve is discussed with the help of some �gures, and numerical

examples. The transitional dynamics around the balanced growth path with the

lowest growth rate, in the case of global indeterminacy, are investigated in Section

4. In particular, su�cient conditions for local indeterminacy to emerge are found in

Proposition 3. Again, numerical examples are proposed to show that this dynamic

behavior is not only analytically possible, but also reasonable from a quantitative

perspective. Section 5 emphasizes the role of the procyclical taxation in our setting

and a comparison with existing results is proposed. Finally, Section 6 concludes the

paper. The logical steps of the proofs appear in the main text, while a more detailed

and rigorous version of the proofs can be found in the Appendix.

2 Model Setup

In this section, we present the decision problem faced by the households, by the �rms

and we also describe the role played by the government in the economy through

its budget constraint and �scal policy rule. The model setup is similar to the one

proposed by Futagami et al. [4] with the exception that the �scal policy rule consists

of an endogenous, and (possibly) time-varying, consumption tax.

Households � There is a continuum of atomistic households. There is no pop-

7It is worth remembering that there is no La�er curve with �at-rate consumption taxes.
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ulation growth and its size is normalized to one, Lt = L = 1.8 The representative

household solves the following inter-temporal maximization problem

max
c

∫ ∞
0

e−ρt · c
1−σ − 1

1− σ
dt

subject to

k̇ = w +Rk − δk − (1 + τ)c (1)

c ≥ 0, k ≥ 0 (2)

with the initial condition of capital, k0, exogenously given. Gross income is the sum

of the return on capital and of labor income, y ≡ (R− δ)k +w, while net income is

y− τc, with τ ∈ (0, 1) indicating the consumption tax rate. Net income is allocated

between consumption, c, and gross investment i ≡ k̇ + δk. The intertemporal

preference discount factor, ρ, and the depreciation rate of capital, δ, are assumed,

as usual, between zero and one while the inverse of the elasticity of intertemporal

substitution in consumption, σ, is strictly greater than one.9

The Hamiltonian of this problem is

H ≡ c1−σ − 1

1− σ
· e−ρt + λ[(w + (R− δ)k − (1 + τ)c]

whose �rst order conditions are:

∂H
∂c

= 0 ⇔ c−σe−ρt = λ(τ + 1) (3)

∂H
∂k

= −λ̇ ⇔ λ(R− δ) = −λ̇ (4)

Di�erentiating (3) and substituting into (4) leads to the Euler equation:

ċ

c
=

1

σ

(
R− δ − ρ− τ̇

1 + τ

)
(5)

A standard transversality condition must also hold.

Firms � There is a continuum of atomistic �rms. They demand capital and

labor to the households and also received a public good from the government. The

production function is assumed to be Cobb-Douglas, y = AkαG1−α, with G the

8For this reason, a variable, X, and its per capita value, x, coincides.
9The cases σ = 1 and σ < 1 can be studied but have been excluded by the current analysis to

make the presentation of the results less cumbersome.
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public good. From the pro�t maximization problem of the �rms, we get the following

two conditions:

αAkα−1G1−α = R and (1− α)AkαG1−α = w (6)

Government � Government spending is assumed to be a stock variable con-

sistently with Futagami et al. [4]. Since public investment, IG, is �nanced by the

consumption tax revenue, T , and the government balances its budget in each period,

we have that

IG ≡ Ġ+ δG = τc ≡ T (7)

with the initial government spending, G0, an exogenously given and positive con-

stant. The depreciation of capital and of government spending are also assumed to

be the same for simplicity.10

Since we want to allow both the government spending and the consumption

tax to be endogenous and (possibly) time-varying, we need to specify, not only the

government balance budget constraint (7), but also a �scal policy rule to avoid

a trivial form of global indeterminacy. Following Persson and Tabellini [12] (e.g.

Chapter 11, page 279), we assume a state-contingent, and time-invariant policy

rule:

τ = Ψ(k,G) ≡ τc

(
G

k

)η
(8)

where τc > 0 and the elasticity of the consumption tax with respect to the government-

capital ratio, i.e. η, can be a positive or negative constant.11 The chosen functional

form for the �scal policy rule implies two important characteristics of the tax rate:

i) it will be constant along any BGP, since G
k
will be constant; ii) it is predetermined,

since a function of two state variables, k and G. This is, indeed, consistent with

the fact that taxes are typically set in advance, as discussed in Schmitt-Grohe and

Uribe [13]. The functional form di�ers from the one studied by Bambi and Venditti

[1] since the tax does not depend on a control variable but rather on a state variable,

namely the government-capital ratio. As it will result clear in the next section, this

departure will lead to a dynamics substantially di�erent and to remarkably di�erent

policy advices.

It is also worth noting that combining the production function with the �scal

policy rule leads to

τ = τcA
η

α−1

(y
k

) η
1−α

10In this assumption, we depart from the setting of Futagami et al. [4] where government

spending does not depreciate over time.
11A time-invariant policy rule means that the functional form, Ψ(.), does not change over time.
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which implies

gy = gk +
1− α
η

gτ

where gx = ẋ
x
. Therefore, the tax growth rate, gτ , is procyclical (countercyclical)

with respect to output growth, gy, if η > 0 (η < 0).

We are now ready to give a de�nition of an intertemporal equilibrium for the

economy just described.

De�nition 1 (Intertemporal Equilibrium) Given an initial condition of capital

k0 > 0 and government spending G0 > 0, an intertemporal equilibrium is any path

(c(t); k(t); τ(t);G(t)) which satis�es the system of equations (1), (5), (6), (7) and

(2), respects the inequality constraints k > 0 and c > 0, and the transversality

condition.

As usual in the endogenous growth literature, the dynamics associated to such

an equilibrium can be described by combining these equations to obtain a system

of two ODEs:

ẋ

x
= (τcx

η−1 + 1 + τcx
η)y − Ax1−α (9)

ẏ

y
=

1

σ

[
αAx1−α − δ − ρ− τcηx

η

1 + τcxη
ẋ

x

]
−
[
Ax1−α − δ − (1 + τcx

η)y
]

(10)

in the state-like variable x ≡ G
k
and the control-like variable y ≡ c

k
. The interested

reader may look at Appendix B.1 for further details on the derivations leading to

system (9)-(10).

3 Balanced Growth Paths

In this section, we investigate the existence and uniqueness of a balanced growth

path for this economy. Two main results will be proved: �rst, that a unique bal-

anced growth path always exists within reasonable parameter choices; secondly, that

multiple balanced growth paths can also emerge for alternative but still plausible

choices of the parameters.

A balanced growth path (from now on BGP) is a particular intertemporal equi-

librium where consumption, government spending and capital grow exponentially at

the same positive rate, γ:

c = c0e
γt, G = G0e

γt and k = k0e
γt

7



Along a BGP, the government spending over capital ratio, and the consumption-

capital ratio are constant, and their value, x∗, y∗, is a steady state for the system

(9)-(10). In particular, along a BGP, equations (9)-(10) rewrite

y∗ =
Ax∗1−α

τcx∗η−1 + 1 + τcx∗η
(11)

x∗ =

(
σγ + δ + ρ

αA

) 1
1−α

with (12)

γ = Ax∗1−α − δ − (1 + τcx
∗η)y∗. (13)

Existence and uniqueness of a BGP can be investigated looking at the roots of the

following equation in the variable γ ∈ (0,+∞):

T̃ (γ) ≡ Aτc
τcx∗α−1 + x∗α−η + τcx∗α︸ ︷︷ ︸

detrended tax revenue

= γ + δ︸ ︷︷ ︸
detrended public investment

≡ ĨG(γ) (14)

This equation can be obtained by solving (13) for y∗, substituting it into (11); it

is worth noting that x∗ is a one-to-one function of γ from (13). Alternatively, (14)

can be obtained combining equation (11) with the government budget constraint

(7) evaluated along a BGP. This last venue is more informative because, assuming

without loss of generality G0 = 1, the left hand side of (14) is detrended tax revenues,

T̃ ≡ T e−γt, while the right hand side is detrended public investment, ĨG ≡ IGe−γt.
Therefore, equation (14) is the government balanced budget constraint, evaluated

along a BGP.

We have now all the preliminaries to prove, under which conditions, a unique

balanced growth path exists.

Proposition 1 (Existence and Uniqueness) A unique balanced growth path ex-

ists if

A > A and τc > τ c (15)

where Γ ≡
(
δ+ρ
αA

) 1
1−α , A ≡ δ1−α(δ+ρ)

[(1−α)δ+ρ]1−ααα
> 0 and τ c ≡ δΓα−η

A−(Γ−1+1)Γαδ
> 0.

Proof. A unique BGP exists as long as T̃ (γ) intersects only once the straight line

γ + δ. If T̃ (0) ≥ δ, there is always at least one intersection, since limγ→∞ T̃ (γ) =

limx→∞ T̃ (γ) = 0+ and T̃ (γ) is continuous and di�erentiable in its domain. As

shown in Appendix B.2.1:

T̃ (0) ≥ δ ⇔ A > A and τc ≥ τ c (16)

8



Finally, there is only one intersection when T̃ (0) > δ, because the function T̃ (γ)

has at most a unique critical point, γ̂ > 0, as shown in Appendix B.2.2. Therefore,

(15) implies the existence of a unique BGP.

Discussion of these conditions is in order. The requirements of a su�ciently high

level of technology, and of the tax rate, are crucial to guarantee a positive growth

rate of the economy. In particular, the condition on A is similar to the one required

in an AK model, while the condition on τc tells us that economic growth can be

sustained only if a large enough government spending, in the form of a public good,

is provided to the �rms. These conditions are similar to those found in Bambi and

Venditti [1].
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Figure 2: Existence and uniqueness of the BGP when conditions (15) hold.

It is also worth noting that, although the conditions on the parameters identi�ed

in this Proposition are su�cient but not necessary for the existence and uniqueness

of a BGP, the set of parameters that are excluded is of zero measure. In fact, it

is the set of parameters for which the function T̃ (γ) is tangent to the straight line

γ + δ. In addition, for any positive value of γ both x∗ and y∗ are positive and,

therefore, all the inequality constraints are respected. The transversality condition

is also respected as long as (1 − σ)γ − ρ < 0. This is indeed always the case since

we have assumed σ > 1.

A numerical example is now proposed to show that the parameter values, to have

a unique BGP, are plausible. Consider a yearly frequency of time, and suppose a

depreciation rate δ = 0.1, an intertemporal discount factor ρ = 0.0101 and a capital

share α = 0.33; then, it exists a unique BGP when (A, τc) = (0.94, 0.2). In fact,

9



the two conditions in (15) are both respected given that (A, τ c) = (0.19, 0.1477).

Assuming σ = 3 and η = 0.25, the resulting growth rate is 3.28%, i.e. γ = 0.0328,

the government-capital ratio is x∗ = 0.5527 while the tax rate is 17.24%, i.e. τ ∗ =

τcx
∗η = 0.1724. Figure 2 shows how the growth rate of the economy has been found

looking at the intersection of the detrended tax revenue with the detrended public

investment curve.

We now proceed to �nd, if any, su�cient conditions for global indeterminacy to

emerge.

Proposition 2 (Global Indeterminacy) Two balanced growth paths exist if the

following parameter's conditions hold:

A > A, τ c − ε < τc ≤ τ c, η > η and σ > σ (17)

with ε > 0 and su�ciently small real number,

η ≡ ραA

A− (Γ−1 + 1)Γαδ
> 0 and σ ≡

α(1− α)
[
(Γ−1 + 1)τc + Γ−η

]2
Γ

τc{τc[(1− α)Γ−1 − α] + (η − α)Γ−η}
.

Proof. Given the properties of the function T̃ (γ) found in Proposition 1, two BGPs

exist as long as the following two conditions hold:

a) δ − ε ≤ T̃ (0) < δ, for any ε > 0 su�ciently small real number;

b) dT̃ (γ)
dγ

∣∣∣
γ=0

> 1

In fact, condition a) means that the curve T̃ (γ) is slightly below the straight line

γ + δ at γ = 0 but it is steeper for condition b). Therefore, the curve must intersect

the straight line twice since it is continuous, it has a unique critical point, and

limγ→∞ T̃ (γ) = 0+. The steps to prove under which subset of parameters these two

conditions hold can be found in Appendix A.

Interestingly, Proposition 2 suggests that global indeterminacy can emerge when

the taxation is su�ciently procyclical, η > η.

In the case τc = τ c, the BGP with the lowest growth rate, let us call it BGP`,

has a zero growth rate, γ` = 0, while the other, BGPh, has a strictly positive rate,

γh > 0. Also, in the case of two BGPs, the constraints of positive consumption and

capital are respected. Regarding the transversality condition, the restriction σ > σ

should be written as σ > max{σ, 1} to have this condition always respected.
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Remark 1 Proposition 2 uses a continuity argument to prove that two BGPs may

exist for an open set of parameters. The set of parameters found in Proposition 2

is, clearly, not the largest set for global indeterminacy to emerge. In particular, the

lower bound for τ c, namely τ c − ε, can be computationally enlarged.
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Figure 3: Existence of two BGPs when conditions (17) hold.

To illustrate this last point further, and to show that global indeterminacy may

raise for plausible values of the parameters, we propose now a numerical exam-

ple. Similarly to the previous numerical exercise, we assume a depreciation rate

δ = 0.1, an intertemporal discount factor ρ = 0.0101, and a capital share α = 0.33;

then, global indeterminacy emerges for (A, τc, η, σ) = (0.9, 0.2, 0.5, 7), since all

the conditions in (17) are respected. In particular, we have that (A, τ c, η, σ) =

(0.20, 0.22, 0.004, 1.72). As shown in Figure 3, the economy has two BGPs; the low-

est is characterized by a growth rate γ` = 0.008, implying a government spending

over capital ratio x∗` = 0.4201, and a tax rate τ ∗` = τcx
∗η
` = 0.13; the highest is

characterized by a growth rate γh = 0.033, implying a government spending over

capital ratio x∗h = 1.22, and a tax rate τ ∗h = τcx
∗η
h = 0.22. Therefore, the growth

rates of 0.8% and 3.3% are associated with plausible values, respectively 13% and

22%, of the consumption tax rates.

Remark 2 (Futagami et al. [4] case) Consider the case with acyclical taxation,

η = 0, which corresponds to the economy described in Futagami et al. [4] with the

only di�erence that public investment is �nanced by levying a constant consumption

tax, τ = τc, instead of an income tax. Assume also the same parameters' values
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of the last exercise; then it exists a unique BGP with a growth rate of the economy

between γ` and γh and, precisely, equal to 2.67%, i.e. γ = 0.0267.

We conclude this section by showing that a La�er curve always exists in this

economy. Observe that the existence of a La�er curve can be investigated from

equation (14), after rewriting it as a function of τ . This can be done easily by using

equations (11)-(13) to write x, y and γ as functions of τ . Then equation (14) can

be rewritten as

ĨG(τ) ≡ γ(τ) + δ = τ · y(τ) ≡ T̃ (τ)
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Figure 4: La�er curve and a unique (left) or multiple (right) BGPs.

As it emerges clearly from Figure 4, the detrended tax revenue is always concave,

meaning that a La�er curve exists, both under the assumption of a unique BGP and

under the assumption of two BGPs. In particular, Figure 4 has been obtained under

the numerical choices of the parameters suggested previously but allowing the tax

rate (and, therefore, the growth rate of the economy) to change. Consistently with

the result of Proposition 1, the left side of Figure 4 shows that a unique BGP

emerges when detrended public investment, i.e. the red curve, has only one positive

intersection with detrended tax revenue, i.e. the black curve. Consistently with the

numerical exercise proposed after Proposition 1, the consumption tax rate, at the

intersection point, is slightly higher than 17%, implying a 3.28% growth rate of the

economy.

On the other hand, the right side of Figure 4 shows, in line with the result of

Proposition 2, that two BGPs emerge when detrended public investment, i.e. the
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red curve, has two positive intersections with detrended tax revenue, i.e. the black

curve. As computed in the numerical exercise after Proposition 2, the consumption

tax rates at these intersection are 13% and 22%, implying a growth rate of the

economy equal to 0.8% and 3.3% respectively.

Looking at Figure 2, 3 and 4, and taking into account the proof of Proposition

2, it emerges that the consumption tax rate, which depends on the parameter τc,

the elasticity of the consumption tax with respect to the government-capital ratio,

η, and the inverse of the elasticity of intertemporal substitution in consumption,

σ, plays a fundamental role to have global indeterminacy. In particular, global

indeterminacy emerges when detrended tax revenues are low for low level of the tax

rate while η and σ are su�ciently high to have a stronger variation in detrended

tax revenue for small variation in the tax rate than in detrended public investment.

Under these circumstances, the detrended tax revenue curve intersects the detrended

public investment curve when the tax rate is very low (see right side of Figure 4) and,

then, it intersects again at a higher level of the tax rate, because of the existence of

a La�er curve.

4 Transitional Dynamics

In this section, we study the transitional dynamics around the steady state(s). We

begin by linearizing the system of ODEs (9) (10) around a generic steady state

(x∗, y∗):12 (
ẋ

ẏ

)
≈

(
a b

c d

)(
x̃

ỹ

)
(18)

where

a =
[
τc(η − 1)x∗η−1 + τcηx

∗η] y∗ − (1− α)Ax∗1−α (19)

b = τcx
∗η + x∗ + τcx

∗η+1 > 0 (20)

c = y∗
[
− 1

σ

(
(1− α)(σ − α)Ax∗−α +

τcη

x∗1−η + τcx∗
· a
)

+ τcηx
∗η−1y∗

]
(21)

d = y∗
(

1 + τcx
∗η − 1

σ
· τcη

x∗1−η + τcx∗
· b
)

(22)

As usual, the stability of a steady state (x∗, y∗) can be unveiled looking at the

sign of the determinant and trace of the Jacobian matrix, J ≡
(

a b

c d

)
. Long and

12Observe that both the equation have the form ż = f(z, w)z, whose �rst order Taylor ap-

proximation, around a steady state (z∗, w∗), is ż ≈ z∗
(
∂f
∂z (z∗, w∗) · z̃ + ∂f

∂w (z∗, w∗) · w̃
)
with tilde

indicating the deviation from the steady state.
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tedious computations, reported in the Supplementary Material, lead to the following
determinant and trace of the Jacobian:

det(J) ≡ y∗2x∗2η
{
τcx
∗−1

[
(1− α)τcx

∗−1 − τcα+ (η − α)x∗−η
]
− (1− α)α

σ

(
τcx
∗−1 + x∗−η + τc

)2}
tr(J) ≡ y∗

{
x∗ητc

[
(η + α− 2)x∗−1 + η + α

]
+ α− 1

σ
·
τcη
(
τcx
∗η−1 + 1 + τcx

∗η)
x∗−η + τc

}

The focus of this section is to study the local stability properties of the BGP with

the lowest growth rate, in the case of global indeterminacy. The reason is that

we want to see if the presence of an endogenous consumption tax, not only may

induce aggregate instability (i.e. one of the steady state is locally indeterminate)

but this dynamic behavior emerges around the BGP`, whose corresponding steady

state is (x∗` , y
∗
` ). This means that a poverty trap, characterized by a low growth

rate and a high volatility, may exist in this model. We believe that this is a quite

important result to unveil, because, otherwise, it could be argued that the aggregate

instability around the highest BGP is the price to pay for a high growth rate; in

other words, aggregate instability could be seen as the �necessary price� to pay for

a high economic growth. To simplify the analysis, we will present the results when

γ` = 0 with the understanding that, by a continuity argument, such results still hold

for any growth rate su�ciently close to zero. We begin presenting an intermediary

result, that is crucial to unveil the transitional dynamics around (x∗` , y
∗
` ). The next

Lemma �nds some su�cient conditions on the parameters such that the Jacobian

matrix evaluated around (x∗` , y
∗
` ) has a positive determinant and a negative trace.

Lemma 1 Consider the case (x∗` , y
∗
` ) with γ` = 0. Then the following results hold:

i) if A > Ā, η > α and σ > σ then det(J) > 0;

ii) if −α < η < 2− α, A > Â and τc > τ̂c then tr(J) < 0;

where Â ≡ δ+ρ
α

(
η+α

2−η−α

)1−α
and τ̂c ≡ α

Γη [Γ−1(2−η−α)−η−α]
.

Proof. See Appendix A.

We are now ready to combine the two conditions found in this Lemma with the

conditions on parameters found in Proposition 2 to have global indeterminacy. The

next proposition shows that the intersection of these di�erent sets of parameters is

non-empty and, therefore, we may have global indeterminacy with the lowest steady

state being locally indeterminate.
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Proposition 3 (Local Indeterminacy) The steady state (x∗` , y
∗
` ), with γ` = 0, is

locally indeterminate if

A > Â, 0 < ρ < ε, α < η < η◦, τc = τ c, and σ > σ (23)

with ε a su�ciently small and positive real number, and η◦ ≡ δ−ρ
δ(1+Γ)

.

Proof. The proof consists in �nding the open set of parameters under which there

is global indeterminacy and, at the same time, the Jacobian, evaluated at the lowest

steady state is characterized by a det(J) ≥ 0 and a tr(J) < 0. The complete proof

can be found in Appendix A.

Therefore, local indeterminacy around the lowest BGP can emerge for a mild

procyclical taxation. This means that procyclical taxation could lead to a poverty

trap (see next section, for further considerations on this point). As already explained

at the beginning of this section, we observe that:

Remark 3 By continuity, the result stated in Proposition 3 holds for any τc lower

than, but still su�ciently close to, τ c. Therefore, the result holds for any growth rate

su�ciently close to zero. This is shown computationally in the following numerical

exercise.

We now propose a numerical exercises to show that the lowest BGP can be

indeterminate within reasonable parameter choices. Suppose that the parameters

are set exactly as in the numerical exercise proposed earlier, to show the possibility

of global indeterminacy. The only di�erence is that, now, τc = 0.208. Then, the

growth rate on the lowest BGP is 0.43% and the corresponding steady state is

locally indeterminate. In fact the conditions on Proposition 3 are respected since

(Â, η◦, σ̂) = (0.265, 0.678, 3.55). In particular det(J) = 0.0055 > 0 while tr(J) =

−0.0027 and, therefore, two negative eigenvalues emerge.

5 Procyclical versus Countercyclical Taxation

In the introduction, we observed that the existing literature, on time varying en-

dogenous taxation, has often argued in favour of procyclical taxation (or government

spending). It was indeed shown, in di�erent settings, that, while countercyclical

taxes may induce aggregate instability, procyclical taxes should be preferred, be-

cause they guarantee local determinacy of the steady state. Examples of this result

include Nourri et al. [10] where the authors observe at page 1989 bullet v) that the
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consumption tax has to be countercyclical with output growth to have a locally inde-

terminate steady state; Schmitt-Grohe and Uribe [13] who observe at page 977 that

�the rational expectations equilibrium is more likely to be indeterminate (...) the less

procyclical government expenditure.� More recently Bambi and Venditti [1] con�rm

that procyclical taxation should be implemented to stabilize an economy character-

ized by productive government spending and endogenous time-varying consumption

taxes.

Then, it is compelling, in our framework, to re-address this issue and see if our

results suggest a similar policy advice.

According to Propositions 2, 3 and the numerical exercises presented throughout

the paper, it is evident that multiple BGPs, as well as aggregate instability around

the lowest BGP, may arise even if the taxation is procyclical.

In particular, one of the su�cient conditions to have two BGPs is that the

consumption tax growth rate has to be su�ciently procyclical, namely higher than

η = 0.004. Althoug it is true that this is not a necessary but only a su�cient

condition, our numerical exercises, built upon conditions (17), show that multiple

BGPs emerge for plausible choices of the parameters when the consumption tax

growth rate is procyclical, i.e. η = 0.5. Interestingly, making the tax rate less

procyclical by slightly reducing η from 0.5 to 0.4, while keeping unchanged the other

parameters, leads to a unique BGP because one of the conditions (17) is violated,

namely τc > τ c = −0.97.

Regarding the possibility of local indeterminacy of the lowest steady state, i.e.

the one associated to BGP`, a numerical exercise reveals that both the steady states

are locally determinate when all the parameters are chosen as in the numerical

exercise proposed to show the existence of two BGPs. Under this choice of the

parameters, the su�cient condition (23), to have a locally indeterminate (low) steady

state, is violated. On the other hand, a slight increase of τc from 0.2 to 0.208

changes the stability properties of the lowest BGP and now local indeterminacy

emerges. Therefore, aggregate instability around the lowest BGP emerges once

extrinsic uncertainty is introduced in the model. Most interestingly, this dynamics

can be obtained assuming a procyclical taxation, namely η = 0.5. Then, assuming

an initial condition for the government spending over capital ratio, i.e. x(0) ≡ g0
k0
,

su�ciently close to x∗` , we have that the economy converges toward the lowest BGP

with the lowest growth rate. In addition, such a convergence is characterized by

volatility in the main aggregate variables once extrinsic uncertainty is added to the

model. Summing up, procyclical taxation may lead to a poverty trap characterized

by an asymptotic low growth rate and a high volatility.
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6 Conclusion

In this paper, we have proposed an endogenous growth model with productive public

investments and endogenous consumption taxes and we have shown that procyclical

taxation is compatible with global and local indeterminacy. Most interestingly, the

local indeterminacy has been proved to emerge around the balanced growth path

with the lowest growth rate, implying the existence of a poverty trap. Adding

extrinsic uncertainty to the model, an economy, in this poverty trap, would be

characterized by high volatility and low growth rate of the aggregate variables.

Therefore, our results suggest a careful re-consideration of the procyclical taxation

policies suggested by the existing literature.
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A Appendix: Proofs

Proof of Proposition 2. Given the properties of the function T̃ (γ) found in

Proposition 1, two BGPs exist as long as the following two conditions hold:

a) δ − ε ≤ T̃ (0) < δ, for any ε > 0 su�ciently small real number;

b) dT̃ (γ)
dγ

∣∣∣
γ=0

> 1

In fact, condition a) means that the curve T̃ (γ) is slightly below the straight line

γ+δ at γ = 0 but it is steeper for condition b). Therefore the curve must intersect the

straight line twice since is continuous, has a unique critical point and limγ→∞ T̃ (γ) =

0+.

Step 1 � Parameters Conditions for a) to hold. Using the same argument

of the proof of Proposition 1, it can be proved that for any given ε su�ciently small

positive constant we have that T̃ (0) ≥ δ − ε if A > A(ε) and τc ≥ τ c(ε) where

τ c(ε) ≡
(δ−ε)Γα−η

A−(Γ−1+1)Γα(δ−ε) , A(ε) ≡ (δ−ε)1−α(δ+ρ)
[(1−α)δ+ρ+αε]1−ααα

, τ c(ε) ≤ τ c and A(ε) ≤ A with

equality when ε = 0 as shown in Appendix B.3.1. In the same Appendix, we also

show that ε ≡ τ c − τ c(ε) and ε are in�nitesimals of the same order.13

Based on previous results, it is also the case that T̃ (0) < δ if A > A and τc < τ c.

Summing up, condition a) always holds if

A > A and τ c(ε) = τ c − ε < τc < τ c.

Step 2 � Parameters Conditions for b) to hold. Taking into account

Appendix B.2.2, we have that

dT̃ (γ)

dγ

∣∣∣∣∣
γ=0

> 1 ⇔
−Aτc dx∗

dγ

∣∣∣
γ=0

Γα−1

[τcΓα−1 + Γα−η + τcΓα]2
[τc(α− 1)Γ−1 + (α− η)Γ−η + τcα] > 1

Given that dx∗

dγ

∣∣∣
γ=0

= σΓα

α(1−α)A
, the last inequality can be rewritten as follows:

τc
σ

α(1−α)
Γ−1

[τcΓ−1 + Γ−η + τc]2
{τc[(1− α)Γ−1 − α] + (η − α)Γ−η} > 1 (24)

Then condition b) hold as long as this inequality is satis�ed. Clearly the inequality

is never satis�ed if the term inside the curly brackets is negative. To avoid that, we

look for condition on τc such that

η − α + τc[(1− α)Γ−1 − α]Γη > 0 (25)

13The in�nitesimals have the same order if their speed of convergence toward zero is the same.

This is indeed shown in Appendix B.3.1.
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We need to distinguish two cases.

Case 1 : (1−α)Γ−1−α > 0 which is indeed the case when A > Ā ≡ δ+ρ
(1−α)1−ααα

.14

In this case (25) implies

τc >
α− η

[(1− α)Γ−1 − α]Γη
≡ τ̄c

Once this inequality is imposed, it follows that (24) holds as long as σ > σ. Summing

up, Condition b) - case 1 is satis�ed when

A > Ā, τc > τ̄c and σ > σ.

Case 2 : (1− α)Γ−1 − α < 0 which is indeed the case when A < Ā. In this case

(25) implies

τc <
α− η

[(1− α)Γ−1 − α]Γη
≡ τ̄c

Once this inequality is imposed, it follows that (24) holds as long as σ > σ. Summing

up, Condition b) - case 2 is satis�ed when

A < Ā, τc < τ̄c and σ > σ.

Step 3 � Combining Steps 1 and 2. The following inequalities are proved

in Appendix B.3.2:

• A < Ā always;

• if A > Ā and η > η then τ̄c < τ c;

• if A < Ā and η > η then τ̄c > τ c;

Taking into account these results, both conditions a) and b) - case 1 hold if

A > Ā, η > η, τ c − ε < τc < τ c, and σ > σ. (26)

On the other hand, both conditions a) and b) - case 2 hold if

A < A < Ā, η > η, τ c − ε < τc < τ c, and σ > σ. (27)

But then, it follows immediately that conditions a) and b) hold when (17) is satis�ed.

Finally observe that if the condition η > η is replaced by η > α then the result of

Case 1 is unchanged since equation (25) is respected for any choice of τc.

14This last inequality and the value of Ā can be easily found by combining (1− α)Γ−1 − α > 0

with the de�nition of Γ given in Proposition 1.
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Proof of Lemma 1. From Step 2 of Proposition 2 we know that (1−α)Γ−1−α >
0 ⇔ A > Ā. Based on that, condition i) and ii) follow immediately.

On the other hand, tr(J) < 0 if the sum of the �rst two terms within the curly

parenthesis is negative:

x∗ητc
[
(η + α− 2)x∗−1 + η + α

]
+ α < 0 (28)

Clearly, this never happens if the term in square brackets is positive. Therefore, let

us consider the case when it is negative. This is indeed possible when, for example,

−α < η < 2 − α and Γ < 2−η−α
η+α

. The last condition can be rewritten in term

of A by taking into account the de�nition of Γ and leads to A > Â. Under these

assumptions on the parameters, the inequality (28) is respected when τc > τ̂c and

therefore tr(J) < 0.

Proof of Proposition 3. To have local indeterminacy we need that det(J) ≥ 0.

We begin combining the conditions on the parameters (A, η, τc, σ) which guarantee

this sign of the determinant with those for multiple BGPs. From step 3 of the proof

of Proposition 2 we know that A < Ā and therefore the resulting condition on A for

having det(J) ≥ 0 and multiple BGPs is A > Ā. Regarding τc and η the conditions

which must hold are those for having multiple BGPs since det(J) ≥ 0 independently

on their values. Finally we have σ > σ. Summing up, we need

A > Ā, η > α, τc = τ c, and σ > σ̂ (29)

We now need to combine these inequalities with those to have tr(J) < 0. Let

us begin with the condition on A. It is immediate to see that it must be that

A > max{Ā, Â} where Â > Ā if η > α, see Appendix B.4.1. Regarding the condition

on η, let us consider the case ρ→ 0+; in this case η → 0+ and then, by continuity,

we have that ∃ε > 0 : ∀ρ ∈ (0, ε) we have that the resulting condition on η is

α < η < 2 − α. Finally we need to �nd conditions under which τ̂c < τ c otherwise

a negative trace is incompatible with multiple BGPs. After tedious computations,

reported in Appendix B.4.2, it emerges that τ̂c < τ c if η < η◦. We need then to

verify that η◦ ∈ (α, 2 − α). As shown in Appendix B.4.3, η◦ > α if ρ < δ and

A > (δ+ρ)δ1−α

[(1−α)δ−ρ]1−ααα
≡ A•; we need then to check under which conditions A• < Â; as

shown in Appendix B.4.4, this inequality is always respected when η > α as ρ →
0+.15 On the other hand, η◦ < 2−α always since it implies (α−1)δ−ρ < (2−α)Γδ

which is clearly always respected. Combining the resulting inequalities lead to (23).

15As a consequence, we have that limρ→0+ η◦ = 1
1+Γ > α.

22



B Appendix: Other material

B.1 Further details on how to obtain the system (9) (10)

Equation (9) can be obtained as it follows. Combining the �rms' FOC with the in-

tertemporal budget constraint of the households and rewriting it in the new variables

x ≡ g
k
and y ≡ c

k
leads to:

k̇

k
= Ax1−α − δ − (1 + τ)y = Ax1−α − δ − (1 + τcx

η)y

where the last equality follows from the fact that τ = τcx
η. Similarly the government

budget constraint can be rewritten as it follows:

ġ

g
= τyx−1 − δ = τcyx

η−1 − δ

Since ẋ
x

= ġ
g
− k̇

k
it must be that

ẋ

x
= (τcx

η−1 + 1 + τcx
η)y − Ax1−α

Regarding equation (10) the steps to obtain it are the following. Combining the

Euler equation with the �rms' FOCs and rewriting it in the new variables leads to

ċ

c
=

1

σ

(
αAx1−α − δ − ρ− τ̇

1 + τ

)
From the �scal policy (2) we have that

log(1 + τ) = log(1 + τcx
η) ⇒ τ̇

1 + τ
=

τcηx
η

1 + τcxη
ẋ

x

Substituting this last expression into the Euler equation and considering that ẏ
y

=
ċ
c
− k̇

k
it must be that

ẏ

y
=

1

σ

[
αAx1−α − δ − ρ− τcηx

η

1 + τcxη
ẋ

x

]
−
[
Ax1−α − δ − (1 + τcx

η)y
]

B.2 Further details on the proof of Proposition 1

B.2.1 Conditions for T̃ (0) ≥ δ

Regarding the conditions which emerge from imposing T̃ (0) ≥ δ. First

T̃ (0) =
τcA

τcΓα−1 + Γα−η + τcΓα
≥ δ
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Observe that the denominator is always strictly positive so we may rewrite the

inequality as

τc[A− (Γα−1 + Γα)δ] ≥ δΓα−η

Since Γ =
(
δ+ρ
αA

) 1
1−α , it follows immediately that

A− (Γα−1 + Γα)δ > 0 ⇔ A >
δ1−α(δ + ρ)

[(1− α)δ + ρ]1−ααα
≡ A

Assuming A > A, then T̃ (0) ≥ δ if and only if

τc ≥
δΓα−η

A− (Γα−1 + Γα)δ
≡ τ c

where τ c > 0. On the other hand, the case 0 < A ≤ A is not admissible since it

implies that T̃ (0) ≥ δ only if x0 or δ are negative for any positive values of τc.

B.2.2 Existence of (at most) a critical point for T̃ (γ)

Second, the function T̃ (γ) has a unique critical point. In fact

dT̃
dγ

=
dT̃
dx∗
· dx

∗

dγ
=

−Aτc dx
∗

dγ
x∗α−1

[τcx∗α−1 + x∗α−η + τcx∗α]2︸ ︷︷ ︸
<0

[τc(α− 1)x∗−1 + (α− η)x∗−η + τcα]

and therefore

dT̃
dγ

= 0 ⇔ τc(α− 1)x∗−1 + (α− η)x∗−η + τcα︸ ︷︷ ︸
≡g(x∗)

= 0

Now it exists always a unique positive root x̂ of g(x∗) = 0. This is a direct conse-

quences of the following arguments. First, the function g(x∗) is not continuous in

x∗ = 0 and has a critical point at x• =
(
η(α−η)
τc(1−α)

) 1
η−1

. Second,

lim
x∗→+∞

g(x∗) =


(τcα)− if η > α

(τcα)+ if 0 < η < α

+∞ if η < 0

and lim
x∗→0+

g(x∗) = −∞ always

Combining this information it is always the case that g(x∗) intersects the x∗-axis

only once. Since x∗ is a one-to-one function of γ then it always exits a unique critical

point γ̂ of T̃ (γ) in the extended domain γ > − δ+ρ
αAσ

.16 Therefore, T̃ (γ) has at most

a critical point in the domain γ ≥ 0.

16In fact, looking at equation (12) we have that γ → − δ+ρ
αAσ as x∗ → 0+
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B.3 Further details on the proof of Proposition 2

B.3.1 Details for Step 1

We prove that A ≥ A(ε) by contradiction. Suppose that A < A(ε) then it follows

that

A ≡ (δ + ρ)δ1−α

[ρ+ (1− α)δ]1−ααα
<

(δ + ρ)(δ − ε)1−α

[ρ+ (1− α)δ + αε]1−ααα
≡ A(ε)

Simplifying these expressions the inequality boils down to −ε(ρ + δ) > 0 which is

clearly impossible since ε, δ, ρ are positive.

We prove now by contradiction that τ c ≥ τ c(ε). Suppose that τ c < τ c(ε) then it

follows that

τ c(ε) ≡
δ − ε

A− (Γα−1) + Γαδ
>

δ

A− (Γα−1) + Γαδ
≡ τ c

Simplifying the inequality boils down to −εA > 0 which is clearly impossible since

ε, A are positive.

Finally we want to show that ε ≡ τ c− τ c(ε) and ε are in�nitesimals of the same

order. To do so, we need to show that limε→0
τc−τc(ε)

ε
is a positive constant. Since

the argument of the limit has the indeterminate form 0
0
then we apply the Hopital's

rule and we �nd that

lim
ε→0

τ c − τ c(ε)
ε

= lim
ε→0
−τ ′c(ε) =

Γα−ηA

[A− (Γ−1 + 1)δΓα]2
> 0.

B.3.2 Details for Step 3

We want here to show that A < Ā. In fact

A < Ā ⇔ δ1−α(δ + ρ)

[(1− α)δ + ρ]1−ααα
<

δ + ρ

(1− α)1−ααα
⇔ ρ > 0.

Moreover, we want to �nd conditions such that τ c < τ̄c. Taking into account

their de�nition, observe that,

τ c ≡
δΓα−η

A− (Γ−1 + 1)Γαδ
<

α− η
[(1− α)Γ−1 − α] Γη

≡ τ̄c (30)

From Appendix B.2.1, we know that A > A implies A − (Γ−1 + 1)Γαδ > 0; let us

�rst focus on case 1, i.e. A > Ā and then (1−α)Γ−1−α > 0, then (30) holds if and

only if

η < η ≡ ραA

A− (Γ−1 + 1)Γαδ
≡ η

On the other hand, on case 2, i.e. A < Ā and then (1−α)Γ−1−α < 0, then (30)

holds if and only if η > η. Combining these results lead to the last two inequalities

listed in Step 3 of Proposition 2.
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B.4 Further details on the proof of Proposition 3

B.4.1 Details on σ̂ > σ and Â > Ā when η > α

The inequality Â > Ā holds too when η > α; in fact,

Â ≡ δ + ρ

α

(
η + α

2− η − α

)1−α

>
δ + ρ

α

(
α

1− α

)1−α

≡ Ā (31)

which is satis�ed as long as η+α
2−η−α > α

1−α which is indeed always the case when

η > α.

B.4.2 Details on τ̂c < τ c if η < η◦

Taking into account the de�nition of τ̂c and τ c we have that

τ̂c ≡
α

Γη[Γ−1(2− η − α)− η − α]
<

δΓα−η

A− (Γ−1 + 1)Γαδ
≡ τ c

After some simpli�cations, it emerges that such inequalities lead to

αA < −δΓα
[
Γ−1(η − 2) + η

]
and solving for η we obtain that

η <
αA(δ − ρ)

δ(αA+ (δ + ρ)Γα)
=

δ − ρ
δ(1 + Γ)

≡ η◦

here the last equality is obtained by dividing both sides of the right hand side of the

inequality by αA and using the de�nition of Γ.

B.4.3 Details on η◦ > α if A > A•

Using the de�nition of x∗0 and rearranging the terms we have that the inequality

η◦ > α is equivalent to

(1− α)δ − ρ
δα

>

(
δ + ρ

αA

) 1
1−α

Assuming ρ < δ and solving for A leads to A > A•.

B.4.4 Details on A• < Â as ρ→ 0+

We want to show under which conditions we have that

A• ≡ (δ + ρ)δ1−α

[(1− α)δ − ρ]1−ααα
<
δ + ρ

α

(
η + α

2− η − α

)1−α

≡ Â
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Assuming ρ < δ this inequality is equivalent to

η > α
δ + ρ

δ − ρ

which clearly implies η > α as ρ→ 0+.
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Supplementary Material

Determinant of the Jacobian

From the system of di�erential equations, the determinant of Jacobian matrix can

be found from its components; a, b, c and d.

det(J) = ad− bc

Recall the value of a, b, c and d, the determinant of Jacobian matrix (det(J)) is,

det(J) = a · y∗
(

1 + τcx
∗η − b

σ
· τcη

x∗ + τcx∗

)
−b · y∗

[
−
(

1

σ
(1− α)(σ − α)Ax∗−α +

τcη

x∗1−η + τcx∗
· a
)

+ τcηx
∗η−1y∗

]
Rewriting component a as a function of b,

a = [η(b− x)− τcx∗η] y∗x∗−1 − (1− α)Ax∗1−α

Substituting a into the equation, the determinant of Jacobian matrix can be rewrit-

ten in term of b.

det(J) = y∗
(
τcx
∗η−1y∗(η − 1− τcx∗η)

)
−(1− α)Ax∗1−αy∗

(
1 + τcx

∗η − bx∗−1 − bα

σ
x∗−1

)
Extracting b out,

det(J) = y∗
(
τcx
∗η−1y∗(η − 1− τcx∗η)

)
−(1− α)Ax∗1−αy∗

(
−τcx∗η−1 +

α

σ
(τcx

∗η−1 + 1 + τcx
∗η)
)

Using the fact that along a BGP it must be that

y∗ =
Ax∗1−α

τcx∗η−1 + 1 + τcx∗η

some algebraic manipulation leads to the following result

det(J) = y∗2x∗2η
{
τcx
∗−1[(1− α)τcx

∗−1 − ατc + (η − α)x∗−η]
}

−y∗2x∗2η
{

(1− α)α

σ
(τcx

∗−1 + x∗−η + τc)
2

}
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Trace of the Jacobian Matrix

The Trace of the Jacobian is the sums of the diagonal components.

tr(J) = a+ d

That is,

tr(J) = (τc(η − 1)x∗η−1 + τcηx
∗η) · y∗ − (1− α)Ax∗1−α

+y∗
[
1 + τcx

∗η − 1

σ
· τcη

x∗1−η + τcx∗
· b
]

Extracting b out,

tr(J) = (τc(η − 1)x∗η−1 + τcηx
∗η) · y∗ − (1− α)Ax∗1−α

+y∗
[
1 + τcx

∗η − 1

σ
· τcη

x∗1−η + τcx∗
(τcx

∗η + x∗ + τcx
∗η+1)

]
Adding and subtracting (1 − α)[τcx

∗η−1 + 1 + τcx
∗η]y∗ on the right hand side, the

value of tr(J) will be,

tr(J) = y∗
[
τc(η − 1)x∗η−1 + τcηx

∗η − 1

σ

τcη

x∗1−η + τcx∗
(τcx

∗η + x∗ + τcx
∗η+1)

]
+(1 + τcx

∗η)y∗ − (1− α)Ax∗1−α + (1− α)(τcx
∗η−1 + x∗ + τcx

∗η)

−(1− α)(τcx
∗η−1 + x∗ + τcx

∗η)

Using the fact that ẋ
x

= 0 along a BGP, the trace of Jacobian Matrix can be rewritten

as follows,

tr(J) = y∗{τcx∗η[(η − 2 + α)x∗−1 + η + α] + α}

−y∗
{

1

σ
· τcη(τcx

∗η−1 + 1 + τcx
∗η)

x∗−η + τc

}
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