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Abstract

This paper analyzes the effect of the interest rate lower bound on long term sovereign

bond spreads in the Euro area. We specify a joint shadow rate term structure model

for the risk-free, the German and the Italian sovereign yield curves. In our model, the

behavior of long term spreads becomes strongly nonlinear in the underlying factors

when interest rates are close to the lower bound, which in the data occurs since the

beginning of 2012. We fit the model by Quasi-Maximum Likelihood and highlight three

important consequences of sovereign spreads’ nonlinear behavior: i) their distribution

is skewed, ii) they are affected by (possibly exogenous) changes in the lower bound, and

iii) they become less informative about the countries’ sovereign risk. Shadow spreads,

however, still provide reliable information.
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1 Introduction

Long term sovereign bond spreads are closely monitored by financial markets, central banks

and governments as a reference measure for sovereign risk. According to standard finance

theory, long term rates are determined by the current and expected future short term rates

plus a risk premium, i.e. by the current forward curve. Consequently, a lower bound con-

straining forward sovereign rates will also affect long term sovereign rates, and long term

sovereign bond spreads as well.

The existence of a lower bound on interest rates can be justified both theoretically and

empirically. Black (1995) was the first to observe that interest rates cannot decrease be-

low the opportunity cost of holding currency, which represents a lower bound on interest

rates. This remark implies that standard Gaussian affine dynamic term structure models

are misspecified when observed yields are close to that bound, because they assign a large

probability to rates below it. Empirically, this situation has become relevant in several

countries: in Japan since the late 90s, in the US since 2009 and in the Euro area since 2012.

Several authors suggested that shadow rate term structure models can be used to enforce

a lower bound on interest rates, see Krippner (2013), Wu and Xia (2016) and Christensen

and Rudebusch (2014), among others. These works show that shadow rate term structure

models fit observed yields better than Gaussian affine dynamic term structure models, and

offer several advantages in times when rates are constrained from below. Some efforts have

also been devoted to highlight the implications of the lower bound on long term yields. In the

context of a shadow rate term structure model, Krippner (2015) and Bauer and Rudebusch

(2016) measure how tightly the zero lower bound constrains the entire term structure of

interest rates using the zero lower bound wedge, defined as the difference between the 10-

year yield and the corresponding shadow yield, i.e. the yield that would be observed if

interest rates were not constrained. Ruge-Murcia (2006) shows that, at the lower bound,

long term rates respond asymmetrically to changes in the short term rate, and by less than

it is predicted by a Gaussian affine dynamic term structure model. Swanson and Williams

(2014) measure the tightness of the zero lower bound on medium and long term interest

rates using the interest rate sensitivity to macroeconomic news.

In this paper, we focus on the effect of the interest rate lower bound on long term

sovereign bond spreads. To this end, we specify a joint shadow rate term structure model for

a risk-free and two country yield curves in a monetary union. Our model allows for common
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and country-specific factors, and also for a time varying lower bound. In this framework,

observed sovereign spreads can be decomposed in two components: the shadow spread and

the spread wedge. The shadow spread is linear in the state variables and represents the

unconstrained sovereign spread, i.e. the sovereign spread that we would observe in the

absence of a lower bound or if interest rates were far from it. For this reason, the shadow

spread is only determined by the sovereign risk. The spread wedge instead captures the

nonlinearities that arise when short term rates are close to the lower bound. This means

that the spread wedge measures by how much the lower bound is distorting the observed

sovereign spread with respect to the shadow one. Its size depends on the distance of the

forward curves of the two countries from the lower bound, and also on the volatilities of their

future shadow short term rates under the risk-neutral probability measure. As the forward

curve of one of the two countries approaches the lower bound, and/or the volatility of its

future shadow rates increases, a larger proportion of the observed spread is determined by

the spread wedge and, as a consequence, the observed spread looses its informational content

as a measure of sovereign risk.

We estimate our joint shadow rate term structure model by quasi-maximum likelihood

and the Extended Kalman filter using zero rates computed from Euro area overnight index

swaps (OIS), and German and Italian Treasury yields for the period January 2001 to October

2016. Following other recent work on the subject, we use OIS rates as a proxy for risk-free

rates in the Euro area; therefore, the spread of one country’s yield with respect to the same

maturity OIS one can be interpreted as a measure of its sovereign risk or safety premium. We

specify a model with four factors: two common to the three curves, one specific to Germany

and another one specific to Italy.

Our results show that spread wedges became non-negligible since 2012, indicating the

presence of strong nonlinearities in the behavior of long term sovereign spreads at the interest

rate lower bound. In particular, we find that the 10-year Italian shadow sovereign spread

with respect to the OIS rate was larger than the corresponding observed spread. This

indicates that, in this period, the interest rate lower bound was constraining OIS rates more

than the Italian ones, and that in the absence of a lower bound the 10-year Italian spread

with respect to the OIS rate would have been larger. On the contrary, the 10-year German

shadow sovereign spread with respect to the OIS rate was lower than the observed spread.

This indicates that, in the lower bound period, German rates were more constrained than

the OIS ones, and that in the absence of a lower bound the 10-year German spread with
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respect to the OIS rate would have been lower. We also find that, in the absence of a lower

bound, in 2012 the 10-year Italian spread with respect to Germany would have been higher

by as much as 77 basis points.

Our focus on the behaviour of sovereign spreads when interest rates are at or near the

lower bound is novel and allows to highlight three important implications. First, as interest

rates approach their lower bound, the conditional distribution of future spreads becomes

skewed. For the case of the spreads between Italian and German yields, we find that the

distribution of future spreads is skewed to the right and that the degree of skewness decreases

with the maturity, but is still substantial even for the spread between 10 year yields at

a 1 year horizon. Second, spreads depend on the distance from the lower bound. This

implies that an exogenous change in the lower bound affects the observed spread even if

the sovereign risk does not change. More specifically, our results indicate that an exogenous

decrease of the lower bound by 20 basis points increases the 10-year spread between Italian

and German yields by as much as 8 basis points. Third, at or near the interest rate lower

bound, the observed spread looses its informational content as a measure of sovereign risk

but the shadow spread does not. In particular, we find that the relation between the 10

year sovereign Credit Default Swaps (CDS) spread of Italy with respect to Germany and the

observed 10 year sovereign spread between Italian and German yields broke down because

of a structural break around the end 2011/beginning 2012, when the German forward curve

became close to the lower bound. On the contrary, the relation between the 10 year sovereign

CDS spread and the 10-year sovereign shadow spread remained stable over the entire sample.

This paper also contributes to the literature on shadow rate term structure models by

considering a multi-country framework and by providing evidence supporting the conjecture

that the lower bound on Euro area rates is not constant over time. Multi-country affine

term structure models have been classified by Egorov, Li and Ng (2011), and are extensively

used to investigate the interactions between domestic and foreign yield curves. However, the

literature on shadow rate term structure models focuses exclusively on domestic settings,

mainly because shadow rate models are computationally more intensive than standard affine

ones. In addition, the identification restrictions used by Wu and Xia (2016) and Krippner

(2012) do not naturally extend to a multiple yield curve setup, as they require the researcher

to specify the nature of the latent states, in addition to their number. Carriero, Mouabbi

and Vangelista (2016) estimate a joint shadow rate model on nominal and inflation indexed

UK interest rates, imposing the lower bound constraint only on the nominal yield curve.
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Dawachter, Iania and Wijnandts (2016) use a similar framework to model risk-free rates

and sovereign spreads. To the best of our knowledge, our paper is the first study of a

multi-country shadow rate term structure model.

Usually, shadow rate term structure models assume that the lower bound is constant

over time; its value is either fixed a priori, calibrated or estimated. This assumption seems

appropriate for Japanese yields (see Ichiue, Ueno et al. 2007, Kim and Singleton 2012), US

yields (see Krippner 2012, Kim and Priebsch 2013, Christensen and Rudebusch 2016, Bauer

and Rudebusch 2016, Wu and Xia 2016), and UK yields (see Andreasen and Meldrum 2015).

However, the assumption of a constant lower bound is rejected for Euro area yields by Lemke

and Vladu (2017). Kortela (2016) and Wu and Xia (2017) find that a time-varying lower

bound is better suited for European yields. Accordingly, in this paper, we assume that the

lower bound depends on the short term risk-free rate for reserves at the European Central

Bank (ECB) and on some unknown parameters to be estimated.

The paper is organized as follows. Section 2 describes the joint shadow rate term struc-

ture model and how to derive sovereign shadow spreads. Section 3 describes the data and

performs some preliminary analysis. Section 4 describes the estimation methodology and

the identification scheme. Section 5 describes the results and, finally, Section 6 concludes.

2 A joint shadow rate term structure model for yield

curves in a monetary union

2.1 Setup

We model the joint dynamics of the risk-free, the German and the Italian yield curves using a

nonlinear model with common and country-specific latent factors evolving according to linear

Gaussian dynamics. Shadow interest rates are affine in the state variables, but observed rates

are bounded by a time-varying exogenous lower bound. In this section, we describe each

point in detail.

We assume that the shadow risk-free short term interest rate s0t is an affine function of

n0 common factors x0
t related to the common monetary policy. We also assume that the

German and the Italian shadow short term interest rates, sit, i = GE, IT , are affine function

of both the common factors x0
t and of ni country-specific factors xit, driven by credit quality
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or liquidity. Let n = n0 + nGE + nIT , and denote the full n× 1 vector of state variables as

xt = (x0′
t ,x

GE′
t ,xIT ′t )′.

Shadow rates can then be expressed as1

sit = δi0 + δi′1xt, i = 0, GE, IT, (1)

where:2

δ01 =

 δ0,01

0nGE×1

0nIT×1

 , δGE1 =

 δGE,01

δGE,GE1

0nIT×1

 , δIT1 =

 δIT,01

0nGE×1

δIT,IT1

 .

We assume that the state variables follow a first order vector autoregressive process under

the physical measure P
xt+1 = µ+ Φxt + Γεt+1, (2)

where εt+1
P∼ NIID(0, In) and Γ is a lower triangular matrix. We also assume that there

exists a risk-neutral probability measure Q which prices all financial assets and under which

the risk factors follow a first order Gaussian vector autoregression

xt+1 = µQ + ΦQxt + ΓεQt+1, (3)

where εQt+1

Q∼ NIID(0, In). To ensure that xGEt and xITt are country-specific factors, we

impose that the (nGE + nIT )× (nGE + nIT ) lower right block of ΦQ is block-diagonal.

Under the no-arbitrage condition, the price pit,τ of a zero-coupon bond with τ months to

1In what follows, we refer to the risk-free yield curve as the yield curve of country 0.
2In contingent claims valuation models in the presence of default or liquidity risk (see Duffie and Singleton

1997, 1999), the shadow short rate for Italy could be interpreted as the default-adjusted shadow short-rate,
where a single country-specific factor xITt would be given by the product of the hazard rate for default at
time t and the expected fractional loss in market value if default were to occur at time t. In the same way,
the shadow short rate for Germany could be interpreted as a liquidity-adjusted shadow short rate, where
xGEt would represent the convenience yield of holding German bonds.
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maturity in country i can be expressed as

pit,τ = EQ
t

[
exp

(
−

τ−1∑
j=0

rit+j

)]
, i = 0, GE, IT

where rit is the short term interest rate in country i. In the Gaussian affine term structure

model, the short term interest rate is equal to the shadow short rate defined in (1), i.e. rit = sit.

Under this assumption, bond prices pit,τ are exponentially affine in the state variables xt,

which implies that the corresponding yields yit,τ = − log(pit,τ )/τ are affine in xt. This model

has been extensively used to model term structures of interest rates (see Piazzesi 2010).

However, due to the fact that the Gaussian affine term structure model does not bound

interest rates, it cannot account for the near-lower bound behavior of the yield curve: it can

neither prevent interest rates from decreasing below the bound, nor replicate short rates that

stay close to the lower bound for a prolonged period of time.

The lower bound on interest rates can be enforced by allowing the short term interest

rate to be equal to the shadow short rate only when the latter is above the lower bound, and

otherwise equal to the lower bound:

rit = max(sit, rt), i = 0, GE, IT. (4)

This is the shadow rate term structure model firstly introduced by Black (1995). The

idea is that short term interest rates are bounded below due to the option to convert to

currency. As a result of this currency option, all term rates are bounded but do not have a

reflecting boundary condition, as opposed to affine models with factors that follow square-

root processes or quadratic Gaussian models. An appealing feature of the shadow rate

term structure model is that, when short term interest rates are far from the lower bound,

interest rates behave as in a Gaussian affine term structure model. Notice that rt can be

slightly positive, zero or negative as it represents the return of holding Euros (net of the

costs associated with storing, insuring and transferring large amounts of currency), which is

common across the three yield curves.
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2.2 Solution

The assumption in (4) implies that yields are nonlinear in state variables and do not have

an analytical expression. Denote by f it,τ the time t one period forward rate in country i for

a loan starting at t+ τ . Forward rates and bond yields are related by the following general

property:

yit,τ =
1

τ

τ−1∑
j=0

f it,j, i = 0, GE, IT. (5)

Wu and Xia (2016) show that, under (1), (3) and (4), the forward rate f it,τ is approximately

equal to

f it,τ ≈ rt + σiτg

(
aiτ + bi′τxt − rt

σiτ

)
, i = 0, GE, IT, (6)

where:

g(z) = zN(z) + n(z),

biτ =
[
(ΦQ)τ

]′
δi1,

aiτ = δi0 +

(
τ−1∑
j=0

bij

)′
µQ − 1

2

(
τ−1∑
j=0

bij

)′
ΓΓ′

(
τ−1∑
j=0

bij

)
,

(
σiτ
)2

=
τ−1∑
j=0

bi′jΓΓ′bij, (7)

with N(·) and n(·) denoting the cdf and the pdf of the standard normal distribution, re-

spectively. The approximation in (6) only holds for τ ≥ 1. For τ = 0, given f it,0 = rit, (4)

implies

f it,0 = rt + max(0, δi0 + δi′1xt − rt), i = 0, GE, IT. (8)

Plugging the approximate expressions for the forward rates in (6) and (8) into (5), we

can construct an approximation for the yields yit,τ :

yit,τ = rt +
1

τ

[
max(0, δi0 + δi′1xt − rt) +

τ−1∑
j=1

σijg

(
aij + bi′jxt − rt

σij

)]
= hiτ (xt) (9)

for i = 0, GE, IT .

8



2.3 Shadow yield curve

The short rate equation (4) introduces nonlinearity into a term structure model with linear

Gaussian dynamics and, as a consequence, yields are nonlinear in the state variables. The

model however allows to compute shadow yields, i.e. the interest rates that we would observe

in the absence of the lower bound. The latter does not restrict shadow rates, which are thus

always linear in the state variables.

The short rate equation (4) can be written as

rit = f it,0 = sit + max(rt − sit, 0), i = 0, GE, IT, (10)

where sit is linear in the state variables, see (1), and max(rt − sit, 0) represents the option

value of cash, see Krippner (2015). A similar decomposition for forward rates with τ ≥ 1

can be derived using the approximation in (6). In particular, if we define shadow forward

rates f̃ it,τ as

f̃ it,τ = aiτ + bi′τxt, , i = 0, GE, IT (11)

we can rewrite (6) as:

f it,τ = f̃ it,τ + zit,τ , i = 0, GE, IT, (12)

where the option value of cash zit,τ is given by

zit,τ =
(
rt − f̃ it,τ

)[
1−N

(
f̃ it,τ − rt
σiτ

)]
+ σiτ n

(
f̃ it,τ − rt
σiτ

)
> 0, i = 0, GE, IT. (13)

As shown in the top plot in figure 1, the option value of cash zit,τ depends on both the

distance of the shadow forward rate from the lower bound (f̃ it,τ − rt) and on the conditional

volatility of the τ -periods ahead shadow short rate of country i under the risk-neutral dis-

tribution, σiτ defined in (7). The option value of cash is large and positive when shadow

forward rates are close or below the lower bound, otherwise it is negligible. In addition, the

larger the future shadow rate volatility under the risk-neutral measure, the larger the option

value of cash.

Given that the option value of cash is always greater than zero, equation (12) implies that

the observed forward rate is always greater than the corresponding shadow forward rate, i.e.

f it,τ ≥ f̃ it,τ . The difference between the two is larger (i) the closer the observed short term
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Figure 1: Option value of cash and lower bound wedge

The top figure plots the option value of cash zit,τ defined in (13) as a function of the distance of the shadow

forward rate from the lower bound f̃ it,τ −rt and for different values of the future shadow rate volatility under

the risk-neutral measure σiτ . The bottom figure illustrates the lower bound wedge Zit,τ defined in (17) as a

function of the maturity τ and for different values of the distance of the shadow forward rate from the lower

bound f̃ it,τ − rt. The lower bound wedges are computed assuming a flat forward curve, and a curve for the

future shadow rate volatility that matches the curve estimated on OIS rates, reported in figure 8. All values

are in percentage points.

rate is to the lower bound and (ii) the larger the volatility of future shadow short rates. The

reason for (i) is that close to the lower bound, agents understand that the range of possible

realizations of future short term interest rates is larger above than below the current level,

and therefore the distribution of future rates is skewed to the right, which in turn implies

f it,τ = EQ(rt+τ |xt) > EQ(st+τ |xt) = f̃ it,τ . The reason for (ii) is that the larger the conditional

volatility of future shadow short rates, the more likely it is that the range of possible values

of future shadow short rates includes values that are below the lower bound. This again

implies a large difference between expected future short rates and expected future shadow

rates (under the Q distribution), and a larger option value of cash.
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The option value of cash generates a wedge between observed and shadow yields at any

maturity. To see this, substitute the decompositions (10) and (12) in (5), to obtain:

yit,τ = ỹit,τ + Zi
t,τ , i = 0, GE, IT, (14)

where the shadow yield ỹit,τ is given by

ỹit,τ =
1

τ

τ−1∑
j=0

f̃ it,τ =
1

τ

[
δi0 + δi′1xt +

τ−1∑
j=1

(
aij + bi′jxt

)]
= Aiτ + Bi′

τxt, i = 0, GE, IT, (15)

with

Aiτ =
1

τ

(
δi0 +

τ−1∑
j=1

aij

)
, Bi

τ =
1

τ

(
δi1 +

τ−1∑
j=1

bij

)
, i = 0, GE, IT, (16)

and the lower bound wedge Zi
t,τ is given by

Zi
t,τ =

1

τ

[
max(rt − sit, 0) +

τ−1∑
j=1

zit,j

]
> 0, i = 0, GE, IT. (17)

Equation (14) shows that shadow rate term structure models allow to decompose observed

yields in two components: the shadow yield ỹit,τ (which is linear in the state variables) and the

lower bound wedge Zi
t,τ (which is the cumulative sum of the option values of cash). Thus,

observed yields are always greater than the corresponding shadow yields, i.e. yit,τ ≥ ỹit,τ .

The difference among the two is the lower bound wedge generated by the nonlinearities that

arise at the lower bound and that can be seen as a measure of how tightly the lower bound

constrains the observed yield, see Krippner (2015) and Bauer and Rudebusch (2016). As

yields move away from the lower bound, the wedge becomes negligible and observed yields

approach their shadow counterparts.

The bottom plot of Figure 1 reports the lower bound wedge as a function of the maturity

of the bond, for different values of the distance of the shadow forward rate from the lower

bound and for a flat forward curve. As expected, the lower bound wedge is larger when

the shadow forward rate is closer to the lower bound. Notice that the lower bound wedge

increases with the maturity of the yields because the option value of cash is always positive.
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2.4 Sovereign spreads at the interest rate lower bound

Sovereign spreads measure sovereign risk premia and are directly related to sovereign risk.

We define the sovereign spread between yields of countries i and j with maturity τ as

∆i,j
t,τ = yit,τ − y

j
t,τ , i, j = 0, GE, IT.

In our no-arbitrage framework, long term sovereign spreads are determined by current and ex-

pected short term sovereign spreads (under the risk-neutral distribution). Therefore as short

term interest rates approach their lower bound, short term current and expected spreads are

constrained by it and, as a consequence, the long term spreads as well.

In order to assess the effect of the interest rate lower bound on sovereign spreads, we

use (14) to decompose observed sovereign spreads as

∆i,j
t,τ = ∆̃i,j

t,τ + Zi,j
t,τ , i, j = 0, GE, IT, (18)

where the shadow sovereign spread ∆̃i,j
t,τ is given by

∆̃i,j
t,τ = ỹit,τ − ỹ

j
t,τ , (19)

and the sovereign spread wedge Zi,j
t,τ is

Zi,j
t,τ = Zi

t,τ − Z
j
t,τ =

1

τ

[
max(rt − sit, 0)−max(rt − s

j
t , 0) +

τ−1∑
s=1

(zit,s − z
j
t,s)

]
. (20)

Equation (18) shows that the observed sovereign spread can be decomposed in two compo-

nents: the shadow spread ∆̃i,j
t,τ that we would observe if rates in the two countries were far

from the lower bound, and the sovereign spread wedge Zij
t,τ , that measures the nonlinearities

that arise at the lower bound, i.e. by how much the lower bound is distorting the observed

sovereign spread with respect to the shadow spread. The latter depends on the distance

of each of the two forward curves from the lower bound and on the volatilities under Q of

future shadow rates in each country.

The sovereign spread wedge is the difference between expected future short term spreads

and shadow spreads, both under Q. If for one country the short term rate approaches the

lower bound, or the conditional volatilities of future shadow short rates increases, agents
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understand that the range of possible values of its future short term interest rates is larger

above than below the current short term rate. This implies that expected future short term

spreads are above (if the constrained country is i) or below (if the constrained country is j)

the current short term spread.

Let us assume for simplicity that the conditional volatilities of the first τ -periods ahead

shadow short rates under the risk-neutral distribution are the same for both countries. In

this case, if the forward rates of the two countries are far from the lower bound, the sovereign

spread wedge is negligible and the observed spread is close to the shadow spread. However,

if at least one of the two forward curves is close to the lower bound, the sovereign spread

wedge is non-negligible and the observed spread is different from the shadow spread. The

sign of the sovereign spread wedge depends on which of the two forward curves is closer to

the lower bound, and thus more constrained by it.

To further simplify the discussion, let us consider ∆i,0
t,τ , i.e. the spread of country i’s yield

with maturity τ with respect to the risk-free yield with the same maturity. In the presence

of a positive sovereign risk, the yield curve of country i is above the risk-free yield curve and,

as rates decline towards the lower bound, the risk-free yield curve becomes more constrained

by it, i.e. Z0
t,τ ≥ Zi

t,τ . This implies that the sovereign spread wedge is negative, i.e. Zi0
t,τ ≤ 0,

and the observed spread is smaller than the shadow spread, i.e. 0 ≤ ∆i
t,τ ≤ ∆̃i

t,τ . The

opposite happens in the presence of a negative sovereign risk, i.e. flight to safety, as in this

case the yield curve of country i is below the risk-free yield curve and, as rates decrease

towards the lower bound, the yield curve of country i becomes more constrained by the

bound than the risk-free yield curve, i.e Zi
t,τ ≥ Z0

t,τ . This implies that the sovereign spread

wedge is greater than zero, i.e Zi0
t,τ ≥ 0, and the observed spread is larger than the shadow

spread, i.e. ∆̃i
t,τ ≤ ∆i

t,τ ≤ 0.

The upshot of Equation (18) is that, as short term rates approach the lower bound, the

observed spread looses its informational content as a measure of sovereign risk. A decrease

in the observed spread could be either due to a decrease of the shadow spread or to a

decrease of the sovereign spread wedge. However, while changes in the shadow spread are

solely determined by sovereign risk, changes in the sovereign spread wedge also depend on

the distance of the two yield curves from the lower bound. For example, in the presence of

sovereign risk, an exogenous decrease of the lower bound decreases the wedge on risk-free

rates more than on rates of country i, and thus increases the sovereign spread wedge. This

implies that also the observed spread increases, even if the shadow spread and the sovereign
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risk are not affected. For this reason, when interest rates are constrained by the lower bound,

the shadow spread is a more informative measure of the sovereign risk.

3 Data and preliminary evidence

We use end-of-month zero-coupon rates on German and Italian Treasury bonds, and on

OIS based on EONIA (the overnight unsecured interbank rate in the Euro Area). All data

are provided by Datastream-Eikon and span the period January 2001 to October 2016 for

maturities 6 months, 1, 2, 3, 5, 7 and 10 years.

As in recent studies on Euro Area yield curves, see Lemke and Vladu (2017), Pericoli and

Taboga (2015) and Kortela (2016), we use OIS rates to proxy for risk-free rates in the Euro

Area. This because the OIS market is liquid for all maturities, and the credit risk of overnight

deposits is very small. We convert the OIS rates provided by Datastream-Eikon to zero-

coupon rates using a bootstrapping method. OIS rates with maturity 3 years are available

from December 2004, and OIS rates with longer maturities are available from August 2005.

German and Italian zero-coupon rates with maturity 6 months are not available before 2007;

for this maturity we use the zero-coupon rates provided by the Deutsche Bundesbank and

the Italian Ministry of Economy and Finance up to December 2006.

To model the lower bound, we use the deposit facility rate of the Eurosystem. This is

a monetary policy instrument under the direct control of the ECB, as it is the short term

risk-free rate for reserves at Euro area banks. End of month data for the Euro overnight

interest rate is obtained from Datastream. In the last section of the paper, we relate spreads

and shadow spreads to sovereign credit default swap (CDS) spreads. To this end we use

end of month data on 10-year Italian and German CDS spreads from Datastream. The first

observation available for both CDS spreads is December 2007.

In figure 2 we plot the full dataset of yields used in the analysis. Risk-free, German

and Italian rates started with similar values at the beginning of the sample but began to

diverge in 2009. Italian rates started to increase in 2010 and spiked at the end of 2011, due

to an increase in the sovereign risk premium. On the contrary, risk-free and German rates

steadily decreased towards zero. Risk-free short rates reached zero by mid-2012, but due

to a flight to quality in the European bond market, also driven by the fact that German

bonds are heavily used as collateral for short term borrowing in repo markets, German short

rates reached zero already at the end of 2011. Risk-free and German short rates stayed at
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Figure 2: Data

This figure reports end-of-month zero-coupon rates on OIS based on EONIA (top plot), German Treasury

bonds (middle plot) and Italian Treasury bonds (bottom plot). The sample is January 2001 to October 2016

and the maturities are 6 months, 1, 2, 3, 5, 7 and 10 years. OIS rates with maturity 3 years are available

from December 2004, and OIS rates with longer maturities are available from August 2005.

zero until mid-2014, when they turned negative. Italian short rates reached zero only at the

beginning of 2015 and became negative at the end of the year. Figure 2 also shows that the

whole German yield curve and almost the entire risk-free yield curve (with the exception of

the 10 year rate) are negative in the last part of 2016. In this period, the long-short rate

spread for risk-free and German rates is much lower than the Italian one.
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Figure 3: Yields and ECB deposit rate

This figure reports the ECB deposit rate along with OIS, German and Italian yields with maturity 6 months

(top plot) and 10 years (bottom plot). The red vertical lines denote August 2014 and August 2015.

3.1 Lower bound specification

The behaviour of yields in figure 2 highlights the need for a time-varying lower bound specifi-

cation, as also noted by Lemke and Vladu (2017), Kortela (2016) and Wu and Xia (2017). To

investigate the behaviour of the lower bound, in figure 3 we plot the 6 month and the 10 year

risk-free, German and Italian yields along with the deposit facility rate of the Eurosystem.

Figure 3 shows that the 10 year rates are always above the ECB deposit rate. For the

6 months rates, however, we can identify three subperiods. The first is up to August 2014,

in which short term rates are bounded from below either by zero or the deposit rate.3 The

3Lemke and Vladu (2017) find a significant change in the lower bound parameter in August 2014.
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second is from September 2014 to August 2015, when risk-free and German rates turned

negative. The last subperiod is from October 2015 to the end of the sample, when short

term risk-free and German rates are negative and below the ECB deposit rate. These three

subperiods are highlighted with red vertical lines in figure 3. Accordingly, we model the

lower bound as follows:

rt = min(0, dt) + θt, (21)

where dt is the ECB deposit rate and θt is defined as

θt =


θ1, t ≤ August 2014

θ2, August 2014 < t ≤ August 2015

θ3, t > August 2015.

(22)

This specification for the lower bound implies that if θt = 0 and dt ≥ 0, short term interest

rates are bounded by zero due to the option to convert to currency. If instead θt = 0 and

dt < 0, short term interest rates are bounded by the deposit rate, as banks do not lend at a

rate lower than the one they could get on overnight deposits with the central bank. However,

if θt 6= 0, the effective lower bound is different than the floor for interest rates given by either

zero or the deposit rate. As noted by Lemke and Vladu (2017), the effective lower bound is

the bound perceived by market participants and a θt 6= 0 allows it to be different from zero

or the deposit rate. The parameters θ1, θ2 and θ3 will be estimated along with the other

model parameters.

We assume that, when pricing bonds and swaps, agents expect the same lower bound to

prevail for the future (see the discussion in Lemke and Vladu 2017, Kortela 2016), even if

they are aware of the possibility that the bound parameter may change.

3.2 Model specification

The joint shadow rate term structure model in section 2 allows the risk-free and the country

yield curves to be driven by common and country-specific factors. To determine the number

of each type of factors, we perform a principal component analysis. We start by analyzing

each yield curve separately. The first three columns of Table 1 report the cumulative variance

of risk-free, German and Italian zero-coupon yields explained by the corresponding first six

principal components (PCs) extracted separately for each country. The table indicates for
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Table 1: Cumulative variance explained by principal components

Risk-free Germany Italy Joint

PC1 0.969 0.958 0.908 0.830
PC2 0.999 0.998 0.997 0.963
PC3 1.000 1.000 0.999 0.994
PC4 1.000 1.000 1.000 0.998
PC5 1.000 1.000 1.000 0.999
PC6 1.000 1.000 1.000 0.999

Note: this table reports the cumulative percentage
of variance of risk-free yields (first column), German
yields (second column), Italian yields (third column)
and joint (fourth column) explained by the first six
PCs extracted from risk-free yields (first column),
German yields (second column), Italian yields (third
column), and jointly from risk-free, German and Ital-
ian yields (fourth column).

all three term structures the first two PCs explain a large fraction of the observed variance

(99.9% for OIS, 99.8% for Germany and 99.7% for Italy).

We then pool the three yield curves and extract PCs jointly. The cumulative joint

variance of risk-free, German and Italian yields explained by these joint PCs is reported in

the last column of Table 1. The table shows that four joint PCs are required to explain at

least 99.8% of the joint variation in risk-free, German and Italian yields. This indicates that

the German and the Italian yield curves are driven by country-specific factors, in addition

to common factors.

Given that the risk-free yield curve is driven only by the common risk-free factors, the

PCs extracted from the risk-free yield curve proxy for the common risk-free factors. To

assess the relation of the common risk-free factors with the country factors, we analyze how

much of the variation in the first three country PCs is explained by the risk-free factors. In

Table 2, we report the R2 from regressing German and Italian PCs on the risk-free PCs.

The table indicates that the first German PC is perfectly explained by the first risk-free

PC, and that the second German PC is mostly explained by the second risk-free PC. The

PCs extracted from Italian yields are less related to the risk-free PCs, and even using all six

risk-free PCs we can only explain up to 71% and 82% of the first and second Italian PC,

indicating that Italian yields are driven by a strong country-specific component.
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Table 2: Common Factors

Germany Italy
# Common PC PC1 PC2 PC3 PC1 PC2 PC3

1 0.996 0.001 0.000 0.522 0.228 0.005
First 2 0.997 0.967 0.000 0.559 0.736 0.007
First 3 0.998 0.968 0.713 0.663 0.775 0.364
First 4 0.998 0.968 0.810 0.680 0.818 0.368
First 5 0.998 0.968 0.818 0.711 0.818 0.422
First 6 0.998 0.969 0.818 0.711 0.818 0.423

Note: this table reports the R2 from regressing German and Italian PCs on
the risk-free PCs. The first row refers to regressions on the first risk-free
PC, the second row refers to regressions on the first two risk-free PCs, and
so on.

To assess the number of country-specific factors, we extract country PCs from the resid-

uals of the regression of German and Italian yields on the first one or two risk-free PCs. In

Table 3, we report the percentage of variance of German and Italian residuals explained by

the first six country PCs. For comparison, in the first and the fourth column we report the

explained variance of German and Italian yields when no common components are extracted

(this replicates the information reported in Table 1). The table indicates that, after taking

into account the two common factors, Italian yields are driven by one country factor. For the

German yields, the evidence for country-specific factors is less clear. However, as reported

in Table 2, the two risk-free PCs explain 96.7% of the variation of the German PCs, and

only 73.6% of the variation of the Italian PCs.

Overall, Tables 1-3 suggest that four factors are needed to explain the three yield curves;

two of these factors are the common risk-free factors and the other two are specific to each

country. Accordingly, in specifying our model we choose n = 4, n0 = 2, nGE = nIT = 1.

4 Inference

4.1 Estimation

We estimate the joint shadow rate term structure model by quasi maximum likelihood using

a state space representation. The sample consists of panels for y0t,τ , y
GE
t,τ and yITt,τ , t = 1, . . . , T
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Table 3: Country Factors

Germany Italy
# Common PC 0 1 2 0 1 2

1 Country PC 0.958 0.726 0.485 0.908 0.878 0.953
2 Country PC 0.040 0.181 0.260 0.089 0.115 0.040
3 Country PC 0.002 0.084 0.211 0.002 0.005 0.005
4 Country PC 0.000 0.006 0.034 0.001 0.001 0.001
5 Country PC 0.000 0.002 0.007 0.000 0.000 0.000
6 Country PC 0.000 0.001 0.003 0.000 0.000 0.000

Note: this table reports the percentage of variance of German and Italian
yield residuals explained by the first 6 country PCs. The first and the fourth
column refer to the percentage of variance of German and Italian yields. The
second and fifth column refer to the percentage of variance of the residuals
of German and Italian yields after they are regressed on the first common
factor. The third and the sixth refer to the percentage of variance of the
residuals of German and Italian yields after they are regressed on the first
two common factors.

and τ = τ1, . . . , τK . Let us denote the observed yields by:

yt = (y0′
t ,y

GE′
t ,yIT ′t )′,

with y0
t = (y0t,τ1 , . . . , y

0
t,τK

)′, yGEt = (yGEt,τ1 , . . . , y
GE
t,τK

)′ and yITt = (yITt,τ1 , . . . , y
IT
t,τK

)′, and the

model implied yields by:

h(xt) = [h0(xt)
′,hGE(xt)

′,hIT (xt)
′]′,

with h0(xt) = [h01(xt), . . . , h
0
K(xt]

′, hGE(xt) = [hGE1 (xt), . . . , h
GE
K (xt]

′ and hIT (xt) =

[hIT1 (xt), . . . , h
IT
K (xt]

′. The elements of h(xt) were defined in (9). We write the measurement

equation as:

yt = h(xt) + ut, (23)

where the measurement error ut is IID Normally distributed with mean zero. We assume

that measurement errors are uncorrelated (across countries and maturities) and with variance

that depends on the country but not on the yield maturity. The three measurement error

standard deviations ω0, ωGE and ωIT must be estimated with the other parameters.
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The transition equation is given by

xt+1 = µ+ Φxt + vt (24)

where vt ∼ NIID(0,Σ), and Σ = ΓΓ′.

The measurement equation in (23) is nonlinear in the state variables. Therefore, we base

quasi maximum likelihood inference on the Extended Kalman filter. Appendix A provides

additional details on the estimation procedure.

4.2 Identification

To uniquely identify the latent states, we use an identification scheme similar to Dai and

Singleton (2000) and impose Γ = In, δ01 ≥ 0, δGE1 ≥ 0, δIT1 ≥ 0, µ = 0 and ΦQ lower

triangular. This implies that the full parameter vector θ is given by:

• δ00, δGE0 , δIT0 (3 parameters),

• δ01, δGE1 , δIT1 ( n+ 2n0 parameters),

• ΦQ (n(n+1)
2
− nGEnIT parameters),

• µQ (n parameters),

• Φ (n2 parameters),

• ω0, ωGE, ωIT (3 parameters)

• θ1, θ2, θ3 (3 parameters)

for a total of 9+2n0−nGEnIT+ 5n+3n2

2
parameters. For the specification selected in section 3.2,

we have n = 4, n0 = 2 and nGE = nIT = 1, implying a total of 46 parameters to be estimated.

We impose stationarity under Q by constraining the diagonal elements of ΦQ between

0 and 1; we also impose stationarity under P by imposing that all the eigenvalues of Φ are

strictly smaller than 1.
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Figure 4: Fit for selected maturities

This figure reports observed and fitted yields with maturities 1-year (top plots), 5-year (middle plots), 10-year

(bottom plots) for OIS (left plots), German (centre plots) and Italian (right plots) yields.

5 Results

We estimate the joint shadow rate term structure model for OIS, German and Italian yield

curves using data from January 2001 to October 2016 by quasi-maximum likelihood and

the Extended Kalman filter. In the next three subsection we present the model estimation

results, the estimated shadow rates and shadow spreads, and the implications of the interest

rate lower bound for the properties of sovereign spreads.
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Table 4: Estimated parameters

µQ ΦQ

-0.084∗∗∗ 0.994∗∗∗ 0 0 0
(0.018) (0.001)

0.055 -0.044∗∗∗ 0.973∗∗∗ 0 0
(0.093) (0.006) (0.003)

0.109 -0.014 -0.015∗ 1.000∗∗∗ 0
(0.082) (0.018) (0.008) (0.000)

0.068∗∗∗ 0.000 -0.003 0 0.997∗∗∗

(0.009) (0.005) (0.003) (0.001)

θ Φ

0.090∗∗∗ 0.927∗∗∗ -0.042 -0.017 -0.081
(0.012) (0.084) (0.032) (0.097) (0.055)

0.025 -0.050 0.927∗∗∗ -0.002 -0.130
(0.03) (0.223) (0.081) (0.198) (0.157)

-0.220∗∗∗ -0.155 -0.058 0.873∗∗∗ -0.101∗

(0.057) (0.119) (0.04) (0.042) (0.058)

-0.060 -0.012 -0.033 0.913∗∗∗

(0.124) (0.039) (0.127) (0.122)

δ0 δ01 δGE1 δIT1 ω

1.181∗∗∗ 0.000 0.012 0.073∗∗ 0.084∗∗∗

(0.196) (0.002) (0.007) (0.037) (0.004)

0.833∗∗∗ 0.221∗∗∗ 0.235∗∗∗ 0.268∗∗∗ 0.092∗∗∗

(0.183) (0.019) (0.022) (0.04) (0.006)

1.232∗∗ 0 0.044∗∗∗ 0 0.140∗∗∗

(0.562) (0.007) (0.011)

0 0 0.345∗∗∗

(0.052)

Note: this table reports the estimated parameters of the
joint shadow rate term structure model for OIS, German
and Italian yields. Asymptotic standard errors computed
using the QML sandwich formula are reported in brackets.
∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1%
level.
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5.1 Estimation results

Table 4 reports quasi maximum likelihood estimates of the parameters of our joint shadow

rate model for risk-free, German and Italian term structures based on yields observed between

January 2001 and October 2016. According to these estimates, the latent factors are less

persistent under the actual probability measure P than under the risk-neutral measure Q.

The estimates of Φ suggest that under P the German factor reacts negatively and significantly

to an increase of the lagged Italian factor, without detecting a significant symmetric effect

from the lagged German factor to the Italian one. The estimate of the shadow short rate

parameters δ01 suggests that the second common factor drives risk-free shadow short rates,

and that the Italian factor has a stronger effect on the Italian shadow short rate than

the German factor on the corresponding shadow short rate. The lower bound parameter is

estimated to be positive and significant (even if small) in the first subperiod (θ1), insignificant

in the second subperiod (θ2), and negative and significant in the last period (θ3).

The fit of the model is in general good. In figure 4, we report the time series fit of the

joint shadow rate term structure model for selected maturities. The figure indicates that the

fit of the model is reasonable for OIS, German and Italian yields. The average yield curve

fit, reported in figure 5, is also good for the three yield curves both in the full sample (from

2001 to 2016) and in the two half sub-samples (from 2001 to 2008 and from 2009 to 2016).

The root mean square errors (RMSE) in Table 5 indicate that the model has a slightly

better fit for OIS and German yields than for Italian yields; this finding is in line with the

preliminary analysis based on principal components outlined in section 3.2. The table also

indicates that the performance of the model is slightly better in the first half of the sample

with a RMSE of 0.090, compared with a RMSE 0.092 in the second half. Looking at each of

the three yield curves, the table shows that the performance of the model actually improved

in the second half of the sample for both OIS and German yields (that were more constrained

by the lower bound), but it deteriorated for Italian yields. This may be due to the higher

volatility of Italian yields after 2009 that is not entirely captured by the Italian factor. As for

the performance across different maturities, the six month maturity has the largest RMSE

for any sample and any yield curve.

In figure 6, we report the estimated factors. The top plot contains the updated estimates

of the common risk-free factors provided by the Extended Kalman filter. The first common

risk-free factor seems related to the inverse of the long term risk-free rate, while the second
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Figure 5: Fitted yield curves

This figure reports average OIS, German and Italian yield curves on the full sample (top plot), first half

sub-sample (middle plot) and last half sub-sample (bottom plot). The green lines refer to the model fit of

the joint shadow rate term structure model and the blue dots refer to the observed data.

common factor is related to the short term risk-free rate. The Italian and German country

factors reported in the bottom plot are related to the deviations of the Italian and German

yield from the OIS rates. This is particularly evident for the Italian factor that spikes at the

beginning of 2012. The figure also reveals the German factor steadily declines following the

spike in the Italian factor, indicating a negative interaction between the German and the

Italian factor, as anticipated in Table 4.

To illustrate how factors affect yields in the absence of a lower bound, in figure 7 we

report the factor loadings of the shadow yields. The figure shows that the first common

risk-free factor mainly loads on long term yields with a negative coefficient, while the second
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Table 5: RMSE

Full sample 2001-2016
0.5 1 2 3 5 7 10 Average

OIS 0.112 0.070 0.085 0.073 0.044 0.038 0.067 0.070
GE 0.123 0.065 0.100 0.087 0.054 0.060 0.099 0.084
IT 0.213 0.098 0.119 0.125 0.086 0.075 0.135 0.122
Average 0.149 0.078 0.102 0.095 0.061 0.058 0.101 0.092

Subsample 2001-2008
0.5 1 2 3 5 7 10 Average

OIS 0.126 0.063 0.093 0.081 0.047 0.041 0.084 0.076
GE 0.148 0.055 0.115 0.090 0.055 0.066 0.114 0.092
IT 0.154 0.085 0.114 0.093 0.067 0.068 0.133 0.102
Average 0.143 0.067 0.107 0.088 0.056 0.058 0.110 0.090

Subsample 2009-2016
0.5 1 2 3 5 7 10 Average

OIS 0.096 0.077 0.076 0.069 0.042 0.037 0.059 0.065
GE 0.090 0.074 0.084 0.085 0.052 0.053 0.081 0.074
IT 0.259 0.110 0.123 0.150 0.101 0.083 0.138 0.138
Average 0.148 0.087 0.094 0.101 0.065 0.058 0.092 0.092

Note: this table reports root mean square error of the joint shadow rate term
structure model for OIS, German and Italian yields on the full sample (top panel),
the first half sub-sample (middle panel) and the last half sub-sample (bottom
panel).

common risk-free factor has larger loadings on short term interest rates than on long term

ones. The factor loadings on the common factors are similar for OIS and German shadow

yields, and slightly different for the Italian shadow yields. This indicates that the country-

specific component for Italian yields also depends on the risk-free factors. The German factor

has a constant loading for all maturities, indicating that it shifts the whole German shadow

yield curve. The Italian factor has large loadings for all maturities but slightly larger for

shadow short yields, suggesting that this factor shifts the whole Italian shadow yield curve

but shadow short rates are shifted slightly more.

In section 2.3, we decomposed observed yields into shadow yields and lower bound wedges,

where the former are linear in the factors and the latter depend on the distance of the shadow

forward rates from the lower bound and the volatility of future shadow rates under Q. To
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Figure 6: Latent factors

This figure reports the estimated common risk-free factors (top plot) and the estimated country-specific

factors for Germany and Italy (bottom plot) of the joint shadow rate term structure model for OIS, German

and Italian yields.

assess the magnitude of the lower bound wedge, we estimated σiτ , the volatility under Q
of future shadow rates as in equation (7) for the three term structures. Figure 8 plots the

estimates with respect to the maturity τ . It is apparent that the estimated volatility for

German and OIS future shadow rates is similar at all maturities, while the estimated Italian

volatility is larger for all τ . This implies that for the same distance between shadow forward

rates and the lower bound, Italian yields contain a larger lower bound wedge, see (13), (17)

and figure 1.
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Figure 7: Shadow yields factor loadings

This figure reports the estimated shadow yields factor loadings in Equation (16) and obtained from the joint

shadow rate term structure model for OIS, German and Italian yields.

5.2 Observed rates and shadow rates

To illustrate the effect of the lower bound on shadow yields, figure 9 reports OIS, German

and Italian observed yield curves on two dates. The first date is April 2013, when OIS and

German short rates were at the lower bound, but Italian rates were far from it. The second

date is February 2015, when short term OIS and German yields were negative, and the six

month Italian yield was close to the lower bound. In the figure, we report observed yields,

fitted yields defined in (9) and shadow yields defined in (15). In April 2013, observed, fitted

and shadow Italian yields coincided. Instead, shadow OIS and German yields were below the

observed yields and negative for short maturities. In February 2015, shadow Italian yields
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Figure 8: Forward rate volatility under the risk-neutral measure

This figure reports the estimated forward rate volatility under the risk-neutral measure in Equation (7)

obtained from the joint shadow rate term structure model for OIS, German and Italian yields.

were also below the observed yields, and negative for short rates. However, OIS and German

shadow yields were negative for all maturities, indicating that, at this date, OIS and German

lower bound wedges were large at any maturity. The figure also shows that our specification

of a time-varying lower bound allows the lower bound to be close to zero in April 2013, and

negative in February 2015.

In figure 10, we report the time series of the 10 year yields and shadow yields. The figure

shows that, since mid-2011, the OIS and German 10 year shadow yields are lower than the

observed yields. The Italian 10 year shadow yield becomes lower than the observed yield

only by 2015. The time series plot of the lower bound wedges shows that OIS and German

10 year yields have been constrained by the lower bound since mid-2011 and that the effect

of the constraint has been stronger on the German 10 year rate than on the OIS one. The

figure also shows that the Italian lower bound wedge has been non-negligible also before the

interest rates reached the lower bound. This can be explained by the large estimated Italian

future shadow rates volatility under Q, as shown in figure 8. The Italian lower bound wedge

increases in 2014 and reaches the same level as the OIS lower bound wedge by the end of

the sample.

Sovereign spreads, shadow spreads and spread wegdes are reported in figure 11. The

figure indicates that the joint shadow rate term structure model for OIS, German and Italian

yields fits well all 10 year spreads. We can also see that the 10 year German-OIS spread is

smaller than the Italian-OIS and the Italian-German spreads in the sample period. As for the
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Figure 9: Yield curves on two selected dates

This figure reports OIS, German and Italian yield curves on two selected date: April 2013 (left plots) and

February 2015 (right plots). The blue dots denote the observed yields, the red continuous line denotes the

fitted yields defined in (9) and the dashed red line denotes the shadow yields defined in (15).

difference between observed spreads and shadow spreads, the figure shows that the German-

OIS shadow spread is lower than the observed spread since mid-2011; on the contrary, during

the same period the Italian-OIS and the Italian-German shadow spreads are larger than the

corresponding observed spreads. The time series of the sovereign spread wedges, i.e. the

nonlinear components of spreads, show that, when interest rates reached the lower bound, the

German-OIS spread wedge became large and positive, while the Italian-OIS and the Italian-

German spread wedges became large and negative. This is in line with our discussion in

section 2.4 regarding the sign of the sovereign spread wedge and the presence of sovereign risk.

The German-OIS sovereign spread wedge is positive because, due to the safety premium on

German bonds, German short rates are closer to the lower bound, and thus more constrained
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Figure 10: 10 year yields, shadow yields and lower bound wedges

This figure reports 10 year yields, shadow yields and lower bound wedges for OIS, Germany and Italy. In

the top plots and the bottom left plot, the blue line denotes observed yields, the red line denotes fitted yields

as in (9) and the dashed red line denotes the shadow yields as in (15). The bottom right plot reports the

lower bound wedges for the 10 year OIS, German and Italian yields, computed as in 17

than OIS rates. On the contrary, due to the presence of sovereign risk, Italian short rates

are larger than OIS and German rates, which implies that they are less constrained by the

lower bound. As a consequence, Italian-OIS and Italian-German spread wedges are negative.

Summary statistics for the sovereign spread wedges, reported in Table 6, show that in our

sample they reached the maximum of 0.38% for German-OIS spreads and the minimum of

-0.564% and -0.775% for, respectively, Italian-OIS and Italian-German spreads.
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Figure 11: 10 year spreads, shadow spreads and spread wedges

This figure reports 10 year spreads, shadow spreads and spread wedges for OIS, Germany and Italy. In the

top plots and the bottom left plot, the blue line denotes observed spreads, the red line denotes fitted spreads

and the dashed red line denotes the shadow spreads. The bottom right plot reports the lower bound spread

wedges for the 10 year GE-OIS, IT-OIS and IT-GE spreads. Shadow spreads and lower bound spread wedges

are computed as in (19).

5.3 Effects of the lower bound on sovereign spreads

The fact that sovereign spread wedges become non-negligible when term structures are close

to the lower bound has three important implications for the properties of long term sovereign

bond spreads at the interest rate lower bound.

First, the distribution of observed spreads becomes skewed as interest rates approach the

lower bound. To assess this feature, for each date in the sample we simulated under the

physical measure P 20,000 trajectories of the latent factors over a 12 month horizon, starting

from their updated estimates obtained from the Extended Kalman filter. To save space,
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Table 6: Summary statistics of Sovereign Spread Wedges

Mean Std Min Max Q(25) Q(75)

GE-OIS 0.075 0.096 -0.004 0.380 0.002 0.146
IT-OIS -0.043 0.157 -0.564 0.149 -0.132 0.065
IT-GE -0.119 0.224 -0.775 0.113 -0.297 0.062

Note: this table reports summary statistics for the 10 year
sovereign spread wedges of Germany with respect to the OIS,
Italy with respect to OIS, and Italy with respect to Germany.

Figure 12: Skewness of IT-GE Spread Distribution

This figure reports the skewness index of the P-distribution of 12-months ahead sovereign spreads of Italy with

respect to Germany at the 7 observed maturities. In each point in time, we use the estimated parameters

and factors to simulate 20,000 paths of factors 12-months ahead using (2). Then substituting in (9), we

obtain 20,000 simulated yields 12-months ahead, from which we compute the asymmetry index.

we report results only for the spread between Italian and German yields at the 7 observed

maturities. Figure 12 plots the skewness of the distribution of the 12-months ahead simulated

spreads against the date at which the trajectories were started. If we compare this figure

with figure 3, it is clear that the skewness is very sensitive to the distance of the short end of

the term structure to the lower bound. Before 2009, when all interest rates were sufficiently

far from the lower bound, the distribution of the simulated spreads was fairly symmetric,

but things changed significantly after 2009, when rates approached the lower bound. Note

that the 5% critical threshold for a two-sided z-test of the null of zero skewness is 0.034;
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hence, the null of a symmetric distribution is rejected for all dates after 2009. It is also

apparent that the skewness is more pronounced the shorter the maturity of the spread under

consideration, but it is nonetheless significant also for the 10 year spread.4

A second implication of the interest rate lower bound on sovereign spreads is the following:

as observed spreads depend on the distance from the lower bound, an exogenous change in the

latter affects observed spreads, even if the sovereign risk does not change. Figure 13 illustrates

this feature for the case of the spread between Italian and German 10 year yields. In the

top plot, for each date in the sample, we report the difference between the counterfactual

10 year yields, obtained after a 20 basis points reduction in the lower bound, and the fitted

yields. The effect of a change in the lower bound on the 10 year yields clearly changes after

the short rates of each country reach the lower bound, 2009 for the German rate and 2012

for the Italian rate. Up to 2009, an exogenous 20 basis point decrease in the lower bound

would not have any effect on the 10 year German yield, after this date the effect would be

a decrease of the 10 year German rate by as much as 14 basis points. As for the Italian

10 year yield, an exogenous 20 basis point decrease in the lower bound would always have

a negative effect on the yield. This is due to the large risk-neutral volatility of the shadow

forward rates, reported in figure 7, that increases the option value of cash. However, the

effect of an exogenous 20 basis point decrease in the lower bound on the Italian 10 year yield

also becomes larger when short term Italian rates reach the lower bound.

In the bottom plot of figure 13, at each point in time, we report the difference between

the counterfactual 10 year sovereign spread between Italian and German rates, obtained

after a 20 basis points reduction in the lower bound, and the fitted 10 year spread between

Italian and German rates. The effect of an exogenous 20 basis point decrease in the lower

bound on the long term spread of Italian bonds with respect to German bonds changes

around mid-2009. Up to that date, an exogenous 20 basis point decrease in the lower bound

would decrease all spreads by roughly 1 basis point. After this date the effect changes

sign and becomes much larger, as the same decrease in the lower bound would increase the

spread between Italian and German yields by as much as 8 basis points. Notice that, as

4It might seem counterintuitive that the distribution of the 12-months ahead sovereign spreads of Italy
with respect to Germany is skewed to the right, since in our sample the German term structure is always
closer to the lower bound and this would suggest a left skewed distribution for the spreads. However, the
skewness of the spread depends on the skewnesses of the yields, their volatilities and their coskewnesses.
Accordingly, a positive skewness of the distribution of the 12-months ahead sovereign spreads of Italy with
respect to Germany is due to larger volatilities of Italian rates.
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Figure 13: Effect of a lower bound shift of -0.20%

This figure reports the effects of a shift of the lower bound of -0.20% on the 10 year Italian and German

yields (top plot) and on the 10 year IT-GE sovereign spread (bottom plot). In the top plot, at each point in

time, we report the difference between the counterfactual 10 year yields (computed by lowering by 0.20% the

lower bound in (9)) and the fitted yields. In the bottom plot, at each point in time, we report the difference

between the counterfactual 10 year sovereign spread (computed from the counterfactual 10 year yields) and

the fitted spread.

shown in (21), the lower bound depends on the deposit rate of the Eurosystem, which is a

monetary policy instrument under the control of the European Central Bank. Therefore,

results in figure 13 indicate that when short term rates are constrained by the lower bound,

a monetary policy easing increases sovereign spreads, even if it does not affect the sovereign

risk. This is due to the fact that the shift in the lower bound has a larger effect on rates

that are closer to the bound.

A third and final implication of the existence of an interest rate lower bound on the prop-
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Table 7: Sovereign Government bonds and Credit Default Swaps

Dependent variable ∆IT,GE
t,10 ∆̃IT,GE

t,10

Constant -0.12∗∗∗ -0.23∗∗∗

(0.04) (0.05)

CDSIT,GEt It<1/2012 0.81∗∗∗ 0.92∗∗∗

(0.09) (0.10)

CDSIT,GEt It≥1/2012 0.66∗∗∗ 0.86∗∗∗

(0.10) (0.10)

∆IT,GE
t−1,10 0.55∗∗∗

(0.06)

∆̃IT,GE
t−1,10 0.53∗∗∗

(0.06)
R2 0.97 0.97
Wald 22.51∗∗∗ 1.90

Note: this table reports regression parameters
of 10 year IT-GE bond spreads and shadow
bond spreads on 10 year CDS spreads between
Italy and Germany. HAC standard errors
with 5 lags and Bartlett kernel are reported
in brackets. ∗, ∗∗ and ∗∗∗ denote significance
at the 10%, 5% and 1% level. The Wald test
statistic refers to the test of equality of the
coefficients on CDS spreads. The sample con-
tains 106 observations, from January 2008 to
October 2016.

erties of long term bond spreads is that, when the constraint is binding, the observed spread

looses its informational content about the sovereign risk, but the shadow spread does not.

To check this, we regress the 10 year observed and shadow bond spreads between Germany

and Italy on the 10 year CDS spread between the two countries. Each regression allows for

one lag of the dependent variable and also the CDS spread parameter to take different val-

ues in the periods before and after January 2012.5 Table 7 illustrates the estimation results

and also reports the Wald test statistic of the null of equal CDS spread slope in the two

subperiods. All tests are computed using the robust HAC variance matrix. The yield spread

5The results presented are robust to changing the cut-off date to any date from August 2011 to December
2012, and also to excluding observations from October 2011 to August 2012 (the period in which the Italian
bond market was subject to large volatility).
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coefficient on CDS spreads decreases from 0.81 before January 2012 to 0.66 after the same

date; the robust Wald test of equal slopes rejects the null at the 5% level. The shadow yield

spread estimates provide a different conclusion: the two slope parameters are very similar

and the robust Wald test fails to reject the null of equal slopes. Given these results, we

conclude that the relation between the CDS spread and the shadow yield spread was not

affected by the lower bound on interest rates. On the contrary, the relation between CDS

spreads and the observed yield spread significantly changed after 2012, when German short

term rates reached the lower bound.

6 Conclusion

This paper studies the effect of the interest rate lower bound on spreads between long term

sovereign yields in the Euro area. We develop a joint shadow rate term structure model for

three yield curves: the risk-free one associated to OIS rates, the German one and the Italian

one. This framework allows us to model the nonlinear relation between sovereign spreads

and sovereign risk when interest rates are close to the lower bound.

We show that any sovereign spread can be decomposed into a shadow spread and a

sovereign spread wedge. The shadow spread is linear in the country-specific factor measuring

sovereign risk and represents the distance between long term yields that would prevail in the

absence of a lower bound. The sovereign spread wedge captures the nonlinearities that arise

at the lower bound, and can be seen as a measure of the extent to which the lower bound on

short term rates constrains the observed spread. In particular, the sovereign spread wedge

depends on the distance of the two countries shadow forward rates from the lower bound, as

well as on the volatilities of future short term shadow rates of the two countries under the

risk-neutral probability. When short term rates are close to the lower bound, the sovereign

spread wedge is large and, as a consequence, the observed spread becomes less informative

about the sovereign risk.

We estimate the model on zero-coupon yields from the three term structures over the

period January 2001 - October 2016 by Gaussian quasi maximum likelihood based on the

Extended Kalman filter. Our results highlight the presence of strong nonlinearities in the

behavior of long term sovereign spreads at the interest rate lower bound. In particular, in

2012 the nonlinear component reduces the observed 10-year Italian spread with respect to

Germany by as much as 77 basis points with respect to the its shadow counterpart. This
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nonlinear behavior has three important implications on the properties of long term sovereign

spreads. First, as short term interest rates approach the lower bound, the distribution of

predicted long term sovereign bond spreads becomes significantly skewed. Second, at the

interest rate lower bound, yields and spreads are affected by possibly exogenous changes

in the lower bound, even if sovereign risk has not changed. Finally, when term structures

are close to the lower bound, observed spreads do not fully reflect the market perception of

the relative riskiness of sovereign bonds; on the contrary, shadow spreads provide a reliable

picture of the sovereign risk embedded in observed term structures.
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A Estimation of the shadow rate term structure model

The state space representation of the shadow rate term structure model is

yt = h(xt) + ut, ut ∼ NIID(0,Ω)

xt+1 = µ+ Φxt + vt, vt ∼ NIID(0,Σ).

where Σ = ΓΓ′ and Ω is diagonal with variances equal to (ω0)2, (ωGE)2 and (ωIT )2 for

measurement errors on OIS, German and Italian yields, respectively.

• We use a diffuse initialization of the Extended Kalman filter as follows

x̂1|0 = E(x1) = (In −Φ)−1µ

and

P1|0 = E[(x1 − x̂1)(x1 − x̂1)
′] = 100 In

• The forecasts of the observables’ values and their approximate MSEs are given by:

ŷt|t−1 = h(x̂t|t−1), t = 1, . . . , T

and

E[(yt − ŷt|t−1)(yt − ŷt|t−1)′] ≈ Ĥ′t|t−1Pt|t−1Ĥt|t−1 + Ω, t = 1, . . . , T,
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where Ĥt|t−1 = H(x̂t|t−1), and

H(xt)
′ =

 H0(xt)
′

HGE(xt)
′

HIT (xt)
′


with

Hi(xt)
′ =


∂hi1(xt)/∂x

′
t

...

∂hiK(xt)/∂x
′
t

 , for i = 0, GE, IT.

Since g′(z) = N(z), we get

∂hij(xt)

∂xt
=

1

τ

[
IR+(sit − rt)δi1 +

τ−1∑
j=1

N

(
aij + bi′jx

i
t − rt

σij

)
bij

]
, i = 0, GE, IT

where IR+(z) = 1 if z > 0, and 0 otherwise.

• Given their forecasted values, the updated values of the state variables are computed

as:

x̂t|t = x̂t|t−1 + Pt|t−1Ĥt|t−1(Ĥ
′
t|t−1Pt|t−1Ĥt|t−1 + Ω)−1(yt − ŷt|t−1), t = 1, . . . , T

and

Pt|t = Pt|t−1 −Pt|t−1Ĥt|t−1(Ĥ
′
t|t−1Pt|t−1Ĥt|t−1 + Ω)−1Ĥ′t|t−1Pt|t−1, t = 1, . . . , T

• Given their updated values, the forecasted values of the state variables are computed

as:

x̂t+1|t = µ+ Φx̂t|t, t = 1, . . . , T − 1

and

Pt+1|t = ΦPt|tΦ
′ + Σ, t = 1, . . . , T − 1

• Finally, the likelihood function is computed using the recursive factorization:

yt|Yt−1 ∼ N (ŷt|t−1, Ĥ
′
t|t−1Pt|t−1Ĥt|t−1 + Ω), t = 2, . . . , T.
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