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Abstract

Market constraints (e.g. borrowing constraint, no-short-selling constraint) are important for household

portfolio choices especially for housing. A structural model naturally generates alternative portfolio

regimes with different binding constraints. But empirically we cannot observe which households are

constrained in safe, risky or housing finance and housing. We use a semiparametric approach on data

from Wealth and Asset Survey (WAS) to determine this. We find distinct patterns of housing and financial

assets allocation among homeowners by fitting a multivariate Gaussian mixture model via a censored data

expectation-maximisation (EM) algorithm. Estimation results reveal that on average about 80% of the

households are no-short-selling constrained in risky asset investment and with low net worth. Among

other things, we find that households who are younger, less educated with lower income are more likely to

be no-short-selling constrained in risky asset investment and with lower net worth. Our predicted regime

classification is aligned to those of the structural model.

Key words: household finance, borrowing constraint, no-short-selling constraint, Gaussian mixture

model, censored data EM algorithm, semi-parametric

1 Introduction

Recognition of the theoretical and empirical importance of market constraints (especially borrowing and no-

short-selling constraints, on household portfolio choices has increased references (Attanasio et al., 2012). The

role of housing and housing finance in household portfolios is of special importance given the relative size,

illiquidity and transaction costs involved (Campbell, 2006). The study of household finance is challenging

because household behaviours are diffi cult to measure and complicated to model. Compared to corporate

finance, household finance has some special features such as planning over long but finite horizons, having

nontradable human capital and illiquid housing assets, and facing borrowing constraints. There are some
∗I would like to thank my PhD supervisors, Prof. Peter Simmons and Prof. Jo Swaffi eld, and my thesis committee member

Prof. Cheti Nicoletti for their valuable comments and suggestions. I am also grateful to participants at the Thursday workshop
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empirical literatures based on the framework of Merton (1973) where agents plan for the long term with

time-varying investment opportunities (Campbell et al., 2003; Kim and Omberg, 1996), which emphasised

the distinction between real and nominal returns in the long horizon models. But the Merton framework

assumes wealth is liquid and tradable, which is in contradiction with nontradable human capital and illiquid

housing. Moreover, as the biggest component of wealth for most households, human capital is nontradable

and because much of the labour income risk is idiosyncratic it is unhedgeable (Campbell, 2006). It represents

a background risk which could make households more risk averse and invest more cautiously in other risky

assets if the correlation between returns on these assets and labour income is positive (Heaton and Lucas,

2000). Or conversely if the correlation is negative. In addition, as an important largely indivisible asset

for homeowners, illiquid housing may discourage investment in risky assets by homeowners leading to a

crowding-out effect (Cocco, 2005). Adding borrowing constraints makes it even more complicated especially

if it is not possible to exactly observe such constraints so that in a household survey we just do not know

a priori if a household is constrained or not. Portfolio decisions (and consumption decisions) will generally

differ between households which are borrowing constrained or unconstrained. The estimation problem is that

from the data we often cannot directly see who is constrained. External evidence suggests that borrowing

constraints are typically more important for younger households who have not accumulated suffi cient savings

and have little or no housing wealth as collateral. Therefore there are some life cycle effects in financial

strategies as households age and accumulate wealth.

Existing literature considers the complications of household finance in different ways. One branch of

the literature derives numerical solutions to the housing and portfolio decisions in a life cycle framework

with such constraints by calibration and simulation (Attanasio et al., 2012; Cocco, 2005; Yao and Zhang,

2005). However, the calibration of state variables is based on some dataset as a whole without considering

possible heterogeneity among different groups of household. Here the calibration includes initial wealth as

well as the parameters of stochastic processes (e.g. income process, house price process, risky asset return

process)(Carroll, 2012). A second branch of the literature estimates the structural parameters (preference

parameters) using Euler equations from a theoretical model with and without liquidity constraints (Zeldes,

1989; Whited and Wu, 2006). A third branch of the literature applies reduced form models to find empirical

evidence about the impact of individual characteristics (e.g. financial illiteracy (Rooij et al., 2011) and income

hedging motives (Bonaparte, et al., 2014)) on household portfolio choice.

A common feature of most of the literature stated above is the modelling of a typical household. That

is, they analyse the average behaviour of the population. An exception is Zeldes (1989). Zeldes (1989) a

priori selects a set of families that he believes to be not liquidity constrained in terms of wealth to income

ratio. In his terms this subsample has all interior solutions to consumption, thus the Euler equation holds

as an equality and the preference parameters can be estimated from the Euler equation. However, his

analysis strongly relies on the ad hoc criterion used to split the sample into constrained and unconstrained

groups: households with wealth to income ratio above a certain threshold are not liquidity constrained and

vice versa. In comparison, our paper does not assume any certain criterion to split the sample. Instead,

we try to see if the data on the multiple assets holdings give probabilistic splits of the sample and then

explore the behaviour of households derived from the probabilistic split. Another exception that considers

the heterogeneous intrinsic nature of subsamples is King and Leape (1998), who estimate the joint discrete
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and continuous choice of household portfolios by a switching regression model. In their model, both the

discrete choice of owning particular combinations of assets and the continuous choice of asset demand system

conditional on ownership are parametrised by a set of household characteristics. Besides the different focuses

of research, there are two main differences between their model and ours. First, our model studies the asset

allocation behaviours at both the extensive and intensive margins at the same time via a censored data EM

algorithm, while their model studies the extensive and intensive margins in two steps. Second, as opposed

to their fully parametric model, our paper is only semi-parametric in the sense that the classification of

households in terms of asset allocations is unconditional, which has the advantage of being more flexible and

circumventing possible endogeneity brought by covariates.

Specifically, this paper aims to investigate housing and financial asset allocations decisions (hereafter,

asset allocations) by heterogeneous homeowners with a flexible model motivated by economic theory. We

find distinct patterns of unconditional housing and financial assets allocation among homeowners by fitting

a multivariate Gaussian mixture model via a censored data expectation-maximisation (EM) algorithm. Con-

sidering the choices of different assets are made simultaneously, the Gaussian mixture model we fit has a

multivariate nature. The existence of no-short-selling constraint on risky asset is considered by the use of the

censored data EM algorithm. The assumptions in our mixture model are minimal in the sense that we only

assume a multinomial distribution for the component membership indicators and a mixture of multivariate

normal distributions for housing and two other assets although we estimate the unknown component density

parameters. That is, neither mixing weights nor the mean of each asset is parametrised. This allows much

flexibility for the data to talk by avoiding possible spurious inclusion of covariates and subsequent endo-

geneity bias. The choice of the number of components is based on the economic intuition from a theoretical

model presented in Section 2. After finding the chances of a household being in different regimes (mixture

components) we want to understand which households are assigned to which mixture components (regimes)

and how this aligns with the theoretical regimes. Descriptive statistics are presented to describe the features

of each group. Then a linear probability regression is implemented to find the determinants of group mem-

bership. The results are encouraging: we use the number of components/regimes suggested by the theory

and find quite strong sample separation into these, the no-short-selling constraint on risky financial assets

clearly binds in the poorer lower two components but is slack in the two richer components. Within the

components where risky financial asset constraints either do or do not bind, there is evidence that the sub-

division into two further components (somewhat weakly) supports households who are mortgage borrowing

constrained or unconstrained. Our model is within the broader field of latent class models1 where the discrete

and finite latent variables in our model can be interpreted as no-short-selling constraint, mortgage borrowing

constraint, heterogeneity in initial wealth and preferences (e.g. different marginal utility, expectation, risk

aversion, etc.), and household idiosyncratic shocks.

Our empirical results contribute to the literature on structural models on household finance by giving a

possibly more sensible calibration of state variables for grid search in different structural regimes. On the

other hand, it sheds light on empirical work that tries to estimate heterogeneous household behaviours by

giving a basis for classifying observations into different latent classes. This paper also makes a preliminary

1Latent class models are also referred to as unsupervised learning in the field of machine learning.
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attempt to understand the household characteristics that may be required to apply the structural model to

capture the observed differences in portfolio allocation among households. The rest of the paper is organised

as follows. Section 2 shows the theoretical motivation of this paper. Section 3 describes the Wealth and Asset

Survey (WAS) data we use. Section 4 presents the econometric model, estimation method and algorithm we

use to estimate the model. Section 5 reports the estimation results. Finally, Section 6 concludes.

2 Theoretical motivation

2.1 A model for stable homeowners

Considering the infrequency of housing purchase observed from the data (Section 3), we focus on the be-

haviours of stable homeowners who own their main residence only2 and don’t move during the timespan we

study. For these stable homeowners, housing consumption is constant across time. For this reason the tenure

choice of housing (whether to be a renter or homeowner) and the decision to upsize or downsize the house

are beyond the scope of this paper. We formulate the model as follows.

Families are treated as forward looking. In period t, they face uncertainty in general about future income

It+1, house prices pt+1, return on risky asset rf,t+1. It+1, rf,t+1, pt+1 are random and only realised at the

start of the next period t + 1 On the other hand, the return on safe asset ra,t+1 is time-varying but non-

random and known by the households3 . Family utility in period t depends on a composite consumption ct
and utility derived from their present housing quantity Ht.Figure 1 shows the timeline of the model.

Figure 1: Timeline of the model

Suppose families live for T periods. For t ≤ T , families have a time additive expected utility life cycle

objective

Σtβ
tEtUt(ct, Ht)

where Ut(.) is the per-period utility function at time t, β is the constant rate of time preference, the

expectations operator Et is taken when any of future house prices, asset returns and income flows are

uncertain.
2We exclude households owning buy-to-let properties. Therefore households cannot get any rental income from the houses

they own.
3We assume households have rational expectations.
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Families can access financial markets. There are three: there is a safe asset with a known one period

return on asset rat. The holding of the safe asset at t is Xst. There is a risky asset with an return rf,t+1 that

is only realised at the end of period t (at the beginning of period t + 1) after the investment in period t is

made. Holdings of equities in t are Ft ≥ 0 since borrowing in equity is infeasible (short selling is not allowed).

There is also a housing mortgage market with an interest rate rm,t+1 realised after the mortgage of period t

has been taken. There are two borrowing constraints associated with the mortgage: the loan-to-value ratio

constraint and the loan-to-income ratio constraints:

Mt ≤ min[τ1ptHt, τ2It]

For simplicity, now suppose we can assume rmt = rat (Attanasio et al., 2012) and borrowing in the

safe asset is only possible via a mortgage. Define net safe assets At = Xst − Mt where Xst ≥ 0,Mt ≤
min[τ1pbtHt, τ2It] which means that At ≥ max[−τ1pbtHt,−τ2It]4 .
We assume a composite consumption good ct with the price normalised to 1 in each period t. As a

result, in each period, monetary variables including return on assets, labour income, rent and house prices

are expressed as a ratio of the consumption price. In other words, every monetary variable is in real term.

We write the household value function in period t in recursive form as:

Vt(Wt) = max
{At,Ft}

Ut(ct, Ht) + βEtVt+1(Wt+1)

subject to

Wt = ct +At + Ft + ptHt

Wt+1 = It+1 + (1 + ra,t+1)At + (1 + rf,t+1)Ft + pt+1Ht

Ft ≥ 0

At ≥ max[−τ1ptHt,−τ2It]

Notice the stable homeowners are "locked" in housing consumption in the sense that they are making

decisions as if housing consumption Ht is not a choice variable for them. In other words, their decisions for

asset allocations are conditional on their unchanged housing consumption Ht = H. On the other hand, the

values of their total housing wealth ptHt could well change through time due to the change of house prices

pt.

Forming the KuhnTucker Lagrangian

L = Ut[(Wt −At − Ft − ptHt), Ht] +

βEtVt+1[It+1 + (1 + ra,t+1)At + (1 + rft+1)Ft + pt+1Ht]

+λ1t(At + τ1ptHt) + λ2t(At + τ2It) + λ3tFt

4At ≥ max[−τ1pbtHt,−τ2It] is the necessary but not suffi cient condition of Mt ≤ min[τ1pbtHt, τ2It].
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Envelope Theorem gives

V ′t (Wt) =
∂Ut
∂ct

V ′t+1(Wt+1) =
∂Ut+1
∂ct+1

First order conditions are

Ft : −∂Ut
∂ct

+ βEt(1 + rft+1)
∂Ut+1
∂ct+1

+ λ3t = 0 (1)

At : −∂Ut
∂ct

+ β(1 + ra,t+1)Et
∂Ut+1
∂ct+1

+ λ1t + λ2t = 0 (2)

2.1.1 Evolution and cross-sectional variation of assets allocations

For notational convenience, hereafter we denote the real value of housing ptHi for household i at period t as

Git:

Git = ptHit

Git is Hit scaled by the house price pt which is assumed to be the same for every household in each period

(Law of one price). This assumption is made along with the usual assumption that housing quantity Hi not

only represents the physical size of the house but also the quality of the house5 . In other words, pt is just a

universal conversion factor to translate Hi into the observable monetary value Git.

Notice that the argument of the value function Vt+1(Wt+1) is

Wt+1 = It+1 + (1 + ra,t+1)At + (1 + rf,t+1)Ft + pt+1Ht

= It+1 + (1 + ra,t+1)At + (1 + rf,t+1)Ft +
pt+1
pt

Git

which suggests that the direct effect of the current period t on the next period value function Vt+1 is not

from ct or Wt, but from (Git, At, Ft) (Carroll, 2012). That is, for each household i, the vector (Git, Ait, Fit)

is a suffi cient statistic which captures all the information from the current period t that is needed to solve the

intertemporal maximisation problem in future periods. Thus the evolution of (Git, Ait, Fit)
6 may reflect a

combination of the changes in planning horizon7 , updates of random state variables Ii,t+1, rf,t+1, pt+1,changes

of expectations about the future It+1, rf,t+1, pt+18 and even preference parameters such as risk aversion and

subsistence level of consumption9 .

5Here the quality of the house includes the location etc.
6The evolution of (Git, Ait, Fit) for stable homeowners where Git = ptHit can be seen as the evolution of (Ait, Fit) with

Hit = Hi being time-invariant. However, we can also view Hit as endogenous and rational and the optimal choice is not to
change Hit in the timespan (3 waves) we consider here.

7 In a finite horizon setting, the policy functions change through time. But in our data which only covers 3 waves (6 years),
this effect for a household should be less important.

8This might be due to the change of the general macro economic environment.
9The change of subsistence level of consumption may happen when there are new children born in the family or when children

grow up and leave the family.
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Households have different (Git, Ait, Fit) because of household-specific (τ1i, τ2i) associated with the bor-

rowing constraints, individual idiosyncratic income process, different initial wealth Wit, different ages and

hence different planning horizon and different preference parameters.

Putting this theoretical setting into a statistical framework, given the timespan in our data is short (only

3 waves, i.e., 6 years), it means the cross sectional variation of (Git, Ait, Fit) at each period t is likely to be

more significant than the time series variation for each household. This is why we analyse the data by wave

later in this paper10 .

2.1.2 Possible asset allocation regimes

From equations (1) and (2), we can see that there are four possible solution regimes in which different sets

of constraints bind or are slack for stable homeowners (Table 1). For a particular household, the graph of

regimes are shown in Figure 2.

It is tempting to identify the signs of λ1 and λ2 (Lagrangian multipliers associated with loan-to-value

ratio constraint and loan-to-income ratio constraint) so that we can divide the sample into regimes and use

proper econometric specification. However, if we just rely on the first order conditions from the theoretical

model, then it is hard to distinguish the error terms of the moment conditions and λ1 and/or λ2 unless by

making very strong parametric assumptions for λ1 and λ2 (Whited and Wu, 2006) and assuming that λ1
and λ2 are independent of the errors of the moment conditions. In this paper, instead of trying to identify

the signs of λ1 and λ2,we use Taylor approximation to obtain non-parametric solution for each regime and

try to identify the corresponding joint distribution of (Gi, Ai, Fi) for each regime, allowing for household

heterogeneity which explain the cross-sectional variations of assets allocations across households. Without

loss of generality, let the decision rules for Fi and Ai in Regime r for household i at each period be11 .

Ai = Ar(εi)

Fi = Fr(εi)

where εi = [ε1i, ε2i, ε3i], ε1i is heterogeneity in initial wealth, ε2i is heterogeneity in preferences, ε3i is

household idiosyncratic shocks.

One challenge to link the empirical model with the theoretical model is that τ1, τ2 may be partially

individual specific12 and are only partially observable to the econometrician. In other words, looking at the

data, we have no exact idea whether the borrowing constraints (either one of the loan-to-value and loan-to-

income constraints or both) are binding. We can see from Figure 4 (Section 3) that there is some boundary

(upper limit) for the loan-to-value ratio. And in reality, choice of loan value affected by the loan-to-value

constraint may affect the loan-to-income constraint and such restrictions are imposed differently by different

lenders13 . This complicated relationship between loan-to-value and loan-to-income constraints contributes to

10There is also the consideration of meeting the assumption that datapoints are i.i.d. for the Gaussian mixture model.
11The time subscript t is omitted here since we consider the cross-sectional variation in the same period.
12The values of τ1 and τ2 depend on occupation, income, age, credit record, etc., but the information in the dataset is not

suffi cient to reflect exact τ1, τ2.
13One example is in 2015, the loan-to-income restriction imposed by Barclays is initially 4.5 for all, later relaxed to 4.5 if loan

value <£ 300000 and 5 if >£ 30000. (Bank of England, July 2015, Financial Stability Report)
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the unknown nature of borrowing constraint faced by heterogenous households in the sense that τ2 is not only

unobservable but also "endogenous" depending on personal preference for lenders and choice of mortgage.

For this reason we change the borrowing constraint in the optimisation problem as

Ai ≥ Br(εi)

where Br is a function of household heterogeneity and shocks whose functional form is regime specific14 .

Assume the expectation over observations who belong to regime r Er(εi) = 0. Taking a first order Taylor

expansion around Er(εi) = 0 yields

Ai|Regime r ∼ Ar(Er(εi)) + [εi − Er(εi)]∇Ar(Er(εi))

= Ar(Wi, Er(εi)) + εi∇Ar(Er(εi))

Fi|Regime r ∼ Fr(Er(εi)) + [εi − Er(εi)]∇Fr(Er(εi))

= Fr(Er(εi)) + εi∇Fr(Er(εi))

where ∇Ar(Er(εi)) =


∂Ar

∂ε1
|ε1=Er(ε1)

∂Ar

∂ε2
|ε2=Er(ε2)

∂Ar

∂ε3
|ε3=Er(ε3)

 ,∇Fr(Er(εi)) =


∂Fr
∂ε1
|ε1=Er(ε1)

∂Fr
∂ε2
|ε2=Er(ε2)

∂Fr
∂ε3
|ε3=Er(ε3)

 .
Note that in Regimes 1 and 2, the decision rules for Fi are reduced to

Fi|Regime r = 0

where r=1,2.

Notice here the observed Fi in regimes 1 and 2 is a mass point at 0, while the latent counterpart F ∗i is

the solution obtained as if the no-sohrt-selling constraint Fi ≥ 0 is not present, i.e.,

F ∗i |Regime 1 ∼ F3i(Er(εi)) + εi∇F3i(Er(εi)) ≤ 0

F ∗i |Regime 2 ∼ F4i(Er(εi)) + εi∇F4i(Er(εi)) ≤ 0

On the other hand, in Regimes 1 and 3, the decision rules for Ai are reduced to

Ai|Regime r ∼ Br(Er(εi)) + εi∇Br(Er(εi))

where r=1,3,∇Br(Er(εi)) =


∂Br

∂ε1
|ε1=Er(ε1)

∂Br

∂ε2
|ε2=Er(ε2)

∂Br

∂ε3
|ε3=Er(ε3)

 .
In summary, the approximation of decision rules in each solution regime are shown in Table 2. Mean-

while, though housing quantity stays constant for each household in this model, housing wealth varies across

14The regime-specific functional form Br is a result of normalisation of Er(εi) = 0 for all regimes.
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Table 1: Possible solution regimes for stable homeowners
No-short-selling constrained (λ3t = 0) Borrowing constrained (λ1t > 0 or λ2t > 0)

Regime 1 Yes Yes
Regime 2 Yes No
Regime 3 No Yes
Regime 4 No No

Table 2: Approximation of decision rules in each solution regime
Ai Fi F ∗i

Regime 1 B1(Er(εi)) + εi∇B1(Er(εi)) 0 F1(Er(εi)) + εi∇F1(Er(εi)) ≤ 0
Regime 2 A2(Er(εi)) + εi∇A2(Er(εi)) 0 F2(Er(εi)) + εi∇F2(Er(εi)) ≤ 0
Regime 3 B3(Er(εi)) + εi∇B3(Er(εi)) F3(Er(εi)) + εi∇F3(Er(εi)) F3(Er(εi)) + εi∇F3(Er(εi)) > 0
Regime 4 A4(Er(εi)) + εi∇A4(Er(εi)) F4(Er(εi)) + εi∇F4(Er(εi)) F4(Er(εi)) + εi∇F4(Er(εi)) > 0

Note: For regime r, Gr ∼ Gr(Er(εi)) + εi∇Gr(Er(εi))

households. To capture suffi cient information of a household in a period, we further assume the self-reported

housing wealth is a function of εi with functional form Gr which varies with regime r15 .

Gr(εi) ∼ Gr(Er(εi)) + εi∇Gr(Er(εi))

where ∇Gr(Er(εi)) =


∂Gr

∂ε1
|ε1=Er(ε1)

∂Gr

∂ε2
|ε2=Er(ε2)

∂Gr

∂ε3
|ε3=Er(ε3)

 .

Figure 2: Possible solution regimes in the A-F space

Note: The point where A=B and F=0 is Regime 1. The bold line is Regime 2. The dotted line is Regime 3. The

shaded area is Regime 4.

In order to derive the joint distribution of (Gr, Ar, F
∗
r )T in each solution regime r, we first assume the

joint distribution of household heterogeneity and shocks.

15The regime-specific functional form Gr is a result of normalisation of Er(εi) = 0 for all regimes.
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Assume the 3 × 1 vector εTi of heterogeneity effects and shocks for each household i is drawn from a

multivariate normal distribution

εTi ˜N(0,Ω) (3)

where Ω =

 σ
2
1 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ23

 is the covariance matrix for the heterogeneity and shocks.
Based on the normality assumption (3) and the approximation of decision rules in each solution regime

as shown in Table 2, the joint distribution of (Gr, Ar, F
∗
r )T for regime r isGrAr

F ∗r

 ˜N(µr,Σ)

where µr = [Gr(Er(εi)), Ar(Er(εi)), F
∗
r (Er(εi))]

T ,αr =

∇Gr(Er(εi)) 0 0

0 ∇Ar(Er(εi)) 0

0 0 ∇Fr(Er(εi))

 ,Σ =

αTr Φαr,Φ =

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

 ,
Note that if r = 1, 3, then Ar(Er(εi)) = Br(Er(εi)) and ∇Ar(Er(εi)) = ∇Br(Er(εi)).

3 Data

The data applied in this paper is from Wealth and Asset Survey (WAS). WAS is a longitudinal survey, includ-

ing information on level of various types of assets (savings, share investments, property wealth, mortgage,

pension, etc.), and different sources of income flows (labour income, benefit income, pension income, etc.)

of households in Great Britain. Currently there are three waves of data available (2006-2012) with each

wave covering two years. In addition, demographics variables such as age, education qualification, household

characteristics are available in the dataset. The advantage of this dataset is the comprehensive information

on multiple asset stocks. This makes it feasible to study household finance decisions. As we don’t study the

tenure decisions in this paper, we select only homeowners for analysis.

3.1 Conceptual definition

For purpose of estimation, we group some important financial assets into the following 2 categories.

1. Net risk-free asset (A):

The risk-free asset includes household value of cash ISA, household value of national savings Product,

household value of savings accounts, and household value of current accounts in credit. Net risk-free asset is

defined as risk-free asset net of mortgage.

2. Risky asset (F ):
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Risky asset includes household value of Investment ISA, household value of UK Shares, household value

of employee shares, household value of fixed term investment bonds, and household value of unit investment

trusts.

All the monetary variables are converted to real values by Retail Price Index (RPI) setting the year 2006

as the base year.

3.2 Infrequency of home purchase decisions

Previous literature suggests an average time between house purchases is 20 to 30 years with a conservative

estimate of transaction cost of 5% of value of the house sold (Grossman and Laroque, 1990). Statistical

evidence shows that the annual average turnover of housing stock in the UK had fallen from over 12% in

1980s to 4.5% in 2010s. This means, on average, houses changed hands once every 8 years in 1980s and every

23 years now16 . Flavin and Yamashita (2002) argues that though housing purchase decision is endogenous

and rational, it is infrequent due to transaction cost. And in our data, the majority of the homeowners (over

97%) are non-movers.

3.3 Sample selection, household wealth and demographics

Table 3 reports the summary statistics for key variables in the sample of all the homeowners, which is a

balanced panel tracing 8067 homeowners across three waves (24201 observations in total). Table 11 in the

Appendix shows a detailed description of all these variables. The age range for all the homeowners is quite

big, ranging from 21 to 101. To exclude the impact of pension wealth on asset allocations and focus on

behaviours of non-movers, we further select households aged under 65, not retired without pension income

and did not move homes during the three waves, which is a balanced panel tracing 2593 homeowners across

three waves (7779 observations in total). Among the stable homeowners under 65, only 19% own their

homes outright while the majority (81%) have mortgages, compared to 58% owning their homes outright and

42% having mortgages among all the homeowners. About 37% of the observations have risky assets. This

participation rate in risky asset is highest in wave 2 (39%) and lowest in wave 3 (35%), while Table 3 shows

the 50th percentile of risky asset holding in the whole sample of homeowners is positive. This means for

the stable homeowners under 65 both the borrowing constraints and the no-short-selling constraint probably

have a more important role to play compared with older households. Table 4 presents the summary statistics

for these households. Figure 3 shows the histograms of housing wealth, net safe asset and risky asset for

these households17 . The distribution of housing value, net safe asset and risky asset are all skewed with

long tails. Table 5 reports the correlations among age, education and asset holdings. Figure 4 is a scatter

plot of mortgage against house value, where the red line represents the combinations of mortgage and house

values with the loan-to-value ratio equal to 90%. We can see that while the loan-to-value ratio varies among

households, most of the observations are below the red line. This is consistent with the financial market

regulation. The correlation coeffi cients show that as households age, all the asset holdings rise. Housing

16Source: The new ’normal’- one year on (Is the march back to a sustainable market on track?), April 2015, Intermediary
Mortgage Lenders Associations (imla) Report
17For the figure to be more presentable, we exclude the top 10% for each histogram.
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wealth is positively correlated with both safe and risky assets, but negatively correlated with net safe asset,

which is probably due to the bigger positive correlation between housing wealth and mortgage. Having a

degree is positively correlated with housing wealth and risky asset.

Table 3: Summary statistics for all the homeowners from 2006-2012
Coeffi cient of Percentiles

Variable Observations Mean variation 25th 50th 75th

employ 24201 3.61 0.80 1.00 2.00 7.00

nkids 24201 0.43 1.96 0.00 0.00 0.00

degree 24201 0.30 1.53 0.00 0.00 1.00

quali 24201 0.52 0.96 0.00 1.00 1.00

Age 24201 58.41 0.25 47.00 59.00 70.00

marital 24201 2.08 0.75 1.00 1.00 3.00

totHval 24201 259205.80 0.97 134240.10 191771.50 294791.70

A 24201 -333.58 -380.92 -41354.22 5072.39 32924.44

cash 24201 37809.20 2.45 3211.29 13144.87 40000.00

mortgage 24201 38142.78 2.10 0.00 0.00 52568.43

risky 24201 38672.60 3.97 0.00 88.60 22248.01

hhNetFin 24201 83106.23 3.07 4313.18 24850.68 82907.62

GrossEmploy 24201 20778.50 1.53 0.00 9794.81 33808.89

GrossSE 24201 1940.26 5.70 0.00 0.00 0.00

Invest 24201 1822.34 5.91 0.00 48.73 664.47

income 24201 25024.18 1.47 0.00 14400.00 39918.80

lvratio 24201 0.17 1.56 0.00 0.00 0.29

hhsize 24201 2.30 0.51 2.00 2.00 3.00

bedrooms 24201 3.14 0.31 3.00 3.00 4.00

hsetype 24201 1.37 1.55 1.00 2.00 2.00
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Table 4: Summary statistics for stable homeowners under 65 from 2006-2012
Coeffi cient of Percentiles

Variable Observations Mean variation 25th 50th 75th

employ 7779 1.32 0.76 1.00 1.00 1.00

nkids 7779 0.97 1.10 0.00 1.00 2.00

degree 7779 0.33 1.42 0.00 0.00 1.00

quali 7779 0.58 0.86 0.00 1.00 1.00

Age 7779 44.65 0.20 38.00 45.00 51.00

marital 7779 1.95 0.77 1.00 1.00 3.00

totHval 7779 200661.00 0.66 120000.00 166860.10 239714.40

A 7779 -44660.75 -1.82 -84316.98 -41041.96 12.24

cash 7779 17803.36 2.44 1052.83 4897.40 16651.17

mortgage 7779 62464.11 1.03 14318.45 49613.59 92225.33

risky 7779 12483.43 5.53 0.00 0.00 2876.57

hhNetFin 7779 35762.21 2.65 221.14 8840.79 37642.45

GrossEmploy 7779 35502.52 0.87 17664.38 31833.13 48008.09

GrossSE 7779 2276.80 4.13 0.00 0.00 0.00

Invest 7779 540.72 5.43 0.00 9.59 185.30

income 7779 41678.97 0.82 22200.00 37104.00 54700.13

lvratio 7779 0.35 0.86 0.08 0.31 0.56

hhsize 7779 2.93 0.44 2.00 3.00 4.00

bedrooms 7779 3.13 0.29 3.00 3.00 4.00

hsetype 7779 1.58 1.34 1.00 2.00 3.00

north_esat 7779 0.03 5.30 0.00 0.00 0.00

north_west 7779 0.14 2.49 0.00 0.00 0.00

yorkshire_humb 7779 0.12 2.69 0.00 0.00 0.00

east_mid 7779 0.10 2.96 0.00 0.00 0.00

west_mid 7779 0.10 2.99 0.00 0.00 0.00

east_england 7779 0.12 2.66 0.00 0.00 0.00

london 7779 0.09 3.26 0.00 0.00 0.00

south_east 7779 0.16 2.25 0.00 0.00 0.00

south_west 7779 0.06 3.93 0.00 0.00 0.00

wales 7779 0.07 3.75 0.00 0.00 0.00
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Figure 3: Histograms of housing wealth, net safe asset and risky asset for stable homeowners under 65

Figure 4: Scatter plot of mortgage vs. house value

Table 5: Correlation matrix for stable homeowners under 65
Variables Age Age2 degree risky totHval A cash mortgage income lvratio

Age 1.00

Age2 0.99 1.00

degree -0.08 -0.09 1.00

risky 0.11 0.11 0.09 1.00

totHval 0.14 0.13 0.25 0.25 1.00

A 0.38 0.38 -0.05 0.18 -0.08 1.00

cash 0.17 0.18 0.15 0.26 0.36 0.62 1.00

mortgage -0.36 -0.37 0.16 -0.06 0.35 -0.85 -0.11 1.00

income 0.01 0.00 0.25 0.13 0.40 -0.08 0.23 0.25 1.00

lvratio -0.53 -0.52 0.03 -0.13 -0.18 -0.68 -0.24 0.70 0.03 1.00

4 The econometric model

4.1 A multivariate Gaussian mixture model for asset allocation patterns

We aim to estimate the assets allocations patterns. Specifically, we try to fit the data on assets holdings with

a multivariate Gaussian mixture model via a censored data EM algorithm. We proceed with the assumption
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for a multivariate Gaussian mixture in a clustering context that any nonnormal features in the data result

from some underlying group structure (McLachlan and Peel, 2000). We will illustrate the necessity of using

a censored data EM algorithm rather than the widely applied standard EM algorithm.

4.1.1 A standard EM algorithm for a multivariate Gaussian mixture model

Let y = (y1,y2, ...,yN ) be a set of independently and identically distributed (i.i.d.) observations on a

d-dimensional space Rd. In our case, d = 3 and

yn = (Gn, An, F
∗
n)T

where Gn, An are observed housing wealth and net safe asset for household n, and F ∗n is the latent

counterpart of observed risky asset Fn with the observation rule as follows18 .

Fn = F ∗n if F
∗
n > 0

= 0 otherwise (4)

In this paper, we use capital letters Y n and Zn to represent random variables and the corresponding

lower letters yn and zn to denote the realisations of them, respectively. The subscript n here denotes the

n-th data point. When there is no subscript n, both the capital letters and lower letters represent the entire

sample. The probability density function of an observation under a K-component Gaussian mixture model

is written in parametric form as

f(yn; Ψ) =

K∑
k=1

πkfk(yn; θk) (5)

where πk are scalars of positive mixing proportions summing to unity19 , fk are multivariate normal density

functions for component k parametrised by θk, and Ψ = (π1, ..., πK , θ1, ..., θK) is the vector containing all

unknown parameters in the mixture model, θk = (µk,Σk) with µk being the vector of means and Σk being

the covariance matrix of component k.We use maximum likelihood (ML) to fit this mixture model via a

widely applied approach, EM algorithm.

The EM algorithm is first introduced by the seminal paper by Dempster et al. (1977), which aims to

find the maximum likelihood estimate from incomplete data. It is useful in incomplete data problems where

algorithms such as the Newton-Raphson method may be more complicated. In our case, the Gaussian mixture

model can be viewed as a model for the joint distribution of elements of Y n depending on some unobservable

(latent) vector Zn which indicates the membership of observation n belonging to one of the K components

for each observation, i.e., the complete data is

yc = (yT , zT )T

18This is due to the no-short-selling constraint in risky asset investment. Here F ∗n represent the optimal amount of investment
in risky asset for household n. In the discussion of the standard EM algorithm, we assume that the latent F ∗n is observable.
19Since

∑K
k=1 πk = 1 , one of the mixing proportions πk is redundant.
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where z = (z1, ...,zn) and zn is a K-dimensional component-label vector with its k-th element zkn = 1 if yn
is generated from component k and 0 otherwise. In our case, the missing data z is the membership indicator

to the regimes that we conjecture in Section 2.

The missing Zn can be thought of as one draw from K categories with probabilities π1, ..., πK .

That is, we assume Zn is distributed according to a multinomial distribution:

Zn˜MultK(1,π)

where π = (π1, ..., πK)T .

The complete-data log likelihood function is

Lc(Ψ) =

N∑
n=1

K∑
k=1

zkn[lnπk + ln fk(yn; θk)] (6)

On the other hand, the incomplete-data log likelihood function is20

L(Ψ) =

N∑
n=1

ln f(yn; Ψ)

=

N∑
n=1

ln[

K∑
k=1

πkfk(yn; θk)] (7)

The standard EM algorithm proceeds iteratively in two steps, E (for expectation) and M (for maximisa-

tion). Let Ψ(0) be the initial value for Ψ and Ψ(p) be the value of Ψ after the p-th EM iteration.

In the (p+1)-th iteration, the E-step estimates the complete-data suffi cient statistics, which is the condi-

tional expectation of Lc(Ψ) given y using Ψ(p) for Ψ.

Q(Ψ; Ψ(p)) = E[lnLc(Ψ)|y,Ψ(p)] (8)

In order to get Q(Ψ; Ψ(p)), we need to compute E(Zkn|y,Ψ(p)) as follows.

E(Zkn|y,Ψ(p)) = Pr(Zkn = 1|y,Ψ(p))

=
π
(p)
k fk(yn; θ

(p)
k )∑K

j=1 π
(p)
j fj(yn; θ

(p)
j )

= wkn(Ψ(p)) (9)

where we denote E(Zkn|y,Ψ(p)) by wkn(Ψ(p)), the posterior probability that the n-th observation of the

sample belongs to the k-th component of the mixture.

20L(Ψ) can be seen as the log of joint density when marginalising out the unknown Z.
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Hence the conditional expectation of the complete data likelihood can be written as21

Q(Ψ; Ψ(p)) =

N∑
n=1

K∑
k=1

wkn(Ψ(p))[lnπk + ln fk(yn; θk)] (10)

The M-step of the (p+1)-th iteration involves maximising equation (10) with respect to Ψ. Here the

update rule for π(p+1)k is computed independently of the updated estimates θ(p+1).The update rules in the

M-step are in closed form:

π
(p+1)
k =

1

N

N∑
n=1

wkn(Ψ(p))

µ
(p+1)
k =

∑N
n=1 w

k
n(Ψ(p))yn∑N

n=1 w
k
n(Ψ(p))

Σ
(p+1)
k =

∑N
n=1 w

k
n(Ψ(p))(yn − µ

(p+1)
k )(yn − µ

(p+1)
k )T∑N

n=1 w
k
n(Ψ(p))

The E-step and the M-step are alternated until convergence. Dempster et al. (1977) show the monotonicity

of the EM algorithm; that is,

L(Ψ(p+1)) ≥ L(Ψ(p))

4.1.2 The censored data EM algorithm for a multivariate Gaussian mixture model

In the application of standard EM algorithm, the data points yn are all fully observed and the only missing

data is the component memberships zn. However, as we mentioned above, the risky asset Fn is censored

according to the observation rule (equation (4)). That is, one coordinate (F ∗n) of our data yn = (Gn, An, F
∗
n)T

is not fully observable because of the no-short-selling constraint. If we pretended Fn = F ∗n all the time, the

model would be misspecified. For this reason we apply the censored data EM algorithm introduced by Lee

and Scott (2012) where they apply this algorithm to synthetic and flow cytometry data and use simulations

to show that their algorithm outperforms the standard EM algorithm when there is truncation and censoring.

The censored data EM algorithm deals with both the missing component memberships and the loss of exact

values of the censored data. The missing component memberships are formulated as missing data as in the

standard EM algorithm, while the censoring problem is addressed by integrating out the density of unknown

latent values of F ∗n in the likelihood function.

We can express our observed data xn in the following form:

xn = yn if F
∗
n > 0

= xmn otherwise (11)

where yn = (Gn, An, F
∗
n)T denote the fully observed observations that preserve their latent values of

positive F ∗n while xmn = (Gn, An, 0)T denote the observations with corner solutions of Fn = 0.

21Q(Ψ; Ψ(p)) is obtained by replacig the unknown zkn in Lc(Ψ) by its expected value wkn(Ψ(p)).
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The additional complication of censoring added to the standard EM algorithm is dealt with by identifying

whether the pattern of each observation is yn or xmn according to equation (11) and then modify the

likelihood contribution of an observation as opposed to equation (5). That is, now the likelihood contribution

of the observed xn is:

f(xn; Ψ) =

K∑
k=1

πkfk(xn; θk) if F ∗n > 0

=

0∫
−∞

[

K∑
k=1

πkfk(xn; θk)]dFn otherwise

The posterior probability is

wkn(Ψ(p)) =
π
(p)
k fk(xn; θ

(p)
k )∑K

j=1 π
(p)
j fj(xn; θ

(p)
j )

Applying the EM machinery, the update rule in the M-step change from the standard EM algorithm

accordingly. These are analysed in details in the work by Lee and Scott (2012).

π
(p+1)
k =

1

N

N∑
n=1

wkn(Ψ(p))

µ
(p+1)
k =

∑N
n=1 w

k
n(Ψ(p))[1(Fn > 0)xn + 1(Fn = 0)

 Gn

An

E(F ∗n |xn, zkn = 1)

]

∑N
n=1 w

k
n(Ψ(p))

Σ
(p+1)
k =

∑N
n=1 w

k
n(Ψ(p))Skn∑N

n=1 w
k
n(Ψ(p))

where

Skn = {[1(Fn > 0)xn + 1(Fn = 0)

 Gn

An

E(F ∗n |xn, zkn = 1)

]− µ(p+1)k }

{[1(Fn > 0)xn + 1(Fn = 0)

 Gn

An

E(F ∗n |xn, zkn = 1)

]− µ(p+1)k }T

+

[
0 0

0 Rkn

]

Rkn = 1(Fn = 0){E(F ∗2n |xn, zkn = 1)− E(F ∗n |xn, zkn = 1)[E(F ∗n |xn, zkn = 1)]T }

In our application, to choose the initial parameters Ψ(0), we implement k-means clustering algorithm 5
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times with different starting points and choose the set of mixture model parameters from k-means that gives

the maximum complete-data log likelihood. We terminate the algorithm when the increase of the complete-

data log likelihood between two successive iterations is smaller than the tolerance parameter we set, or when

the number of iterations reaches a fixed number.

5 Main empirical results

Tables 6 and 7 show the estimation results for the multivariate Gaussian mixture model for asset allocation

patterns on each wave of data and on pooled data, respectively. Here the labels of the components are

assigned by ascending order of housing wealth. The means of the four components show that on average,

approximate net worth (An + Gn + Fn) rises when housing wealth rises. Thus the first component is the

poorest while the fourth is the richest. The estimated mixing proportions suggest that the unconditional

probability of belonging to component 1 is the highest, while the unconditional probability of belonging to

component 4 is the lowest.

Since we use censored data EM algorithm for estimation, the estimated parameters are associated with

the latent data yn = (Gn, An, F
∗
n)T .For example, the estimated mean of risky assets for each component is

the mean of F ∗n as if the observation rule (11) is not present and we could always observe the optimal risky

asset holdings F ∗n . From the estimation results, we can see in all the three waves and the pooled data, the first

two components both have negative means of F ∗n , which suggests that on average the first two components

are no-short-selling constrained in risky asset investment. The mixing proportions π1 and π2 add up to about

80%, which suggests about 80% of the households are no-short-selling constrained on average.

Comparing the estimated means from wave 1 and wave 2 data, the mean of latent risky asset increases

for the first two components while the housing wealth decreases for all the components. The drop of housing

wealth could reflect the drop of house prices due to the financial crisis in wave 2 (2008-2009), while the

increase of risky asset investment may show substitution effect of risky asset for housing for the first two

components. For the third and fourth components, on the other hand, the mean of risky asset investment

drops by about 91% and 32% in wave 2, which may show lack of confidence in risky asset in the face of

financial crisis. In wave 3, however, all components except component 1 increase holdings of risky asset. This

may reflect the recovery of confidence on risky asset for the second, third and fourth components, while the

first component (the poorest) is less resilient in the post-crisis period22 .

In the results on wave 1, the estimated covariances of housing wealth and risky asset are negative for

the first component, but positive for other components. This suggests for the poorest component, housing

wealth and risky asset investment move in the same direction. However, for the other components, the more

housing wealth owned the less investment in risky asset, which is consistent with the argument that house

price risk crowds out stockholdings (Cocco, 2005).

This analysis is soft clustering where for each observation n we obtain posterior probability of belonging to

the k-th component conditional on the data, wkn. For the purpose of visualising the results of soft clustering,

22One should bear in mind that the above comparisons between waves are based on the average behaviours of each cluster
rather than the average behaviours of a particular group of people.
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Table 7: Estimated parameters by censored data EM algorithm on pooled data
Pooled data (N=7779)

Mixing proportions
π1 π2 π3 π4
0.48 0.31 0.17 0.042

Means
E(G) E(A) E(F ∗)

µ1 128888.8 -44189.4 -3515.64
µ2 206786.6 -39257.7 -19295
µ3 311812.8 -67574.2 3244.545
µ4 534198.9 1075.424 125359.8

Covariance
Σ1 G A F ∗

G 1.56E+09 -3.9E+08 51069621
A -3.9E+08 1.53E+09 16220325
F ∗ 51069621 16220325 23127503

Σ2 G A F ∗

G 4.14E+09 -2.2E+08 1.91E+08
A -2.2E+08 4.43E+09 1.8E+09
F ∗ 1.91E+08 1.8E+09 2.84E+09

Σ3 G A F ∗

G 1.31E+10 -2.4E+09 1.84E+08
A -2.4E+09 1.2E+10 4.56E+08
F ∗ 1.84E+08 4.56E+08 2.25E+08

Σ4 G A F ∗

G 9.96E+10 -1E+10 -1E+10
A -1E+10 5.47E+10 1.7E+10
F ∗ -1E+10 1.7E+10 1.13E+11
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we label each observation with the label of component with the highest posterior probability. For example,

if the n-th observation has the posterior probabilities w1n = 0.8, w2n = 0.03, w3n = 0.07, w4n = 0.1, then this

observation is labelled as belonging to group 1. That is, the group labels we assign here is in the context

of hard clustering. Figures 5, 6, 7 and 8 show the histograms of posterior probabilities of belonging to the

corresponding component that each observation is labelled. The peaks around 1 in these histograms means

the maximum of wkn is near to one for most of the observations yn, which shows evidence that the components

are well separated. Figures 9 and 10 show the distributions of housing wealth, net safe asset for each group

(hard cluster) for each wave of the data and the pooled data, where the solid curves are fitted kernel density.

In Figures 9 and 10, the distributions of housing wealth and net safe asset in each hard cluster are quite

symmetric and are most concentrated in the first group and most dispersed in the fourth group. This is

consistent with the estimated variances of housing wealth and net safe asset in each component. With the

labels of component membership, we find most of the observations do not change the label across the three

waves using the results from both the pooled data and each wave of the data. This means most of the poor

households stay poor while most of the rich households stay rich in the timespan we cover (3 waves), reflecting

the inertia.

Figure 5: Histogram of posterior probabilities in each group for wave 1 data

Figure 6: Histogram of posterior probabilities in each group for wave 2 data
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Figure 7: Histogram of posterior probabilities in each group for wave 3 data

Figure 8: Histogram of posterior probabilities in each group for pooled data

23



ÝaÞ ÝbÞ

ÝcÞ ÝdÞ

Figure 9: Histograms of housing wealth for each group

Note: (a) Wave 1 data; (b) Wave 2 data; (3) Wave 3 data; (d) Pooled data.

ÝaÞ ÝbÞ

ÝcÞ ÝdÞ

Figure 10: Histograms of net safe asset for each group

Note: (a) Wave 1 data; (b) Wave 2 data; (3) Wave 3 data; (d) Pooled data.
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5.1 Determinant of component membership

We study the determinant of component membership by regressing the posterior probability of component

membership on demographics and regional dummies. Since there are four components, there are four posterior

probabilities correspondingly. Therefore we use a multivariate regression model, i.e., a system of linear

probability models.

wkn = βkXn + εnk

where wkn is the estimated posterior probability that observation n belongs to component k obtained from

the estimation of the multivariate Gaussian mixture model; X is a column vector of demographic variables

including age, age squared, income, degree dummy, number of children under 18, and regional dummies; βk
is the row vector of coeffi cients on X for the k-th equation. Here the base category of regional dummies is

Wales. This model is equivalent to doing k OLS regressions for each equation separately (in our model 4

regressions), except that between-equation covariances of the residuals is also estimated using this system

estimator.

Tables 8 and 9 report the signs and statistical significance of the coeffi cients on each wave of data and

the pooled data. The detailed results of regressions are shown in Tables 12, 13, 14 and 15 in Appendix.

The definitions of the variables are shown in Table 11 in the Appendix. With this joint estimator instead of

regressing each equation separately, we can estimate the between-equation covariance. The Breusch—Pagan

test rejects the null hypothesis that the residuals of the four equations are independent of each other on all

the datasets we estimate. The F test shows that all the regressors as a whole is strongly significant on all the

data sets we use. The results show that households who are younger, less educated with lower income are

more likely to belong to component 1, which is on average no-short-selling constrained and with lower net

worth. There is also a regional effect. In general, households living in regions outside Wales are less likely to

belong to the poorest component (component 1). Households living in London are more likely to belong to

the richest component (component 4), compared to households living in Wales.
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Table 9: The signs and statistical significance of coeficients in multivariate regressions
Pooled data (N=7779)

w1 w2 w3 w4

Age - + + -

*** *** *** **

Age2 + - - +

n.s. * ** ***

income - + + +

*** n.s. *** ***

degree - + + +

*** ** *** ***

nkids - + + +

*** n.s. *** ***

northeast - + + -

n.s. n.s. n.s. n.s.

northwest - + + -

n.s. n.s. n.s. n.s.

yorkshirehumb - + + -

** ** n.s. n.s.

eastmid - + + -

** *** n.s. n.s.

westmid - + + -

*** *** n.s. n.s.

eastengland - + + +

*** *** *** n.s.

london - + + +

*** *** *** ***

southeast - + + +

*** *** *** **

southwest - + + -

*** *** *** n.s.

cons + - - +

*** n.s. *** n.s.
Note: n.s. not significant, *p<0.05, **p<0.01, *** p<0.001.

5.2 Alignment in theoretical regimes and empirical components

Figure 11 shows the non-participation rate in risky asset and the percentage of mortgage holders for each

group. We can see that on all the datasets, the non-participation rate decreases from Group 1 to Group 4

monotonically. The majority of households with the Group 1 label (about 80%) do not invest in any risky
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asset, while about half (waves 1, 2, and 3 data) or more than a half (pooled data) of households with Group

2 label do not participate in the risky asset investment. On the other hand, only a small proportion of the

households with Group 3 and Group 4 labels do not hold risky asset. This suggests that Groups 1 and 2 are

likely to be no-short-selling constrained, i.e., their optimal holding of risky asset would be non-positive if the

no-short-selling constraint is not present. This is consistent with signs of estimated means of F ∗ in Tables 6

and 7.

The percentage of mortgage holders decreases from Group 1 to Group 4 on all the datasets except for

the pooled data (Figure 11). For the pooled data the percentage of mortgage holders in Group 3 (79%) is

slightly higher than in Group 2 (72%). Similarly, in the estimation in each wave, the percentage of mortgage

holders is the highest in Group 1 and lowest in Group 4. To investigate whether households in each group are

borrowing constrained or not, we show the means and coeffi cients of variation of loan-to-value ratio for each

group in Table 10. Note that only the sample with a loan-to-value ratio within the reasonable range (0,1)

are included in Table 10, since a loan-to-value ratio outside this range could be a result of measurement error

in the data and does not serve as sensible signal of borrowing constraint. Table 10 shows that on average

Group 1 has the highest loan-to-value ratio with smallest variation while Group 4 has the lowest loan-to-

value ratio with big variation. This indicates that households with the Group 1 label are most likely to be

mortgage borrowing constrained since they borrow the most proportion of the house value on average and

this proportion tends to concentrate around some maximum limit. As discussed in Section 3 the maximum

borrowing limit is unobserved and can be individual-specific. However, the relative clustering of loan-to-value

ratio in Group 1 compared to other groups may result from the fact that the majority of Group 1 mortgage

holders borrow as much as they can to finance their houses. By contrast, households with Group 4 label are

least likely to be borrowing constrained since they borrow the least proportion of the house value with the

biggest variation of loan-to-value ratio. According to Figure 11 and Table 10, on the pooled data, Group 3

has higher percentage of mortgage holders and higher mean of loan-to-value ratio with bigger variation than

Group 2, which may serve as evidence of Group 3 being more borrowing constrained than Group 2. However,

this evidence is not as strong as the ones supporting Group 1 and Group 4, because opposite argument may

be raised based on the descriptives on data in waves 1, 2 and 3.

In summary, there is strong evidence to support that components 1 and 4 are in line with the theoretical

regimes 1 and 4. However, the evidence is weaker to align components 2 and 3 with the corresponding

theoretical regimes.
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Figure 11: Non-participation rate in risky asset and percentage of mortgage holders for each group
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Table 10: The means and coeffi cients of variation of loan-to-value ratio for mortgage holders in each group
Wave 1

Group Mean Coeffi cient of variation

1 0.44 0.54

2 0.37 0.64

3 0.33 0.71

4 0.27 0.87

Wave 2

Group Mean Coeffi cient of variation

1 0.46 0.53

2 0.39 0.62

3 0.36 0.69

4 0.24 0.78

Wave 3

Group Mean Coeffi cient of variation

1 0.45 0.53

2 0.37 0.64

3 0.32 0.74

4 0.32 0.81

Pooled data

Group Mean Coeffi cient of variation

1 0.45 0.53

2 0.36 0.67

3 0.40 0.60

4 0.30 0.79
Note: The sample selected for this table is with loan-to-value ratio within the (0,1) interval.

6 Conclusion

This paper starts with a theoretical model and derives four theoretical regimes of asset allocations depending

on whether the borrowing constraint and no-short-selling constraint are binding or not. The theoretical model

gives a steer to setting the number of components in the empirical work. Considering the complication of

identifying the theoretical regime membership in the data, a censored data EM algorithm is used to estimate

the multivariate Gaussian mixture model. Estimation results show distinct patterns of asset allocations

across homeowners using the WAS data from the UK. The estimated parameters reveal that on average

about 80% of the households are no-short-selling constrained in risky asset investment and with low net

worth. A system of linear probability models are estimated to find determinants of component membership.

Among other things, we find that households who are younger, less educated with lower income are more

likely to be no-short-selling constrained in risky asset investment and with lower net worth. These findings
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reflect a life-cycle effect as well as an education effect on asset allocation. The education effect could work

through changing life cycle human capital and/or improving financial literacy. The estimation results and

indicative evidence from loan-to-value ratio variation between components strongly suggest that the first

empirical component is aligned with the first theoretical regime, while the fourth empirical component is in

line with the fourth theoretical regime. There is weaker evidence to indicate that the other two components

match the corresponding theoretical regimes. Apart from unobservable borrowing constraints and no-short-

selling constraint, potentially, some random factors that are modeled in the theoretical model could account

for the split of empirical components: heterogeneity in initial wealth and preferences (e.g. different marginal

utility, expectation, risk aversion, etc.), and household idiosyncratic shocks.

The analysis in this paper is semi-parametric in the sense that the mixing proportions and component

means are not parametrised. This enables the data to talk in a more flexible way than the fully parametric

model. Nevertheless, it would be interesting to extend our work by parametrising mixing proportions and

component means and comparing the estimation results with this paper.
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A Appendix

Table 11: Variable definitions
Variable Definition

employ Employment Status of household representative person or partner. (1 if Employee, 2 if self-employed,

3 if unemployed, 4 if student, 5 if looking after family, 6 if sick or disabled, 7 if retired, 8 if other. )

nkids Number of children under 18.

degree 1 if have a degree or above and 0 otherwise.

quali 1 if have qualification lower than the degree level and 0 otherwise.

Age Age of the household repersentative person or partner.

Age2 Age squared.

marital Marital status of household representative person or partner. (1 if married, 2 if cohabiting,

3 if single, 4 if widowed, 5 if divorced, 6 if separated, 7 if same sex couple, 8 if civil partner,

9 if former separated civil partner.)

totHval Real value of the house owned.

A Real net safe asset.

cash Real safe asset.

mortgage Real total mortgage on main residence.

risky Real risky asset.

hhNetFin Real household net financial wealth.

GrossEmploy Real gross annual employee payment.

GrossSE Real gross annual income from self employment.

Invest Real total investment income.

income The sum of GrossEmploy and GrossSE.

lvratio Loan to value ratio calculated by mortgage devided by totHval.

hhsize Number of people in household.

bedrooms Number of bedrooms.

hsetype Type of house (1 if detached, 2 if semi-detached, 3 if terraced).

northeast 1 if live in North East and 0 otherwise.

northwest 1 if live in North West and 0 otherwise.

yorkshirehumb 1 if live in Yorkshire and the Humber and 0 otherwise.

eastmid 1 if live in East Midlands and 0 otherwise.

westmid 1 if live in West Midlands and 0 otherwise.

eastengland 1 if live in East of England and 0 otherwise.

london 1 if live in London and 0 otherwise.

southeast 1 if live in South East and 0 otherwise.

southwest 1 if live in South West and 0 otherwise.

wales 1 if live in Wales and 0 otherwise.
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Table 12: Multivariate regression results on wave 1 data
w1 w2 w3 w4

Age -0.021** 0.019* 0.0055 -0.0039

(-2.95) (2.55) (1.02) (-1.52)

Age2 0.00013 -0.00020* 0.0000042 0.000064*

(1.63) (-2.31) (0.07) (2.12)

income -0.0000034*** 0.00000049 0.0000022*** 0.00000071***

(-14.41) (1.94) (12.00) (8.19)

degree -0.14*** 0.0046 0.13*** 0.0094

(-9.58) (0.29) (11.09) (1.74)

nkids -0.044*** 0.017* 0.017** 0.0094***

(-6.51) (2.41) (3.27) (3.82)

northeast -0.068 0.080 0.010 -0.022

(-1.55) (1.69) (0.30) (-1.33)

northwest -0.040 0.036 0.025 -0.021

(-1.27) (1.07) (1.01) (-1.82)

yorkshirehumb -0.083** 0.086* 0.0093 -0.012

(-2.59) (2.51) (0.37) (-1.03)

eastmid -0.094** 0.096** 0.023 -0.026*

(-2.84) (2.74) (0.91) (-2.15)

westmid -0.13*** 0.11** 0.039 -0.015

(-3.94) (3.03) (1.50) (-1.25)

eastengland -0.24*** 0.18*** 0.073** -0.0093

(-7.65) (5.31) (2.92) (-0.79)

london -0.38*** 0.18*** 0.16*** 0.034**

(-10.97) (4.99) (6.02) (2.64)

southeast -0.29*** 0.17*** 0.12*** 0.00074

(-9.46) (5.05) (5.21) (0.07)

southwest -0.29*** 0.19*** 0.12*** -0.019

(-7.74) (4.78) (4.06) (-1.42)

cons 1.43*** -0.16 -0.31** 0.034

(9.94) (-1.01) (-2.76) (0.65)
Note: t statistics in parentheses. *p<0.05, **p<0.01, *** p<0.001.
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Table 13: Multivariate regression results on wave 2 data
w1 w2 w3 w4

Age -0.016* 0.0079 0.016** -0.0072

(-2.26) (1.30) (2.81) (-1.87)

Age2 0.000069 -0.000045 -0.00014* 0.00012**

(0.84) (-0.65) (-2.26) (2.72)

income -0.0000037*** 0.00000014 0.0000024*** 0.0000012***

(-14.87) (0.66) (12.31) (9.06)

degree -0.12*** 0.0054 0.081*** 0.036***

(-8.34) (0.43) (7.14) (4.63)

nkids -0.047*** -0.00046 0.037*** 0.010**

(-6.89) (-0.08) (7.11) (2.77)

northeast 0.0054 0.021 -0.0057 -0.021

(0.12) (0.57) (-0.17) (-0.89)

northwest -0.0061 0.025 -0.0059 -0.013

(-0.19) (0.95) (-0.24) (-0.79)

yorkshirehumb -0.061 0.066* -0.0087 0.0041

(-1.91) (2.43) (-0.35) (0.24)

eastmid -0.065* 0.079** -0.0052 -0.0088

(-1.96) (2.82) (-0.20) (-0.50)

westmid -0.092** 0.073** 0.021 -0.0019

(-2.78) (2.60) (0.82) (-0.11)

eastengland -0.21*** 0.10*** 0.094*** 0.014

(-6.48) (3.71) (3.79) (0.79)

london -0.38*** 0.083** 0.19*** 0.098***

(-10.86) (2.83) (7.30) (5.33)

southeast -0.26*** 0.087*** 0.15*** 0.029

(-8.62) (3.33) (6.28) (1.79)

southwest -0.23*** 0.10** 0.13*** -0.0033

(-6.04) (3.18) (4.47) (-0.16)

cons 1.42*** -0.038 -0.42*** 0.043

(9.10) (-0.29) (-3.53) (0.51)
Note: t statistics in parentheses. *p<0.05, **p<0.01, *** p<0.001.
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Table 14: Multivariate regression results on wave 3 data
w1 w2 w3 w4

Age -0.036*** 0.027*** 0.015** -0.0064

(-4.78) (3.58) (2.63) (-1.67)

Age2 0.00026** -0.00025** -0.00010 0.00010*

(3.15) (-3.08) (-1.67) (2.45)

income -0.0000017*** -0.00000018 0.0000012*** 0.00000071***

(-10.55) (-1.06) (9.66) (8.41)

degree -0.14*** 0.0034 0.11*** 0.028***

(-9.31) (0.22) (9.57) (3.57)

nkids -0.039*** -0.0012 0.034*** 0.0061

(-5.43) (-0.17) (6.24) (1.68)

northeast 0.031 0.0062 -0.018 -0.019

(0.70) (0.14) (-0.53) (-0.84)

northwest 0.0031 0.0090 -0.0018 -0.010

(0.10) (0.28) (-0.07) (-0.63)

yorkshirehumb -0.053 0.048 0.014 -0.0087

(-1.62) (1.44) (0.56) (-0.52)

eastmid -0.048 0.045 0.022 -0.018

(-1.43) (1.31) (0.84) (-1.07)

westmid -0.092** 0.075* 0.023 -0.0069

(-2.69) (2.17) (0.90) (-0.40)

eastengland -0.25*** 0.13*** 0.093*** 0.027

(-7.75) (4.03) (3.72) (1.63)

london -0.40*** 0.10** 0.23*** 0.069***

(-11.26) (2.83) (8.47) (3.83)

southeast -0.31*** 0.11*** 0.16*** 0.039*

(-9.90) (3.60) (6.59) (2.42)

southwest -0.26*** 0.14*** 0.10*** 0.012

(-6.69) (3.61) (3.57) (0.61)

cons 1.83*** -0.38* -0.50*** 0.054

(10.76) (-2.19) (-3.90) (0.63)
Note: t statistics in parentheses. *p<0.05, **p<0.01, *** p<0.001.
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Table 15: Multivariate regression results on pooled data
w1 w2 w3 w4

Age -0.017*** 0.012*** 0.012*** -0.0062**

(-4.28) (-3.37) (-4.11) (-3.13)

Age2 0.000088 -0.000088* -0.00010** 0.00010***

(-1.93) (-2.24) (-3.15) (-4.55)

income -0.0000025*** 1.5E-07 0.0000015*** 0.00000090***

(-21.44) (-1.52) (-17.65) (-15.52)

degree -0.15*** 0.023** 0.094*** 0.030***

(-17.04) (-3.09) (-15.4) (-7.06)

nkids -0.043*** 0.0043 0.029*** 0.0099***

(-10.88) (-1.27) (-10.31) (-5.04)

northeast -0.0088 0.03 0.00093 -0.022

(-0.34) (-1.34) (-0.05) (-1.72)

northwest -0.014 0.023 0.005 -0.015

(-0.75) -1.47 -0.39 (-1.61)

yorkshirehumb -0.052** 0.052** 0.0056 -0.0057

(-2.77) (-3.23) (-0.42) (-0.62)

eastmid -0.061** 0.071*** 0.0044 -0.014

(-3.16) (-4.23) (-0.32) (-1.44)

westmid -0.11*** 0.089*** 0.025 -0.0072

(-5.48) (-5.29) (-1.84) (-0.76)

eastengland -0.23*** 0.12*** 0.096*** 0.0096

(-12.05) (-7.47) (-7.23) (-1.04)

london -0.39*** 0.13*** 0.19*** 0.073***

(-19.35) (-7.59) (-13.02) (-7.32)

southeast -0.29*** 0.12*** 0.14*** 0.027**

(-16.02) (-7.63) (-11.19) (-3.1)

southwest -0.24*** 0.14*** 0.098*** -0.0019

(-10.85) (-7.53) (-6.3) (-0.17)

cons 1.41*** -0.13 -0.33*** 0.043

(-16.26) (-1.69) (-5.35) (-1.02)
Note: t statistics in parentheses. *p<0.05, **p<0.01, *** p<0.001.
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