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Abstract: This paper considers a general and practical kidney exchange

model with compatible or incompatible patient-donor pairs, single donors, and

patients on the waiting list. Efficient exchange procedures are proposed with

dichotomous preferences in which only one-way, two-way, three, or four-way

chains or cycles of exchange are used. We derive a tight upper bound of the

possible number of feasible kidney transplants in each case of exchange and

provide substantial simulation results. We find that two-way cycles and chains

of exchange can substantially increase the number of feasible transplants, three-

way can have a visible effect, and at most four-way cycles and chains suffice to

capture all potential gains of exchange. Our results are not only theoretically

interesting but also have important and novel policy implications.
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1 Introduction

Every year in the world hundreds and thousands patients of severe kidney disease need

a kidney transplant. The difficulty of having suitable kidney transplants arises in three

major aspects. Firstly, there is a significant shortage of kidneys from deceased donors. For

instance, in the United States in 2005 more than 60,000 patients were waiting for kidney

transplants and only about 9,900 received transplants from deceased donors and 6,563

received transplants from living donors. While in waiting, over 4,000 patients passed away

and about 1,000 were getting too sick to have a transplant and were therefore removed

from the waiting list (see Roth, Sönmez and Ünver 2007, p.828). In the United Kingdom

during the period of 2013-2014 which is the best year over the previous ten years, 5881

active patients were on the waiting list and 2142 got transplants from deceased donors and

1114 received transplants from living donors. Secondly, a patient may receive a kidney

from a living donor who can be a family member, a relative, or a friend of the patient.

In this case the patient and the donor are called a patient-donor pair, and the patient is

a paired patient and the donor a paired donor. But the patient may not be compatible
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with the donor and therefore is unable to use the kidney directly because of blood or tissue

incompatibility. Thirdly, although most people have one more kidney than they need, it

is almost universally illegal to buy or sell a kidney. A central issue here is how to design

an effective mechanism to enable as many patients as possible to receive a suitable kidney

transplant, within existing medical, legal and social constraints.

The operation of a suitable kidney transplant must satisfy several essential constraints

as follows. The first are two medical constraints: the patient must be both blood-compatible

and tissue-compatible with the donor. The second is the incentive constraint. This will not

be a problem when a patient receives a kidney from an altruistic deceased or living donor.

The issue arises when it involves patient-donor pairs. If a paired patient is incompatible

with her paired donor, she need to exchange one kidney for another. Then the order of

implementing kidney transplant becomes crucial to incentive-compatible exchange. We

illustrate this point by an example. Suppose there are two patient-donor pairs. The first

paired patient is compatible with the second paired donor while the second paired patient

is compatible with the first paired donor. If the first patient first receives kidney transplant

from the second donor, there is a possibility that the first donor may regret and renege

her promise because one cannot force her to donate her kidney to the second patient. To

avoid this moral hazard, exchanges between the two pairs must be carried out simulta-

neously. The third is the capacity constraint which is caused by the second constraint.

Because transplants need to be performed simultaneously, it means that such operations

must take place in the same hospital or hospitals in close proximity to each other. Just

two-way exchange or two pair exchange already requires four simultaneous surgical treat-

ments. Obviously, in practice there is a limit to the number of possible kidney transplants

in each hospital. It is therefore desirable to have short chains or cycles of exchange.

Kidney exchange has been previously studied by medical researchers (see Rapaport

1986, Ross et al. 1997, Ross and Woodle 2000, Zenios, Woodle, and Ross 2001, etc). Roth,

Sönmez and Ünver (2004) initialized economic analysis of kidney exchange and transformed

it into a fertile area of economic research. They examined a model of kidney exchange

in which there are many patient-donor pairs. Each patient has strict preferences over

compatible kidneys, her paired kidney and the wait-list option. They proposed an exchange

mechanism-the top trading cycles and chains (TTCC) mechanism- a generalization of the

top trading cycle procedure from Shapley and Scarf (1974) for a housing market model

that achieves efficiency and incentive compatibility; see also Abdulkadiroğlu and Sönmez

(1999) for a related mechanism. In this case cycles and chains could be long. Roth,

Sönmez and Ünver (2007) considered a simpler but more practical model where patients

are indifferent between compatible kidneys and prefer compatible kidneys to incompatible

ones. Their model consists of many incompatible patient-donor pairs. They demonstrate
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that allowing three-ways as well as two-ways could significantly increase the number of

possible exchanges, and 4-ways are sufficient to capture all potential gains of exchange.

Roth, Sönmez and Ünver (2007) and Saidman et al. (2006) provide computational results

on real and simulated patient data to show significant efficiency gains from two-way and

three-way exchanges.

In this paper we consider a general and also practical model of kidney exchange. The

model consists of compatible patient-donor pairs, incompatible patient-donor pairs, (altru-

istic) single donors (decreased or living), and patients on the waiting list. Our aim is to

explore how many kidney transplants can be possibly arranged within the same medical,

incentive, and capacity constraints as those used in Roth, Sönmez and Ünver (2007). In

their model, if a patient is compatible with her donor, then a transplant will take place

just between the pair. So in their model, exchanges are carried out among only incom-

patible patient-donor pairs. In contrast, in the current paper we also allow compatible

patient-donor pairs to participate in exchange with incompatible patient-donor pairs, if

necessary, in order to enable more patients to receive transplants and thus save more lives.

Let us show a case in point. Suppose that there are three blood-incompatible patient-donor

pairs (O,AB), two compatible patient-donor pairs (AB,O)c, and one tissue-incompatible

pair (AB,O)i. For each pair, its first component indicates the patient’s blood type, its

second is the donor’s blood type, and its superscripts c and i stand for tissue-compatible

and tissue-incompatible, respectively. If compatible patient-donor pairs do not exchange

with incompatible patient-donor pairs, only four patients will receive kidney plants, i.e.

two (AB,O)c and one two-way exchange (O,AB) − (AB,O)i. In contrast, if we allow

compatible pairs to exchange with incompatible pairs, six patients will receive kidney

transplants, i.e., three two-way exchanges (O,AB) − (AB,O)i, (O,AB) − (AB,O)c and

(O,AB) − (AB,O)c. In this way, two more patients will get kidney transplants and be

saved. Ross and Woodle (2000) suggest to introduce the inclusion of compatible pairs in

kidney exchange with incompatible ones and Roth, Sönmez and Ünver (2005b, p. 377)

also indicate this potential.

We will establish several basic results for this general and practical model, going beyond

and improving considerably those of Roth, Sönmez and Ünver (2007). Briefly speaking, in

each case of k-way exchange, k = 2, 3, 4, we derive a tight upper bound (in fact an explicit

formula) of the possible number of feasible kidney transplants and propose a sequential

matching procedure to achieve this upper bound. We find that two or three-way cycles and

chains of exchange can substantially increase the number of feasible transplants, and at

most four-way cycles and chains are sufficient to achieve full potential gains of exchange.

In particular, allowing compatible patient-donor pairs to participate in exchange with

incompatible pairs will considerably enhance efficiency of kidney exchange, which means
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many more patients can receive transplants and their lives could be saved. It will be shown

in Section 3.1 that this benefit becomes very obvious and significant even just under two-

way cycles and chains of exchange. This benefit becomes even more substantial as the

pool of patients and donors gets large, or single donors are also allowed to participate in

exchange with all compatible or incompatible pairs. We prove that in every-way (2-way,

3-way or 4-way) of exchange, each cycle contains at most two blood-type compatible pairs

and each chain comprises at most one blood-type compatible pair. Moreover, we discuss a

more general model of type-compatible exchanges with patient-donor pairs, single donors

and patients on the waiting list and demonstrate that the maximal size of exchange to

achieve efficiency equals the number of total types.

As our basic model is quite practical and general, our analysis will become inevitably

much more involved and more difficult due to a large number of combinatorial cases caused

by the presence of compatible or incompatible patient-donor pairs, single donors and pa-

tients on the waiting list.

To test theory and explore its policy implications, we provide substantial simulation

results. Simulations are carried out based on two real life data sets from the USA national

patient and donor characteristics from 1993 to 2002 and from 1995 to 2016, respectively.

The first period from 1993 to 2002 is the same as that used by Roth, Sönmez and Ünver

(2007), and Saidman et al. (2006), except that in our new data set we add more relevant

information including the distribution of compatible patient-donor pairs and single donors,

which is not used in their models. Compared with the first time slot data, the second

time slot data from 1995 to 2016 contains more accurate information on tissue-type in-

compatibility. We run Monte-Carlo simulations of 5000 random population constructions

for 25, 50, 100, 150 and 200 incompatible patient-donor pairs, and run also Monte-Carlo

simulations of 500 random population constructions for 300 and 400, respectively, with

their corresponding compatible patient-donor pairs and single donors (and patients on the

waiting list who need no simulation as they are populous) based on the 1993-2002 data

set and the 1995-2016 data set. By comparison, Roth, Sönmez and Ünver (2007) have

done Monte-Carlo simulations of 500 random population constructions for 25, 50, and 100

incompatible patient-donor pairs based on the 1993-2002 data set, by using two-, three-,

higher- and unrestricted-way of exchange, and Saidman et al. (2006) have tested the case

of 25 and 100 incompatible patient-donor pairs.

In our simulations we use only two-way chains or cycles of exchange. For the same

population, in comparison with Roth, Sönmez and Ünver (2007) whose mechanism will be

simply called the exclusive (exchange) mechanism, our mechanism (called the first degree

inclusive (exchange) mechanism) of allowing compatible pairs to exchange with incom-

patible pairs can have at least 10% net increase of feasible kidney transplants and our
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mechanism (called the second degree inclusive (exchange) mechanism) of allowing compat-

ible pairs and single donors to exchange with incompatible pairs can have at least 30% net

increase of feasible kidney transplants. For instance, for the 1993-2002 data set, if a pop-

ulation has 100 incompatible patient-donor pairs, the population will have 22 compatible

patient-donor pairs and 39 single donors, the exclusive mechanism will enable 49 incompat-

ible paired patients to get feasible transplants whereas the first degree inclusive mechanism

will increase this number to 64 and the second degree inclusive mechanism will raise it to

89. For the 1995-2016 data set, if a population has 100 incompatible patient-donor pairs,

the population will have 20 compatible patient-donor pairs and 36 single donors, the ex-

clusive mechanism will enable 34 incompatible paired patients to get feasible transplants

whereas the first degree inclusive mechanism will increase this number to 46 and the second

degree inclusive mechanism will raise it to 69.

Major findings from our simulations are briefly stated here. Firstly, our simulations

clearly indicate that as the number of incompatible patient-donor pairs in the population

reaches 100, the slope of matching rates (in percentage) of incompatible paired patients get-

ting transplants becomes almost flat, albeit upwards, (which implies efficiency of exchange

becomes asymptotically constant). This is somewhat surprising and has an important

and novel policy implication: Kidney exchange can be decentralized in the sense that in

a country with a relatively large population, separate kidney exchange programs can be

established in several major regions, not just one centralized program for the entire coun-

try. Secondly, we find that the actual maximal number of kidney exchanges is surprisingly

close to the predicted number given by our derived formulae. Thirdly, we find that as the

size of the population gets larger, the predictive power of our theory becomes increasingly

better. Fourthly, our results show that because the 1995-2016 data set contains more pre-

cise information on the physical characteristics of the population, this will improve the

quality of feasible kidney transplants but at the same time reduce the number of feasible

transplants roughly by 20%. Fifthly, we find that two-way exchange can reap most benefits

of exchange and will play an even more important role in gaining benefits of exchange as

the size of the population increases.

We conclude this introductory section by briefly reviewing several other related papers.

Roth, Sönmez and Ünver (2005a) consider a kidney exchange model in which the size of

kidney exchanges is restricted to two patient-donor pairs and patients are indifferent com-

patible kidneys. They propose both deterministic and stochastic efficient and strategy-

proof mechanisms. The deterministic ones can accommodate certain priority structure

while the stochastic ones exhibit a distributive justice property. Yilmaz (2011) proposes

an egalitarian mechanism that uses two-way exchanges and list exchanges. A list exchange

means that an incompatible paired donor gives a kidney to a patient on the waiting list
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and in return the incompatible paired patient gets a priority on the waiting list. Sönmez

and Ünver (2014) study a model consisting of compatible pairs and incompatible pairs

under two-way exchange. They examine the structure of Pareto-efficient matchings and

show that all such matchings have the same number of kidney transplants for patients.

They find a novel application of the well-known Gallai-Edmonds decomposition in kidney

exchange. Ausubel and Morrill (2014) observe that incentive compatibility for kidney ex-

change requires only kidney donation to occur no later than the associated kidney receipt.

They show that sequential exchanges can also increase the number of beneficial exchanges.

Andersson and Kratz (2016) examine efficient kidney exchanges under a refined structure

of blood type compatibility. In their model, every patient prefers a fully acceptable donor

to any donor who is not fully acceptable, and yet prefers an acceptable donor to any unac-

ceptable donor. In a related development, Ünver (2010) studies efficient kidney exchanges

in a dynamic environment in which agents arrive according to a stochastic Poisson process.

We refer to Sönmez and Ünver (2013) for a survey on the subject and references therein

contained.

This paper is organised as follows. The model and basic concepts are introduced in

Section 2. Maximal numbers of transplants from two, three, and four-way exchanges are

derived in Section 3. A general n-way exchange model is discussed in Section 4. Simulations

are presented in Section 5 and conclusion is given in Section 6. Most of proofs are deferred

to the appendix.

2 The Model

Kidney exchanges involve patients and donors. A kidney can be transplanted from a willing

donor to a patient if the donor’s kidney is compatible to the patient both in blood type

and tissue type. There are four blood types, A, B, AB, and O. A patient of O type can

receive a kidney only from a donor of O type, a patient of A type can receive a kidney

from a donor of A or O type, a patient of B type can receive a kidney from a donor of B or

O type, while a patient of AB type can receive a kidney from a donor of any blood type.

Blood-compatibility is shown in Figure 1. Another medical test concerns tissue. Tissue-

compatibility is determined by six HLA (human leukocyte antigen) proteins (three from

the father and another three from the mother). If the potential recipient shows antibodies

against HLA in the donor kidney called a positive crossmatch, then the donor kidney

cannot be transplanted to the patient. Unlike blood-compatibility, tissue-compatibility

does not require exact HLA match between a patient and a donor. Moreover, in reality,

the percentage of tissue-incompatibility is also very low; see Zenios, Woodle and Ross

(2001).

6



Figure 1: Blood-type compatibility between patients and donors.
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Formally our kidney exchange model consists of a set DS of single donors, a set of

patients PW on the waiting list (on TWL in short) and a set PD of patient-donor pairs.

Single donors could be altruistic cadavers or living people. Patients on TWL are also called

single patients. A patient-donor pair describes a designated patient and a living donor who

is willing to give a kidney to the patient or to exchange a kidney with another kidney for

the designated patient. A patient (donor) in a patient-donor pair will be called a paired

patient (donor). Patients are indifferent between compatible kidneys, indifferent between

incompatible kidneys, and prefer compatible kidneys to incompatible ones. In reality there

is always a large pool of patients on the waiting list so that such patients can be found to

match compatibly with any given kidney. This will be a part of our model. Our primary

objective is to enable as many patients as possible to receive compatible kidneys, i.e., to

achieve a maximal number of feasible kidney transplants between patients and donors.

It is natural to bring compatible patient-donor pairs and single donors into exchange

with incompatible pairs as more patients can be benefited from their involvement. In

practiced single donors play a significant role. For instance, the Organ Donation and

Transplantation Activity Report from NHS in 2014 shows that the number of living donors

in UK from 2013 to 2014 is 1114, meanwhile the number of total kidney donors in USA is

16,526 including 11,195 deceased donors and 5,331 living donors according to OPTN/SRTR

2012 Annual Data Report.

In our paper, the symbol (X, Y ) indicates a pair of a patient with blood type X and

a donor with blood type Y, and (X, Y )i ((X, Y )c) means a pair of patient and donor

who are tissue-incompatible (tissue-compatible). Furthermore, we use #Xd to denote the

number of single donors with blood-type X, #Y p the number of patients on the waiting

list with blood-type Y , and #(X, Y ) the number of patient-donor pairs with blood-type

X for patients and blood-type Y for donors. For any real number k, bkc stands for the

largest integer no bigger than k.

An outcome of the kidney exchange problem is a matching of kidneys (i.e., donors)/the

waiting list option to patients such that each paired patient is either assigned a compatible
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kidney (i.e., donor) or stays with his paired donor, each patient on the waiting list is either

assigned a compatible kidney (i.e., donor) or stays put, and no kidney (i.e., donor) is

assigned to more than one patient. A matching µ is efficient or maximal if there exists no

other matching ν such that |ν| > |µ| where |µ| is the number of possible kidney transplants

for the matching µ.

A matching can be made through several ways of exchange between patients and donors.

A two-way cycle exchange involves two patient-donor pairs in which each patient is compat-

ible with the other patient’s donor. For instance, we have two patient-donor pairs (A,B)

and (B,A) and use (A,B)− (B,A) to indicate a two-way cycle exchange in which blood-

type A patient in first pair receives the kidney from blood-type A paired donor in second

pair and blood-type B patient in second pair can receive the kidney from blood-type B

paired donor in first pair. A three-way cycle exchange involves three patient-donor pairs

in which the patient in the first pair is compatible with the donor in the second pair, the

patient in the second pair is compatible with the donor in the third pair, and the pa-

tient in the third pair is compatible with the donor in the first pair. An example consists

of three pairs (X,Z), (Z, Y ), and (Y,X), and the three-way cycle exchange is given by

(X,Z)− (Z, Y )− (Y,X) in which each patient receives a compatible kidney. Similarly we

can define a four-way cycle exchange.

We also need to use chain exchanges. A one-way chain exchange involves a single donor,

denoted by Xd, and a compatible patient, denoted by Y p, on the waiting list. We write this

exchange as Xd−Y p. A two-way chain exchange is a chain Xd− (X, Y )−Y p in which the

patient of blood-type X in the pair receives the kidney from the single donor Xd, and the

patient Y p on the waiting list receives the kidney from the donor in the pair. A three-way

chain exchange is a chain Xd − (X, Y ) − (Y, Z) − Zp in which the single donor Xd gives

her compatible kidney to the patient X in the first pair, the donor Y in the first pair gives

hers to the patient Y in the second pair, and the donor Z in the second pair gives hers to

the patient Zp in waiting. Four-chain exchanges can be defined analogously. For a given

positive integer k, we say that a matching µ is k-efficient if there exists no other matching

ν such that |ν| > |µ| when the maximum size of kidney exchanges is no more than k-way

cycles or chains of exchange. In the following when we say a k-way exchange, it can be an

l-way cycle or chain of exchange for any 1 ≤ l ≤ k.

To derive an analytical expression for the maximum number of feasible transplants

among the whole kidney exchange pool, we impose the following three basic assumptions.

Assumption 2.1 (Upper Bound Assumption): Every patient on the waiting list is tissue-

compatible with every blood-type compatible donor and every paired patient is tissue-compatible

with a blood-type compatible single donor or paired donor of any other paired patient.

This assumption can be seen as a generalization of Assumption 1 of Roth, Sönmez and
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Ünver (2007, p. 831). With evolving clinical practice, the significance of HLA matching has

diminished (Su et al. 2004). To decide whether a person can donate a kidney or not, the

level of HLA level does not play a central role. This is consistent with the practical evidence

from OPTN & SRTR annual data report in 2012 that most of transplanted patients have

HLA mistakes with donors.

Assumption 2.2 #(A,B) > #(B,A).

Terasaki, Gjertson, and Cecka (1998) and OPTN & SRTR annual data report in 2012

have provided statistical evidence for this assumption that the number of pairs (A,B) is

greater than the number of pairs (B,A). This assumption is used as Assumption 3 in Roth,

Sönmez and Ünver (2007, p. 834).

Assumption 2.3 Let (X, Y ) denote a blood-compatible type from (A,A), (B,B), (AB,AB),

(O,O), (A,O), (B,O), (AB,O), (AB,A) and (AB,B). There exists either no pair of type

(X, Y ) or at least one tissue-compatible pair of type (X, Y ).

This assumption can be easily satisfied for a relatively large population and generalizes

Assumption 4 of Roth, Sönmez and Ünver (2007, p. 834).

For a relatively large population, due to blood-compatibility constraints, there will be

likely higher demand for kidneys of type O than type A or B, and higher demand for

kidneys of type A or B than type AB. As a result, pairs of type (O,A), (O,B), (O,AB),

(A,AB), or (B,AB) are on the long side of the exchange and will have to wait longer for

a feasible exchange than pairs of other types. Their opposite blood-type compatible but

tissue-type incompatible pairs are on the short side. This is used as their Assumption 2

of Roth, Sönmez and Ünver (2007, p. 832). Our model will dispense with this assumption

and can handle cases that violate or satisfy this assumption.

3 Efficient Kidney Exchange

In this section we will derive a maximum number of feasible kidney transplants, when

one-way, two-way, three-way, or four-way cycles or chains of exchange are used.

3.1 Two-Way Exchange

Recall that to distinguish blood-type compatible but tissue-type incompatible pairs and

compatible pairs, we use (X, Y )i to denote the first group and (X, Y )c to denote the second

group. Obviously #(X, Y ) = #(X, Y )i+#(X, Y )c. In the following, the notation (A,B)−
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Figure 2: Two-way cycles (a) and chains (b) of exchange.

Blood-type Incom Pairs Blood-type Com Pairs

(O, A) (A, O)

(O, B) (B, O)

(O, AB) (AB, O)

(A,AB) (AB, A)

(B,AB) (AB, B)

(A, B) (B, A)

(O, A)

(AB, O)

(O, B)

(AB, O)

(A, AB)

(AB, O)

(B, AB)

(AB, O)

(A, B)

(AB, O)

(A, B)

(AB, A)

(a)

Single Donors Blood-type Incom Pairs Patients on TWL

Od (O, A)

(O, B)

(O, AB)

(A, AB)

(B, AB)

(A, B)

Ad

Bd

Ap

Bp

ABp

(b)

(C,D)/(X, Y ) means that (A,B) − (C,D) and/or (A,B) − (X, Y ), and (A,B)/(C,D) −
(X, Y ) means that (A,B)− (X, Y ) and/or (C,D)− (X, Y ).

Figure 2 shows several basic two-way cycles and chains of exchange but do not include

pairs (X,X). In Figure 2(a) the right column above the dot line represents blood-type

compatible pairs while the left column above the dot line stands for the blood-type incom-

patible pairs. By Assumption 2.3 all tissue incompatible pairs of type (X, Y )i on the right

side can be matched by two-way cycle (X, Y )i−(X, Y )i or two-way cycle (X, Y )i−(X, Y )c.

The problem becomes how to take full advantage of blood-type compatible pairs and single

donors to match a maximum number of blood-type incompatible pairs because blood-type

incompatible pairs cannot match with each other in two-way cycles.

A cell in the left column linking a cell in the right column means a two-way cycle, for

instance, (O,A) − (A,O) and (O,A) − (AB,O). In Figure 2(b) a cell in the left column

linking a cell in the middle column linking a cell in the right column implies a two-way

chain, for instance, Od− (O,A)−Ap, Od− (O,B)−Bp and Od− (O,B)−ABp. Using this

idea we propose a sequential matching procedure to find a maximal number of (feasible)

transplants when at most two-way cycles or chains of exchange will be used. We call it

a sequential 2-way matching procedure. In the following two-way, three-way, or four-way

matching procedures, whenever cycles or chains of exchange are going to be made, priority

is given to incompatible pairs.

A Sequential Two-Way Matching Procedure

Step 1: Make a maximum number of two-way cycles of exchange (A,A)i − (A,A)i.

Then make a maximum number of two-way cycles of exchange (A,A)i − (A,A)c if

any. Carry out transplants for the remaining pairs (A,A)c. Repeat the same process

for each type (B,B), (O,O), (AB,AB), respectively.
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Step 2: Make a maximum number of two-way cycles of exchange (O,A) − (A,O)i,

(O,B)− (B,O)i, (O,AB)− (AB,O)i, (A,AB)− (AB,A)i, (B,AB)− (AB,B)i, and

(A,B)− (B,A), respectively.

Step 3: Make a maximum number of two-way cycles or chains of exchange (O,A)−
(A,O)c, (O,B) − (B,O)c, (A,AB) − (AB,A)c, (B,AB) − (AB,B)c, Ad − (A,B) −
ABp/Bp, Ad − (A,AB) − ABp, and Bd − (B,AB) − ABp, respectively. Match a

maximum number of two-way cycles (B,O)c − (A,B), (AB,A)c − (A,B), (B,O)i −
(A,B), (AB,A)i − (A,B) and two-way chain Ad − (A,B)− Y p.

Step 4: Make a maximal number of two-way cycles of exchange

(AB,O)c/(AB,O)i − (O,A)/(O,B)/(O,AB)/(A,AB)/(B,AB)/(A,B),

respectively. And then match a maximum number of single donors Od with the

remaining pairs (O,A)/(O,B)/(O,AB)/(A,AB)/(B,AB)/(A,B), respectively.

Step 5: Match a maximum number of the remaining single donors Od, Ad, Bd, ABd

with any remaining single patients Op, Ap, Bp, ABp. Match a maximum number

of two-way cycles of exchange (A,O)i − (A,O)i. Then make a maximum number

of two-way cycles of exchange (A,O)i − (A,O)c if any. Repeat the same process

for each type (B,O)i, (AB,O)i, (AB,A)i, (AB,B)i. Match any remaining paired

patients from compatible patient-donor pairs with their own paired donors.

The following example will be used to show how each matching procedure assigns com-

patible kidneys to patients and how efficiency will be improved as more ways of exchange

are permitted.

Example 3.1 There are 32 incompatible patient-donor pairs consisting of three incom-

patible pairs of type (AB,AB)i, five pairs of type (O,A), one pairs of type (O,B), one

pair of type (O,AB), two pairs of type (A,AB), seven pairs of type (B,AB), seven pairs

of type (A,B), one incompatible pair of each type of (A,O)i, (B,O)i, (AB,O)i, (AB,A)i,

(AB,B)i and (B,A); three compatible patient-donor pairs consisting of one compatible pair

of each type (AB,AB)c, (AB,O)c and (A,O)c; and five single donors consisting of three

single donors of type Ad, one single donor of type Bd and one single donor of type ABd,

and a large number of single patients.

Observe that in the example there are in total 35 patient-donor pairs including 32

incompatible pairs and three compatible ones and many single patients. Table 1 shows

that when the sequential two-way kidney exchange procedure is implemented, 24 paired

patients and 5 single patients can receive kidney transplants and all three compatible pairs
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Table 1: The illustration of the sequential two-way matching procedure.

Steps
Number of

Cycles or Chains
Cycles or Chains

Number of Remaining

Pairs and Donors

Step 1 2
(AB,AB)i − (AB,AB)i

(AB,AB)i − (AB,AB)c

Step 2

1 (O,A)− (A,O)i 4 (O,A)

1 (O,B)− (B,O)i

1 (O,AB)− (AB,O)i

1 (A,AB)− (AB,A)i (A,AB)

1 (B,AB)− (AB,B)i 6 (B,AB)

1 (A,B)− (B,A) 6 (A,B)

Step 3

1 (O,A)− (A,O)c 3 (O,A)

1 Ad − (A,AB)−ABp 2 Ad

1 Bd − (B,AB)−ABp 5 (B,AB)

2 Ad − (A,B)−Bp/ABp 4 (A,B)

Step 4 1 (AB,O)c − (B,AB) 4 (B,AB)

Step 5

(End)
1 ABd −ABp

Note that we can randomly pick kidney exchanges from cycles (AB,O)c −
(O,A)/(O,B)/(B,AB) and chains Od − (O,A)/(O,B)/(B,AB) − Y p in Step

4.

are involved in kidney exchange with incompatible pairs. Four pairs of type (B,AB), three

pairs of type (O,A) and four pairs of type (A,B)/(A,AB) stay put. In Table 1, Step 1

has two cycles, i.e., (AB,AB)i − (AB,AB)i and (AB,AB)i − (AB,AB)c.

We have the following easy observation.

Lemma 3.2 Assume that the kidney exchange model satisfies the Assumptions 2.1

and 2.3. Let µ be a 2-efficient matching. Then in µ every cycle contains at most two

blood-type compatible pairs and every chain contains at most one blood-type compatible

pair.

Proof. It follows immediately from Figure 2 and the description of the above matching

procedure. 2

Proposition 3.3 Assume that the kidney exchange model obeys the Assumptions 2.1,

2.2, and 2.3. Then the matching µ obtained from the above mechanism is 2-efficient and

the maximum number of transplants through two-way exchanges is

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B) + #(B,A)

+#(A,A) + #(B,B) + #(O,O) + #(AB,AB)

+#Ad + #Bd + #ABd + #Od

+ min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}
where
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N1 = #(O,A) + #(O,B) + #(O,AB) + #(A,AB) + #(A,B) + #(B,AB)

N2 = #(O,A) + #(O,B) + #Od + #(AB,O) + #Ad + #(AB,A) + #(B,AB)

+#(A,B)

N3 = #(O,A) + #(O,B) + #Od + #(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

N4 = #(O,A) + #(O,B) + #Od + #(AB,O) + #Ad + #(AB,A) + #Bd

+#(AB,B) + #(A,B)

N5 = #(O,A) + #(O,B) + #Od + #(AB,O) + #(A,AB) + #(A,B)

+#Bd + #(AB,B)

N6 = #(A,O) + #(O,B) + #Od + #(AB,O) + #Ad + #(AB,A)

+#(B,AB) + #(A,B)

N7 = #(A,O) + #(O,B) + #Od + #(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

N8 = #(A,O) + #(O,B) + #Od + #(AB,O) + #Ad + #(AB,A) + #Bd

+#(AB,B) + #(A,B)

N9 = #(A,O) + #(O,B) + #Od + #(AB,O) + #(A,AB) + #(A,B)

+#Bd + #(AB,B)

N10 = #(O,A) + #(B,O) + #Od + #(AB,O) + #Ad + #(AB,A)

+#(B,AB) + #(B,A)

N11 = #(O,A) + #(B,O) + #Od + #(AB,O) + #(A,AB) + #(A,B)

+#(B,AB)

N12 = #(O,A) + #(B,O) + #Od + #(AB,O) + #Ad + #(AB,A) + #Bd

+#(AB,B) + #(B,A)

N13 = #(O,A) + #(B,O) + #Od + #(AB,O) + #(A,AB) + #(A,B)

+#Bd + #(AB,B)

N14 = #(A,O) + #(B,O) + #Od + #(AB,O) + #Ad + #(AB,A)

+#(B,AB) + #(B,A)

N15 = #(A,O) + #(B,O) + #Od + #(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

N16 = #(A,O) + #(B,O) + #Od + #(AB,O) + #Ad + #(AB,A)

+#Bd + #(AB,B) + #(B,A)

N17 = #(A,O) + #(B,O) + #Od + #(AB,O) + #(A,AB) + #(A,B)

+#Bd + #(AB,B)

Proof. Under Assumptions 2.1 to 2.3, all blood-type compatible but tissue-type incom-

patible pairs and pairs of type (B,A) can be matched through two-way cycles. All com-

patible pairs can be matched because even if paired patients from compatible pairs are not

involved into two-way cycles, they can receive their own donors. All pairs of types (A,A),

(B,B), (O,O), (AB,AB) can be also matched in two-way cycles. As long as a kidney can

be allocated to a patient in waiting, we can always find a compatible patient in waiting

because of the large population of patients in waiting. Hence, the maximal number of
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transplantations for patients in waiting, paired patients from blood-type compatible pairs

and paired patients from pairs of type (B,A) is

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

+#Ad + #Bd + #ABd + #Od

Next, let N be the maximum number of transplants for blood-type incompatible paired

patients of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B). The number of

two-way cycles (A,B) − (B,A) is bounded by #(B,A) by Assumption 2.2. The num-

ber of two-way cycles (O,A) − (A,O) is bounded by min{#(O,A),#(A,O)}. Similarly,

the number of two-way cycles (O,B)− (B,O) is bounded by min{#(O,B),#(B,O)}; the

number of two-way cycles and chains (AB,A) − (A,AB), Ad − (A,AB) − Y p is bounded

by min{#Ad +#(AB,A),#(A,AB)}; the number of two-way cycles and chains (AB,A)−
(A,B), Ad−(A,B)−Y p, (B,O)−(A,B) is bounded by min{#Ad+#(AB,A)−min{#Ad+

#(AB,A),#(A,AB)}+#(B,O)−min{#(O,B),#(B,O)},#(A,B)−#(B,A)}; the num-

ber of two-way cycles and chains (AB,B)− (B,AB), Bd − (B,AB)−ABp is bounded by

min{#Bd + #(AB,B),#(B,AB)}; and the number of two-way cycles and chains

(AB,O)− (O,A)/(O,B)/(O,AB)/(A,B)/(A,AB)/(B,AB), and,

Od − (O,A)/(O,B)/(O,AB)/(A,B)/(A,AB)/(B,AB)− Y w

is bounded either by #Od + #(AB,O) or all blood-type incompatible paired patients are

matched. Therefore, we have either

N ≤ #(B,A) + min{#(O,A),#(A,O)}+ min{#(O,B),#(B,O)}+
min{#Ad + #(AB,A),#(A,AB)}+
min{#Ad + #(AB,A)−min{#Ad + #(AB,A),#(A,AB)}
+#(B,O)−min{#(O,B),#(B,O)},#(A,B)−#(B,A)}+
min{#Bd + #(AB,B),#(B,AB)}+
min{#Bd + #(AB,B),#(B,AB)}+ #Od + #(AB,O)

or

N ≤ #(O,A) + #(O,B) + #(O,AB) + #(A,AB) + #(A,B) + #(B,AB).

The expressions can be rewritten as follows

N ≤ min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17} and

hence the maximum number of transplants can be reached is:

N = min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}.
We now prove that the sequential matching procedure achieves the maximum number

of kidney transplants.
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Since for every one/two-way chains, we can always find a compatible single patient, the

number of transplantations for single patients equals #Ad + #Bd + #ABd + #Od.

By Assumption 2.3, all pairs of type (A,A)i, (B,B)i, (O,O)i, (AB,AB)i can be

matched through two-way cycles in Step 1. By Assumption 2.3, all remaining blood-

type compatible but tissue-type incompatible pairs (A,O)i, (B,O)i, (AB,O)i, (AB,A)i,

(AB,B)i can be matched through two-way cycles in Step 5. All compatible pairs (A,O)c,

(B,O)c, (AB,O)c, (AB,A)c, (AB,B)c, (A,A)c, (B,B)c, (O,O)c, (AB,AB)c can be matched

either through two-way cycles or doing transplantations with their own donors. More-

over, by Assumption 2.2, all pairs of type (B,A) can be matched through two-way cy-

cle (A,B) − (B,A) in Step 2 so that the remaining number of pairs of type (A,B) is

#(A,B) − #(B,A). Hence, the number of transplants for compatible pairs, blood-type

compatible pairs and pairs of type (B,A) in the procedure is

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

Next, we prove that the maximum number of transplants for blood-type incompatible

pairs of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) can be achieved in the

procedure.

Denote X1 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 2 so that

X1 = #(B,A) + e1 + e2 + e3 + e4 + e5

where

e1 = min{#(O,A),#(A,O)i}
e2 = min{#(O,B),#(B,O)i}
e3 = min{#(O,AB),#(AB,O)i}
e4 = min{#(A,AB),#(AB,A)i}
e5 = min{#(B,AB),#(AB,B)i}

Denote X2 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 3 so that

X2 = a1 + a2 + b1 + b2 + b3

where

a1 = min{#(O,A)− e1,#(A,O)c}
a2 = min{#(O,B)− e2,#(B,O)c}
b1 = min{#Ad + #(AB,A)c,#(A,AB)− e4}
b2 = min{#Bd + #(AB,B)c,#(B,AB)− e5}
b3 = min{#Ad + #(AB,A)c + #(AB,A)i − e4 − b1 + #(B,O)c

+#(B,O)i − e2 − b2,#(A,B)−#(B,A)}
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Denote X3 as the number of blood-type incompatible paired patients from pairs of types

(O,A),(O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 4 so that

X3 = min{#Od + #(AB,O)c + #(AB,O)i − e3,#(O,A)− e1 − a1
+#(O,B)− e2 − a2 + #(O,AB)− e3 + #(A,AB)− e4 − b1
+#(B,AB)− e5 − b2 + #(A,B)−#(B,A)− b3}

Therefore, the total number of transplants for paired patients from pairs of types (O,A),

(O,B), (O,AB), (A,AB), (B,AB), (A,B) in the procedure is X = X1 + X2 + X3; one

may refer to Tables from A1 to A15 in Supplement A of Cheng and Yang (2017) for detail.

Then the equation can be rewritten as follows:

X = min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}.
Therefore, the total number of transplants can be achieved in the mechanism is that

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

+#Ad + #Bd + #ABd + #Od

+ min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}

We proved that every matching produced by the procedure achieves the maximum

number of transplants in the pool and hence the procedure is 2-efficient. 2

Now we compare the lower bound of the number in Proposition 3.3 with the case in

which incompatible patient-donor pairs, compatible patient-donor pairs, and patients in

waiting and single donors are treated separately under two-way exchange. We consider the

most common situation that the number of blood-type incompatible pairs of each type:

#(O,A), #(O,B), #(O,AB), #(A,AB), and #(B,AB), is at least as large as the num-

ber of its opposite blood-type compatible but tissue-type incompatible pairs: #(A,O)i,

#(B,O)i, #(AB,O)i, #(AB,A)i, and #(AB,B)i respectively. We can do similar com-

parison for other situations. Hence, the maximum number of feasible transplants for the

group of incompatible patient-donor pairs under two-way cycles is

2(#(A,O)i + #(B,O)i + #(AB,O)i + #(AB,A)i + #(AB,B)i)

+2#(B,A) + 2(b#(A,A)i

2
c+ b#(B,B)i

2
c+ b#(AB,AB)i

2
c+ b#(O,O)i

2
c)

The maximum number of transplants for patients on the waiting list under one/two-

way chains equals (#Ad + #Bd + #ABd + #Od) because the number of patients on the

waiting list exceeds the number of single donors so that a single donor can always find a

compatible patient on the waiting list to donate. The maximum number of transplants for

the group of compatible patient-donor pairs equals #(A,O)c + #(B,O)c + #(AB,O)c +

#(AB,A)c + #(AB,B)c + #(A,A)c + #(B,B)c + #(O,O)c + #(AB,AB)c because every

patient in a compatible pair can receive the kidney from its own paired donor.
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Since for any blood-type compatible pair of type (X, Y ), we have #(X, Y ) = #(X, Y )i+

#(X, Y )c, the maximum number of transplants in the whole pool becomes

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(A,O)i + #(B,O)i + #(AB,O)i + #(AB,A)i + #(AB,B)i

+2#(B,A) + 2(b#(A,A)i

2
c+ b#(B,B)i

2
c+ b#(AB,AB)i

2
c+ b#(O,O)i

2
c)

+#(A,A)c + #(B,B)c + #(AB,AB)c + #(O,O)c

+#Ad + #Bd + #ABd + #Od

We compare the above number with the lower bound of the number in Proposition 3.3

and obtain

min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}
−(#(A,O)i + #(B,O)i + #(AB,O)i + #(AB,A)i + #(AB,B)i + #(B,A))

+#(A,A) + #(B,B) + #(AB,AB) + #(O,O)

−(#(A,A)c + #(B,B)c + #(AB,AB)c + #(O,O)c)

−2(b#(A,A)i

2
c+ b#(B,B)i

2
c+ b#(AB,AB)i

2
c+ b#(O,O)i

2
c)

≥ 0

This shows the benefits of allowing compatible patient-donor pairs to join incompatible

pairs for exchange and adding two-way chain exchange.

3.2 Three-Way Exchange

To improve potential gains of exchange, three-way cycles and three-way chains of exchange

can be explored.

Figures 3 and 4 show all possible three-way cycles and chains under Assumptions 2.1,

2.2 and 2.3. Note that these figures do not include two-way exchanges. Recall that blood-

compatible pairs can always be matched by Assumption 2.3. To have more transplants we

can make the best use of every blood-compatible pair to match with a blood-incompatible

pair. As a result, three-way cycles can be formed.

We first consider some beneficial three-way cycles or chains with two blood-incompatible

pairs. Under three-way exchanges, blood-compatible pair (AB,O) (the right column) can

involve not one but two blood-type incompatible pairs through 4 three-way cycles (AB,O)−
(O,A)− (A,AB), (AB,O)− (O,A)− (A,B), (AB,O)− (A,B)− (B,AB) and (AB,O)−
(O,B) − (B,AB). For blood-compatible pair (B,O), we have just one three-way cycle

(B,O)− (O,A)− (A,B). For blood-compatible pair (AB,A), we have also just one three-

way cycle (AB,A)− (A,B)− (B,AB). Similarly, we can use single donors to match with

two blood-incompatible pairs and patients on the waiting list. Consequently, three-way

chains can be generated. With one-way and two-way chains, each single donor can trade
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with at most one blood-incompatible pair. If three-way chains are allowed, single donor

Od can trade with two blood-incompatible pairs through three-way chains Od − (O,A) −
(A,AB)−ABp, Od−(O,A)−(A,B)−Bp, Od−(A,B)−(B,AB)−ABp and Od−(O,B)−
(B,AB)−ABp. Moreover, if there is any (A,B) left, type (A,B) can bring an extra blood-

incompatible pair into chains through three-way chains Ad − (A,B)− (B,AB)− ABp.

We now consider some beneficial three-way cycles or chains with one pair (B,A) or

with one blood-incompatible pair. Observe that (B,A) pairs are on the short side by

Assumption 2.2. These pairs can be very beneficial in the following situations: Firstly,

there are pairs or singles, (A,O), (O,B), Ad/(AB,A), and (B,AB). In this case, we

cannot match blood-incompatible pairs (O,B) and (B,AB) in a two-way cycle. But if we

break two-way cycle (A,B)−(B,A), we can make three-way cycles (A,O)−(O,B)−(B,A)

and (AB,A)− (A,B)− (B,AB) and thus increase the number of transplants. Also three-

way cycles (A,O)−(O,B)−(B,A) and chains Ad−(A,B)−(B,AB)−ABp can yield more

transplants. Secondly, there are pairs or singles, (A,AB), (B,O), Bd/(AB,B), and (O,A).

In this case, we cannot match blood-incompatible pairs (O,A) and (A,AB) in a two-way

cycle, but we can make three-way cycles (B,O)− (O,A)− (A,B) and (AB,B)− (B,A)−
(A,AB) and increase the number of transplants. Also three-way cycles (B,O)− (O,A)−
(A,B) and three-way chains Bd − (B,A)− (A,AB)− ABp can bring more transplants.

Furthermore, it is easy to see that (AB,A)− (A,O), or (AB,B)− (B,O) can make a

three-way cycle of exchange with any pair (X, Y ), and that Ad − (A,O) or Bd − (B,O)

can yield a three-way chain with any pair (X, Y ). In particular, when there are pairs

(B,AB), (O,B) and (O,AB), it is impossible to use them in two-way exchange but it

is easy to combine them with (AB,A) − (A,O) to yield three-way exchange (AB,A) −
(A,O) − (B,AB)/(O,B)/(O,AB). Similarly, we can make three-way exchanges Ad −
(A,O)− (B,AB)/(O,B)/(O,AB)−Y p, (AB,B)− (B,O)− (A,AB)/(O,A)/(O,AB) and

Bd − (B,O)− (A,AB)/(O,A)/(O,AB)− Y p.

An efficient sequential three-way matching procedure is introduced below.

A Sequential Three-Way Matching Procedure

Step 1: Match a maximum number of pairs (A,A), (B,B), (O,O), (AB,AB) through

two-way.

Step 2: (Take full advantage of three-way cycles and chains starting with Ad, (AB,A)

and (B,O)) The number of pairs (A,B) should not exceed #(A,B) − #(B,A) in

this step.

– Match a maximum number of three-way cycles (AB,A) − (A,B) − (B,AB)

and chains Ad − (A,B)− (B,AB)− ABp, where the available number of pairs
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Figure 3: Three-way cycles (a) and chains (b) of exchange with two blood-incompatible

pairs.
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Figure 4: Three-way cycles (a) and chains (b) of exchange with (B,A) and three-way cycles

of exchange with one blood-incompatible pair.
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(AB,A) and single donors Ad in this step is #Ad + #(AB,A) − min{#Ad +

#(AB,A),#(A,AB)}.

– Match a maximum number of three-way cycles (B,O)− (O,A)− (A,B), where

the available number of pairs (O,A) in this step is #(O,A)−min{#(O,A),#(A,O)}.

– Match a maximum number of three-way cycles (AB,A)− (A,B)− (B,AB) and

chains Ad − (A,B)− (B,AB)− ABp.

– Match a maximum number of three-way cycles (B,O)− (O,A)− (A,B).

Step 3: (Take full advantage of pairs (B,A)) Denote #(X, Y )r as the number of

all currently available pairs of any type (O,A), (O,B), (A,AB), (B,AB), (A,O),

(B,O), (AB,A) and (AB,B) and #Xdr as the number of currently available single

donors of any type Ad and Bd. Match the following three-way cycles and chains.

Step 3.1: Make a maximum number of three-way cycles (A,O)−(O,B)−(B,A),

(AB,A)−(A,B)−(B,AB) and chains Ad−(A,B)−(B,AB)−ABp, subject to

the following constraints: the number of three-way cycles (A,O)−(O,B)−(B,A)

should equal the total number of three-way cycles (AB,A)− (A,B)− (B,AB)

and chains Ad−(A,B)−(B,AB)−ABp, and the number of pairs (A,B) used in

this step should not exceed the number of currently available pairs (B,A), the

number of pairs (O,B)/(A,O) used in this step should not exceed #(X, Y )r −
min{#(X, Y )r,#(Y,X)r}, the number of pairs (AB,A) and single donors Ad

used in this step should not exceed #Adr+#(AB,A)r−min{#Adr+#(AB,A)r,

#(A,AB)r}, and the number of pairs (B,AB) used in this step should not

exceed #(B,AB)r −min{Bdr + #(AB,B)r,#(B,AB)r}.

Step 3.2: Make a maximum number of three-way cycles (B,O)−(O,A)−(A,B),

(AB,B)−(B,A)−(A,AB) and chains Bd−(B,A)−(A,AB)−ABp, subject to

the following constraints: the number of three-way cycles (B,O)−(O,A)−(A,B)

should equal the total number of three-way cycles (AB,B)− (B,A)− (A,AB)

and chains Bd − (B,A) − (A,AB) − ABp, and the number of pairs (A,B)

used in this step should not exceed the number of currently available pairs

(B,A), the number of pairs (B,O)/(O,A) used in this step should not exceed

#(X, Y )r −min{#(X, Y )r,#(Y,X)r}, the number of pairs (AB,B) and single

donors Bd used in this step should not exceed #Bdr +#(AB,B)r−min{#Bdr +

#(AB,B)r,#(B,AB)r}, and the number of pairs (A,AB) used in this step

should not exceed #(A,AB)r −min{#Adr + #(AB,A)r,#(A,AB)r}.

Step 3.3: If there is at least one pair of each type (A,O), (O,B) and (B,AB)

which are left from the previous Step 3.1. Then, make a maximum number of
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three-way cycles (A,O)−(O,B)−(B,A), (AB,A)−(A,B)−(B,AB) and chains

Ad−(A,B)−(B,AB)−ABp, subject to the following constraints: the number of

three-way cycles (A,O)−(O,B)−(B,A) should equal the total number of three-

way cycles (AB,A)−(A,B)−(B,AB) and chains Ad−(A,B)−(B,AB)−ABp,

and the number of pairs (A,B) used in this step should not exceed the number

of currently available pairs (B,A), the number of pairs (O,B) used in this step

should not exceed #(O,B)r − min{#(O,B)r,#(B,O)r}, the number of pairs

(A,O) used in this step should not exceed min{#(A,O)r,#(O,A)r}, and the

number of pairs (B,AB) used in this step should not exceed #(B,AB)r −
min{Bdr + #(AB,B)r,#(B,AB)r}.

Step 3.4: If there is at least one pair of each type (O,A), (A,AB) andBd/(AB,B)

which are left from the previous Step 3.2. Then, make a maximum number of

three-way cycles (B,O)−(O,A)−(A,B), (AB,B)−(B,A)−(A,AB) and chains

Bd−(B,A)−(A,AB)−ABp, subject to the following constraints: the number of

three-way cycles (B,O)−(O,A)−(A,B) should equal the total number of three-

way cycles (AB,B)−(B,A)−(A,AB) and chains Bd−(B,A)−(A,AB)−ABp,

and the number of pairs (A,B) used in this step should not exceed the num-

ber of currently available pairs (B,A), the number of pairs (O,A) used in

this step should not exceed #(O,A)r − min{#(O,A)r,#(A,O)r}, the num-

ber of pairs (AB,B) and single donors Bd used in this step should not exceed

#Bdr + #(AB,B)r −min{#Bdr + #(AB,B)r,#(B,AB)r}, and the number of

pairs (A,AB) used in this step should not exceed #(A,AB)r − min{#Adr +

#(AB,A)r,#(A,AB)r}.

Step 3.5: If there exists at least one pair of each type (B,AB), (O,B) and

Ad/(AB,A) which are left from the previous Step 3.1. Then, make a maximum

number of three-way cycles (A,O)−(O,B)−(B,A), (AB,A)−(A,B)−(B,AB)

and chains Ad − (A,B)− (B,AB)− ABp, subject to the following constraints:

the number of three-way cycles (A,O)− (O,B)− (B,A) should equal the total

number of three-way cycles (AB,A)−(A,B)−(B,AB) and chains Ad−(A,B)−
(B,AB) − ABp, and the number of pairs (A,B) used in this step should not

exceed the number of currently available pairs (B,A), the number of pairs (O,B)

used in this step should not exceed #(O,B)r − min{#(O,B)r,#(B,O)r}, the

number of pairs (AB,A) and single donors Ad used in this step should not exceed

#Adr + #(AB,A)r − min{#Adr + #(AB,A)r,#(A,AB)}, and the number of

pairs (B,AB) used in this step should not exceed #(B,AB)r − min{Bdr +

#(AB,B)r,#(B,AB)r}.

Step 3.6: If there exists at least one pair of each type (B,O), (O,A) and (A,AB)
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which are left form the previous Step 3.2. Then, make a maximum number of

three-way cycles (B,O)−(O,A)−(A,B), (AB,B)−(B,A)−(A,AB) and chains

Bd−(B,A)−(A,AB)−ABp, subject to the following constraints: the number of

three-way cycles (B,O)−(O,A)−(A,B) should equal the total number of three-

way cycles (AB,B)−(B,A)−(A,AB) and chains Bd−(B,A)−(A,AB)−ABp,

and the number of pairs (A,B) used in this step should not exceed the number of

currently available pairs (B,A), the number of pairs (B,O)/(O,A) used in this

step should not exceed #(X, Y )r −min{#(X, Y )r,#(Y,X)r}, and the number

of pairs (A,AB) used in this step should not exceed #(A,AB)r −min{#Adr +

#(AB,A)r,#(A,AB)r}.

Step 4: Match the following two-way cycles and two-way chains:

– Match a maximum number of the remaining pairs (A,O) with pairs (O,A).

Match a maximum number of the remaining pairs (B,O) with pairs (O,B).

Match a maximum number of the remaining pairs (A,B) with pairs (B,A).

Match a maximum number of the remaining pairs (AB,A) and single donors

Ad with pairs (A,AB), and match a maximum number of the remaining pairs

(AB,B) and single donors Bd with pairs (B,AB).

– Match a maximum number of the remaining pairs (AB,A), (B,O) and single

donors Ad with the remaining pairs (A,B), where the available number of pairs

(B,O) in this step is #(B,O)r − min{#Bdr + #(AB,B)r,#(B,O)r} and the

available number of pairs (AB,A) and single donors Ad is #Adr + #(AB,A)r−
min{#Adr + #(AB,A)r,#(A,O)r}.

Step 5: Match a maximum number of the following three-way cycles and chains:

– Three-way cycles (AB,O)−(O,A)−(A,AB) and chains Od−(O,A)−(A,AB)−
ABp.

– Three-way cycles (AB,O)−(O,B)−(B,AB) and chains Od−(O,B)−(B,AB)−
ABp.

– Three-way cycles (AB,O)−(O,A)−(A,B) and chains Od−(O,A)−(A,B)−Y p.

– Three-way cycles (AB,O)−(A,B)−(B,AB) and chains Od−(A,B)−(B,AB)−
ABp.

Step 6: Match a maximum number of the remaining single donors Od and pairs

(AB,O) with the remaining pairs (O,A), (O,B), (O,AB), (A,AB), (B,AB) and

(A,B). Match a maximum number of the combinations of (AB,A) − (A,O) and
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(AB,B) − (B,O) with remaining pairs (O,A), (O,B), (O,AB), (A,AB), (B,AB)

and (A,B). Match a maximum number of the combinations of Ad − (A,O) and

Bd − (B,O) with remaining pairs (O,A), (O,B), (O,AB), (A,AB), (B,AB) and

(A,B) and patients on TWL.

Step 7: Match a maximum number of remaining blood-compatible but tissue-incompatible

pair (A,O)i through two-way cycles (A,O)i − (A,O)i. If there is one remaining pair

(A,O)i, match the pair (A,O)i with (A,O)c. Apply the same procedure to any re-

maining pair (B,O)i, (AB,O)i, (AB,A)i and (AB,B)i. Match a maximum number

of remaining single donors Od, Ad, Bd, ABd with any remaining single patients Op,

Ap, Bp, ABp; match any paired patients from compatible pairs with their own paired

donors.

We use Example 3.1 to demonstrate the sequential three-way matching procedure and

compare it with the previous procedure.

Table 2: The illustration of the sequential three-way matching procedure.

Steps
Number of

Cycles or Chains
Cycles or Chains

Number of Remaining

Pairs and Donors

Step 1
1 (AB,AB)i − (AB,AB)i

1 (AB,AB)i − (AB,AB)c

Step 2

1 (AB,A)i − (A,B)− (B,AB) 6 (B,AB), 6 (A,B)

1 Ad − (A,B)− (B,AB)−ABp 2 Ad, 5 (B,AB),

5 (A,B)

1 (B,O)i − (O,A)− (A,B) 4 (O,A), 4 (A,B)

2 Ad − (A,B)− (B,AB)−ABp 3 (B,AB), 2 (A,B)

Step 4

1 (O,A)− (A,O)i 3 (O,A)

1 (O,A)− (A,O)c 2 (O,A)

1 (A,B)− (B,A) (A,B)

1 (B,AB)− (AB,B)i 2 (B,AB)

1 Bd − (B,AB)−ABp (B,AB)

Step 5
1 (AB,O)i − (O,A)− (A,AB) (O,A), (A,AB)

1 (AB,O)c − (O,A)− (A,AB)

Step 6

(End)
1 ABd −ABp

Table 2 shows that if we use the sequential three-way matching procedure, 31 paired

patients and five single patients will receive kidney transplants and four pairs of type

(B,AB), (A,B), (O,B) and (O,AB) stay put. Compared with the previous two-way

matching procedures, the three-way procedure increases the maximum number of kidney

transplants by seven.

Lemma 3.4 Assume that the kidney exchange model satisfies the Assumptions 2.1

and 2.3. Then every 3-efficient matching µ can be transformed to another 3-efficient match-

ing in which every cycle contains at most two blood-type compatible pairs and every chain

contains at most one blood-type compatible pair.
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Proof. Consider any given 3-efficient matching µ as stated in the lemma. If µ consists

only of cycles with no more than two blood-type compatible pairs and chains with no

more than one blood-type compatible pair, we are done. Suppose to the contrary that µ

contains a cycle with more than two blood-type compatible pairs or a chain with more than

one blood-type compatible pair. We only need to consider the case of three-way cycles or

chains. We will show that a three-way cycle with three blood-type compatible pairs can

be decomposed into three single blood-compatible pairs and a three-way chain with two

blood-compatible pairs can be decomposed into two single blood-compatible pairs and a

one-way chain in which the single donor donates its kidney to a patient on the waiting list.

Then, we will show that the all pairs which are decomposed from cycles and chains can be

matched.

Because a blood-type compatible and tissue-type compatible pair can directly do trans-

plant, all blood-type compatible and tissue-type compatible pairs can do transplants sepa-

rately. Let D be the set of all blood-type compatible but tissue-type incompatible pairs in a

three-way cycle or chain under consideration. Let (X, Y )i present the type of a blood-type

compatible but tissue-type incompatible pair. If there exists two or more pairs of type

(X, Y )i, we can have a two-way cycle among them (X, Y )i − (X, Y )i. Therefore, at most

one pair of type (X, Y )i left after the process. By Assumption 2.3, there exists at least one

blood-type and tissue-type compatible pair of type (X, Y )c. If the compatible pair (X, Y )c

does not involve in any cycle or chain, then we can match the remaining pair (X, Y )i

with pair (X, Y )c. Otherwise, the compatible pair (X, Y )c involves in a cycle consisting

of no more than two blood-type compatible pairs or a chain consisting of no more than

one blood-type compatible pair. Then we can use pair (X, Y )i instead of (X, Y )c based on

Assumption 2.1 and pair (X, Y )c do transplant directly. Therefore, all remaining pairs of

type (X, Y )i can be matched. 2

Proposition 3.5 Assume that the kidney exchange model satisfies the Assumptions 2.1,

2.2, and 2.3. Then the matching µ generated by the above procedure is 3-efficient and the

maximum number of transplants through at most three-way exchanges is

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B) + #(B,A)

+#(A,A) + #(B,B) + #(O,O) + #(AB,AB)

+#Ad + #Bd + #ABd + #Od

+ min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}
where

N1 = #(O,A) + #(O,B) + #(O,AB) + #(A,AB) + #(A,B) + #(B,AB)

N2 = #(O,A) + #(O,B) + #Od + #(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

+#Bd + #(AB,B) + #(A,O)
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N3 = #(O,A) + #(O,B) + #Od + #(AB,O) + #Ad + #(AB,A) + #(A,B)

+#Bd + #(AB,B)

N4 = #(A,O) + #(O,B) + 2#Od + 2#(AB,O) + #Ad + #(AB,A) + 2#(A,B)

+2#Bd + 2#(AB,B)−#(B,A)

N5 = #(A,O) + #(O,B) + 2#Od + 2#(AB,O) + #Ad + #(AB,A) + 2#(A,B)

+#Bd + #(AB,B)

N6 = #(A,O) + #(O,B) + #Od + #(AB,O) + #Ad + #(AB,A) + #(A,B)

+#Bd + #(AB,B) + #(A,AB) + #(B,O)

N7 = #(A,O) + #(O,B) + #Od + #(AB,O) + #(A,AB) + 2#(A,B)

+#Bd + #(AB,B)−#(B,A)

N8 = #(O,A) + #(B,O) + 2#Od + 2#(AB,O) + 2#Ad + 2#(AB,A)

+#Bd + #(AB,B) + #(B,A)

N9 = #(O,A) + #(B,O) + 2#Od + 2#(AB,O) + #Ad + #(AB,A) + #(A,B)

+#Bd + #(AB,B) + #(B,A)

N10 = #(O,A) + #(B,O) + #Od + #(AB,O) + #Ad + #(AB,A) + #(B,AB)

+#(B,A)

N11 = #(A,O) + 2#(B,O) + 2#Od + 2#(AB,O) + #Ad + #(AB,A) + #(B,AB)

+#(B,A)

N12 = #(A,O) + 2#(B,O) + 2#Od + 2#(AB,O) + 2#Ad + 2#(AB,A) + #(AB,B)

+#Bd + #(B,A)

N13 = #(A,O) + #(B,O) + 2#Od + 2#(AB,O) + #Ad + #(AB,A) + #(A,B)

+#(B,AB) + #(B,A)

N14 = 2#(A,O) + #(B,O) + 2#Od + 2#(AB,O) + #(A,AB) + 2#(A,B)

+#(AB,B) + #Bd −#(B,A)

N15 = #(A,O) + #(B,O) + 2#Od + 2#(AB,O) + #Ad + #(AB,A) + #(A,B)

+#Bd + #(AB,B)

N16 = #(A,O) + #(B,O) + 2#Od + 2#(AB,O) + #(A,AB) + 2#(A,B)

+#Bd + #(AB,B)

N17 = #(A,O) + #(B,O) + #Od + #(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

The proof is deferred to the appendix.

3.3 Four-Way Exchange

If four-way cycles and chains of exchange can be used, more kidney transplants will be

made possible. Figures 5 and 6 show all four-way cycles and chains of exchange but do not

include two- or three-way exchange.

In this case we have a four-way cycle with three blood-incompatible pairs (AB,O) −
(O,A) − (A,B) − (B,AB), a four-way chain with three blood-incompatible pairs Od −
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Figure 5: Four-way cycles (a) and chains (b) of exchange with three blood-incompatible pairs.
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Figure 6: Four-way cycles (a) and chains (b) of exchange with two blood-incompatible pairs.
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(O,A) − (A,B) − (B,AB) − ABp, two four-way cycles with two blood-compatible pairs

(AB,A)−(A,O)−(O,B)−(B,AB) and (AB,B)−(B,O)−(O,A)−(A,AB), two four-way

chains with one blood-compatible pair Ad− (A,O)− (O,B)− (B,AB) and Bd− (B,O)−
(O,A)− (A,AB), one four-way cycle (AB,A)− (A,B)− (B,O)− (X, Y ) and one four-way

chain Ad − (A,B) − (B,O) − (X, Y ) − Zp, where (X, Y ) is any pair and Zp is any single

patient.

An efficient sequential matching procedure under four-way exchange is proposed and

described as follows.

A Sequential Four-Way Matching Procedure

Step 1: Match a maximum number of pairs (A,A), (B,B), (O,O), (AB,AB) through

two-way exchange.

Step 2: (Take full advantage of three-way cycles and chains starting with Ad, (AB,A)
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and (B,O)) The number of pairs (A,B) should not exceed #(A,B) − #(B,A) in

this step.

– Match a maximum number of three-way cycles (AB,A) − (A,B) − (B,AB)

and chains Ad − (A,B) − (B,AB) − ABp, where the available number of pair

(AB,A) and single donors Ad in this step is #Ad + #(AB,A) − min{#Ad +

#(AB,A),#(A,AB)}.

– Match a maximum number of three-way cycles (B,O)− (O,A)− (A,B), where

the available number of pairs (O,A) in this step is #(O,A)−min{#(O,A),#(A,O)}.

– Match a maximum number of three-way cycles (AB,A)− (A,B)− (B,AB) and

chains Ad − (A,B)− (B,AB)− ABp.

– Match a maximum number of three-way cycles (B,O)− (O,A)− (A,B).

Step 3: (Take full advantage of four-way cycles and chains with the combinations)

Denote #(X, Y )r as the number of all currently available pairs of any type (O,A),

(O,B), (A,AB), (B,AB), (A,O), (B,O), (AB,A), (AB,B) and (A,B). Denote

#Y dr as the number of all currently available single donors of any type Ad and Bd.

Match the following four-way cycles and chains.

Step 3.1: Make a maximum number of four-way cycles (AB,A) − (A,O) −
(O,B)− (B,AB) and four-way chains Ad − (A,O)− (O,B)− (B,AB)−ABp,

subject to the following constraints: the number of pairs (O,B)/(A,O) used

in this step should not exceed #(X, Y )r −min{#(X, Y )r,#(Y,X)r}, the num-

ber of pairs (AB,A) and single donors Ad used in this step should not exceed

#Adr + #(AB,A)r −min{#Adr + #(AB,A)r,#(A,AB)r}, and the number of

pairs (B,AB) used in this step should not exceed #(B,AB)r − min{Bdr +

#(AB,B)r,#(B,AB)r}.

Step 3.2: Make a maximum number of four-way cycles (AB,B) − (B,O) −
(O,A)− (A,AB) and four-way chains Bd − (B,O)− (O,A)− (A,AB)−ABp,

subject to the following constraints: the number of pairs (B,O)/(O,A) used in

this step should not exceed #(X, Y )r −min{#(X, Y )r,#(Y,X)r}, the number

of pairs (AB,B) and single donors Bd used in this step should not exceed

#Bdr + #(AB,B)r −min{#Bdr + #(AB,B)r,#(B,AB)r}, and the number of

pairs (A,AB) used in this step should not exceed #(A,AB)r − min{#Adr +

#(AB,A)r,#(A,AB)r}.

Step 3.3: If there exists at least one pair of each type (A,O), (O,B) and (B,AB)

which are left from the previous Step 3.1. Then, make a maximum number
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of four-way cycles (AB,A) − (A,O) − (O,B) − (B,AB) and four-way chains

Ad− (A,O)− (O,B)− (B,AB)−ABp, subject to the following constraints: the

number of pairs (O,B)/(A,O) used in this step should not exceed #(X, Y )r −
min{#(X, Y )r,#(Y,X)r}, and the number of pairs (B,AB) used in this step

should not exceed #(B,AB)r −min{Bdr + #(AB,B)r,#(B,AB)r}.

Step 3.4: If there exists at least one pair of each type (O,A), (A,AB) and

Bd/(AB,B) which are left from the previous Step 3.2. Then, make a max-

imum number of four-way cycles (AB,B) − (B,O) − (O,A) − (A,AB) and

four-way chains Bd − (B,O)− (O,A)− (A,AB)− ABp, subject to the follow-

ing constraints: the number of pairs (O,A) used in this step should not exceed

#(O,A)r −min{#(O,A)r,#(A,O)r}, the number of pairs (AB,B) and single

donors Bd used in this step should not exceed #Bdr +#(AB,B)r−min{#Bdr +

#(AB,B)r,#(B,AB)r}, and the number of pairs (A,AB) used in this step

should not exceed #(A,AB)r −min{#Adr + #(AB,A)r,#(A,AB)r}.

Step 3.5: If there exists at least one remaining pair of each type (B,AB),

(O,B) and Ad/(AB,A) which are left from the previous Step 3.1. Then, make

a maximum number of four-way cycles (AB,A) − (A,O) − (O,B) − (B,AB)

and four-way chains Ad − (A,O) − (O,B) − (B,AB) − ABp, subject to the

following constraints: the number of pairs (O,B) used in this step should not

exceed #(O,B)r −min{#(O,B)r,#(B,O)r}, the number of pairs (AB,A) and

single donors Ad used in this step should not exceed #Adr + #(AB,A)r −
min{#Adr + #(AB,A)r,#(A,AB)}, and the number of pairs (B,AB) used in

this step should not exceed #(B,AB)r −min{Bdr + #(AB,B)r,#(B,AB)r}.

Step 3.6: If there exists at least one pair of each type (B,O), (O,A) and (A,AB)

which are left from the previous Step 3.2. Then, make a maximum number

of four-way cycles (AB,B) − (B,O) − (O,A) − (A,AB) and four-way chains

Bd− (B,O)− (O,A)− (A,AB)−ABp, subject to the following constraints: the

number of pairs (B,O)/(O,A) used in this step should not exceed #(X, Y )r −
min{#(X, Y )r,#(Y,X)r}, and the number of pairs (A,AB) used in this step

should not exceed #(A,AB)r −min{#Adr + #(AB,A)r,#(A,AB)r}.

Step 4: Do the following two-way cycles and two-way chains:

– Match a maximum number of the remaining pairs (A,O) with pairs (O,A).

Match a maximum number of the remaining pairs (B,O) with pairs (O,B).

Match a maximum number of the remaining pairs (A,B) with pairs (B,A).

Match a maximum number of the remaining pairs (AB,A) and single donors
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Ad with pairs (A,AB), and match a maximum number of the remaining pairs

(AB,B) and single donors Bd with pairs (B,AB).

– Match a maximum number of the remaining pairs (AB,A), (B,O) and single

donors Ad with the remaining pairs (A,B), where the available number of pairs

(B,O) in this step is

#(B,O)r −min{#Bdr + #(AB,B)r,#(B,O)r}
−min{#Adr + #(AB,A)r −min{#Adr + #(AB,A)r,#(A,O)r},
#(B,O)r −min{#Bdr + #(AB,B)r,#(B,O)r},#(A,B)r}

and the available number of pairs (AB,A) and single donors Ad is

#Adr + #(AB,A)r −min{#Adr + #(AB,A)r,#(A,O)r}
−min{#Adr + #(AB,A)r −min{#Adr + #(AB,A)r,#(A,O)r},
#(B,O)r −min{#Bdr + #(AB,B)r,#(B,O)r},#(A,B)r}

Step 5: Match a maximum number of the following cycles and chains:

– Four-way cycles (AB,O)− (O,A)− (A,B)− (B,AB) and chains Od− (O,A)−
(A,B)− (B,AB).

– Three-way cycles (AB,O)−(O,A)−(A,AB) and chains Od−(O,A)−(A,AB)−
ABp.

– Three-way cycles (AB,O)−(O,B)−(B,AB) and chains Od−(O,B)−(B,AB)−
ABp.

– Three-way cycles (AB,O)−(O,A)−(A,B) and chains Od−(O,A)−(A,B)−Y p.

– Three-way cycles (AB,O)−(A,B)−(B,AB) and chains Od−(A,B)−(B,AB)−
ABp.

Step 6: Match a maximum number of the remaining single donors Od and pairs

(AB,O) with the remaining pairs (O,A), (O,B), (O,AB), (A,AB), (B,AB) and

(A,B). Match a maximum number of the combinations of (AB,A)−(A,O), (AB,B)−
(B,O) and (AB,A)− (A,B)− (B,O) with remaining pairs (O,A), (O,B), (O,AB),

(A,AB), (B,AB) and (A,B). Match a maximum number of the combinations of

Ad − (A,O), Bd − (B,O) and Ad − (A,B) − (B,O) with remaining pairs (O,A),

(O,B), (O,AB), (A,AB), (B,AB), (A,B) and patients on TWL.

Step 7: Match a maximum number of remaining blood-compatible but tissue-incompatible

pairs (A,O)i through two-way cycles (A,O)i− (A,O)i. If there is one remaining pair
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(A,O)i, match the pair (A,O)i with (A,O)c. Apply the same procedure to any re-

maining pair (B,O)i, (AB,O)i, (AB,A)i and (AB,B)i. Match a maximum number

of remaining single donors Od, Ad, Bd, ABd with any remaining single patients Op,

Ap, Bp, ABp; match any paired patients from compatible pairs with their own paired

donors.

Example 3.1 will be used to show the performance of the four-way matching procedure.

The process and outcome generated by the procedure is shown in Table 3. One can see

that if the sequential four-way matching procedure is used, 32 paired patients and five

single patients will receive kidney transplants and three pairs of type (A,AB), (O,B) and

(O,AB) will be left. In comparison with the three-way procedure, the four-way procedure

increases the maximum number of kidney transplants by one.

Lemma 3.6 Assume that the kidney exchange model satisfies the Assumptions 2.1

and 2.3. Then every 4-efficient matching µ can be transformed to another 4-efficient match-

ing in which every cycle contains at most two blood-type compatible pairs and every chain

contains at most one blood-type compatible pair.

Its proof is given in the appendix.

Table 3: The illustration of the sequential four-way matching procedure

Steps
Number of

Cycles or Chains
Cycles or Chains

Number of Remaining

Pairs and Donors

Step 1
1 (AB,AB)i − (AB,AB)i

1 (AB,AB)i − (AB,AB)c

Step 2

1 (AB,A)i − (A,B)− (B,AB) 6 (B,AB), 6 (A,B)

1 Ad − (A,B)− (B,AB)−ABp 2 Ad, 5 (B,AB),

5 (A,B)

1 (B,O)i − (O,A)− (A,B) 4 (O,A), 4 (A,B)

2 Ad − (A,B)− (B,AB)−ABp 3 (B,AB), 2 (A,B)

Step 4

1 (O,A)− (A,O)i 3 (O,A)

1 (O,A)− (A,O)c 2 (O,A)

1 (A,B)− (B,A) (A,B)

1 (B,AB)− (AB,B)i 2 (B,AB)

1 Bd − (B,AB)−ABp (B,AB)

Step 5
1 (AB,O)i − (O,A)− (A,B)− (B,AB) (O,A)

1 (AB,O)c − (O,A)− (A,AB) (A,AB)

Step 6

(End)
1 ABd −ABp

Proposition 3.7 Assume that the kidney exchange model obeys the Assumptions 2.1,

2.2, and 2.3. Then the matching µ from the above procedure is 4-efficient and the maximum
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number of transplants through four-way exchanges equals

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(O,O) + #(AB,AB)

+#Ad + #Bd + #ABd + #Od

+ min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11}
where

N1 = #(O,A) + #(O,B) + #(O,AB) + #(A,AB) + #(A,B) + #(B,AB)

N2 = #(O,A) + #(O,B) + #Od + #(AB,O) + #Ad + #(AB,A) + #(A,B)

+#Bd + #(AB,B)

N3 = #(A,O) + #(O,B) + 2#Od + 2#(AB,O) + #Ad + #(AB,A) + 2#(A,B)

+2#Bd + 2#(AB,B)−#(B,A)

N4 = #(A,O) + #(O,B) + #Od + #(AB,O) + #(A,AB) + 2#(A,B)

+#Bd + #(AB,B)−#(B,A)

N5 = #(O,A) + #(B,O) + 2#Od + 2#(AB,O) + 2#Ad + 2#(AB,A)

+#Bd + #(AB,B) + #(B,A)

N6 = #(O,A) + #(B,O) + #Od + #(AB,O) + #Ad + #(AB,A) + #(B,AB)

+#(B,A)

N7 = #(A,O) + 2#(B,O) + 3#Od + 3#(AB,O) + 2#Ad + 2#(AB,A)

+#(AB,B) + #Bd + #(B,A)

N8 = #(A,O) + 2#(B,O) + 2#Od + 2#(AB,O) + #Ad + #(AB,A) + #(B,AB)

+#(B,A)

N9 = 2#(A,O) + #(B,O) + 2#Od + 2#(AB,O) + #(A,AB) + 2#(A,B)

+#(AB,B) + #Bd −#(B,A)

N10 = #(A,O) + #(B,O) + 2#Od + 2#(AB,O) + #Ad + #(AB,A) + #(A,B)

+#Bd + #(AB,B)

N11 = #(A,O) + #(B,O) + #Od + #(AB,O) + #(A,AB) + #(A,B) + #(B,AB)

The proof is given in the appendix.

4 Multi-Way Cycles and Chains of Exchange

In the previous sections we have focused on two-way, three-way, and four-way cycles and

chains of exchange and derived the upper bounds of the possible number of kidney trans-

plants under those given assumptions. In the current section, we consider a more general

model of kidney exchange and show that under similar conditions, five or higher-way cycles

and chains of exchange even if available will not further increase the number of feasible

kidney transplants. In other words, four or less-way exchanges are sufficient to capture all

the potential gains of kidney exchange.
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Our general model consists of pairs, single donors and patients on the waiting list. We

also call a patient on the waiting list a single patient. Each pair i has a patient P p
i and a

donor Dp
i . Each single patient is denoted by P s

i and each single (decreased or altruistic)

donor is denoted as Ds
i .

Let B be the family of primary types such as blood shared by patients and donors with

|B| = n > 2. In other words, all patients and donors have their types X in ∈ B. For any

given two primary types X, Y ∈ B, X � Y means that agent of type X is primary type

compatible with agent of type Y . In the context of kidney exchange, a patient of type

Y is blood-type compatible with a donor of type X. Following Roth, Sönmez and Ünver

(2007), we assume that the compatibility relation � for primary types satisfies reflexivity,

asymmetry and transitivity properties:

1. (Reflexivity) X � X for any X ∈ B,

2. (Asymmetry) X � Y and X 6= Y ⇒ Y � X for any X, Y ∈ B, and

3. (Transitivity) X � Y and Y � Z ⇒ X � Z for any X, Y ∈ B.

Blood-type compatibility possess the properties of reflexivity, asymmetry and transi-

tivity.

Let C be the family of secondary types such as tissue shared by patients and donors

with |C| = n ≥ 2. For any given two secondary types Z,W ∈ C, Z ∼ W means that

agent of type Z is secondary type compatible with agent of type W . In the context of

kidney exchange, a patient of type Z is tissue-type compatible with a donor of type W .

We assume that the compatibility relation ∼ for secondary types satisfies symmetry and

intransitivity properties:

I. (Symmetry) Z ∼ W ⇒ W ∼ Z for any Z,W ∈ C, and

II. (Intransitivity) Z ∼ W and W ∼ L ; Z ∼ L for any Z,W,L ∈ C.

Tissue-type compatibility possess the properties of symmetry and intransitivity.

An agent of primary type X ∈ B and secondary type Z ∈ C is compatible with an agent

of primary type Y ∈ B and secondary type W ∈ C if and only if X � Y and Z ∼ W . In

the context of kidney exchange, a patient of type Y ∈ B and W ∈ C can accept a kidney

from a donor of type X ∈ B and Z ∈ C.
Because the compatibility of secondary types is symmetric and intransitive, we use

symbol i to stand for � and symbol c to stand for ∼. Let (X, Y )t describe a pair which has

a patient of primary type X ∈ B and a donor of primary type Y ∈ B and the compatibility

relation of secondary types between the patient and the doctor is t ∈ {i, c}. Therefore, we

have four categories for pairs:
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1. (X, Y )i for any X, Y ∈ B, and Y � X,

2. (X, Y )c for any X, Y ∈ B, and Y � X,

3. (X, Y )i for any X, Y ∈ B, and Y � X,

4. (X, Y )c for any X, Y ∈ B, and Y � X.

In this model, category 4 demonstrates compatible pairs and the other three categories

cover incompatible pairs. To simplify the notation, we write incompatible pairs from

categories 1 and 2 as (X, Y ) for which donors are primary type incompatible with patients,

i.e., Y � X.

We can describe a three-way cycle as

E = ((P p
1 , D

p
1), (P p

2 , D
p
2), (P p

3 , D
p
3)),

which means that the paired donor Dp
1 is matched with the paired patient P p

2 , the paired

donor Dp
2 is matched with the paired patient P p

3 , and the paired donor Dp
3 is matched with

the paired patient P p
1 . Any size cycle can be defined similarly. A cycle E is feasible if the

type of each donor in E is compatible with the type of patient who is matched with the

donor. Also, we can describe a three-way chain as

C = (Ds
1, (P

p
1 , D

p
1), (P p

2 , D
p
2), P s

1 ),

in which the single donor Ds
1 is matched with the paired patient P p

1 , the paired donor Dp
1

is matched with the paired patient P p
2 , and the paired donor Dp

2 is matched with the single

patient P s
1 . Any size chain can be defined in a similar way. A chain C is feasible if the

type of every donor in C is compatible with the type of patient who is matched with the

donor.

We can recast the Assumptions 2.1 and 2.3 into the present model, respectively.

Assumption 4.1 Every single agent of primary type X ∈ B and secondary type Z ∈ C
is Z ∼ W with every agent of type Y ∈ B and W ∈ C who is Y � X. Every agent in a

pair of type X ∈ B and Z ∈ C is Z ∼ W with every agent other than agents in the pair of

type Y ∈ B and W ∈ C who is Y � X.

Assumption 4.2 Let X, Y ∈ B be such that Y � X. There exists either no pair of

type (X, Y ) or at least one pair of type (X, Y )c.

When the compatibility relation of primary type satisfies reflexivity, asymmetry and

transitivity, the compatibility relation of secondary type satisfies symmetry and intransi-

tivity, and the Assumption 4.1 for all agents, the Assumptions 4.2 for paired agents are

33



satisfied, a maximal size exchange in the model can be achieved through no more than

n-way cycles and n-way chains. The next two results generalize those of Roth, Sönmez and

Ünver (2007, p. 837) to the setting which allows patients on the waiting list and single

donors and need to use both cycles and chains of exchange.

Theorem 4.3 (n-way exchange suffices): Assume that the Assumption 4.1 and 4.2

hold. Let µ be any maximal matching in the sense that any size of kidney exchanges is

permitted in the matching. Then there exists a maximal matching ν which contains at

most n-way cycles and chains of exchange but has the same number of patients matched

with compatible donors as in the matching µ.

The proof of this theorem is given in the appendix. The following is an immediate conse-

quence of the theorem.

Corollary 4.4 (Four-way exchange suffices in kidney exchange): Consider a kidney

exchange model under the Assumptions 2.1 and 2.3. Let µ be any maximal matching

without any restriction on the size of exchange. Then there exists a maximal matching ν

which contains at most four-way exchanges but has the same number of patients who can

benefit from exchanges as in the matching µ.

5 Simulations Based on the USA Data

In this section, we use two data sets from the U.S. Organ Procurement and Transplantation

Network (OPTN) and the Scientific Registry of Transplant Recipients (SRTR) from 1993

to 2002 and from 1995 to 2016, respectively,3 to generate simulated data reflecting the

characteristics of the population involved and to test how well our theoretical results can

predict. Although the simulated population which is almost identical or very close to the

real life situation may not fully meet the simplifying assumptions made for the model, we

find that the predicted maximum number of transplants given by our derived formulas is

surprisingly close to the number of transplants that can be actually realized.

5.1 Data Construction

Data is collected for two time slots. The first time slot data is from 1993 to 2002 and

is shown in Table 5, and the second time slot data is from 1995 to 2016 and is shown

in Table 6. These data sets illustrate the national characteristics of the USA population

involved in kidney exchanges. The first period data from 1993 to 2002 is largely similar to

3They are retrieved from http://optn.transplant.hrsa.gov/data/view-data-reports/national-data.
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those used by Roth, Sönmez and Ünver (2007), and Saidman et al. (2006), except that in

our new data set we include more relevant information like the distribution of compatible

patient-donor pairs and single donors, which are not used in Roth, Sönmez and Ünver

(2007), and Saidman et al. (2006).

5.1.1 Patient-Donor Pairs and Single Donors Construction

Following Roth, Sönmez and Ünver (2007), to avoid the complications of possible impact

of genetics on immunological incompatibilities we exclude all blood-related incompatible

patient-donor pairs in all our samples.

In the first time slot from 1993 to 2002, we use the same characteristics of incompatible

pairs as that of Roth, Sönmez and Ünver (2007) but add the blood-type characteristics for

compatible patients, compatible donors and single donors; see Table 5. The second time

slot data from 1995 to 2016 contains more detailed information about characteristics of

the population. Compared to three levels of PRA (Percent Reactive Antibody) of patients

from the data of the first time slot, five levels of PRA called CPRA (Calculated Percent

Reactive Antibody) are provided in the data of the second time slot. The second time

slot data contains also the information of compatible paired patient gender, compatible

paired patient CPRA types and the blood-type information of incompatible paired donor;

see Table 6.

It is important to point out that in the OPTN/SRTR annual report there is no clear in-

formation about the number of incompatible patient-donor pairs. Following Roth, Sönmez

and Ünver (2007) we use newly-added patients on the waiting list every year as approxi-

mately incompatible paired patients and the blood-type distribution of donors whose kid-

neys have been transplanted as the blood-type distribution of incompatible paired donors.

The information on single donors is collected from the data of deceased donors in each

year.

Because there exist a large number of patients on the waiting list, we can always find a

patient who is compatible with any given kidney. Hence, we do not need to simulate any

data for patients on the waiting list.

5.1.2 Tissue-type Incompatibility

Tissue-type compatibility is the second condition for kidney transplants. In our simulations

of the first time slot from 1993 to 2002, we adopt the same method as used by Roth, Sönmez

and Ünver (2007) such that patients are divided into three groups based on the difficult

level of tissue-type compatible with a random donor. In the first group called Low PRA

group, patients are tissue-type incompatible with less than 10 percent of the population.

The second group called Medium PRA contains patients who are tissue-type incompatible
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with 10-80 percent of the population. And, the third one called High PRA has patients who

have a tissue-type incompatibility problem with more than 80 percent of the population.

We use the following categories as used by Roth, Sönmez and Ünver (2007):

1. In Low PRA group, each patient is tissue-type incompatible with 5 percent of the

population,

2. In Medium PRA group, each patient is tissue-type incompatible with 45 percent of

the population, and

3. In High PRA group, each patient is tissue-type incompatible with 90 percent of the

population.

In our simulations for the second time slot from 1995 to 2016, CPRA index is used to

check whether a patient is sensitive or not according to OPTN/SRTR database. Five levels

are calculated in CPRA index, which are 0, 1-19, 20-79, 80-97, and 98-100. If a patient

CPRA equals 0, it means the patient has no PRA problem with potential donors; 1-19

means the patient has 1 percent to 19 percent to have problem with potential donors and

so on. In this simulation, we divide patients into five groups based on the difficult levels

of tissue-type compatibility with a random donor. Based on the CPRA data, we use the

following five groups:

1. In 0 CPRA group, each paired patient is tissue-type incompatible with 0 percent of

the population;

2. In 1-19 CPRA group, each paired patient is tissue-type incompatible with 9.5 percent

of the population;

3. In 20-79 CPRA group, each paired patient is tissue-type incompatible with 50 percent

of the population;

4. In 80-97 CPRA group, each paired patient is tissue-type incompatible with 88 percent

of the population;

5. In 98-100 CPRA group, each paired patient is tissue-type incompatible with 99

percent of the population;

Because the data from 1995 to 2016 contains more detailed information on the tissue-

type compatibility of patients and donors, it provides more accurate information than the

first time slot data does. This has important implications: it will yield better results as

shown in the subsequent section.

According to Zenios, Woodle and Ross (2001), a female patient is more likely to have a

positive corssmatch with her husband. For instance, when positive crossmatch probability

is 11.1 percent between random pairs, it becomes 33.3 percent between female patients

and their donor husbands. Hence, when a patient is female and her potential donor is her

husband, we adjust the probability of tissue-type incompatibility between them by using
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the formulas

PRA∗ = 100− 0.75(100− PRA) and CPRA∗ = 100− 0.75(100− CPRA).

5.2 Simulations

We generate a Monte-Carlo simulation size of 5,000 random population constructions for

five population sizes of 25, 50, 100, 150 and 200 incompatible patient-donor pairs together

with the corresponding population sizes of compatible patient-donor pairs and single donors

according to the population distributions given by Table 5 for the period of 1993 to 2002

and by Table 6 for the period of 1995 to 2016, respectively. In addition we do a Monte-

Carlo simulation size of 500 random population constructions for two big population sizes

of 300 and 400 incompatible patient-donor pairs. Note that for these big population sizes

we only generate 500 instead of 5,000 random population constructions in order to save

time as it involves a relatively large and computationally difficult integer programming

problem.

In our simulations we use the Kuhn-Munkres Algorithm (Kuhn, 1955) to find the max-

imal number of incompatible paired patients who can actually receive a compatible kidney

when the exclusive exchange mechanism, the first degree inclusive mechanism and the sec-

ond degree inclusive mechanism are applied respectively. This maximal number will be

simply called simulation. We compare these numbers with those predicted by the formula

given by Proposition 3.3 to see how close or far the actual maximal number of kidney

transplants can be from the predicted number based on the formula in Proposition 3.3. As

said earlier, we only use two-way exchanges in all simulations. Following Roth, Sönmez

and Ünver (2007), we make use of two types of upper bounds:

Upper Bound 1. This is the number given by the formula in Proposition 3.3 for the

simulated population sample of 25, 50, 100, 150, 200, 300, and 400 incompatible patient-

donor pairs.

Upper Bound 2. For each simulated population sample, there may exist some patients

who cannot find a compatible donor in the simulated population. We exclude those hopeless

patients from the sample and compute the number given by the formula in Proposition 3.3

for the remaining population. This number is called the Upper Bound 2 and clearly gives

a more accurate upper bound for the number of feasible transplants that can be realized.

For each population size of 25, 50, 100, 150, and 200 incompatible patient-donor pairs,

we generate 5000 random samples and calculate the average of all 5000 simulations, up-

perbound 1’s and upperbound 2’s. For each population size of 300 and 400 incompatible

patient-donor pairs, we generate 500 random samples and calculate the average of all 500

simulations, upperbound 1’s and upperbound 2’s. All results are collected in Tables 7 and

8 for the period of 1993-2002 and the period of 1995-2016, respectively.
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5.3 Discussion of the Simulation Results

The simulation results from Tables 7, 8, 9, and 10 indicate that

1. the simulation results are very close to the theoretical bounds predicted by the

formula in Proposition 3.3. Note that all our simulated population samples contain tissue-

type incompatibilities, whereas Proposition 3.3 basically assumes away the issue of tissue-

type incompatibility.

2. when both compatible patient-donor pairs and single donors participate in kidney

exchanges, efficiency of exchange increases significantly.

3. increasing the size of the population can help the theory predict better.

4. two-way exchanges can achieve most of the potential gains from exchange. Even

more so if the size of population gets bigger.

5. when the number of incompatible patient-donor pairs exceeds a certain threshold,

say, 100, efficiency of exchange becomes almost a constant. This strongly suggests that it

is possible to decentralize kidney exchanges in a number of places with a relatively large

size of population.

6. more accurate information can improve the quality of transplants and at the same

time reduce the matching rate. This will be explained in the following subsection.

Before explaining the above points in detail, we introduce two performance measures.

We first define the deviation of each simulation with upper bound 1 and upper bound 2 by

upper bound i− simulation

upper bound i
, i=1, 2

All deviations are given in Table 9. It is clear that as the size of the population increases,

the deviation becomes smaller.

We next define the matching rate for each case of feasible transplants for incompatible

paired patients over the number of incompatible patient-donor pairs under each exchange

mechanism by

the number of feasible transplants for incompatible paired patients

the number of all incompatible paired patients

All matching rates are collected in Table 10 and shown in Figure 7. It is clear that as the

size of the population increases, the matching rate increases.

Points 1 and 3 can be seen from Table 9. For the two data sets, the table indicates that

the deviation becomes smaller as the size of the population increases, and that the 2nd

degree inclusive mechanism performs better than the 1st degree inclusive mechanism which

outperforms the exclusive exchange mechanism. Look at the case of the 1993-2002 data set.

For 25 incompatible pairs, the deviations for upper bound 1 under the exclusive exchange

mechanism, the 1st degree inclusive mechanism and the 2nd degree inclusive mechanism are
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27%, 19% and 10%, respectively; and the corresponding deviations for upper bound 2 are

7%, 8% and 6%, respectively. For 100 incompatible pairs, the deviations for upper bound

1 under the exclusive exchange mechanism, the 1st degree inclusive mechanism and the

2nd degree inclusive mechanism are 12%, 6% and 2%, respectively; and the corresponding

deviations for upper bound 2 are 6%, 4% and 2%, respectively. For 200 incompatible

pairs, the deviations for upper bound 1 under the exclusive exchange mechanism, the 1st

degree inclusive mechanism and the 2nd degree inclusive mechanism are 6%, 2% and 0.7%,

respectively; and the corresponding deviations for upper bound 2 are 4%, 2% and 0.7%,

respectively. This suggests that increasing the size of the population can make the theory

predict better. These observations hold true also for the 1995-2016 data set.

Points 2 and 4 become quite obvious if we compare our Table 7 with Table 2 of Roth,

Sönmez and Ünver (2007, p.841) for the data of the same period of 1993-2002. For instance,

for a population of 25 incompatible patient-donor pairs, in their Table 2 under two-, three-

, ..., unlimited-way exchange, their mechanism gives 11.992 feasible transplants, whereas

our Table 7 shows that under two-way exchange, our 1st degree inclusive mechanism gives

12.838 feasible transplants and the 2nd degree inclusive mechanism yields 19.59 feasible

transplants.

Finally we turn to Point 5. Figure 7 demonstrates that overall the slope of matching

rate is upward and when the number of incompatible patient-donor pairs is below 100-a

kind of threshold, the slope is relatively steep, and after 100, the slope becomes almost flat

albeit upward, i.e., efficiency of exchange is nearly a constant. This may have important

policy implications: Kidney exchanges could be decentralized. Any country with a large

population like USA can have several separate kidney exchange programs spread across

the country where each program covers a sufficient number of patients and donors, say, no

less than 100 of incompatible patient-donor pairs. This can be very important in practice,

as the life of kidneys from decreased donors is short and shortening travelling time can be

extremely helpful.

5.3.1 An Explanation of the Matching Rate on the Second Dataset

In this subsection we explain why the matching rate in the 1995-2016 dataset (the second

time slot) is lower than in the 1993-2002 dataset (the first time slot). In our simulations,

we first draw a population of n incompatible pairs from the pool. Each incompatible pair

is either blood-type incompatible or tissue-type compatible or both. When a compatible

pair is drawn, we put the compatible pair back to the pool and keep drawing pairs from

the pool until the population of n incompatible pairs is generated.

From the information given in Tables 5 and 6, we can calculate the percentage of

incompatible pairs in the pool.
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We give an example of the calculation by using the first group of each time slot. 89.24

percent of patients have no tissue type problem (CPRA=0) in the second time slot while

70.19 percent of patients have a low PRA value of 5 percent in the first time slot. Therefore,

the percentages of drawing incompatible pairs from this group in the first and second time

slots are given as follows, respectively:

(Low PRA): 5% + 95% ∗ (7/16) = 0.05 + 0.415625 = 0.465625

(0): (7/16) = 0.4375.

When an incompatible paired patient is tissue-type compatible with a paired donor,

the patient is blood-type incompatible with the donor. We have seven types of blood-type

incompatible pairs (O,A), (O,B), (O,AB), (A,B), (B,A), (A,AB) and (B,AB). From

the theoretical part, we can see that the blood-type incompatible pairs are difficult to

find compatible pairs because they cannot match with each other except (A,B)− (B,A),

especially among incompatible pairs.

Table 4: The percentage of incompatible pairs in the pool

Groups from

1992-2003

The rate of tissue type

incompatible pairs (%)

The rate of blood-type

incompatible but tissue type

compatible pairs (%)

The rate of

incompatible

pairs (%)

Low PRA 0.05 0.415625 0.465625

Medium PRA 0.45 0.240625 0.690625

High PRA 0.9 0.04375 0.94375

Average 0.213385 0.34414 0.5575

Groups from

1995-2016

The rate of tissue type

incompatible pairs (%)

The rate of blood-type

incompatible but tissue type

compatible pairs (%)

The rate of

incompatible

pairs (%)

0 0 0.4375 0.4375

1-19 0.095 0.39593 0.49093

20-79 0.5 0.21875 0.71875

80-97 0.88 0.0525 0.9325

98-100 0.99 0.004375 0.994375

Average 0.05658 0.41274 0.46933

We can see that blood-type incompatible pairs account for 61.729 (0.34414/0.5575)

percent of the total incompatible pairs in the first time slot. While blood-type incompatible

pairs account for 87.9423 (0.41274/0.46933) percent of the total incompatible pairs in the

second time slot, which is 26.2133 percent higher than that of the first time slot. This

means that the number of blood-type incompatible pairs from the second time slot is

larger than those from the first time slot.

On the other hand, the number of blood-type compatible but tissue type incompatible

pairs (0.213385 ∗ (9/16) = 0.12) in the first time slot is larger than that in the second one
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(0.05658∗ (9/16) = 0.032). Since blood-type incompatible pairs cannot be matched except

(A,B) − (B,A) with each other, it will be more difficult for incompatible paired patients

to be matched in the second time slot than in the first time slot. This shows why the

matching rate in the second time slot is lower than that in the second time slot.

6 Conclusion

The current study has been motivated by two major issues concerning kidney exchange.

The first one is very practical and concerns the engineering aspect of conducting efficient

kidney exchanges in a real life environment. In this environment, there are many compatible

patient-donor pairs, incompatible patient-donor pairs, patients on the waiting list, and

single donors who are altruistic living or cadaver donors, and kidney exchanges can be

done mostly by two-way, occasionally by three-way, and rarely by four-way. We have

examined how to design kidney exchange procedures in this practical environment so that

a maximal number of patients can receive compatible kidneys. The second one is more

theoretical and concerns the derivation of a precise upper bound of a possible number of

patients who can benefit from two-way, three-way, and four-way exchanges, respectively.

Our model is very practical and general, as it reflects a typical real life kidney ex-

change environment and includes incompatible patient-donor pairs, compatible patient-

donor pairs, patients on the waiting list, and single donors who can be altruistic living

donors or decreased donors. A salient feature of the current model is to allow compatible

patient-donor pairs and single donors to participate in kidney exchange with incompatible

patient-donor pairs. In this way, the number of incompatible paired patients who can re-

ceive compatible kidneys will be increased considerably and is directly propositional to the

size of compatible paired donors and single donors, and therefore more lives can be saved.

For this general model we have derived a precise maximum number of patients who can

possibly receive compatible kidneys under two-way, three-way, and four-way exchanges re-

spectively, although the analysis has become more difficult and more complicated. In each

case (two-, three-, or four-way exchange), we develop a procedure by which kidney ex-

change should be conducted to enable a maximal number of patients to receive compatible

kidneys. It is shown that even for this general model at most four-way cycles or chains

will be sufficient to accomplish all potential gains of kidney exchange, and that in every

efficient exchange, each cycle contains at most two blood-type compatible pairs and each

chain contains at most one blood-type compatible pair. We have also provided substantial

simulation results based on the USA national patient data for the period 1993-2002 and

the period 1995-2016. Our results shed new insights into the kidney exchange problem and

are stated as follows.
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Our results are fully consistent with those found in Roth, Sönmez and Ünver (2007),

when kidney exchanges are carried out among only incompatible pairs. However, in our

model when compatible patient-donor pairs are allowed to exchange with incompatible

patient-donor pairs, the number of incompatible paired patients who can receive compat-

ible kidneys increases considerably; and this number will increase significantly when both

compatible patient-donor pairs and single donors participate in exchange with incompat-

ible pairs. Our theory can predict surprisingly well in the sense that the actual maximal

number of feasible kidney transplants is very close to the predicated number given by our

derived formula. As the size of the population increases, the predictive power of our the-

ory becomes stronger; two-way exchange can accomplish most of the potential gains of

exchange. If the population is large enough, it is sufficient to use two-way exchange to

clear all incompatible pairs. Our results have a novel and significant policy implication:

kidney exchange can be decentralized in the sense that in a country with a large population,

several separate kidney exchange programs can be established across the country, not just

one centralized program for the entire country. In the course of our study it becomes clear

to us that at the current stage it is very difficult to conduct simulations with a population

size of 500 incompatible patient-donor pairs, as it involves a quite large and difficult integer

programming problem. We expect to report simulation results in the near future by also

making use of three-, four- or higher-way cycles and chains of exchange.

We hope the current study will be useful in helping design practical kidney exchange

program and stimulate further research.
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Table 5: Patient-donor pair and single donor distributions used in simu-

lations based on OPTN/SRTR database from 1993 to 2002, retrieved from

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data.

Incompatible paired patient blood type Percent

O 48.14

A 33.73

B 14.28

AB 3.85

Patient gender Percent

Female 40.9

Male 59.1

Relationship of patient-donor pair Percent

Spouse 48.97

Other 51.03

PRA types Percent

Low PRA 70.19

Medium PRA 20.00

High PRA 9.81

Compatible paired patient blood type Percent

O 45.12

A 38.54

B 12.64

AB 3.7

Compatible paired donor blood type Percent

O 63.74

A 27.12

B 8.08

AB 1.06

Single donor blood type Percent

O 47.31

A 38.14

B 11.16

AB 3.39

Transplant ratio by donor types Percent

Single Donors 39.83

Paired Donors 22.77
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Table 6: Patient-donor pair and single donor distributions used in simu-

lations based on OPTN/SRTR database from 1995 to 2016, retrieved from

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data.

Incompatible paired patient blood type Percent S.D.

O 48.46 0.0032

A 33.22 0.0047

B 14.48 0.0028

AB 3.84 0.0011

Incompatible paired patient gender Percent S.D.

Female 40.1 0.0117

Male 59.9 0.0117

Incompatible paired patient CPRA type Percent S.D.

0 89.24 0.0145

1-19 2.79 0.0071

20-79 4.64 0.005

80-97 2.03 0.001

98-100 1.3 0.002

Compatible paired patient blood type Percent S.D.

O 44.71 0.0092

A 38.47 0.0075

B 12.99 0.0044

AB 3.83 0.0029

Compatible paired patient gender Percent S.D.

Female 39.95 0.0204

Male 60.05 0.0204

Compatible paired patient CPRA type Percent S.D.

0 73.11 0.0241

1-19 9.43 0.0154

20-79 12.82 0.0084

80-97 3.38 0.0041

98-100 1.26 0.0025

Relationship of patient-donor pair Percent S.D.

Spouse 35.8 0.1201

Other 64.2 0.1201

Incompatible paired donor blood type Percent S.D.

O 55.3 0.0122

A 32.46 0.0081

B 9.9 0.0041

AB 2.34 0.0022

Compatible paired donor blood type Percent S.D.

O 64.66 0.011

A 26.45 0.0074

B 7.91 0.0044

AB 0.98 0.0021

Single donor blood type Percent S.D.

O 47.59 0.0068

A 37.41 0.0084

B 11.57 0.0055

AB 3.43 0.0026

Transplant ratio by donor type Percent S.D.

Single Donors 36.02 0.0398

Paired Donors 19.9 0.039
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Table 7: Simulation results about average maximal number of incompatible paired patients

actually receiving transplants and average predicted number by the formula based on the 1993-

2002 data.

Population Size

of Incompatible

Pairs Method

Number of incompatible paired patients getting transplants

The Exclusive

Exchange

Mechanism

The First

Degree Inclusive

Exchange Mechanism

The Second

Degree Inclusive

Exchange Mechanism

n=25

Simulation
8.9992

(3.3465)

12.8388

(3.36736)

19.5904

(3.1966)

Upper Bound 1
12.4444

(3.62319)

15.8782

(3.55402)

21.919

(3.0039)

Upper Bound 2
9.7012

(3.69614)

14.0782

(3.59381)

20.964

(3.02684)

n=50

Simulation
21.7872

(5.04759)

29.599

(5.17304)

42.8134

(4.77275)

Upper Bound 1
27.0408

(5.16082)

33.5676

(5.31818)

45.413

(4.45821)

Upper Bound 2
23.7656

(5.47378)

31.9192

(5.4182)

44.8486

(4.41678)

n=100

Simulation
49.8772

(7.36965)

64.2164

(7.4473)

89.8862

(6.9542)

Upper Bound 1
56.7104

(7.36069)

68.614

(7.58903)

92.2014

(6.59551)

Upper Bound 2
53.4844

(7.70327)

67.4584

(7.6945)

92.0746

(6.57535)

n=150

Simulation
78.9256

(9.29992)

100.014

(9.42842)

137.567

(8.63815)

Upper Bound 1
86.692

(9.1035)

104.442

(9.48898)

139.417

(8.33299)

Upper Bound 2
83.6704

(9.54597)

103.647

(9.58259)

139.383

(8.31955)

n=200

Simulation
108.716

(10.7764)

135.571

(10.9588)

184.819

(10.3357)

Upper Bound 1
116.799

(10.5688)

139.742

(11.0306)

186.254

(10.1569)

Upper Bound 2
114.232

(10.9591)

139.168

(11.0965)

186.245

(10.1546)

n=300

Simulation
170.54

(13.8317)

208.974

(13.8698)

280.91

(13.4347)

Upper Bound 1
178.668

(13.6163)

212.676

(14.0197)

281.688

(13.4062)

Upper Bound 2
176.948

(13.9028)

212.404

(14.0379)

281.688

(13.4062)

n=400

Simulation
231.628

(15.1099)

281.492

(15.1398)

375.198

(15.2474)

Upper Bound 1
239.524

(14.592)

284.636

(15.0674)

375.65

(15.2176)

Upper Bound 2
238.36

(14.8267)

284.466

(15.1155)

375.65

(15.2176)
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Table 8: Simulation results about average maximal number of incompatible paired patients

actually receiving transplants and average predicted number by the formula based on the 1995-

2016 data.

Population Size

of Incompatible

Pairs Method

Number of incompatible paired patients getting transplants

The Exclusive

Exchange

Mechanism

The First

Degree Inclusive

Exchange Mechanism

The Second

Degree Inclusive

Exchange Mechanism

n=25

Simulation
6.6844

(3.02308)

9.6722

(3.16884)

16.1756

(3.39085)

Upper Bound 1
8.3772

(3.29944)

11.3094

(3.4135)

17.6964

(3.55437)

Upper Bound 2
6.832

(3.12092)

10.0494

(3.30825)

16.7298

(3.50851)

n=50

Simulation
15.008

(4.5394)

21.5734

(4.71549)

33.8482

(4.9819)

Upper Bound 1
18.5984

(4.79534)

24.1956

(4.9522)

36.1456

(5.1907)

Upper Bound 2
16.0188

(4.75009)

22.3364

(4.88135)

34.7956

(5.1391)

n=100

Simulation
34.496

(6.8107)

46.3272

(7.05924)

69.7068

(7.42242)

Upper Bound 1
39.6832

(6.96165)

50.2572

(7.27533)

73.0118

(7.62722)

Upper Bound 2
35.8428

(7.01817)

47.6532

(7.22253)

71.1594

(7.55584)

n=150

Simulation
54.2632

(8.65407)

71.5348

(8.9778)

105.994

(9.24828)

Upper Bound 1
60.934

(8.82225)

76.3784

(9.16827)

110.046

(9.4449)

Upper Bound 2
56.2608

(8.89426)

73.313

(9.17326)

107.991

(9.44535)

n=200

Simulation
74.134

(10.0771)

96.6472

(10.4245)

142.411

(10.6297)

Upper Bound 1
81.8596

(10.1768)

102.143

(10.691)

146.966

(10.8525)

Upper Bound 2
76.5832

(10.2132)

98.7708

(10.659)

144.941

(10.8549)

n=300

Simulation
114.904

(11.8696)

147.89

(12.4127)

215.976

(13.0876)

Upper Bound 1
124.292

(11.9257)

154.37

(12.6063)

221.19

(13.282)

Upper Bound 2
118.272

(12.0396)

150.724

(112.6819)

219.358

(13.3162)

n=400

Simulation
155.572

(13.846)

198.49

(14.1654)

288.54

(14.4048)

Upper Bound 1
166.024

(13.8123)

205.776

(14.4168)

294.304

(14.7397)

Upper Bound 2
159.384

(13.8554)

202.008

(14.3976)

292.802

(14.7343)
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Table 9: Deviation from upper bounds 1 and 2 in simulation based on the 1993-2002 data and

1995-2016 data.

Data from 1993-2002

Population Size

of Incompatible

Pairs Method

Deviation Value

The Exclusive

Exchange

Mechanism

The First

Degree Inclusive

Exchange Mechanism

The Second

Degree Inclusive

Exchange Mechanism

n=25

Upper Bound 1 0.2768 0.1914 0.1062

Upper Bound 2 0.0724 0.088 0.0655

n=50

Upper Bound 1 0.1943 0.1182 0.0572

Upper Bound 2 0.0832 0.0727 0.04538

n=100

Upper Bound 1 0.1205 0.0641 0.0251

Upper Bound 2 0.0674 0.0481 0.0238

n=150

Upper Bound 1 0.0896 0.0424 0.0133

Upper Bound 2 0.0567 0.0351 0.013

n=200

Upper Bound 1 0.0692 0.0299 0.0077

Upper Bound 2 0.0483 0.0258 0.00766

n=300

Upper Bound 1 0.04549 0.0174 0.00276

Upper Bound 2 0.03621 0.01615 0.00276

n=400

Upper Bound 1 0.03296 0.011 0.0012

Upper Bound 2 0.02824 0.0104 0.0012

Data from 1995-2016

Population Size

of Incompatible

Pairs Method

Deviation Value

The Exclusive

Exchange

Mechanism

The First

Degree Inclusive

Exchange Mechanism

The Second

Degree Inclusive

Exchange Mechanism

n=25

Upper Bound 1 0.2021 0.1448 0.0859

Upper Bound 2 0.0216 0.0375 0.03312

n=50

Upper Bound 1 0.1665 0.108375 0.06356

Upper Bound 2 0.032337 0.03416 0.02723

n=100

Upper Bound 1 0.1307 0.07819 0.04526

Upper Bound 2 0.037575 0.028622 0.02041

n=150

Upper Bound 1 0.1094 0.063415 0.03682

Upper Bound 2 0.0355 0.02425 0.01849

n=200

Upper Bound 1 0.09437 0.0538 0.03099

Upper Bound 2 0.03198 0.0215 0.01745

n=300

Upper Bound 1 0.075532 0.041977 0.02357

Upper Bound 2 0.0284767 0.0188 0.015418

n=400

Upper Bound 1 0.062954 0.03541 0.01958

Upper Bound 2 0.02391 0.017415 0.01455
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Table 10: Matching rates of incompatible paired patients in simulation based on the 1993-2002

data and 1995-2016 data.

Data from 1993-2002

Population Size

of Incompatible

Pairs Method

Matching Rate

The Exclusive

Exchange

Mechanism

The First

Degree Inclusive

Exchange Mechanism

The Second

Degree Inclusive

Exchange Mechanism

n=25

Simulation 0.35997 0.51355 0.78362

Upper Bound 1 0.49778 0.63513 0.87676

Upper Bound 2 0.38805 0.56313 0.83856

n=50

Simulation 0.43574 0.59198 0.85627

Upper Bound 1 0.54096 0.67135 0.90826

Upper Bound 2 0.47531 0.63838 0.89697

n=100

Simulation 0.49877 0.64216 0.89886

Upper Bound 1 0.5671 0.68614 0.92201

Upper Bound 2 0.53484 0.67458 0.92075

n=150

Simulation 0.52617 0.66676 0.91711

Upper Bound 1 0.57795 0.69628 0.92945

Upper Bound 2 0.5578 0.69098 0.92945

n=200

Simulation 0.54358 0.67786 0.9241

Upper Bound 1 0.584 0.69871 0.93127

Upper Bound 2 0.57116 0.69584 0.93122

n=300

Simulation 0.5685 0.69658 0.936

Upper Bound 1 0.59556 0.70892 0.93896

Upper Bound 2 0.5898 0.708 0.93896

n=400

Simulation 0.57907 0.70373 0.93799

Upper Bound 1 0.59881 0.71159 0.9391

Upper Bound 2 0.5959 0.7116 0.9391

Data from 1995-2016

Population Size

of Incompatible

Pairs Method

Matching Rate

The Exclusive

Exchange

Mechanism

The First

Degree Inclusive

Exchange Mechanism

The Second

Degree Inclusive

Exchange Mechanism

n=25

Simulation 0.267376 0.386888 0.647024

Upper Bound 1 0.335088 0.452376 0.707856

Upper Bound 2 0.27328 0.401976 0.669192

n=50

Simulation 0.310016 0.431468 0.676964

Upper Bound 1 0.371968 0.483912 0.722912

Upper Bound 2 0.320376 0.446728 0.695912

n=100

Simulation 0.34496 0.463272 0.697068

Upper Bound 1 0.396832 0.502572 0.730118

Upper Bound 2 0.358428 0.476532 0.711594

n=150

Simulation 0.36175 0.476869 0.7066

Upper Bound 1 0.406226 0.509189 0.73364

Upper Bound 2 0.375072 0.48875 0.71994

n=200

Simulation 0.37067 0.483236 0.712055

Upper Bound 1 0.409298 0.510715 0.73483

Upper Bound 2 0.382916 0.493854 0.724705

n=300

Simulation 0.383 0.49296 0.71992

Upper Bound 1 0.4143 0.51456 0.7373

Upper Bound 2 0.39424 0.5024 0.73119

n=400

Simulation 0.38893 0.496225 0.72135

Upper Bound 1 0.41506 0.51444 0.73576

Upper Bound 2 0.39846 0.50502 0.7320
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Figure 7: Matching rates of incompatible paired patients based on the 1993-2002 data (a) and

based on the 1995-2016 data (b).
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creasing the opportunity of live kidney donation by matching for two-and three-way

exchanges,” Transplantation, 81, 773-782.

[14] L. Shapley and H. Scarf (1974), “On cores and indivisibility,” Journal of mathematical

economics, 1, 23-37.
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The Appendix

Proof of Proposition 3.5: Under Assumption 2.1 and 2.3, all blood-type compatible

pairs but tissue-type incompatible pairs (A,A), (B,B), (AB,AB), (O,O), (A,O), (B,O),

(AB,O), (AB,A), (AB,B) can be matched through two-way and three-way cycles. Under

Assumptions 2.1 and 2.2, all pairs of type (B,A) can be matched through two-way cycles.

All compatible pairs can be matched because even if paired patients from compatible pairs

are not involved into two-way cycles, they can receive their own donors. As long as a

kidney can be allocated to the waiting list, we can always find a compatible patient in

waiting list because of the large population of patients on the waiting list. Hence, the

maximal number of transplantations for patients on the waiting list, paired patients from

blood-type compatible pairs and paired patients from pairs of type (B,A) is:

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

+#Ad + #Bd + #ABd + #Od

Let N be the maximum number of transplants for blood-type incompatible paired pa-

tients of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B). We first consider three-

way cycles with two blood-incompatible pairs. We can match three-way cycles starting with

pairs (O,AB) and three-way chains starting with single donors Od latter because a pair

(O,AB) or a single donorOd can match with any patient. We now consider three-way cycles

(AB,A)−(A,B)−(B,AB), (B,O)−(O,A)−(A,B) and chainsAd−(A,B)−(B,AB)−ABp.

By Assumption 2.2, all pairs (B,A) can be matched and hence the number of remaining

pairs (A,B) is #(A,B)−#(B,A). To make full advantage of those three-way cycles and

chains, we need avoid the over-match problems. Consider the process that match a maxi-

mum number of three-way cycles (AB,A)− (A,B)− (B,AB) and then match a maximum

number of three-way cycles (B,O) − (O,A) − (A,B). If all pair (A,B) are matched in

three-way cycles (AB,A)−(A,B)−(B,AB), we will lose efficiency when there are sufficient

pairs (B,O) to make two-way cycles (B,O)−(O,B) but insufficient pairs (AB,A) to make

two-way cycles (AB,A)− (A,AB). The method is to restrict the number of three-way cy-

cles (AB,A)− (A,B)− (B,AB) by #Ad + #(AB,A)−min{#Ad + #(AB,A),#(A,AB)}
and then release. After matching three-way cycle (AB,A) − (A,B) − (B,AB) under re-

striction, we match three-way cycle (B,O) − (O,A) − (A,B). When there are remaining

pair (A,O), pair (B,AB), pair (AB,A) and pair (O,B), we will lose efficiency because one

more pair can be matched by separating a three-way cycle (B,O) − (O,A) − (A,B) into

a two-way cycle (B,O) − (O,B), a two-way cycle (A,O) − (O,A) and a three-way cycle

(AB,A) − (A,B) − (B,AB) with remaining pairs. The method is to restrict the number

of cycle (B,O)− (O,A)− (A,B) by #(O,A)−min{#(A,O),#(O,A)} and then release.
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Therefore, the procedure of taking full advantage of three-way cycles (AB,A)− (A,B)−
(B,AB) and (B,O)− (O,A)− (A,B) is as follows:

Process 1: The number of pairs (A,B) in this process should not exceed #(A,B)−
#(B,A). Match a maximum number of three-way cycles (AB,A)−(A,B)−(B,AB)

and chains Ad− (A,B)− (B,AB)−ABp, where the available number of (AB,A) and

Ad is min{#Ad + #(AB,A),#(A,AB)}. Match a maximum number of three-way

cycles (B,O)− (O,A)− (A,B), where the available number of (O,A) is #(O,A)−
min{#(A,O),#(O,A)}.

Process 2: Match a maximum number of three-way cycles (AB,A)−(A,B)−(B,AB)

and chains Ad − (A,B)− (B,AB)− ABp. Match a maximum number of three-way

cycles (B,O)− (O,A)− (A,B).

The number of transplants for blood-type incompatible paired patients of types (O,A),

(O,B), (O,AB), (A,AB), (B,AB), (A,B) in the procedure is 2∗g1 +2∗g2 +2∗g3 +2∗g4,
where

g1 = min{#Ad + #(AB,A)−min{#Ad + #(AB,A),#(A,AB)},#(A,B)−#(B,A),

#(B,AB)}
g2 = min{#(B,O),#(O,A)−min{#(A,O),#(O,A)},#(A,B)−#(B,A)− g1}
g3 = min{#Ad + #(AB,A)− g1,#(A,B)−#(B,A)− g1 − g2,#(B,AB)− b1}
g4 = min{#(B,O)− g2,#(O,A)− g2,#(A,B)−#(B,A)− g1 − g2 − g3}

After the procedure, sixteen situations occur when we match remaining (O,A) with

(A,O), (O,B) with remaining (B,O), (A,AB) with remaining pair (AB,A) and single

donor Ad, and remaining (B,AB) with pair (AB,B) and single donor Bd.

(1) When (O,A), (O,B), (A,AB), (B,AB) remaining, we have min{#(A,O),#(O,A)}
= #(A,O), g1 = #Ad+#(AB,A)−min{#Ad+#(AB,A),#(A,AB)}, g2 = min{#(B,O),

#(A,B)−#(B,A)− g1}, g3 = min{#Ad + #(AB,A)− g1,#(A,B)−#(B,A)− g1 − g2}
and g4 = 0. There is no potential gains from three-way cycles and chains with one pair

(B,A) or with one blood-incompatible side because all blood-type compatible pairs are

matched. Therefore, we first take full of advantage of three-way cycles and chains starting

from single donor Od and pairs of type (AB,O) and then match remaining pairs with single

donor Od and pairs of type (AB,O). The maximum number of transplants in situation (1)

is:

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + w1 + w2 + w3 + w4 + 2 ∗ g5 + 2 ∗ g6 + 2 ∗ g7 + 2 ∗ g8 + w5

where

w1 = #(A,O)

w2 = #Bd + #(AB,B)

w3 = #Ad + #(AB,A)− g1 − g3
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w4 = #(B,O)− g2
g5 = min{#Od + #(AB,O),#(O,A)− g2 − w1,#(A,AB)− w3}
g6 = min{#Od + #(AB,O)− g5,#(O,B)− w4,#(B,AB)− g1 − g3 − w2}
g7 = min{#Od + #(AB,O)− g5 − g6,#(O,A)− g2 − w1 − g5,

#(A,B)−#(B,A)− g1 − g2 − g3}
g8 = min{#Od + #(AB,O)− g5 − g6 − g7,#(A,B)−#(B,A)− g1 − g2 − g3 − g7,

#(B,AB)− g1 − g3 − w2 − g6}
w5 = min{#Od + #(AB,O)− g5 − g6 − g7 − g8,#(O,A) + #(O,B) + #(O,AB)

+#(A,AB) + #(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − 2 ∗ g3
−w1 − w2 − w3 − w4 − g5 − g6 − g7 − g8}

The maximum number of feasible transplants can be rewritten as:

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + w1 + w2 + w3 + w4 + 2 ∗ g5 + 2 ∗ g6 + 2 ∗ g7 + 2 ∗ g8 + w5

= min{N1, N3, N6, N7, N10, N12, N15, N17}.

One may refer to Tables from B1 to B4 in Supplement B of Cheng and Yang (2017).

(2) When (A,O), (B,O), (A,AB), (B,AB) remaining, we have g1 = #Ad+#(AB,A)−
min{#Ad+#(AB,A),#(A,AB)}, g2 = #(O,A)−min{#(A,O),#(O,A)}, g3 = min{#Ad+

#(AB,A) − g1,#(A,B) − #(B,A) − g1 − g2} and g4 = min{#(O,A) − g2,#(A,B) −
#(B,A) − g1 − g2 − g3}. There is no potential gains from three-way cycles and chains

with one pair (B,A), (A,O)− (O,B)− (B,A), (AB,B)− (B,A)− (A,AB), Bd− (B,A)−
(A,AB)−ABp because there is no pair (O,B), pair (AB,B) and single donorBd left. More-

over, there is no potential gains from the combinations (AB,A)−(A,O), (AB,B)−(B,O),

Ad − (A,O) and Bd − (B,O) because there is no pair (AB,A), pair (AB,B), single donor

Ad and single donor Bd left. Since there are remaining pair (B,O), we can match remaining

pair (A,B) with (B,O). Then, do the same matching process as situation (1). Because

there is no remaining pair (O,A) and (O,B), we have g5 = g6 = g7 = 0. The maximum

number of transplants is:

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + 2 ∗ g4 + w1 + w2 + w3 + w4 + s1 + 2 ∗ g8 + w5

where

s1 = min{#(B,O)− g2 − g4 − w4,#(A,B)−#(B,A)− g1 − g2 − g3 − g4}
g8 = min{#Od + #(AB,O),#(A,B)−#(B,A)− g1 − g2 − g3 − g4 − s1,

#(B,AB)− g1 − g3 − w2}
w5 = min{#Od + #(AB,O)− g8,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − 2 ∗ g3 − 2 ∗ g4 − w1

−w2 − w3 − w4 − s1 − g8}
The maximum number of transplants N can be rewritten as

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + 2 ∗ g4 + w1 + w2 + w3 + w4 + s1 + 2 ∗ g8 + w5

= min{N1, N3, N8, N10}.
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One may refer to Tables from B5 to B6 in Supplement B for detail.

(3) When (O,A), (O,B), Ad/(AB,A), Bd/(AB,B) remaining, we have min{#Ad +

#(AB,A),#(A,AB)} = #(A,AB)}, min{#(A,O),#(O,A)} = #(A,O), g1 = min{#(A,B)

− #(B,A),#(B,AB)}}, g2 = min{#(B,O),#(A,B) − #(B,A) − g1}, g3 = 0 and g4 =

0. There is no potential gains from three-way cycles and chains with one pair (B,A),

(A,O) − (O,B) − (B,A), (AB,B) − (B,A) − (A,AB), Bd − (B,A) − (A,AB) − ABp

because there is no pair (A,O) and pair (A,AB) left. Moreover, there is no potential gains

from the combinations (AB,A)− (A,O), (AB,B)− (B,O), Ad − (A,O) and Bd − (B,O)

because there is no pair (A,O) and pair (B,O) left. Because there is no remaining pair

(A,AB) and (B,AB), we have g5 = g6 = g8 = 0. Because we have pair (AB,A) and single

donor Ad remaining, we can first match remaining (A,B) with remaining pair (AB,A) and

single donor Ad and then process the same procedure as situation (1) and the number of

transplants N is

N = 2 ∗ g1 + 2 ∗ g2 + w1 + w2 + w3 + w4 + s1 + 2 ∗ g7 + w5

where

s1 = min{#Ad + #(AB,A)− g1 − w3,#(A,B)−#(B,A)− g1 − g2}
g7 = min{#Od + #(AB,O),#(O,A)− g2 − w1,#(A,B)−#(B,A)− g1 − g2 − s1}
w5 = min{#Od + #(AB,O)− g7,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − w1 − w2 − w3

−w4 − g7 − s1}

The maximum number of transplants can be rewritten as:

N = 2 ∗ g1 + 2 ∗ g2 + w1 + w2 + w3 + w4 + s1 + 2 ∗ g7 + w5 = min{N1, N10, N11, N17}

One may refer to Table B7 in Supplement B for detail.

(4) When (A,O), (B,O), Ad/(AB,A), Bd/(AB,B) remaining, we have min{#Ad +

#(AB,A),#(A,AB)} = #(A,AB)}, g1 = min{#(A,B) − #(B,A),#(B,AB)}, g2 =

#(O,A)−min{#(A,O),#(O,A)}, g3 = 0 and g4 = min{#(O,A)−g2,#(A,B)−#(B,A)−
g1 − g2 − g3}. There is no potential gains from three-way cycles and chains with one pair

(B,A), (A,O)−(O,B)−(B,A), (AB,B)−(B,A)−(A,AB), Bd−(B,A)−(A,AB)−ABp

because there is no (O,B) and (A,AB) left. Because there is no remaining (O,A), (O,B),

(A,AB) and (B,AB), there is no potential gains from three-way cycles and chains starting

from single donor Od and pairs of type (AB,O). That is, g5 = g6 = g7 = g8 = 0. Since

there is remaining pair (B,O), pair (A,O), pair (AB,A), pair (AB,B), single donor Ad

and Bd, we can match the combinations of (AB,A)−(A,O), Ad−(A,O), (AB,B)−(B,O)

and Bd − (B,O) to any pair, and match pairs (AB,A) and (B,O) with remaining pair

(A,B). To take full advantage of the combinations, we first reserve the maximum number

of the combinations and then match remaining pairs (AB,A), (B,O) and single donor Ad
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with pair (A,B). Then, match remaining pairs with the combinations, single donor Od

and pairs of type (AB,O). The maximum number of transplants in situation (4) is:

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g4 + w1 + w2 + w3 + w4 + s1 + w5

where

c2 = min{#Ad + #(AB,A)− g1 − w3,#(A,O)− w1}
c3 = min{#Bd + #(AB,B)− w2,#(B,O)− g2 − g4 − w4}
s1 = min{#Ad + #(AB,A)− g1 − w3 − c2 + #(B,O)− g2 − g4 − w4 − c3,

#(A,B)−#(B,A)− g1 − g2 − g4}
w5 = min{#Od + #(AB,O) + c2 + c3,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − 2 ∗ g4 − w1

−w2 − w3 − w4 − s1}

The maximum number of transplants can be rewritten as:

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g4 + w1 + w2 + w3 + w4 + s1 + w5 = min{N1, N2, N3, N7, N10, N17}

One may refer to Tables from B8 to B11 in Supplement B for detail.

(5) When (A,O), (B,O), Ad/(AB,A), (B,AB) remaining, we have min{#Ad+#(AB,A),

#(A,AB)} = #(A,AB)}, min{#(A,O),#(O,A)} = #(O,A), g1 = #(A,B) − #(B,A)

and g2 = g3 = g4 = 0. There is no potential gains from three-way cycles and chains with

one pair (B,A), (A,O) − (O,B) − (B,A), (AB,B) − (B,A) − (A,AB), Bd − (B,A) −
(A,AB)−ABp because there is no pair (O,B) and pair (A,AB) left. Since we have taken

full advantage of three-way cycles (B,O)− (O,A)− (A,B), (AB,A)− (A,B)− (B,AB),

Ad − (A,B) − (B,AB) − ABp, all surplus pair (A,B) (#(A,B) −#(B,A)) are matched

in the procedure. Therefore, there is no potential gains for (AB,A) − (A,B) − (B,AB)

by breaking up a two-way cycle (A,B) − (B,A). Because there is no remaining (O,A),

(O,B) and (A,B), there is no potential gains from three-way cycles and chains starting

with single donor Od and pairs of type (AB,O). That is, g5 = g6 = g7 = g8 = 0. Because

all pair (A,B) are matched, we have s1 = 0. Since there is remaining pair (A,O), pair

(B,O), pair (AB,A) and single donor Ad, we can match the combinations (AB,A)−(A,O)

and Ad− (A,O) to any pair. To take full advantage of pair (B,O), pair (AB,A) and single

donor Ad, we do the same process as situation (4). The maximum number of transplants

is

N = 2 ∗ g1 + w1 + w2 + w3 + w4 + w5 = min{N1, N3, N7}

One may refer to Table B12 in Supplement B for detail.

(6) When (A,O), (B,O), (A,AB), Bd/(AB,B) remaining, we have g1 = #Ad +

#(AB,A) −min{#Ad + #(AB,A),#(A,AB)}, g2 = #(O,A) −min{#(A,O),#(O,A)},
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g3 = min{#Ad + #(AB,A) − g1,#(A,B) − #(B,A) − g1 − g2,#(B,AB) − b1} and

g4 = min{#(O,A) − g2,#(A,B) − #(B,A) − g1 − g2 − g3}. By Assumption 2.2, all

pairs (B,A) can be matched in two-way cycles (A,B) − (B,A). There is no potential

gains from three-way cycles and chains with one pair (B,A), (A,O) − (O,B) − (B,A),

(AB,B)− (B,A)− (A,AB), Bd− (B,A)− (A,AB)−ABp because there is no pair (O,A),

(O,B) left. There is also no potential gains from three-way cycle (AB,B)−(B,A)−(A,AB)

and/or three-way chain Bd − (B,A) − (A,AB) − ABp by breaking up two-way cycle

(A,B)− (B,A) because there is no pair (O,A) left. Because there is no remaining (O,A),

(O,B) and (B,AB), there is no potential gains from three-way cycles and chains starting

from single donor Od and pairs of type (AB,O). That is, g5 = g6 = g7 = g8 = 0. There is

potential gains from the combinations (AB,B)− (B,O), Bd − (B,O) and two-way cycles

(B,O) − (A,B). To take full advantage of the combinations, we do the same process as

situation (4). The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + 2 ∗ g4 + w1 + w2 + w3 + w4 + s1 + w5 = min{N1, N3, N10}

One may refer to Tables from B13 to B18 in Supplement B for detail.

(7) When (A,O), (O,B), Ad/(AB,A), Bd/(AB,B) remaining, we have min{#Ad +

#(AB,A),#(A,AB)} = #(A,AB)}, g1 = min{#(A,B) − #(B,A),#(B,AB)}, g2 =

#(O,A)−min{#(A,O),#(O,A)}, g3 = 0 and g4 = min{#(B,O)−g2,#(O,A)−g2,#(A,B)−
#(B,A)− g1− g2− g3}. There is no potential gains from three-way cycles and chains with

one pair (B,A), (AB,B)− (B,A)− (A,AB), Bd− (B,A)− (A,AB)−ABp because there

is no pair (A,AB) left. Based on Assumption 2.2, all pairs (B,A) can be matched by

two-way cycle (A,B)− (B,A). There is no potential gains for (A,O)− (O,B)− (B,A) by

breaking up two-way cycle (A,B)− (B,A). Because there is no remaining (O,A), (A,AB)

and (B,AB), there is no potential gains from three-way cycles and chains starting from

single donor Od and pairs of type (AB,O). That is, g5 = g6 = g7 = g8 = 0. Since there is

remaining pair (A,O), pair (AB,A) and single donor Ad, we can match the combinations

of (AB,A)− (A,O) and Ad − (A,O) to any pair and match remaining pair (AB,A) with

remaining pair (A,B). To take full advantage of pair (A,O), pair (AB,A) and single donor

Ad, we do the same process as situation (4). The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g4 + w1 + w2 + w3 + w4 + s1 + w5 = min{N1, N10, N17}

One may refer to Tables B19 and B20 in Supplement B for detail.

(8) When (O,A), (B,O), Ad/(AB,A), Bd/(AB,B) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), min{#Ad+#(AB,A),#(A,AB)} = #(A,AB), g1 = min{#(A,B)−
#(B,A),#(B,AB)}, g2 = #(A,B)−#(B,A)− g1 and g3 = g4 = 0. There is no potential

gains from three-way cycles and chains with one pair (B,A), (A,O) − (O,B) − (B,A),
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(AB,B)− (B,A)− (A,AB), Bd− (B,A)− (A,AB)−ABp because there is no pair (O,B)

and pair (A,AB) left. Since all surplus pair (A,B) (#(A,B)−#(B,A)) are matched in the

procedure, there is no potential gains for (B,O)−(O,A)−(A,B) by breaking up a two-way

cycle (A,B)− (B,A). Because there is no remaining pair (O,B), pair (A,AB), pair (A,B)

and pair (B,AB), there is no potential gains from three-way cycles and chains starting

from single donor Od and pairs of type (AB,O), and two-way cycles (AB,A) − (A,B),

(Ad − (A,B) − Y p and (B,O) − (A,B). That is, s1 = 0 and g5 = g6 = g7 = g8 = 0.

Since there is remaining pair (B,O), pair (AB,B) and single donor Bd, we can match

the combinations (AB,B) − (B,O) and Bd − (B,O) to any pair. To take full advantage

of the combinations, we do the same process as situation (4). The maximum number of

transplants is

N = 2 ∗ g1 + 2 ∗ g2 + w1 + w2 + w3 + w4 + w5 = min{N1, N7, N17}

One may refer to Table B21 in Supplement B for detail.

(9) When (A,O), (O,B), (A,AB), Bd/(AB,B) remaining, we have g1 = #Ad +

#(AB,A) −min{#Ad + #(AB,A),#(A,AB)}, g2 = #(O,A) −min{#(A,O),#(O,A)},
g3 = min{#Ad + #(AB,A) − g1,#(A,B) − #(B,A) − g1 − g2,#(B,AB) − b1} and

g4 = min{#(B,O)−g2,#(O,A)−g2,#(A,B)−#(B,A)−g1−g2−g3}. Based on Assump-

tion 2.2, all (B,A) can be matched by two-way cycles (A,B)−(B,A). There is no potential

gains from three-way cycles and chains with one pair (B,A), (A,O) − (O,B) − (B,A),

(AB,B)− (B,A)− (A,AB), Bd − (B,A)− (A,AB)−ABp by breaking up two-way cycle

(A,B)− (B,A). Because there is no remaining pair (O,A) and pair (B,AB), there is no

potential gains from three-way cycles and chains starting from single donor Od and pairs of

type (AB,O). That is, g5 = g6 = g7 = g8 = 0. Since there is no remaining pair (B,O), pair

(AB,A) and single donor Ad, there is no beneficial from the combinations and two-way

cycles (B,O) − (A,B), (AB,A) − (A,B) and chain Ad − (A,B) − Y p. We do the same

process as situation (4) with c2 = c3 = s1 = 0. The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + 2 ∗ g4 + w1 + w2 + w3 + w4 + w5 = min{N1, N10}

One may refer to Tables from B22 to B25 in Supplement B for detail.

(10) When (O,A), (B,O), Ad/(AB,A), (B,AB) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), min{#Ad + #(AB,A),#(A,AB)} = #(A,AB), g1 = #(A,B) −
#(B,A) and g2 = g3 = g4 = 0. Since all surplus pair (A,B) (#(A,B) − #(B,A)) are

matched in the procedure, there is no potential gains from three-way cycle (B,O)−(O,A)−
(A,B), (AB,A)− (A,B)− (B,AB) and chain Ad − (A,B)− (B,AB)−ABp by breaking

up a two-way cycle (A,B)− (B,A). Because there is no remaining pair (O,B), pair (A,B)

and pair (A,AB), there is no potential gains from three-way cycles and chains starting
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from single donor Od and pairs of type (AB,O). That is, g5 = g6 = g7 = g8 = 0. Because

all pair (A,B) are matched, we have s1 = 0. We can do the same process as situation (4).

The maximum number of transplants is

N = 2 ∗ g1 + w1 + w2 + w3 + w4 + w5 = min{N1, N7}

One may refer to Table B26 in Supplement B for detail.

(11) When (A,O), (O,B), Ad/(AB,A), (B,AB) remaining, we have min{#(A,O),

#(O,A)} = #(O,A), min{#Ad + #(AB,A),#(A,AB)} = #(A,AB), g1 = #(A,B) −
#(B,A) and g2 = g3 = g4 = 0. Because no remaining pair (O,A), (A,B), (A,AB) is left,

there is no potential gains from three-way cycles (AB,O)− (O,A)− (A,AB), (AB,O)−
(O,A) − (A,B), (AB,O) − (A,B) − (B,AB) and chains Od − (O,A) − (A,AB) − ABp,

Od−(O,A)−(A,B)−Y p, Od−(A,B)−(B,AB)−ABp. That is, g5 = g7 = g8 = 0. There is

potential gains from three-way cycles (A,O)−(O,B)−(B,A), (AB,A)−(A,B)−(B,AB)

and chains Ad − (A,B) − (B,AB) by breaking two-way cycle (A,B) − (B,A) because

two more blood-type incompatible pairs of types (O,B) and (B,AB) can be matched

in this case. Since all surplus pairs (A,B) (#(A,B) − #(B,A)) are matched in Step 1,

the number of remaining (A,B) equals to #(B,A). Therefore, to take full advantage

of pairs (B,A) and (A,B), we match the maximum number of (A,O) − (O,B) − (B,A),

(AB,A)−(A,B)−(B,AB) and chain Ad−(A,B)−(B,AB)−ABp bounded by the number

of remaining pairs (A,O), (O,B), Ad/(AB,A), (B,AB) and (B,A). If all remaining pairs

(AB,A) and single donors Ad are matched, there is potential gains from three-way cycles

(A,O)−(O,B)−(B,A), (AB,A)−(A,B)−(B,AB) and chain Ad−(A,B)−(B,AB)−ABp

by breaking two-way cycle (AB,A)− (A,AB) and chain Ad− (A,AB)−ABp because one

more pair can be matched in this case. Similarly, if all remaining pairs (A,O) are matched,

there is potential gains from three-way cycles (A,O)− (O,B)− (B,A), (AB,A)− (A,B)−
(B,AB) and chain Ad−(A,B)−(B,AB)−ABp by breaking two-way cycle (A,O)−(O,A).

Since there is remaining pair (A,O), pair (AB,A) and single donor Ad, we can match

the combinations (AB,A)− (A,O) and Ad− (A,O) to any pair. Since there is no reaming

(A,B), there is no potential gains by matching remaining pair (AB,A) and single donor Ad

with remaining pair (A,B). Therefore, the maximum number of transplants in situation

(11) is

N = 2 ∗ g1 + w1 + w2 + w3 + w4 + 2 ∗ u1 + v1 + v2 + 2 ∗ g6 + w5

where

u1 = min{#(A,O)− w1,#(O,B)− w4,#A
d + #(AB,A)− g1 − w3,

#(B,AB)− g1 − w2,#(B,A)}
v1 = min{#Ad + #(AB,A)− g1 − u1,#(A,O)− w1 − u1,#(O,B)− w4 − u1,

#(B,AB)− g1 − w2 − u1,#(B,A)− u1}
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v2 = min{#(A,O)− u1,#Ad + #(AB,A)− g1 − u1,#(O,B)− w4 − u1,
#(B,AB)− g1 − w2 − u1,#(B,A)− u1}

c2 = min{#Ad + #(AB,A)− w3 − u1 − v2,#(A,O)− w1 − u1 − v1}
g6 = min{#Od + #(AB,O),#(O,B)− w4 − u1 − v1 − v2,#(B,AB)− g1 − u1 − w2

−v1 − v2}
w5 = min{#Od + #(AB,O) + c2 − g6,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − w1 − w2 − w3 − w4 − 2 ∗ u1
−v1 − v2 − 2 ∗ g6}

The maximum number of transplants is

N = 2 ∗ g1 + w1 + w2 + w3 + w4 + 2 ∗ u1 + v1 + v2 + 2 ∗ g6 + w5

= min{N1, N3, N7, N8, N9, N10, N14, N15, N16, N17}

One may refer to Tables from B27 to B30 in Supplement B for detail.

(12) When (O,A), (O,B), Ad/(AB,A), (B,AB) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), min{#Ad + #(AB,A),#(A,AB)} = #(A,AB), g1 = #(A,B) −
#(B,A) and g2 = g3 = g4 = 0. Because no remaining pair (A,B), (A,AB) is left, there is

no potential gains from three-way cycles (AB,O)− (O,A)− (A,AB), (AB,O)− (O,A)−
(A,B), (AB,O)−(A,B)−(B,AB) and chains Od−(O,A)−(A,AB)−ABp, Od−(O,A)−
(A,B)− Y p, Od − (A,B)− (B,AB)− ABp. That is, g5 = g7 = g8 = 0. Because all pairs

(A,O) and pairs(B,O) are matched, there is no potential gains from the combinations.

Since there is no reaming (A,B), there is no potential gains by matching remaining pair

(AB,A) and single donor Ad with remaining pair (A,B). There is potential gains from

three-way cycle (A,O)− (O,B)− (B,A), three-way cycle (AB,A)− (A,B)− (B,AB) and

chain Ad − (A,B) − (B,AB) − ABp by breaking two-way cycle (A,O) − (O,A) because

one more pair can be matched in this case. That is, v2 6= 0. We can do the same process

in situation (11). The maximum number of transplants is

N = 2 ∗ g1 + w1 + w2 + w3 + w4 + v2 + 2 ∗ g6 + w5 = min{N1, N7, N14, N15, N16, N17}

One may refer to Table B31 in Supplement B for detail.

(13) When (A,O), (O,B), (A,AB), (B,AB) remaining, we have g1 = #Ad+#(AB,A)−
min{#Ad+#(AB,A),#(A,AB)}, g2 = #(O,A)−min{#(A,O),#(O,A)}, g3 = min{#Ad+

#(AB,A) − g1,#(A,B) − #(B,A) − g1 − g2} and g4 = min{#(O,A) − g2,#(A,B) −
#(B,A) − g1 − g2 − g3}. Because no remaining pair (O,A) is left, there is no poten-

tial gains from three-way cycles (AB,O) − (O,A) − (A,AB), (AB,O) − (O,A) − (A,B)

and chains Od − (O,A) − (A,AB) − ABp, Od − (O,A) − (A,B) − Y p. That is, g5 =

g7 = 0. Because all pairs (AB,A), (AB,B) and single donors Ad, Bd are matched,

there is no potential gains from the combinations. Since no reaming pair (B,O), pair
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(AB,B) and single donor Ad is left, there is no potential gains by matching remaining

pair (AB,A), pair (B,O) and single donor Ad with remaining pair (A,B). There is po-

tential gains from three-way cycle (A,O) − (O,B) − (B,A), (AB,A) − (A,B) − (B,AB)

and chain Ad − (A,B) − (B,AB) − ABp by breaking two-way cycle (AB,A) − (A,AB)

and chain Ad − (A,AB) − ABp because one more pair can be matched in this case.

That is, v1 6= 0. To take full advantage of three-way cycles and chains, we first match

(A,O)−(O,B)−(B,A), (AB,A)−(A,B)−(B,AB) and chain Ad−(A,B)−(B,AB)−ABp,

and match three-way cycles (AB,O)− (O,B)− (B,AB), (AB,O)− (A,B)− (B,AB) and

chains Od− (O,B)− (B,AB)−ABp, Od− (A,B)− (B,AB)−ABp if any. Then, we match

remaining pairs with pair (AB,O) and single donor Od. Therefore, the maximum number

of transplants in situation (13) is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + 2 ∗ g4 + w1 + w2 + w3 + w4 + v1 + 2 ∗ g6 + 2 ∗ g8 + w5

where

g8 = min{#Od + #(AB,O)− g6,#(A,B)−#(B,A)− g1 − g2 − g3 − g4,
#(B,AB)− g1 − g3 − w2 − v1 − g6}

w5 = min{#Od + #(AB,O)− g6 − g8,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − 2 ∗ g3 − 2 ∗ g4
−w1 − w2 − w3 − w4 − v1 − 2 ∗ g6 − 2 ∗ g8}

The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + 2 ∗ g4 + w1 + w2 + w3 + w4 + v1 + 2 ∗ g6 + 2 ∗ g8 + w5

= min{N1, N3, N8, N9, N10, N15}

One may refer to Tables from B32 to B37 in Supplement B for detail.

(14) When (O,A), (B,O), (A,AB), Bd/(AB,B) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), g1 = #Ad + #(AB,A) − min{#Ad + #(AB,A),#(A,AB)}, g2 =

#(A,B) − #(B,A) − g1 and g3 = g4 = 0. Because no remaining pair (O,B), (A,B),

(B,AB) is left, there is no potential gains from three-way cycles (AB,O) − (O,B) −
(B,AB), (AB,O)− (O,A)− (A,B), (AB,O)− (A,B)− (B,AB) and chains Od− (O,B)−
(B,AB) − ABp, Od − (O,A) − (A,B) − Y p, Od − (A,B) − (B,AB) − ABp. That is,

g6 = g7 = g8 = 0. Since no remaining pair Ad/(AB,A), there is no potential gains from

two-way cycle (AB,A) − (A,B) and chain Ad − (A,B) − Y p. There is potential gains

from three-way cycle (B,O) − (O,A) − (A,B), (AB,B) − (B,A) − (A,AB) and chain

Bd− (B,A)− (A,AB)−ABp by breaking two-way cycle (A,B)− (B,A) because two more

blood-type incompatible pairs of types (O,A) and (A,AB) can be matched in this case.

Since all surplus pairs (A,B) (#(A,B)−#(B,A)) are matched in Step 1, the number of

remaining (A,B) equals to #(B,A). Therefore, we take full advantage of (B,A), (A,B)

and match the maximum number of (B,O)− (O,A)− (A,B), (AB,B)− (B,A)− (A,AB)
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and chain Bd− (B,A)− (A,AB)−ABp bounded by the number of remaining pairs (O,A),

(B,O), (A,AB), Bd/(AB,B) and (B,A). If all remaining pairs (AB,B) and single donors

Bd are matched, there is potential gains from three-way cycles (B,O) − (O,A) − (A,B),

(AB,B)− (B,A)− (A,AB) and chain Bd− (B,A)− (A,AB)−ABp by breaking two-way

cycle (AB,B) − (B,AB) and chain Bd − (B,AB) − ABp because one more pair can be

matched in this case. Similarly, if all remaining pairs (B,O) are matched, there is potential

gains from three-way cycles (B,O)−(O,A)−(A,B), (AB,B)−(B,A)−(A,AB) and chain

Bd − (B,A)− (A,AB)− ABp by breaking two-way cycle (B,O)− (O,B).

Since there is remaining pair (B,O), pair (AB,B) and single donor Bd, we can match

the combinations of (AB,B)−(B,O) and Bd−(B,O) to any pair. Therefore, the maximum

number of transplants in situation (14) is

N = 2 ∗ g1 + 2 ∗ g2 + w1 + w2 + w3 + w4 + 2 ∗ u2 + v3 + v4 + 2 ∗ g5 + w5

where

u2 = min{#(B,O)− g2 − w4,#(O,A)− g2 − w1,#(A,AB)− w3,

#Bd + #(AB,B)− w2,#(B,A)}
v3 = min{#Bd + #(AB,B)− u2,#(B,O)− g2 − w4 − u2,#(O,A)− g2 − w1 − u2,

#(A,AB)− w3 − u2,#(B,A)− u2}
v4 = min{#(B,O)− g2 − u2,#Bd + #(AB,B)− w2 − u2,#(O,A)− g2 − w1 − u2,

#(A,AB)− w3 − u2,#(B,A)− u2}
c3 = min{#Bd + #(AB,B)− w2 − u2 − v4,#(B,O)− w4 − u2 − v3}
g5 = min{#Od + #(AB,O),#(O,A)− g2 − w1 − u2 − v3 − v4,#(A,AB)− w3 − u2

−v3 − v4}
w5 = min{#Od + #(AB,O) + c3 − g5,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − w1 − w2 − w3 − w4

−2 ∗ u2 − v3 − v4 − 2 ∗ g5}

The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + w1 + w2 + w3 + w4 + 2 ∗ u2 + v3 + v4 + 2 ∗ g5 + w5

= min{N1, N3, N4, N5, N7, N10, N11, N13, N15, N17}

One may refer to Tables from B38 to B41 in Supplement B for detail.

(15) When (O,A), (B,O), (A,AB), (B,AB) remaining, we have min{#(A,O),#(O,A)}
= #(A,O), g1 = #Ad + #(AB,A) −min{#Ad + #(AB,A),#(A,AB)}, g2 = #(A,B) −
#(B,A)− g1 and g3 = g4 = 0. Because no remaining pair (O,B), (A,B) is left, there is no

potential gains from three-way cycles (AB,O)−(O,B)−(B,AB), (AB,O)−(O,A)−(A,B),

(AB,O) − (A,B) − (B,AB) and chains Od − (O,B) − (B,AB) − ABp, Od − (O,A) −
(A,B) − Y p, Od − (A,B) − (B,AB) − ABp. That is, g6 = g7 = g8 = 0. Because all

pairs (AB,A), (AB,B) and single donors Ad, Bd are matched, there is no potential gains
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from the combinations. Since no remaining pair Ad/(AB,A), there is no potential gains

from two-way cycle (AB,A)− (A,B) and chain Ad− (A,B)−Y p. There is potential gains

from three-way cycle (B,O) − (O,A) − (A,B), (AB,B) − (B,A) − (A,AB) and chain

Bd − (B,A) − (A,AB) − ABp by breaking two-way cycle (AB,B) − (B,AB) and chain

Bd − (B,AB)−ABp because one more pair can be matched in this case. That is, v3 6= 0.

We can do the same process in situation (14). The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + w1 + w2 + w3 + w4 + v3 + 2 ∗ g5 + w5 = min{N1, N3, N4, N5, N7, N15}

One may refer to Table B42 in Supplement B for detail.

(16) When (O,A), (O,B), (A,AB), Bd/(AB,B) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), g1 = #Ad + #(AB,A) − min{#Ad + #(AB,A),#(A,AB)}, g2 =

min{#(B,O),#(A,B) − #(B,A) − g1}, g3 = min{#Ad + #(AB,A) − g1,#(A,B) −
#(B,A)− g1− g2,#(B,AB)− b1} and g4 = 0. Because no remaining pair (B,AB) is left,

there is no potential gains from three-way cycles (AB,O)− (O,B)− (B,AB), (AB,O)−
(A,B)− (B,AB) and chains Od− (O,B)− (B,AB)−ABp, Od− (A,B)− (B,AB)−ABp.

That is, g6 = g8 = 0. Because all pairs (B,O) and (A,O) are matched, there is no poten-

tial gains from the combinations. Since all pair Ad/(AB,A) and (B,O) are matched, there

is no potential gains from two-way cycles (AB,A) − (A,B), (B,O) − (A,B) and chain

Ad− (A,B)− Y p. There is potential gains from three-way cycle (B,O)− (O,A)− (A,B),

(AB,B) − (B,A) − (A,AB) and chain Bd − (B,A) − (A,AB) − ABp by breaking two-

way cycle (B,O) − (O,B) because one more pair can be matched in this case. That is,

v4 6= 0. To take full advantage of three-way cycles and chains, we first match (B,O) −
(O,A) − (A,B), (AB,B) − (B,A) − (A,AB) and chain Bd − (B,A) − (A,AB) − ABp,

and match three-way cycles (AB,O) − (O,A) − (A,AB), (AB,O) − (O,A) − (A,B) and

chains Od − (O,A)− (A,AB)− ABp, Od − (O,A)− (A,B)− Y p if any. Then, we match

remaining pairs with pair (AB,O) and single donor Od. Therefore, the maximum number

of transplants in situation (16) is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + w1 + w2 + w3 + w4 + v4 + 2 ∗ g5 + 2 ∗ g7 + w5

where

g7 = min{#Od + #(AB,O)− g5,#(O,A)− g2 − w1 − v4 − g5,
#(A,B)−#(B,A)− g1 − g2 − g3}

w5 = min{#Od + #(AB,O)− g5 − g7,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − 2 ∗ g3 − w1 − w2 − w3

−w4 − v4 − 2 ∗ g5 − 2 ∗ g7}

The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + w1 + w2 + w3 + w4 + v4 + 2 ∗ g5 + 2 ∗ g7 + w5

= min{N1, N10, N11, N13, N15, N17}
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One may refer to Tables from B43 to B46 in Supplement B for detail. Combining cases

(1) to (16), we have proved that the maximum number of transplants for blood-type in-

compatible paired patients of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B)

is

N = min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}

We now prove that the sequential mechanism is 3-efficient which achieves the maximum

number of transplants in the pool by exploring every possible route. Figures 3 and 4 show

all possible three-way cycles and chains can occur in the mechanism.

Since for every one/two-way chains, we can always find a compatible patient on the wait-

ing list in the mechanism, the number of transplantations for patients on the waiting list

through one/two/three-way chains in the mechanism equals to #Ad+#Bd+#ABd+#Od.

Based on Assumption 2.3, all pairs of type (A,A)i, (B,B)i, (O,O)i, (AB,AB)i can be

matched through two-way in Step 1. Based on Assumption 2.3, all pairs of type (A,O)i,

(B,O)i, (AB,O)i, (AB,A)i, (AB,B)i can be matched through two-way and three-way

cycles from Step 2 to Step 7 in the mechanism. All compatible pairs (A,O)c, (B,O)c,

(AB,O)c, (AB,A)c, (AB,B)c, (A,A)c, (B,B)c, (O,O)c, (AB,AB)c can be matched either

through two-way/three-way cycles or doing transplantations with their own donors. More-

over, under Assumption 2.2, all pairs of type (B,A) can be matched through two-way cycle

(A,B)− (B,A) or three-way cycle (AB,B)− (B,A)− (A,AB), (A,O)− (O,B)− (B,A) or

three-way chain Bd− (B,A)− (A,AB)−ABp in Step 3 and Step 4. Hence, the number of

transplantations for compatible pairs, blood-type compatible pairs and pairs of type (B,A)

in the mechanism is

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

Next, we prove that the maximum number of transplants for blood-type incompatible

pairs of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) can be achieved in the

mechanism.

Denote X2 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 2 so that

X2 = 2 ∗ b1 + 2 ∗ b2 + 2 ∗ b3 + 2 ∗ b21
where

b1 = min{#Ad + #(AB,A)−min{#Ad + #(AB,A),#(A,AB)},
#(A,B)−#(B,A),#(B,AB)}

b2 = min{#(B,O),#(O,A)−min{#(A,O),#(O,A)},#(A,B)−#(B,A)− b1}
b3 = min{#Ad + #(AB,A)− b1,#(A,B)−#(B,A)− b1 − b2,#(B,AB)− b1}
b21 = min{#(B,O)− b2,#(O,A)− b2,#(A,B)−#(B,A)− b1 − b2 − b3}
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Denote X3 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 3 so that

X3 = 2 ∗ e1 + 2 ∗ e2 + 2 ∗ f2 + 2 ∗ f3 + 2 ∗ f4 + 2 ∗ f5
where

e1 = min{#(A,O)− a1,#(B,A),#Ad + #(AB,A)− b1 − b3 − a1,
#(O,B)− a4,#(B,AB)− b1 − b3 − a2}

e2 = min{#Bd + #(AB,B)− a2,#(A,AB)− a3,#(B,O)− b2 − a4 − b21,
#(O,A)− b2 − b21 − a1,#(B,A)}

f2 = min{#(A,O)− a1 − e1,#(B,A)− e1 − e2,#Ad + #(AB,A)− b1 − b3 − e1,
#(O,B)− a4 − e1,#(B,AB)− b1 − b3 − a2 − e1}

f3 = min{#Bd + #(AB,B)− a2 − e2,#(A,AB)− a3 − e2,#(B,O)− b2 − e2 − b21,
#(O,A)− b2 − b21 − a1 − e2,#(B,A)− e1 − e2}

f4 = min{#(A,O)− e1,#(B,A)− e1 − e2,#Ad + #(AB,A)− b1 − b3 − e1 − a3,
#(O,B)− a4 − e1,#(B,AB)− b1 − b3 − a2 − e1}

f5 = min{#Bd + #(AB,B)− e2,#(A,AB)− a3 − e2,#(B,O)− b2 − e2 − a4 − b21,
#(O,A)− b2 − b21 − a1 − e2,#(B,A)− e1 − e2}

where

a1 = min{#(A,O),#(O,A)− b2 − b21}
a2 = min{#Bd + #(AB,B),#(B,AB)− b1 − b3}
a3 = min{#Ad + #(AB,A)− b1 − b3,#(A,AB)}
a4 = min{#(B,O)− b2 − b21,#(O,B)}

Denote X4 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 4 so that

X4 = #(B,A) + p1 + p2 + p3 + p4 + a8

where

p1 = a1 − f4
p2 = a2 − f5
p3 = a3 − f2
p4 = a4 − f3
a8 = min{#Ad + #(AB,A)− b1 − b3 − e1 − f2 − f4 − p3 − c2 + #(B,O)− b2 − b21

−e2 − f3 − f5 − p4 − c3,#(A,B)−#(B,A)− b1 − b2 − b3 − b21}
where

c2 = min{#Ad + #(AB,A)− b1 − b3 − e1 − f2 − f4 − p3,#(A,O)− e1 − f2 − f4 − p1}
c3 = min{#(B,O)− b2 − b21 − e2 − f3 − f5 − p4,#Bd + #(AB,B)− e2 − f3 − f5 − p2}

Denote X5 as the number of blood-type incompatible paired patients from pairs of types
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(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 5 so that

X5 = 2 ∗ b4 + 2 ∗ b5 + 2 ∗ b6 + 2 ∗ b7
where

b4 = min{#Od + #(AB,O),#(O,A)− b2 − b21 − e2 − f3 − f5 − p1,
#(A,AB)− e2 − f3 − f5 − p3}

b5 = min{#Od + #(AB,O)− b4,#(O,B)− e1 − f2 − f4 − p4,
#(B,AB)− b1 − b3 − e1 − f2 − f4 − p2}

b6 = min{#Od + #(AB,O)− b4 − b5,#(O,A)− b2 − b21 − e2 − f3 − f5 − p1 − b4,
#(A,B)−#(B,A)− b1 − b2 − b3 − b21 − a8}

b7 = min{#Od + #(AB,O)− b4 − b5 − b6,#(A,B)−#(B,A)− b1 − b2
−b3 − b21 − a8 − b6,#(B,AB)− b1 − b3 − e1 − f2 − f4 − p2 − b5}

Denote X6 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 6 so that

X6 = a9 = min{#Od + #(AB,O)− b4 − b5 − b6 − b7 + c2 + c3,#(O,A)

+#(O,B) + #(O,AB) + #(A,AB) + #(A,B) + #(B,AB)− 2 ∗ b1
−2 ∗ b2 − 2 ∗ b3 − 2 ∗ b21 − 2 ∗ e1 − 2 ∗ e2 − 2 ∗ f2 − 2 ∗ f3 − 2 ∗ f4
−2 ∗ f5 − p1 − p2 − p3 − p4 − a8 − 2 ∗ b4 − 2 ∗ b5 − 2 ∗ b6 − 2 ∗ b7}

Therefore, the total number of transplants for paired patients from pairs of types (O,A),

(O,B), (O,AB), (A,AB), (B,AB), (A,B) in the mechanism isX = X2+X3+X4+X5+X6.

The equation can be rewritten as follows:

X = min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}

One may refer to Tables from B47 to B82 in Supplement B for detail. Therefore, the total

number of transplants can be achieved in the mechanism is that

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

+#Ad + #Bd + #ABd + #Od

+ min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17}

Therefore, we proved that every matching produced by the mechanism achieves the

maximum number of transplants in the pool and hence the mechanism is 3-efficient.

2

Proof of Lemma 3.6: Consider any given 4-efficient matching µ as stated in the lemma.

If µ consists only of cycles with no more than two blood-type compatible pairs and chains

with no more than one blood-type compatible pair, we are done. Suppose to the contrary
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that µ contains a cycle with more than two blood-type compatible pairs or a chain with

more than one blood-type compatible pair. We only need to consider the case of four-way

cycles or chains, as the case of three-way cycles or chains is reduced to that of Lemma 3.4.

A four-way cycle may consist of either four or three blood-type compatible pairs and

a four-way chain may consist of either three or two blood-type compatible pairs. Such a

cycle or chain can be decomposed into small cycles or chains as follows:

a. In a four-way cycle with four blood-compatible pairs, we can decompose it into four

single blood-compatible pairs.

b. In a four-way chain with three blood-type compatible pairs, we can decompose it

into three single blood-compatible pairs and a one-way chain in which the single donor

gives its kidney to a patient on the waiting list.

c. A four-way cycle with three blood-compatible pairs can be split into a three-way

cycle with two blood-compatible pairs and one blood-compatible pair.

Let (P1, D1)− (P2, D2)− (P3, D3)− (P4, D4) denote a four-way cycle with three blood-

compatible pairs. If there exists pair (X,X) from types (A,A), (B,B), (O,O) and

AB,AB), then the four-way cycle can be separated into a three-way cycle and a blood-

type compatible pair (X,X). If there exists pair of type (AB,O) in the cycle, then the

four-way cycle can be separated into a three-way cycle and a blood-type compatible pair

because pair (AB,O) is compatible with any pair by Assumption 2.1. If there exists pairs

of types (AB,A) and (A,O) in the cycle, then the cycle can be separated into a three-way

starting with (AB,A)− (A,O) and a blood-type compatible pair because the combination

of (AB,A) − (A,O) is compatible with any pair. Similar to pairs of types (AB,B) and

(B,O).

Now we consider other four-way cycles without pairs (AB,O), (A,A), (B,B), (O,O),

(AB,AB) and the combinations of (AB,A)− (A,O) and (AB,B)− (B,O). In a four-way

cycle (A,O) − (P2, D2) − (P3, D3) − (P4, D4), two cases occur. In the first case, there

exists one (B,O) and hence there is no (AB,O), (AB,A), (AB,B), (A,A), (B,B), (O,O),

(AB,AB) in the cycle. Therefore, the cycle have either two pairs (A,O) or two pairs (B,O),

then the four-way can be separated into a three-way cycle and one blood-type compatible

pair. In the second case, there exists pair (AB,B) and hence there is no (AB,O), (AB,A),

(B,O), (A,A), (B,B), (O,O), (AB,AB) in the cycle. Therefore, the cycle have either two

pairs (A,O) or two pairs (AB,B), then the four-way can be separated into a three-way

cycle and one blood-type compatible pair. The similar proof can be applied to four-way

cycle (B,O)− (P2, D2)− (P3, D3)− (P4, D4), (AB,A)− (P2, D2)− (P3, D3)− (P4, D4) and

(AB,B)− (P2, D2)− (P3, D3)− (P4, D4).

d. A four-way chain with two blood-type compatible pair can be decomposed into two-

way or three-way cycles with at most two blood-compatible pairs or chains with at most
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one blood-compatible pair.

Let Xd − (P1, D1)− (P2, D2)− (P3, D3)− Y p denote a four-way chain with two blood-

compatible pairs. Firstly, from the previous proof, if there exists either pair (AB,O),

or pairs (AB,A) and (A,O), or pairs (AB,B) and (B,O), the chain can be separated

into a three-way cycle and a one-way chain such that the single donor donates its kidney

to a patient on the waiting list. Secondly, if there exist a single donor Od in the chain,

the four-way chain can be separated into a three-way chain and a blood-type compatible

pair because single donor Od is compatible with any patient by Assumption 2.1. If there

exists single donor Ad and pair (A,O) in the chain, then the chain can be separated

into a three-way starting with Ad − (A,O) and a blood-type compatible pair because

the combination of Ad − (A,O) is compatible with any pair. Similar to single donor Bd

and pair (B,O). Thirdly, if there exists pair (X,X) from types (A,A), (B,B), (O,O)

and (AB,AB), then the four-way chain can be separated into a three-way chain and a

blood-type compatible pair (X,X). Fourthly, we consider the situation that there exists a

blood-type compatible pair (AB,D) in the four-way chain. If pair (P1, D1) is type (AB,D),

then the chain can be divided into a three-way cycle (P1, D1) − (P2, D2) − (P3, D3) and

a one-way chain Xd − Y p because patient of type AB can receive kidney from any donor

by Assumption 2.1. Similarly, if pair (P2, D2) is type (AB,D), then the chain can be

divided into either a three-way chain Xd − (P1, D1) − (P2, D2) − Y p and a blood-type

compatible pair (P3, D3) if pair (P1, D1) is blood-type incompatible pair; or a two-way

cycle (P2, D2)− (P3, D3) and two-way chain Xd − (P1, D1)− Y p if pair (P3, D3) is blood-

type incompatible pair. If pair (P3, D3) is type (AB,D), the chain can be separated into a

three-way chain Xd− (P1, D1)− (P2, D2)− Y p and a blood-type compatible pair (P3, D3).

Now we consider other four-way chains without single donor Od, pairs (AB,O), (A,A),

(B,B), (O,O), (AB,AB), (AB,A), (AB,B), (A,A), (B,B), (O,O), AB,AB) and the

combinations of Ad/(AB,A) − (A,O), Bd/(AB,B) − (B,O). Hence, a four-way chain

Ad − (P2, D2) − (P3, D3) − (P4, D4) has two pairs of type (B,O) and can be separated

into a three-way chain and a blood-type compatible pair (B,O). A four-way chain Bd −
(P2, D2) − (P3, D3) − (P4, D4) has two pairs of type (A,O) and can be separated into a

three-way chain and a blood-type compatible pair (A,O). In a four-way chain ABd −
(P2, D2)− (P3, D3)− (P4, D4), we have pair (P2, D2) of type (AB,D2) because donor ABd

can only donate to patient of type AB. Hence, the chain can be separated into a three-way

cycle starting with (P2, D2) and a one-way chain.

Therefore, every cycle and chain under consideration can be decomposed into a smaller

cycle or chain or a blood-type compatible pair. Then, we will show that the all pairs which

are decomposed from cycles and chains can be matched. Because a blood-type compatible

and tissue-type compatible pair can directly do the transplant, all blood-type compatible
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and tissue-type compatible pairs can do the transplants separately. Let D be the set of

all blood-type compatible but tissue-type incompatible pairs in a cycle or chain under

consideration. Let (X, Y )i present the type of a blood-type compatible but tissue-type

incompatible pair. If there exists two or more pairs of type (X, Y )i, we can have a two-

way cycle among them (X, Y )i − (X, Y )i. Therefore, at most one pair of type (X, Y )i left

after the process. By Assumption 2.3, there exists at least one blood-type and tissue-type

compatible pair of type (X, Y )c. If the compatible pair (X, Y )c does not involve in any

cycle or chain, then we can match the remaining pair (X, Y )i with pair (X, Y )c. Otherwise,

the compatible pair (X, Y )c involves in a cycle consisting of no more than two blood-type

compatible pairs or a chain consisting of no more than one blood-type compatible pair.

Then we can use pair (X, Y )i instead of (X, Y )c based on Assumption 2.1 and pair (X, Y )c

do transplant directly. Therefore, all remaining pairs of type (X, Y )i can be matched.

2

Proof of Proposition 3.7: The proof is similar to one in the case of three-way cycles and

chains. Let N be the maximum number of transplants for blood-type incompatible paired

patients of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) when four-way cycles

and chains are considered. We will prove that

N = min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11}

Sixteen situations are considered. We only discuss the potential gains from four-way

cycles and chains because the analysis of cycles and chains other than four-way exchange

in each situation is similar to one in the case of three-way cycles and chains.

(1) When (O,A), (O,B), (A,AB), (B,AB) remaining, we have min{#(A,O),#(O,A)}
= #(A,O), g1 = #Ad+#(AB,A)−min{#Ad+#(AB,A),#(A,AB)}, g2 = min{#(B,O),

#(A,B)−#(B,A)−g1}, g3 = min{#Ad+#(AB,A)−g1,#(A,B)−#(B,A)−g1−g2} and

g4 = 0. There is potential gains from four-way cycle (AB,O)− (O,A)− (A,B)− (B,AB)

and chain Od − (O,A) − (A,B) − (B,AB) − ABp if any pair (A,B) remains. Because

all remaining blood type compatible pairs are matched, there is no potential benefit from

the combinations (AB,A) − (A,O), (AB,B) − (B,O), (AB,A) − (A,B) − (B,O) and

Ad− (A,B)− (B,O). Therefore, we first take full of advantage of four-way cycle(AB,O)−
(O,A) − (A,B) − (B,AB) and chain Od − (O,A) − (A,B) − (B,AB) − ABp and the

maximum number of transplants in situation (1) is:

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + w1 + w2 + w3 + w4 + 3 ∗ d1 + 2 ∗ g5 + 2 ∗ g6 + 2 ∗ g7
+2 ∗ g8 + w5

where

d1 = min{#Od + #(AB,O),#(O,A)− g2 − w1,#(A,B)−#(B,A)− g1 − g2 − g3,
#(B,AB)− g1 − g3 − w2}
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g5 = min{#Od + #(AB,O)− d1,#(O,A)− d1 − g2 − w1,#(A,AB)− w3}
g6 = min{#Od + #(AB,O)− d1 − g5,#(O,B)− w4,#(B,AB)− g1 − g3 − w2 − d1}
g7 = min{#Od + #(AB,O)− d1 − g5 − g6,#(O,A)− d1 − g2 − w1 − g5,

#(A,B)−#(B,A)− g1 − g2 − g3 − d1}
g8 = min{#Od + #(AB,O)− d1 − g5 − g6 − g7,#(A,B)−#(B,A)− g1 − g2 − g3

−d1 − g7,#(B,AB)− g1 − g3 − w2 − g6 − d1}
w5 = min{#Od + #(AB,O)− d1 − g5 − g6 − g7 − g8,#(O,A) + #(O,B) + #(O,AB)

+#(A,AB) + #(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − 2 ∗ g3
−w1 − w2 − w3 − w4 − 3 ∗ d1 − 2 ∗ g5 − 2 ∗ g6 − 2 ∗ g7 − 2 ∗ g8}

The maximum number of transplants can be rewritten as:

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + w1 + w2 + w3 + w4 + 3 ∗ d1 + 2 ∗ g5 + 2 ∗ g6 + 2 ∗ g7
+2 ∗ g8 + w5 = min{N1, N2, N4, N5, N6, N7, , N8, N10, N11}.

One may refer to Tables from C1 to C4 in Supplement C of Cheng and Yang (2017) for

detail.

(2) When (A,O), (B,O), (A,AB), (B,AB) remaining, we have g1 = #Ad+#(AB,A)−
min{#Ad+#(AB,A),#(A,AB)}, g2 = #(O,A)−min{#(A,O),#(O,A)}, g3 = min{#Ad+

#(AB,A) − g1,#(A,B) − #(B,A) − g1 − g2} and g4 = min{#(O,A) − g2,#(A,B) −
#(B,A)−g1−g2−g3}. There is no potential benefits from four-way cycle and chain start-

ing from the combinations (AB,A)− (A,O), (AB,B)− (B,O), Ad − (A,O), Bd − (B,O)

because all pair (O,A) and pair (O,B) are matched. There is no potential benefits from

four-way cycle and chain starting from the combinations (AB,A) − (A,B) − (B,O) and

Ad − (A,B) − (B,O) because all pair (AB,A) and pair (AB,B), single donor Ad and

single donor Bd are matched. There is no potential gains from four-way cycles and chains

(AB,O) − (O,A) − (A,B) − (B,AB) and chain Od − (O,A) − (A,B) − (B,AB) − ABp

because all pair (O,A) are matched. Therefore, the maximum number of transplants is

the same as that of three-way cycles and chains in situation (2):

N = min{N5, N2, N1, N6}.

(3) When (O,A), (O,B), Ad/(AB,A), Bd/(AB,B) remaining, we have min{#Ad +

#(AB,A),#(A,AB)} = #(A,AB)}, min{#(A,O),#(O,A)} = #(A,O), g1 = min{#(A,B)

−#(B,A),#(B,AB)}}, g2 = min{#(B,O),#(A,B)−#(B,A)− g1}, g3 = 0 and g4 = 0.

There is no potential benefits from four-way cycle and chain starting from the combinations

(AB,A)− (A,O), (AB,B)− (B,O), Ad− (A,O), Bd− (B,O) because all pair (A,AB) and

pair (B,AB) are matched. There is no potential benefits from the combinations (AB,A)−
(A,B) − (B,O) and Ad − (A,B) − (B,O) because all pair (B,O) are matched. There is

no potential gains from four-way cycles and chains (AB,O) − (O,A) − (A,B) − (B,AB)
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and chain Od − (O,A) − (A,B) − (B,AB) − ABp because all pair (B,AB) are matched.

Therefore, the maximum number of transplants is the same as that of three-way cycles and

chains in situation (3):

N = min{N1, N6, N8, N11}

(4) When (A,O), (B,O), Ad/(AB,A), Bd/(AB,B) remaining, we have min{#Ad +

#(AB,A),#(A,AB)} = #(A,AB)}, g1 = min{#(A,B) − #(B,A),#(B,AB)}, g2 =

#(O,A)−min{#(A,O),#(O,A)}, g3 = 0 and g4 = min{#(O,A)−g2,#(A,B)−#(B,A)−
g1 − g2 − g3}. There is no potential gains from four-way cycles and chains (AB,O) −
(O,A) − (A,B) − (B,AB) and chain Od − (O,A) − (A,B) − (B,AB) − ABp because

all pair (B,AB) are matched. There is no potential benefits from four-way cycle and

chain starting from the combinations (AB,A) − (A,O), (AB,B) − (B,O), Ad − (A,O),

Bd − (B,O) because all pair (A,AB) and pair (B,AB) are matched. Because there are

remaining pair (AB,A), pair (B,O) and single donor Ad, there is potential gains from the

combinations (AB,A)− (A,B)− (B,O) and Ad− (A,B)− (B,O). To take full advantage

of the combinations, based on the three-way process in situation (4), we first reserve the

maximum number of the combinations and then match two-way cycles (AB,A)− (A,B),

(B,O) − (A,B) and chain Ad − (A,B) − Y p. The maximum number of transplants in

situation (4) is:

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g4 + w1 + w2 + w3 + w4 + c4 + s1 + w5

where

c2 = min{#Ad + #(AB,A)− g1 − w3,#(A,O)− w1}
c3 = min{#Bd + #(AB,B)− w2,#(B,O)− g2 − g4 − w4}
c4 = min{#Ad + #(AB,A)− g1 − w3 − c2,#(B,O)− g2 − g4 − w4 − c3,

#(A,B)−#(B,A)− g1 − g2 − g4}
s1 = min{#Ad + #(AB,A)− g1 − w3 − c2 − c4 + #(B,O)− g2 − g4 − w4 − c3 − c4,

#(A,B)−#(B,A)− g1 − g2 − g4 − c4}
w5 = min{#Od + #(AB,O) + c2 + c3 + c4,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − 2 ∗ g4 − w1

−w2 − w3 − w4 − s1 − c4}

The maximum number of transplants can be rewritten as:

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g4 + w1 + w2 + w3 + w4 + c4 + s1 + w5 = min{N1, N2, N4, N6, N11}

One may refer to Tables from C5 to C8 in Supplement C for detail.

(5) When (A,O), (B,O), Ad/(AB,A), (B,AB) remaining, we have min{#Ad+#(AB,A),

#(A,AB)} = #(A,AB)}, min{#(A,O),#(O,A)} = #(O,A), g1 = #(A,B) − #(B,A)
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and g2 = g3 = g4 = 0. There is no potential gains from four-way cycles and chains

(AB,O) − (O,A) − (A,B) − (B,AB) and chain Od − (O,A) − (A,B) − (B,AB) − ABp

because all pair (O,A) are matched. There is no potential benefits from four-way cycle

and chain starting from the combinations (AB,A)−(A,O), (AB,B)−(B,O), Ad−(A,O),

Bd−(B,O) because all pair (A,AB), pair (O,A) and pair (O,B) are matched. There is no

potential gains from the combinations (AB,A)− (A,B)− (B,O) and Ad− (A,B)− (B,O)

because all pair (A,B) are matched. Therefore, the maximum number of transplants is

the same as that of three-way cycles and chains in situation (5):

N = min{N1, N2, N4}

(6) When (A,O), (B,O), (A,AB), Bd/(AB,B) remaining, we have g1 = #Ad +

#(AB,A) −min{#Ad + #(AB,A),#(A,AB)}, g2 = #(O,A) −min{#(A,O),#(O,A)},
g3 = min{#Ad + #(AB,A) − g1,#(A,B) − #(B,A) − g1 − g2,#(B,AB) − b1} and

g4 = min{#(O,A) − g2,#(A,B) − #(B,A) − g1 − g2 − g3}. There is no potential

gains from four-way cycles and chains (AB,O) − (O,A) − (A,B) − (B,AB) and chain

Od−(O,A)−(A,B)−(B,AB)−ABp because all pair (O,A) are matched. There is no poten-

tial benefits from four-way cycle and chain starting from the combinations (AB,A)−(A,O),

(AB,B) − (B,O), Ad − (A,O), Bd − (B,O) because all pair (O,A) and pair (O,B) are

matched. There is no potential gains from the combinations (AB,A)−(A,B)−(B,O) and

Ad−(A,B)−(B,O) because all pair (AB,A) and single donor Ad are matched. Therefore,

there is no potential gains from four-way cycles and chains and the maximum number of

transplants is the same as that of three-way cycles and chains in situation (6):

N = min{N1, N2, N6}

(7) When (A,O), (O,B), Ad/(AB,A), Bd/(AB,B) remaining, we have min{#Ad +

#(AB,A),#(A,AB)} = #(A,AB)}, g1 = min{#(A,B) − #(B,A),#(B,AB)}, g2 =

#(O,A)−min{#(A,O),#(O,A)}, g3 = 0 and g4 = min{#(B,O)−g2,#(O,A)−g2,#(A,B)−
#(B,A) − g1 − g2 − g3}. There is no potential gains from four-way cycles and chains

(AB,O)−(O,A)−(A,B)−(B,AB) and chain Od−(O,A)−(A,B)−(B,AB)−ABp because

all pair (O,A) are matched. There is no potential gains from four-way cycles and chains

starting with the combinations (AB,A)− (A,O) and Ad− (A,O) because all pair (A,AB)

and pair (B,AB) are matched. There is no potential gains from four-way cycles and chains

starting with the combinations (AB,A)−(A,B)−(B,O) and Ad−(A,B)−(B,O) because

all pair (B,O) are matched. Therefore, the maximum number of transplants is the same

as that of three-way cycles and chains in situation (7)

N = min{N1, N6, N11}
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(8) When (O,A), (B,O), Ad/(AB,A), Bd/(AB,B) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), min{#Ad+#(AB,A),#(A,AB)} = #(A,AB), g1 = min{#(A,B)−
#(B,A),#(B,AB)}, g2 = #(A,B) − #(B,A) − g1 and g3 = g4 = 0. There is no

potential gains from four-way cycles and chains (AB,O) − (O,A) − (A,B) − (B,AB)

and chain Od − (O,A) − (A,B) − (B,AB) − ABp because all pair (B,AB) are matched.

There is no potential gains from four-way cycles and chains starting with the combinations

(AB,B)− (B,O) and Bd− (B,O) because all pair (A,AB) and pair (B,AB) are matched.

There is no potential gains from four-way cycles and chains starting with the combinations

(AB,A)− (A,B)− (B,O) and Ad − (A,B)− (B,O) because all pair (A,B) are matched.

Therefore, the maximum number of transplants is the same as that of three-way cycles and

chains in situation (8)

N = min{N1, N4, N11}

(9) When (A,O), (O,B), (A,AB), Bd/(AB,B) remaining, we have g1 = #Ad +

#(AB,A) −min{#Ad + #(AB,A),#(A,AB)}, g2 = #(O,A) −min{#(A,O),#(O,A)},
g3 = min{#Ad + #(AB,A) − g1,#(A,B) − #(B,A) − g1 − g2,#(B,AB) − b1} and

g4 = min{#(B,O) − g2,#(O,A) − g2,#(A,B) − #(B,A) − g1 − g2 − g3}. There is no

potential gains from four-way cycles and chains (AB,O)− (O,A)− (A,B)− (B,AB) and

chain Od − (O,A)− (A,B)− (B,AB)− ABp because all pair (O,A) are matched. There

is no potential benefits from four-way cycle and chain starting from the combinations

(AB,A) − (A,O), (AB,B) − (B,O), Ad − (A,O), Bd − (B,O) because all pair (A,AB),

pair (O,A) and pair (B,AB) are matched. Therefore, the maximum number of transplants

is the same as that of three-way cycles and chains in situation (9)

N = min{N1, N6}

(10) When (O,A), (B,O), Ad/(AB,A), (B,AB) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), min{#Ad + #(AB,A),#(A,AB)} = #(A,AB), g1 = #(A,B) −
#(B,A) and g2 = g3 = g4 = 0. There is no potential gains from four-way cycles and chains

(AB,O) − (O,A) − (A,B) − (B,AB) and chain Od − (O,A) − (A,B) − (B,AB) − ABp

because all pair (A,B) are matched. There is no potential gains from four-way cycles and

chains starting from the combinations (AB,B) − (B,O), Bd − (B,O), (AB,A) − (A,O)

and Ad − (A,O) because all pair (A,O), pair (AB,B) and single donor Bd are matched.

There is no potential gains from four-way cycles and chains starting from the combinations

(AB,A)− (A,B)− (B,O) and Ad − (A,B)− (B,O) because all pair (A,B) are matched.

Therefore, the maximum number of transplants is the same as that of three-way cycles and

chains in situation (10)

N = min{N1, N4}
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(11) When (A,O), (O,B), Ad/(AB,A), (B,AB) remaining, we have min{#(A,O),

#(O,A)} = #(O,A), min{#Ad + #(AB,A),#(A,AB)} = #(A,AB), g1 = #(A,B) −
#(B,A) and g2 = g3 = g4 = 0. There is no potential gains from four-way cycles and chains

(AB,O)−(O,A)−(A,B)−(B,AB) and chain Od−(O,A)−(A,B)−(B,AB)−ABp because

all pair (O,A) and pair (A,B) are matched. There is no potential gains from four-way cycles

and chains starting by the combinations (AB,A)−(A,B)−(B,O) and Ad−(A,B)−(B,O)

because all pair (A,B) and pair (B,O) are matched. There is potential gains from four-way

cycle (AB,A)−(A,O)−(O,B)−(B,AB) and chain Ad−(A,O)−(O,B)−(B,AB)−ABp.

To take full advantages, we match the maximum number of four-way cycle (AB,A) −
(A,O)− (O,B)− (B,AB) and chain Ad − (A,O)− (O,B)− (B,AB)−ABp bounded by

the number of remaining pairs (A,O), (O,B), Ad/(AB,A) and (B,AB). If all remaining

pairs (AB,A) and single donors Ad are matched, there is potential gains from four-way

cycle (AB,A)− (A,O)− (O,B)− (B,AB) and chain Ad − (A,O)− (O,B)− (B,AB) by

breaking two-way cycle (AB,A)− (A,AB) and chain Ad− (A,AB) because one more pair

can be matched in this case. Similarly, if all remaining pairs (A,O) are matched, there is

potential gains from three-way cycles (A,O)−(O,B)−(B,A), (AB,A)−(A,B)−(B,AB)

and chain Ad − (A,B)− (B,AB)− ABp by breaking two-way cycle (A,O)− (O,A).

Therefore, the maximum number of transplants in situation (11) is

N = 2 ∗ g1 + w1 + w2 + w3 + w4 + 2 ∗ u1 + v1 + v2 + 2 ∗ g6 + w5

where

u1 = min{#(A,O)− w1,#(O,B)− w4,#A
d + #(AB,A)− g1 − w3,

#(B,AB)− g1 − w2}
v1 = min{#Ad + #(AB,A)− g1 − u1,#(A,O)− w1 − u1,#(O,B)− w4 − u1,

#(B,AB)− g1 − w2 − u1}
v2 = min{#(A,O)− u1,#Ad + #(AB,A)− g1 − u1,#(O,B)− w4 − u1,

#(B,AB)− g1 − w2 − u1}
c2 = min{#Ad + #(AB,A)− w3 − u1 − v2,#(A,O)− w1 − u1 − v1}
g6 = min{#Od + #(AB,O),#(O,B)− w4 − u1 − v1 − v2,#(B,AB)− g1 − u1 − w2

−v1 − v2}
w5 = min{#Od + #(AB,O) + c2 − g6,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − w1 − w2 − w3 − w4 − 2 ∗ u1
−v1 − v2 − 2 ∗ g6}

The maximum number of transplants is

N = 2 ∗ g1 + w1 + w2 + w3 + w4 + 2 ∗ u1 + v1 + v2 + 2 ∗ g6 + w5

= min{N1, N2, N4, N5, N6, N9, N10, N11}

One may refer to Tables C9 and C10 in Supplement C for detail.
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(12) When (O,A), (O,B), Ad/(AB,A), (B,AB) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), min{#Ad + #(AB,A),#(A,AB)} = #(A,AB), g1 = #(A,B) −
#(B,A) and g2 = g3 = g4 = 0. There is no potential gains from four-way cycles and

chains (AB,O)− (O,A)− (A,B)− (B,AB) and chain Od − (O,A)− (A,B)− (B,AB)−
ABp because all pair (A,B) are matched. There is potential gains from four-way cycle

(AB,A)− (A,O)− (O,B)− (B,AB) and chain Ad− (A,O)− (O,B)− (B,AB)−ABp by

breaking two-way cycle (A,O)− (O,A) because one more pair can be matched in this case.

That is, v2 6= 0. We can do the same process in situation (11). The maximum number of

transplants is

N = 2 ∗ g1 + w1 + w2 + w3 + w4 + v2 + 2 ∗ g6 + w5 = min{N1, N4, N9, N10, N11}

One may refer to Table C11 in Supplement C for detail.

(13) When (A,O), (O,B), (A,AB), (B,AB) remaining, we have g1 = #Ad+#(AB,A)−
min{#Ad+#(AB,A),#(A,AB)}, g2 = #(O,A)−min{#(A,O),#(O,A)}, g3 = min{#Ad+

#(AB,A) − g1,#(A,B) − #(B,A) − g1 − g2} and g4 = min{#(O,A) − g2,#(A,B) −
#(B,A) − g1 − g2 − g3}. There is no potential gains from four-way cycles and chains

(AB,O)− (O,A)− (A,B)− (B,AB) and chain Od− (O,A)− (A,B)− (B,AB)−ABp be-

cause all pair (O,A) are matched. There is potential gains from four-way cycle (AB,A)−
(A,O) − (O,B) − (B,AB) and chain Ad − (A,O) − (O,B) − (B,AB) − ABp by break-

ing two-way cycle (AB,A) − (A,AB) and chain Ad − (A,AB) − ABp because one more

pair can be matched in this case. That is, v1 6= 0. To take full advantage of four-way

cycles and chains, we can first do the same process in situation (11) and then match

three-way cycles (AB,O) − (O,B) − (B,AB), (AB,O) − (A,B) − (B,AB) and chains

Od − (O,B) − (B,AB) − ABp, Od − (A,B) − (B,AB) − ABp if any before matching re-

maining pairs with pair (AB,O) and single donor Od. Therefore, the maximum number of

transplants in situation (13) is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + 2 ∗ g4 + w1 + w2 + w3 + w4 + v1 + 2 ∗ g6 + 2 ∗ g8 + w5

where

g8 = min{#Od + #(AB,O)− g6,#(A,B)−#(B,A)− g1 − g2 − g3 − g4,
#(B,AB)− g1 − g3 − w2 − v1 − g6}

w5 = min{#Od + #(AB,O)− g6 − g8,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − 2 ∗ g3 − 2 ∗ g4
−w1 − w2 − w3 − w4 − v1 − 2 ∗ g6 − 2 ∗ g8}

The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + 2 ∗ g4 + w1 + w2 + w3 + w4 + v1 + 2 ∗ g6 + 2 ∗ g8 + w5

= min{N1, N2, N5, N6, N10}
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One may refer to Tables from C12 to C17 in Supplement C for detail.

(14) When (O,A), (B,O), (A,AB), Bd/(AB,B) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), g1 = #Ad + #(AB,A) − min{#Ad + #(AB,A),#(A,AB)}, g2 =

#(A,B)−#(B,A)− g1 and g3 = g4 = 0. There is no potential gains from four-way cycles

and chains (AB,O)−(O,A)−(A,B)−(B,AB) and chain Od−(O,A)−(A,B)−(B,AB)−
ABp because all pair (A,B) are matched. There is potential gains from four-way cycle

(AB,B)−(B,O)−(O,A)−(A,AB) and chain Bd−(B,O)−(O,A)−(A,AB)−ABp because

two more blood-type incompatible pairs of types (O,A) and (A,AB) can be matched in

this case. Therefore, we take full advantage of (B,A), (A,B) and match the maximum

number of four-way cycle (AB,B)− (B,O)− (O,A)− (A,AB) and chain Bd − (B,O)−
(O,A)−(A,AB)−ABp bounded by the number of remaining pairs (O,A), (B,O), (A,AB)

and Bd/(AB,B). If all remaining pairs (AB,B) and single donors Bd are matched, there

is potential gains from four-way cycle (AB,B) − (B,O) − (O,A) − (A,AB) and chain

Bd− (B,O)− (O,A)− (A,AB)−ABp by breaking two-way cycle (AB,B)− (B,AB) and

chain Bd − (B,AB)−ABp because one more pair can be matched in this case. Similarly,

if all remaining pairs (B,O) are matched, there is potential gains from four-way cycle

(AB,B)− (B,O)− (O,A)− (A,AB) and chain Bd− (B,O)− (O,A)− (A,AB)−ABp by

breaking two-way cycle (B,O) − (O,B). Therefore, the maximum number of transplants

in situation (14) is

N = 2 ∗ g1 + 2 ∗ g2 + w1 + w2 + w3 + w4 + 2 ∗ u2 + v3 + v4 + 2 ∗ g5 + w5

where

u2 = min{#(B,O)− g2 − w4,#(O,A)− g2 − w1,#(A,AB)− w3,

#Bd + #(AB,B)− w2}
v3 = min{#Bd + #(AB,B)− u2,#(B,O)− g2 − w4 − u2,#(O,A)− g2 − w1 − u2,

#(A,AB)− w3 − u2}
v4 = min{#(B,O)− g2 − u2,#Bd + #(AB,B)− w2 − u2,#(O,A)− g2 − w1 − u2,

#(A,AB)− w3 − u2}
c3 = min{#Bd + #(AB,B)− w2 − u2 − v4,#(B,O)− w4 − u2 − v3}
g5 = min{#Od + #(AB,O),#(O,A)− g2 − w1 − u2 − v3 − v4,#(A,AB)− w3 − u2

−v3 − v4}
w5 = min{#Od + #(AB,O) + c3 − g5,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − w1 − w2 − w3 − w4

−2 ∗ u2 − v3 − v4 − 2 ∗ g5}

The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + w1 + w2 + w3 + w4 + 2 ∗ u2 + v3 + v4 + 2 ∗ g5 + w5

= min{N1, N2, N3, N4, N6, N8, N10, N11}
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One may refer to Tables C18 and C19 in Supplement C for detail.

(15) When (O,A), (B,O), (A,AB), (B,AB) remaining, we have min{#(A,O),#(O,A)}
= #(A,O), g1 = #Ad + #(AB,A) −min{#Ad + #(AB,A),#(A,AB)}, g2 = #(A,B) −
#(B,A)− g1 and g3 = g4 = 0. There is no potential gains from four-way cycles and chains

(AB,O) − (O,A) − (A,B) − (B,AB) and chain Od − (O,A) − (A,B) − (B,AB) − ABp

since all pair (A,B) are matched. There is potential gains from four-way cycle (AB,B)−
(B,O)− (O,A)− (A,AB) and chain Bd − (B,O)− (O,A)− (A,AB)−ABp by breaking

two-way cycle (AB,B)− (B,AB) and chain Bd − (B,AB)− ABp because one more pair

can be matched in this case. That is, v3 6= 0. We can do the same process in situation

(14). The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + w1 + w2 + w3 + w4 + v3 + 2 ∗ g5 + w5

= min{N1, N2, N3, N4, N10}

One may refer to Table C20 in Supplement C for detail.

(16) When (O,A), (O,B), (A,AB), Bd/(AB,B) remaining, we have min{#(A,O),

#(O,A)} = #(A,O), g1 = #Ad + #(AB,A) − min{#Ad + #(AB,A),#(A,AB)}, g2 =

min{#(B,O),#(A,B) − #(B,A) − g1}, g3 = min{#Ad + #(AB,A) − g1,#(A,B) −
#(B,A) − g1 − g2,#(B,AB) − b1} and g4 = 0. There is no potential gains from four-

way cycles and chains (AB,O) − (O,A) − (A,B) − (B,AB) and chain Od − (O,A) −
(A,B) − (B,AB) − ABp because all pair (B,AB) are matched. There is potential gains

from four-way cycle (AB,B)− (B,O)− (O,A)− (A,AB) and chain Bd− (B,O)− (O,A)−
(A,AB)− ABp by breaking two-way cycle (B,O)− (O,B) because one more pair can be

matched in this case. That is, v4 6= 0. To take full advantage of three-way cycles and

chains, we can first do the same process in situation (14) and then match three-way cycles

(AB,O)−(O,A)−(A,AB), (AB,O)−(O,A)−(A,B) and chains Od−(O,A)−(A,AB)−
ABp, Od− (O,A)− (A,B)−Y p if any before matching remaining pairs with pair (AB,O)

and single donor Od. Therefore, the maximum number of transplants in situation (16) is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + w1 + w2 + w3 + w4 + v4 + 2 ∗ g5 + 2 ∗ g7 + w5

where

g7 = min{#Od + #(AB,O)− g5,#(O,A)− g2 − w1 − v4 − g5,
#(A,B)−#(B,A)− g1 − g2 − g3}

w5 = min{#Od + #(AB,O)− g5 − g7,#(O,A) + #(O,B) + #(O,AB) + #(A,AB)

+#(A,B)−#(B,A) + #(B,AB)− 2 ∗ g1 − 2 ∗ g2 − 2 ∗ g3 − w1 − w2 − w3

−w4 − v4 − 2 ∗ g5 − 2 ∗ g7}

The maximum number of transplants is

N = 2 ∗ g1 + 2 ∗ g2 + 2 ∗ g3 + w1 + w2 + w3 + w4 + v4 + 2 ∗ g5 + 2 ∗ g7 + w5

= min{N1, N6, N8, N10, N11}
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One may refer to Tables from C21 to C24 in Supplement C for detail. Combining cases

(1) to (16), we have proved that the maximum number of transplants for blood-type in-

compatible paired patients of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B)

is

N = min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11}

We now prove that the sequential mechanism is 4-efficient which achieves the maximum

number of transplants in the pool. The same as the mechanism when three-way cycles

and chains are allowed, the number of transplantations for compatible pairs, blood-type

compatible pairs and pairs of type (B − A) in the mechanism is

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

Next, we prove that the maximum number of transplants for blood-type incompatible

pairs of types (O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) can be achieved in the

mechanism by exploring every possible route.

Denote X2 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 2 so that

X2 = 2 ∗ b1 + 2 ∗ b2 + 2 ∗ b3 + 2 ∗ b21
where

b1 = min{#Ad + #(AB,A)−min{#Ad + #(AB,A),#(A,AB)},
#(A,B)−#(B,A),#(B,AB)}

b2 = min{#(B,O),#(O,A)−min{#(A,O),#(O,A)},#(A,B)−#(B,A)− b1}
b3 = min{#Ad + #(AB,A)− b1,#(A,B)−#(B,A)− b1 − b2,#(B,AB)− b1}
b21 = min{#(B,O)− b2,#(O,A)− b2,#(A,B)−#(B,A)− b1 − b2 − b3}

Denote X3 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 3 so that

X3 = 2 ∗ e1 + 2 ∗ e2 + 2 ∗ f2 + 2 ∗ f3 + 2 ∗ f4 + 2 ∗ f5
where

e1 = min{#(A,O)− a1,#Ad + #(AB,A)− b1 − b3 − a1,#(O,B)− a4,
#(B,AB)− b1 − b3 − a2}

e2 = min{#Bd + #(AB,B)− a2,#(A,AB)− a3,#(B,O)− b2 − a4,
#(O,A)− b2 − a1}

f2 = min{#(A,O)− a1 − e1,#Ad + #(AB,A)− b1 − b3 − e1,
#(O,B)− a4 − e1,#(B,AB)− b1 − b3 − a2 − e1}
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f3 = min{#Bd + #(AB,B)− a2 − e2,#(A,AB)− a3 − e2,#(B,O)− b2 − e2,
#(O,A)− b2 − a1 − e2}

f4 = min{#(A,O)− e1,#Ad + #(AB,A)− b1 − b3 − e1 − a3,
#(O,B)− a4 − e1,#(B,AB)− b1 − b3 − a2 − e1}

f5 = min{#Bd + #(AB,B)− e2,#(A,AB)− a3 − e2,#(B,O)− b2 − b21 − e2
−a4,#(O,A)− b2 − b21 − a1 − e2}

where

a1 = min{#(A,O),#(O,A)− b2 − b21}
a2 = min{#Bd + #(AB,B),#(B,AB)− b1 − b3}
a3 = min{#Ad + #(AB,A)− b1 − b3,#(A,AB)}
a4 = min{#(B,O)− b2 − b21,#(O,B)}

In Step 4, all remaining pairs (B,A) are matched with pair (A,B). Denote X4 as

the number of blood-type incompatible paired patients from pairs of types (O,A), (O,B),

(O,AB), (A,AB), (B,AB), (A,B) involved in Step 4 so that

X4 = #(B,A) + p1 + p2 + p3 + p4 + a8 + c4

where

p1 = a1 − f4
p2 = a2 − f5
p3 = a3 − f2
p4 = a4− f3
a8 = min{#Ad + #(AB,A)− b1 − b3 − e1 − f2 − f4 − p3 − c2 − c4

+#(B,O)− b2 − e2 − f3 − f5 − p4 − c3 − c4,#(A,B)−#(B,A)

−b1 − b2 − b3 − b21 − c4}
where

c2 = min{#Ad + #(AB,A)− b1 − b3 − e1 − f2 − f4 − p3,#(A,O)− e1 − f2
−f4 − p1}

c3 = min{#(B,O)− b2 − b21 − e2 − f3 − f5 − p4,#Bd + #(AB,B)− e2 − f3
−f5 − p2}

c4 = min{#Ad + #(AB,A)− b1 − b3 − e1 − f2 − f4 − p3 − c2,#(B,O)− b2
−b21 − e2 − f3 − f5 − p4 − c3,#(A,B)−#(B,A)− b1 − b2 − b3 − b21}

Denote X5 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 5 so that

X5 = 3 ∗ d1 + 2 ∗ b4 + 2 ∗ b5 + 2 ∗ b6 + 2 ∗ b7
where

d1 = min{#Od + #(AB,O),#(O,A)− b2 − b21 − e2 − f3 − f5 − p1,#(A,B)

−#(B,A)− b1 − b2 − b3 − b21 − a8,#(A,AB)− e2 − f3 − f5 − p3}
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b4 = min{#Od + #(AB,O)− d1,#(O,A)− b2 − b21 − e2 − f3 − f5 − p1 − d1,
#(A,AB)− e2 − f3 − f5 − p3 − d1}

b5 = min{#Od + #(AB,O)− b4 − d1,#(O,B)− e1 − f2 − f4 − p4,
#(B,AB)− b1 − b3 − e1 − f2 − f4 − p2}

b6 = min{#Od + #(AB,O)− b4 − b5 − d1,#(O,A)− b2 − b21 − e2 − f3 − f5
−p1 − b4 − d1,#(A,B)−#(B,A)− b1 − b2 − b3 − b21 − a8 − d1}

b7 = min{#Od + #(AB,O)− b4 − b5 − b6 − d1,#(A,B)−#(B,A)− b1 − b2
−b3 − b21 − a8 − b6 − d1,#(B,AB)− b1 − b3 − e1 − f2 − f4 − p2 − b5}

Denote X6 as the number of blood-type incompatible paired patients from pairs of types

(O,A), (O,B), (O,AB), (A,AB), (B,AB), (A,B) involved in Step 6 so that

X6 = a9 = min{#Od + #(AB,O)− b4 − b5 − b6 − b7 + c2 + c3 + c4,#(O,A)

+#(O,B) + #(O,AB) + #(A,AB) + #(A,B) + #(B,AB)− 2 ∗ b1
−2 ∗ b2 − 2 ∗ b3 − 2 ∗ e1 − 2 ∗ e2 − 2 ∗ f2 − 2 ∗ f3 − 2 ∗ f4 − 2 ∗ f5
−p1 − p2 − p3 − p4 − a8 − 3 ∗ d1 − 2 ∗ b4 − 2 ∗ b5 − 2 ∗ b6 − 2 ∗ b7 − b21 − b21}

Therefore, the total number of transplants for paired patients from pairs of types (O,A),

(O,B), (O,AB), (A,AB), (B,AB), (A,B) in the mechanism isX = X2+X3+X4+X5+X6.

The equation can be rewritten as follows:

X = min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11}

One may refer to Tables from C25 to C60 in Supplement C for detail. Therefore, the total

number of transplants can be achieved in the mechanism is that

#(A,O) + #(B,O) + #(AB,O) + #(AB,A) + #(AB,B)

+#(B,A) + #(A,A) + #(B,B) + #(AB,AB) + #(O,O)

+#Ad + #Bd + #ABd + #Od

+ min{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11}

Therefore, we proved that every matching produced by the mechanism achieves the

maximum number of transplants in the pool and hence the mechanism is 4-efficient.

2

Proof of Corollary 4.4: Consider an efficient matching µ for a population stated in the

theorem. If the maximal matching µ only consists of n-way cycles and chains, or smaller

cycles and chains, we are done. Otherwise, we will prove that there exists a matching ν

which consists of at most n-way cycles or chains can match the same set of receiving agents

as matching µ.

We will prove the theorem for the case in which the largest exchanges (cycles or chains)

in matching µ is (n+1)-way. The same proof can be applied to show that for any maximal
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matching in which the largest exchanges is m-way where m > (n+ 1), there exists another

matching which matches the same set of receiving agent through (m-1)-way or smaller

exchanges. Then, repeat the same proof process to obtain the desired result.

Three cases may occur in the matching µ, which are both cycle and chain have (n+1)-

way or either cycle or chain has (n+1)-way. We will prove the most complicated case such

that matching µ consisting of both (n+1)-way cycles and (n+1)-way chains. Then, other

two situations can be automatically proved.

Let

E0 = ((P p
1 , D

p
1), (P p

2 , D
p
2), (P p

3 , D
p
3), ..., (P p

n , D
p
n), (P p

n+1, D
p
n+1))

C0 = (Ds
1, (P

p
1 , D

p
1), (P p

2 , D
p
2), ..., (P p

n , D
p
n), P s

1 )

be any (n+1)-way cycle and chain respectively in matching µ. We will prove that all

receiving agents in these two exchanges can be matched via smaller exchanges without

changing the set of pairs that are matched.

Since we have only n types, there are at least two receiving agents in cycle E0 who have

the same type. Pick any two such receiving agent. We have two cases to consider.

Case 1. The two receiving agents are not matched together.

Suppose these receiving agents are P p
1 and P p

n in cycle E0. The receiving agent P p
1 is

matched with donating agent Dp
n+1 and the receiving agent P p

n is matched with donating

agent Dp
n−1. Since agents P p

1 and P p
n have the same type, donating agents Dp

n−1 and Dp
n+1

are compatible with the two receiving agent P p
1 and P p

n . Hence, the (n+1)-way cycle can

be divided into two smaller cycles as follows.

E1
1 = ((P p

1 , D
p
1), (P p

2 , D
p
2), (P p

3 , D
p
3), ..., (P p

n−1, D
p
n−1)), E

1
2 = ((P p

n , D
p
n), (P p

n+1, D
p
n+1))

Suppose these receiving agents are P p
1 and P s

1 in chain C0. The receiving agent P p
1

is matched with donating agent Ds
1 and the receiving agent P s

1 is matched with donating

agent Dp
n. Since agents P p

1 and P s
1 have the same type, donating agents Ds

1 and Dp
n are

compatible with both the two agents. Hence, the (n+1)-way chain C0 can be divided into

one cycle and one chain as follows.

C1
2 = (Ds

1, P
s
1 ), E1

2 = ((P p
1 , D

p
1), (P p

2 , D
p
2), ..., (P p

n , D
p
n))

Case 2. The two receiving agents are matched together. Suppose agents P p
1 and P p

2

have the same type.

Under cycle E0, since agent P p
1 is matched with donating agent Dn+1, donating agent

Dn+1 is compatible with the receiving agent P p
2 . Hence, the following n-way exchange is

feasible.

E2
1 = ((P p

2 , D
p
2), (P p

3 , D
p
3), ..., (P p

n−1, D
p
n−1))
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Under chain C0, since agent P p
1 is matched with donating agent Ds

1, donating agent Ds
1

is compatible with receiving agent P p
2 . Hence, the following n-way chain is feasible.

C2
2 = (Ds

1, (P
p
2 , D

p
2), ..., (P p

n−1, D
p
n−1), (P

p
n , D

p
n), P s

1 )

Now, we will prove that the remaining pair (P p
1 , D

p
1) can be matched in an exchange

without affecting pairs that are matched under µ. Because of the Assumption 2.1, we

directly use ”type” to present the primary type. Let pair (P p
1 , D

p
1) be of type (X, Y )t

where t ∈ {i, c}, and hence receiving agent P p
2 is type X. Since donating agent Dp

1 of type

Y is compatible with receiving agent P p
2 , we have Y � X. Therefore, pair of type (X, Y )

is primary type compatible pair.

Let A be the set of n+1-way cycles and n+1-way chains in case 2. From previous proof,

every cycle can be separated into a n-way cycle and one remaining primary type compatible

pair and every chain can be separated into a n-way chain and one remaining primary type

compatible pair. Let D be the set of remaining primary type compatible pairs in A.

Then, we have Y � X. If remaining pairs are compatible, we can do transplants directly.

Otherwise, let (X, Y )i present the type of a primary type compatible but secondary type

incompatible pair. If there exists two or more pairs of type (X, Y )i, we can match them

by two-way cycles (X, Y )i − (X, Y )i. Therefore, at most one pair of type (X, Y )i left.

By Assumption 4.2, there exists at least one pair of type (X, Y )c. If the pair (X, Y )c

does not involve in a cycle or a chain, we can match the remaining pair (X, Y )i with pair

(X, Y )c. Otherwise, pair (X, Y )c involves in a cycle or chain no larger than n-way, then

the remaining pair (X, Y )i can replace the position of pair (X, Y )c and pair (X, Y )c can

do the transplant straightforwardly.

2
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