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Abstract

We analyze multi-receiver Bayesian persuasion games with hetero-

geneous beliefs, originating from Kamenica and Gentzkow (2011). We

directly examine the sender’s messages, which are supported by ra-

tionalizability. With no strategic interactions at the stage game, the

sender’s optimization problem can be viewed as a set of linear program-

ming problems. We also show some generic properties of solutions.

With strategic interactions at the stage game, we provide examples on

two aspects of communication (only arising with the receivers’ strategic

interactions): “talking about others privately” and “tacit understand-

ings”, of which the latter is implied by forward induction.
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1 Introduction

In a seminal study, Kamenica and Gentzkow (2011) added a new dimension to

the literature on strategic information transmission by introducing a novel type

of message space.1 In the pioneering work by Crawford and Sobel (1982), the

privately informed sender chooses different messages depending on her types.

The departure in Kamenica and Gentzkow (2011) is that, while assuming no

private information, the message which the sender chooses involves randomness

conditional on the unknown state. Kamenica and Gentzkow (2011) analyzed

games with this type of messages which we call Bayesian persuasion games.

In Kamenica and Gentzkow (2011), there is one sender and one receiver

who share the common belief regarding the states. The sender chooses a

message consisting of (i) the set of signals, and (ii) the signal distribution

conditional on the states.2 After observing the message and the realization of

signal, the receiver updates her belief about the states and chooses a best re-

sponse. By identifying the receiver’s best response for each message and signal

realization, the sender chooses the message which maximizes her expected pay-

off. The sender influences the receiver’s behavior through the receiver’s belief

update. Kamenica and Gentzkow (2011) provided a condition under which

the sender benefits from persuasion and analyzed optimal messages. Their

technical contribution is that for the sender’s optimization problem, she can

only focus on the interim (updated) belief which needs to satisfy a consistency

condition called Bayes plausibility.3

Our main goal in this paper is to show that we can analyze multi-receiver

Bayesian persuasion games with heterogeneous beliefs.4 In order to do so, while

the receivers’ best responses still need to be examined in the stage game (the

1While Rayo and Segal (2010) employ the same type of message space, the receiver in
their setting has private information and binary actions. See Sobel (2013) for a survey.

2Kamenica and Gentzkow (2011) use the word “signal” for our definition of message.
3This is also known as the concavification approach. See Aumann and Maschler (1995).
4Even with heterogeneous beliefs, one can solve the sender’s optimization problem as if

they share the common prior since in the sender’s and the receivers’ payoff functions, each
π – sender’s message – is multiplied by their priors. There is no need for such a detour in
our approach.

2



game after signal realization) for each possible message and signal realization,

we explicitly examine the sender’s messages (instead of the interim belief) for

her optimization problem. We provide two examples to motivate our study.

Heterogeneous Beliefs. You and I are at a cafe which only offers two items:

Apple Pie (A) and Banana Cake (B). The person sitting next to us placed

an order. We only know that “she” ordered either A or B. If I ask a friend

of mine working at this restaurant, “he” would tell us what she ordered. We

decide to bet on whether she ordered A or B, which we refer to as the states.

You name a state. If you are correct (incorrect), you (I) win and I (you) lose.

The payoff for win is one and the payoff for loss is zero for each of us. You

believe that it is more likely that she ordered B. Let p0
1 be the probability you

assign to A and hence p0
1 ∈ (0, 1

2
); you would choose B with the initial belief

p0
1.

Before you name A or B, I send a message, π, which takes the form of

a distribution of signals {a, b} conditional on the states {A,B}; I choose two

values π(a | A) = α ∈ [0, 1] and π(a | B) = β ∈ [0, 1]. For example, α = 1 and

β = 0 means that signal realization reveals the state. After choosing α and β,

my friend working at the cafe checks what she ordered and generates a signal

according to π. After observing the signal, you update your belief via Bayes

rule:

pπ1 (A | a) =
αp0

1

αp0
1+β(1−p0

1)
and pπ1 (A | b) =

(1−α)p0
1

(1−α)p0
1+(1−β)(1−p0

1)
.

Given your updated belief, you choose A or B to maximize your expected

payoff. Two observations: (i) I do not choose a signal, and (ii) your choice will

be influenced by changing your belief, i.e., by choosing α and β.

I can predict how you would behave for each possible message and signal

realization. I can therefore identify the message maximizing my expected

payoff. This decision also depends on my belief. Let p0
S be the probability I

assign to A.5 Suppose first that p0
S > p0

1. I then simply let you choose B by

5See Example 2 in Subsection 3.1 for the formal analysis.

3



sending no message. Suppose instead p0
S < p0

1. In this case, I would want you

to choose A instead. The optimal message is α = 1 and β =
p0

1

1−p0
1
, and you

then have pπ1 (A | a) = 1
2

and pπ1 (A | b) = 0; you choose A after observing a or

B after observing b. I attempt to confuse you; given your behavior, I prefer

higher β and 1 − α. Since p0
S is small, I can accept α = 1. Instead, I choose

the highest β (i.e.,
p0

1

1−p0
1
); you do not choose A after observing a if β >

p0
1

1−p0
1
.

Multiple Receivers. A teacher (sender) has a class with two students, 1 and

2 (receivers). They only have the final exam, before which the teacher decides

to offer a mock exam. A student chooses either “high effort” or “low effort”

for the exams. The two grades are “pass” and “fail”. Two states are such that

one student is “H” (pass is guaranteed) and the other student is “L” (pass is

achieved if and only if she puts in high effort). Although the teacher and two

students all believe that it is more likely that student 2 is H (student 1 is L),

their confidences are different; the probabilities assigned to this state are 0.8

by the teacher, 0.7 by student 1 and 0.6 by student 2.

The mock exam is a surprise to the students (hence low effort from both)

so that their performance only reflects their types. The teacher announces her

grading policy (message) – a joint-distribution of two grades conditional on

the states – when they take the mock exam. Given the grade and the grading

policy, each student updates her belief regarding her type and decides how

much effort to put in for the final. While effort is costly, a good performance

on the final is rewarding. If a student is L, her payoff is zero if her effort (for

the final) is low and one if her effort is high. If a student is H, her payoff

is one if her effort is low and zero if her effort is high. The teacher believes

that the students should have the same academic workload irrespective of their

types ; the teacher’s payoff is one if they choose the same effort (low or high)

and zero otherwise.

Figure 1 shows the optimal grading policy (message) for the teacher.6 The

6The corresponding analysis can be found as Example 3 in Subsection 3.2, which has a
slightly different payoff for the sender; ε > 0. The same solution is obtained even if ε = 0.
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(a) 1 = L and 2 = H

1
fail

pass

2

fail pass

2
3 0

0 1
3

(b) 1 = H and 2 = L

1
fail

pass

2

fail pass

2
9 0

7
9 0

Figure 1: Grading Policy

interim beliefs for students 1 and 2 are respectively:

pπ1 (L | fail) =
7
10

2
3

7
10

2
3

+ 3
10

2
9

= 7
8

pπ1 (L | pass) =
7
10

1
3

7
10

1
3

+ 3
10

7
9

= 1
2

pπ2 (L | fail) =
4
10

6
10

2
3

+ 4
10

= 1
2

pπ2 (L | pass) =
4
10
·0

6
10

1
3

+ 4
10
·0 = 0.

Each student chooses high (low) effort if she receives a fail (pass). Signals are

jointly distributed, implying that individual persuasion is not optimal.7

Remark 1 In the examples above, each receiver is indifferent between two

actions after observing a certain signal. One may wonder what would happen

if she chooses the other action. We will discuss this in Subsection 5.2.

Previous studies have analyzed these two settings separately.8 Kamenica

and Gentzkow (2011) suggested that their approach can be extended to un-

linked Bayesian persuasion games with multiple receivers where (i) the sender’s

preferences are separable with respect to the receivers’ actions, and (ii) each

receiver only cares about her action. Alonso and Câmara (2016b) and Wang

7In this particular setting, (i) if the teacher would like each to choose high effort, she
would only persuade student 2, and (ii) if the teacher would like each to have a pass on the
final, she would only need to reveal the state.

8Heterogeneous beliefs and multiple receivers have been considered in the context of
cheap talk. For example, see Miura and Yamashita (2014) for the former, and Farrell and
Gibbons (1989) and Goltsmand and Pavlov (2011) for the latter.
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(2013) analyze voting games with multiple receivers. Alonso and Câmara

(2016a) consider heterogeneous beliefs with one receiver.9 It is my understand-

ing that the current study is the first to analyze these two settings jointly.

Our approach is supported by rationalizability. Although our solutions in

general would also be supported by equilibrium concepts which admit het-

erogeneous beliefs, we use rationalizability for three reasons. First, while the

standard notion of perfect Bayesian equilibrium uses the common prior, ratio-

nalizability naturally admits heterogeneous beliefs.10 Second, for the Bayesian

persuasion games where the stage games involve no strategic interaction (which

we call unlinked), the identification of a best response for each player directly

corresponds to rationalizability. Third, for the Bayesian persuasion games with

strategic interactions in the stage games (which we call linked), rationalizabil-

ity may have a sharper prediction due to forward induction when the sender

also plays the stage game. We demonstrate this by means of an example.

Our contribution to unlinked Bayesian persuasion games has two parts.

First, after providing some examples (Section 3), we show that the sender’s

optimization problem for unlinked Bayesian persuasion games can be seen as

a set of linear programming problems to the sender (Section 4).11 We take the

examination of the receivers’ best responses as “constraints” for the sender’s

optimization problem. The sender’s expected payoff is linear in signal distri-

bution. Although the receivers use their interim beliefs to identify their best

responses, these constraints can be modified as linear expressions (with weak

inequalities) in the signal distribution.

Second, we show several results (generic properties) based on the obser-

vations we extract from the examples shown in Section 3 (Section 5). The

9Alonso and Câmara (2016a) focus on language-invariant Bayesian perfect equilibrium:
the receiver’s behavior only depends on her interim belief regarding the states. This allows
the sender to focus on the receiver’s interim belief regarding the states.

10Perfect Bayesian equilibrium does not have to use the common prior. Battigalli (1999)
discusses the relationship between weak rationalizability and weak perfect Bayesian equilib-
rium.

11The adoption of the linear programing approach is not as straightforward as it may
sound. In unlinked games, we first specify the receivers’ strategies which depend on signal
realization, and yet the sender can still choose a message with which some signals will never
be realized. This means that the constraints are not closed. See Section 4 for details.
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first two observations concern the receivers. We show (i) that for any two

constraints (corresponding to two signals), one implies the other generically,

and (ii) the results concerning the receivers’ multiple best responses, including

Remark 1. The last result concerns the sender’s rationalizable message. We

show (i) that the rationalizable message is generically unique, and therefore

(ii) that it is generically the case that the sender strictly prefers either “doing

nothing” or “persuading receivers”.

Communications in linked Bayesian persuasion games are richer and more

complex. Although we cannot directly apply the linear programming approach

to linked Bayesian persuasion games, we can still analyze any Bayesian per-

suasion game. We highlight two aspects of communication which cannot be

observed in unlinked Bayesian persuasion games, for which we will provide

examples (Section 6).

First, we privately talk about others, creating asymmetric information. In

unlinked Bayesian persuasion games, the sender does not have an incentive

to share with any receiver the information regarding the signals the other

receivers observe since doing so would reveal more information regarding the

states.12 In linked Bayesian persuasion games, the sender may find it optimal

to do so since such information would also reveal actions taken by others. The

sender, however, would have to choose how much information to share with

each receiver. The first example shows that signal realization may contain

information regarding other receivers’ signals to encourage (dis)coordination

among the receivers.

Second, we often have tacit understandings without explicit communica-

tion, implying that “silence” may have some meanings. However, this cannot

happen in unlinked Bayesian persuasion games, since “silence” (doing noth-

ing) simply implies that the sender cannot influence the receivers’ behavior.

The second example, where the sender also plays the stage game as a receiver,

suggests that “silence” may nevertheless persuade the receivers successfully.

This is due to forward induction implied by rationalizability.13

12Even if it is optimal to reveal the state to each receiver, the sender does not have to use
the public message.

13Heifetz, Meier, and Schipper (2013) extended the notion of extensive-form rationaliz-
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There are several other recent studies on information disclosure. Brocas

and Carrillo (2007) consider a model with two states where instead of choosing

signal distributions conditional on the states, the sender chooses the number of

times (binary) signals are revealed given the pre-fixed signal distribution con-

ditional on the states. Rayo and Segal (2010) consider a model where the set

of actions is binary; “accept” or “reject”. The sender chooses the distribution

of signals conditional on the states (prospects). If the receiver accepts, players’

payoffs depend on the state. If the receiver rejects, she receives the realization

of her uniformly distributed reservation payoff (she knows the value when she

chooses her action) while the sender’s payoff is pre-determined. Ostrovsky

and Schwarz (2010) consider job matchings between students and potential

employers. It is the school who knows the students’ types and controls the in-

formation revelation to the potential employers. Hörner and Skrzypacz (2014)

analyze the model with multiple rounds of persuasion stages. Kolotilin, Li,

Mylovanov, and Zapechelnyuk (2015) study persuasion when (i) the receiver

privately observes her type, and (ii) the receiver’s payoff is linear in the state

and the type. Bergemann and Morris (2016) consider correlated equilibrium

for games with incomplete information under a common prior. Bergemann

and Morris (2016) show that their approach can analyze Bayesian persuasion

games with multiple receivers. The decision rule (mediator) which recommends

actions would correspond to the message in the current paper.14

ability with the presence of asymmetric unawareness. Their example (in a different setting)
showed that without asymmetric awareness, not taking certain action (silence) led to the
unique outcome due to forward induction.

14Tamura (2014) assumes (i) that the receiver’s action is continuous, (ii) that the receiver’s
utility function is strictly concave, and (iii) that both the sender’s and the receiver’s prefer-
ences are quadratic. With these assumptions, the sender cannot affect the expected value
of the receiver’s optimal action, and the sender’s expected utility is linear in the variance-
covariance matrix of the (multi-dimensional) states. In this setting, Tamura (2014) uses
the semidefinite programming approach. Kolotilin (2016) assumes (i) both the sender and
the receiver have their own types with supports that are compact (and the sender’s type is
realized only after her message is sent), (ii) the receiver’s action space is binary, (iii) one
action leads to a payoff of zero (normalization) for both the sender and the receiver, and
(iv) the single-crossing assumption for the receiver’s preferences from the other action; there
exists a threshold of her private information with which her expected payoff is zero. The
sender only needs to make sure that the receiver’s expected payoff from the other action
is zero. See also Chan, Li, and Wang (2016), Lipnowski and Mathevet (2015) and Taneva
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2 Preliminaries

Our formal treatment is geared towards unlinked Bayesian persuasion games;

i.e., no strategic interaction at the stage game (the game which the receivers

play after signal realization). We have one sender. Let N be the finite set of

the receivers with |N | = n ≥ 1. The finite set of states is Θ with θ being a

typical element. Let p0
S be the sender’s (commonly known) initial belief over

Θ. Likewise, for each receiver i ∈ N , let p0
i be her (commonly known) initial

belief over Θ. We assume that p0
S(θ) > 0 for each θ ∈ Θ and p0

i (θ) > 0 for

each θ ∈ Θ and i ∈ N . We allow heterogeneous beliefs.

A Bayesian persuasion game has two stages:

First Stage. Let Ξi be the finite set of signals for each receiver i ∈ N with

ξi being a typical element and Ξ =
∏

j∈N Ξj. The sender chooses a message,

a joint distribution over Ξ conditional on Θ, which we denote π. We assume

that the sender’s message is such that for every i ∈ N and ξi ∈ Ξi, there exists

θ ∈ Θ such that π(ξi | θ) > 0. That is, each signal is realizable with a positive

probability. Let Π be the set of messages. The message itself is observable

to the receivers. As an extreme case, π can be such that the signals of all

receivers are perfectly correlated, which we interpret as the case where signals

are publicly observable.

Second Stage. Given a message π, the marginal π(ξi | θ) =
∑

j 6=i π((ξi, ξj) |
θ) for each ξi ∈ Ξi and θ ∈ Θ is computed for each receiver i ∈ N . After

observing π and ξi, each receiver i ∈ N revises her belief regarding each θ ∈ Θ

via Bayes’ rule:

pπi (θ | ξi) =
π(ξi | θ)p0

i (θ)∑
θ̃∈Θ π(ξi | θ̃)p0

i (θ̃)
. (1)

A message is called null for player i ∈ N if it induces the interim belief identical

to the initial belief for each signal; i.e., Ξi is singleton, or for each ξi ∈ Ξi,

(2016) for other applications.
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π(ξi | θ′) = π(ξi | θ′′) for each θ′, θ′′ ∈ Θ. If a message is null for each player

i ∈ N , we simply say that the message is null. Let π0 be a null message.

After privately observing ξi before playing the stage game, each receiver

i ∈ N chooses her action with her interim (updated) belief, pπi (· | ξi). Let Ai

be the finite set of actions for each receiver i ∈ N in the stage game with ai

being a typical element and A =
∏

j∈N Aj.
15 Since each signal itself has no

meaning, we assume without loss of generality that |Ξi| = |Ai| for each i ∈ N ;

i.e., the sender recommends an action to each receiver. For the same reason,

we do not distinguish the permutations of Ξi.
16 Let si : Π × Ξi → Ai be a

pure strategy, Si be the set of pure strategies for each player i ∈ N in the

stage game, and S =
∏

j∈N Sj. Let si(π, ξi) ∈ Ai be receiver i’s action after

observing ξi ∈ Ξi given π.

Remark 2 With |Ξi| = |Ai| for each i ∈ N , a rationalizable message may

be such that two different signals induce the same action for some receiver.

In such cases, we can reduce Ξi by eliminating “redundant” signals; the cor-

responding discussion can be found in Subsection 4.3. Most of our results in

Section 5 use such reduced sets of signals.

The sender’s payoff function takes the form of uS(a, θ); the sender’s payoff

depends on receivers’ action profile and the state. For unlinked Bayesian

persuasion games, we have ui(ai, θ) for each receiver i ∈ N ; each receiver i’s

payoff depends only on her own action and the state. This will be relaxed for

linked Bayesian persuasion games.

The solution concept we use is ∆-rationalizability by Battigalli and Sinis-

calchi (2003), where ∆ corresponds to the set of restrictions on players’ (first-

order) beliefs. In the current setting, ∆ corresponds to p0
S for the sender and

p0
i for each receiver i ∈ N . The procedure for unlinked Bayesian persuasion

games goes analogous to backward induction:

15Our focus is on static stage games. The receivers may play dynamic games after ob-
serving signals.

16Kamenica and Gentzkow (2011) call such messages (with Ξ1 ⊆ A1) straightforward. The
sender may not use some signals, which we will discuss later.
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1. Given that Ξi and Ai are finite for each i ∈ N , for each strategy profile

s, (i) identify the set of messages to which si is a best response for each

i ∈ N (this set could be empty for some s as demonstrated in Section

3), and (ii) within this set, identify the message leading to the highest

expected payoff for the sender.

2. Among the messages identified above, identify a best response for the

sender.

We will discuss in Section 4 how the procedure is linked to the linear program-

ming approach for unlinked Bayesian persuasion games.

3 Examples

In this section, we demonstrate how the linear programming approach works.

We first use the example from Kamenica and Gentzkow (2011) and its varia-

tion. We then provide an example with two receivers.

3.1 Examples – One Receiver

We first use the example from Kamenica and Gentzkow (2011) to demonstrate

that our approach chooses the same prediction. In the modified example, we

demonstrate that predictions could be substantially different depending on

players’ heterogeneous beliefs. We first discuss the receiver’s behavior, which

is shared by the two examples. Differences in the two examples are (i) the

sender’s preferences and (ii) heterogeneity in beliefs.

Receiver 1 has two actions, A1 = {a′1, a′′1}. There are two states, Θ =

{θ′, θ′′}. Let p0
S and p0

1 be the prior beliefs for the sender and receiver 1

respectively. There are two signals Ξ1 = {ξ′1, ξ′′1} and the sender chooses π ∈ Π.

We assume that u1(a′1, θ
′) = u1(a′′1, θ

′′) = 1 and u1(a′1, θ
′′) = u1(a′′1, θ

′) = 0.

After observing π and ξ1 ∈ Ξ1, receiver 1’s expected payoffs are{
pπ1 (θ′ | ξ1)u1(a′1, θ

′) + pπ1 (θ′′ | ξ1)u1(a′1, θ
′′) = pπ1 (θ′ | ξ1)

pπ1 (θ′ | ξ1)u1(a′′1, θ
′) + pπ1 (θ′′ | ξ1)u1(a′′1, θ

′′) = pπ1 (θ′′ | ξ1)

}
for

{
a′1

a′′1

}
.

11



Given π(ξ1 | θ) > 0 for each ξ1 ∈ Ξ1 and θ ∈ Θ, we consider three pure

strategies for receiver 1 as her best responses:

(a) a′1 ∈ A1 for each ξ1 ∈ Ξ1, which requires pπ1 (θ′ | ξ1) ≥ pπ1 (θ′′ | ξ1) for each

ξ1 ∈ Ξ1, or

π(ξ1|θ′)p0
1(θ′)

π(ξ1|θ′)p0
1(θ′)+π(ξ1|θ′′)[1−p0

1(θ′)]
≥ π(ξ1|θ′′)[1−p0

1(θ′)]

π(ξ1|θ′)p0
1(θ′)+π(ξ1|θ′′)[1−p0

1(θ′)]

or

π(ξ1 | θ′′) ≤ p0
1(θ′)

1−p0
1(θ′)

π(ξ1 | θ′)

for each ξ1 ∈ Ξ1.

(b) a′′1 ∈ A1 for each ξ1 ∈ Ξ1, which requires pπ1 (θ′ | ξ1) ≤ pπ1 (θ′′ | ξ1) for each

ξ1 ∈ Ξ1, or

π(ξ1 | θ′′) ≥ p0
1(θ′)

1−p0
1(θ′)

π(ξ1 | θ′)

for each ξ1 ∈ Ξ1.

(c) a′1 for ξ′1 and a′′1 for ξ′′1 , which requires pπ1 (θ′ | ξ′1) ≥ pπ1 (θ′′ | ξ′1) and

pπ1 (θ′ | ξ′′1 ) ≤ pπ1 (θ′′ | ξ′′1 ), or

π(ξ′1 | θ′′) ≤
p0

1(θ′)

1−p0
1(θ′)

π(ξ′1 | θ′) and π(ξ′′1 | θ′′) ≥
p0

1(θ′)

1−p0
1(θ′)

π(ξ′′1 | θ′).

These relationships are visualized in Figure 2. For each case above, there

are three possibilities (from left to right in Figure 2): p0
1(θ′) < 1

2
, p0

1(θ′) = 1
2
,

and p0
1(θ′) > 1

2
. Note (i) that a point in the box diagram uniquely identifies

π, and (ii) that the cases above do not consider the origins. Figure 2 shows

that while (c) above is possible for any value of p0
1(θ′), (a) is possible only for

p0
1(θ′) ≥ 1

2
and (b) is possible only for p0

1(θ′) ≤ 1
2
.

We now discuss the sender’s behavior in two examples.

Example 1. In the original example from Kamenica and Gentzkow (2011),
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(b) a′′1 for each ξ1 ∈ Ξ1
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Figure 2: Receiver 1’s best responses
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the sender is the prosecutor and receiver 1 is the judge; Θ = {innocent, guilty},
A1 = {acquit, convict}, and Ξ1 = {innocent, guilty}. Let θ′ = ξ′1 = innocent,

θ′′ = ξ′′1 = guilty, a′1 = acquit and a′′1 = convict. Let p0
S(θ′) = p0

1(θ′) = 0.7

(and hence receiver 1 chooses a′1 without persuasion). The sender’s payoffs are

such that uS(a′1, θ) = 0 and uS(a′′1, θ) = 1 for each θ ∈ Θ.

The sender avoids receiver 1’s strategy “a′1 for each ξ1 ∈ Ξ1” (Figure 2 (a)).

Given p0
1(θ′) > 1

2
, it is not possible for the sender to make receiver 1 choose

a′′1 for each ξ1 ∈ Ξ1 (Figure 2 (b)). The remaining possibility is that receiver

1 chooses a′1 for ξ′1 and a′′1 for ξ′′1 (Figure 2 (c)). The sender’s expected payoff

is higher if the chance of ξ′′1 is higher; i.e, towards the southwest. The sender

therefore chooses π(ξ′′1 | θ′) = 1−0.7
0.7

= 3
7

and π(ξ′′1 | θ′′) = 1, consistent with the

solution in Kamenica and Gentzkow (2011).

Two observations are highlighted by Kamenica and Gentzkow (2011). First,

if receiver 1 observes ξ′1, corresponding to a′1 which is the worst action from

the sender’s point of view, she knows that the state is θ′. This observation is

reflected in Proposition 4 of Kamenica and Gentzkow (2011). We will discuss

this for the case of multiple receivers in Example 3. Second, when receiver 1

observes ξ′′1 , she is indifferent between two actions; the constraint for ξ′′1 binds.

Proposition 5 of Kamenica and Gentzkow (2011) provides the characterization

of the receiver’s interim belief for such cases. We will discuss the receivers’

multiple best responses in Subsection 5.2.

Example 2. The sender’s payoffs are such that uS(a′1, θ
′′) = uS(a′′1, θ

′) = 1 and

uS(a′1, θ
′) = uS(a′′1, θ

′′) = 0; two players have completely opposite preferences.

This corresponds to Example 1 by letting θ′ = a′1 = A, θ′′ = a′′1 = B, ξ′1 = a,

and ξ′′1 = b. Assume that p0
1(θ′) < 1

2
. Receiver 1 would choose a′′1 without

persuasion. It is not possible for the sender to induce receiver 1 to choose a′1

independent of a signal (Figure 2 (a)). There are two other possibilities: (i) a′′1

independent of a signal (Figure 2 (b)), and (ii) a′1 for ξ′1 and a′′1 for ξ′′1 (Figure

2 (c)). Note that the sender’s expected payoff with the former is constant at

p0
S(θ′). By looking at different values of p0

S(θ′), we compare these strategies

for receiver 1 and identify the rationalizable message for the sender.
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Figure 3: Heterogeneous Beliefs; a′1 for ξ′1 and a′′1 for ξ′′1

With receiver 1’s strategy “a′1 for ξ′1 and a′′1 for ξ′′1 ” as the constraint, the

sender chooses π to maximize

π(ξ′1 | θ′′)p0
S(θ′′) + π(ξ′′1 | θ′)p0

S(θ′) ⇔ π(ξ′1 | θ′′)[1− p0
S(θ′)] + [1− π(ξ′1 | θ′)]p0

S(θ′).

Note (i) that the sender’s expected payoff is higher if both π(ξ′1 | θ′′) and

π(ξ′′1 | θ′) increase (i.e., moving towards the northwest), and (ii) the slope of

the sender’s “indifference curve” is
dπ(ξ′1|θ′′)
dπ(ξ′1|θ′)

=
p0
S(θ′)

1−p0
S(θ′)

.

Three possibilities regarding the sender’s prior are visualized in Figure 3:

1. p0
S(θ′) = p0

1(θ′) or
p0
S(θ′)

1−p0
S(θ′)

=
p0

1(θ′)

1−p0
1(θ′)

: The slope of the indifference curve

and the slope of the constraints coincide. There is a continuum of solu-

tions. Given π(ξ′1 | θ′′) =
p0
S(θ′)

1−p0
S(θ′)

π(ξ′1 | θ′), the sender’s expected payoff

is p0
S(θ′). The sender is indifferent between two messages – even if the

sender attempts to influence receiver 1’s behavior, the expected payoff

remains the same.

2. p0
S(θ′) < p0

1(θ′) or
p0
S(θ′)

1−p0
S(θ′)

<
p0

1(θ′)

1−p0
1(θ′)

: The sender’s indifference curve is

flatter than the constraints. Since receiver 1 overestimates the possibility

of θ′, if θ′ is the true state, the sender lets receiver 1 know it, π(ξ′1 | θ′) =

1. In return, the sender makes sure that π(ξ′1 | θ′′) takes the highest

15



possible value, π(ξ′1 | θ′′) =
p0

1(θ′)

1−p0
1(θ′)

. The expected payoff for the sender

is
p0

1(θ′)[1−p0
S(θ′)]

1−p0
1(θ′)

. Note

p0
1(θ′)[1−p0

S(θ′)]

1−p0
1(θ′)

− p0
S(θ′) =

p0
1(θ′)−p0

S(θ′)

1−p0
1(θ′)

> 0

and therefore the sender induces receiver 1 to choose “a′1 for ξ′1 and a′′1 for

ξ′′1 ” by choosing the message described above. Note that the constraint

for ξ′1 binds.

3. p0
S(θ′) > p0

1(θ′) or
p0
S(θ′)

1−p0
S(θ′)

>
p0

1(θ′)

1−p0
1(θ′)

: The sender’s expected payoff is

strictly less than p0
S(θ′) if π satisfies the constraints (note that the origin

is excluded). Hence, the sender induces receiver 1 to choose “a′′1 inde-

pendent of signal”. The sender achieves this with the null message (i.e.,

no persuasion).

3.2 Example – Two Receivers

In the following example, we have two receivers. Remember that the origi-

nal example from Kamenica and Gentzkow (2011) shows that if the receiver

chooses the worst action (from the sender’s point of view), she knows the

state.17 This is reflected in Proposition 4 in Kamenica and Gentzkow (2011).

The following example shows that for the case of multiple receivers and het-

erogeneous beliefs, even if the sender lets the receivers choose the worst action

profile, the receivers may not know the state.

Example 3. There are two possible states Θ = {A,B}. Receivers 1 and 2

have two actions Ai = {a, b} for each i ∈ {1, 2}. The payoffs are summarized

in (a) of Figure 4 where the first payoff in each cell is for the sender while the

second and third payoffs are for receivers 1 and 2 respectively. Receiver 1’s

utility is one if she matches her action to the state, a if A or b if B, and zero

otherwise. Receiver 2’s utility is one if she avoids the match, a if B and b if A,

17Strictly speaking, the sender may not know the state if there are multiple states where
the corresponding (worst) action is the unique best response for the receiver.
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(a) Payoffs

A

1

a

b

B
2

a b

1, 1, 0 0, 1, 1

−ε, 0, 0 1, 0, 1
1

a

b

2

a b

1, 0, 1 0, 0, 0

−ε, 1, 1 1, 1, 0

(b) Conditional Probabilities

A

π(ξ′1 | A)

π(ξ′′1 | A)

π(ξ′2 | A) π(ξ′′2 | A)

wa xa

ya za

B

π(ξ′1 | B)

π(ξ′′1 | B)

π(ξ′2 | B) π(ξ′′2 | B)

wb xb

yb zb

Figure 4: Multiple Receivers: Example

and zero otherwise. Note that there is no strategic interaction between them.

The sender’s utility is one if receivers 1 and 2 choose the same action, and

zero if they choose (a, b) and −ε if they choose (b, a). We assume that ε > 0

is an arbitrary small number. Note (i) that the sender’s payoffs are state-

independent, and (ii) that (b, a) is the worst action profile from the sender’s

point of view.

Let p0
S(A) = pS and p0

i (A) = pi for each i ∈ {1, 2}. Receivers 1 and 2

will choose (a, a) if p1 >
1
2
> p2 or (b, b) if p1 <

1
2
< p2, in which case the

sender chooses a null message. If min{p1, p2} > 1
2

or 1
2
> max{p1, p2}, the

sender attempts to change their beliefs so that there would be a chance that

they will coordinate. We focus on the former, i.e., min{p1, p2} > 1
2
. Without

persuasion, receiver 1 chooses a while receiver 2 chooses b.
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Let Ξi = {ξ′i, ξ′′i } for each i ∈ {1, 2}. Consider the following strategy profile

for receivers 1 and 2: each receiver i ∈ {1, 2} chooses either a after observing

ξ′i or b after observing ξ′′i . The required conditions are

π(ξ′1|A)p1

π(ξ′1|A)p1+π(ξ′1|B)(1−p1)
≥ π(ξ′1|B)(1−p1)

π(ξ′1|A)p1+π(ξ′1|B)(1−p1)

π(ξ′′1 |A)p1

π(ξ′′1 |A)p1+π(ξ′′1 |B)(1−p1)
≤ π(ξ′′1 |B)(1−p1)

π(ξ′′1 |A)p1+π(ξ′′1 |B)(1−p1)

or

π(ξ′1 | B) ≤ p1

1−p1
π(ξ′1 | A) and π(ξ′′1 | B) ≥ p1

1−p1
π(ξ′′1 | A) (2)

for receiver 1 and

π(ξ′2|B)(1−p2)

π(ξ′2|A)p2+π(ξ′2|B)(1−p2)
≥ π(ξ′2|A)p2

π(ξ′2|A)p2+π(ξ′2|B)(1−p2)

π(ξ′′2 |B)(1−p2)

π(ξ′′2 |A)p2+π(ξ′′2 |B)(1−p2)
≤ π(ξ′′2 |A)p2

π(ξ′′2 |A)p2+π(ξ′′2 |B)(1−p2)

or

π(ξ′2 | B) ≥ p2

1−p2
π(ξ′2 | A) and π(ξ′′2 | B) ≤ p2

1−p2
π(ξ′′2 | A) (3)

for receiver 2. The notation in (b) of Figure 4 modifies (2) and (3) as

(wb + xb) ≤ p1

1−p1
(wa + xa) and p1

1−p1
(ya + za) ≤ (yb + zb) (4)

p2

1−p2
(wa + ya) ≤ (wb + yb) and (xb + zb) ≤ p2

1−p2
(xa + za). (5)

The sender’s expected payoff given the strategy profile shown above is

(wa + za)pS + (wb + zb)(1− pS)− ε(yapS + yb(1− pS))

= (wa + za − εya)pS + (wb + zb − yb)(1− pS)

The sender maximizes this expression subject to (4), (5), and the following
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constraints:

wa + xa + ya + za = 1 and wb + xb + yb + zb = 1

wa, xa, ya, za ≥ 0 and wb, xb, yb, zb ≥ 0

Suppose pS = 0.8, p1 = 0.7, p2 = 0.6, and ε = 0.01. The solution is

(wa, xa, ya, za) = (2
3
, 0, 0, 1

3
) and (wb, xb, yb, zb) = (2

9
, 0, 7

9
, 0). Note that since

yb > 0, it is possible that receiver 1 chooses b (after observing ξ′′1 ) and receiver

2 chooses a (after observing ξ′2) when the state is B, leading to the worst

payoff for the sender, −ε. The receivers always coordinate if the state is A

(wa + za = 1) while the chance that they will coordinate when the state is

B is 2
9

(wb + zb = 2
9
). The sender’s expected payoff is 8

10
+ 2

10
[2
9

+ 7
9
(−ε)] =

1
45

(38− 7ε) ≈ 0.84.18

We have

(π(ξ′1 | A), π(ξ′′1 | A)) = (2
3
, 1

3
) (π(ξ′1 | B), π(ξ′′1 | B)) = (2

9
, 7

9
)

(π(ξ′2 | A), π(ξ′′2 | A)) = (2
3
, 1

3
) (π(ξ′2 | B), π(ξ′′2 | B)) = (1, 0).

Two observations. First, receiver 1 never knows the state. Second, receiver 2

knows the state if she observes ξ′′2 (the state is A). Unlike what Proposition

4 in Kamenica and Gentzkow (2011) suggests, when they choose the worst

action profile (b, a), the state is B and they do not know this. It can also be

shown that the constraints for ξ′′1 and ξ′2 bind. Note that by letting respectively

(i) θ′ and θ′′ correspond to two states “student 1 (2) is L (H)” and “student

1 (2) is H (L), (ii) ξ′i and ξ′′i be “fail” and “pass” for each i ∈ N , and (iii)

a and b be “high effort” and “low effort”, the example corresponds to the

multiple-receiver example we discussed in the Introduction.19

18Persuading only one receiver is an option for the sender. Appendix A shows that the
corresponding expected payoffs for the sender do not exceed her expected payoff shown
above.

19We let ε = 0 in the Introduction with which the solution remains the same.
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3.3 Observations

We point out several observations from the previous examples, which we will

generalize in Section 5.

1. In the box diagrams, when each signal corresponds to a different action,

not only are the two constraints parallel to each other, but also one

implies the other except in the case of p0
1(θ′) = 1

2
in Figure 2. We will

show that, by taking into account the probabilities π assigns to the two

signals, this relationship holds generically.

2. Binding constraints mean that the receivers have multiple best responses

to some signals. As noted in Remark 1, we investigate what would hap-

pen if the receivers choose different actions under the presence of multiple

best responses. We show that the result concerning the first observation

above implies that the sender does not have the corresponding ratio-

nalizable message, and hence we do not have to consider this type of

possibility for our approach.

3. Rationalizable messages are unique in these examples and the sender

prefers either “doing nothing” or “persuading receivers” – Example 2

(with common prior) is an exception. We show that both hold generi-

cally.20

4 Linear Programming Approach

In this section, we discuss the linear programming approach for unlinked

Bayesian persuasion games. The approach has two steps as we discussed above,

confirming that the linear programming approach is supported by rationaliz-

ability.

20This result depends on the assertion that the map from the set of signals (which are
assigned positive probabilities) to the set of actions for each receiver is bijective. If the
sender uses multiple signals for the same action (which is possible but unnecessary), the
result does not hold. See Subsection 4.3.
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4.1 Second Stage

The second stage only concerns the receivers’ decision problems. Given π ∈ Π

and ξi ∈ Ξi for each i ∈ N , let s+
i (π, ξi) be such that∑

θ∈Θ

ui(s
+
i (π, ξi), θ)p

π
i (θ | ξi) ≥

∑
θ∈Θ

ui(ai, θ)p
π
i (θ | ξi)

or ∑
θ∈Θ

[
ui(s

+
i (π, ξi), θ)− ui(ai, θ)

]
π(ξi | θ)p0

i (θ) ≥ 0 (6)

for each ai ∈ Ai. Since we assume that there does not exist ξi ∈ Ξi such that

π(ξi | θ) = 0 for each i ∈ N and θ ∈ Θ,
∑

θ∈Θ π(ξi | θ)p0
i (θ) > 0. Let s+

i be a

corresponding best response for receiver i ∈ N .

As the examples in Section 3 illustrate, different messages can lead to the

same strategy for each receiver. Define ti : Ξi → Ai, t = (t1, . . . , tn) and T be

the collection of t’s. Define an equivalence class as

[t] =

{
s+ ∈ S |

there exists π such that ti(ξi) = s+
i (π, ξi)

for each i ∈ N and ξi ∈ Ξi

}
.

Note that each strategy in the same equivalence class has the same payoff

implication for all players.

As demonstrated in Section 3 (e.g., (a) of Figure 2 when p0
1(θ′) < 1

2
), some

equivalence classes can be empty. One may wonder whether it is possible

that all equivalence classes are empty, in which case the sender’s optimization

problem is not well defined. We now show that there always exists a non-empty

set.

Lemma 1 There exists a non-empty equivalence class.

Proof. Suppose that the sender chooses a null message. Since Ai is finite,

there exists a best response to receiver i’s prior belief for each i ∈ N . The

result follows. �
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Let T+ ⊆ T be the collection of non-empty equivalence classes, with t+

being a typical element. Given t+ ∈ T+, let

Π(t+) =

{
π ∈ Π |

there exists s+
i ∈ Si such that s+

i (π, ξi) = t+i (ξi)

for each i ∈ N and ξi ∈ Ξi

}
.

In other words, given t+ ∈ T+, if the sender chooses π ∈ Π(t+), for each i ∈ N
and each ξi ∈ Ξi, receiver i maximizes her expected payoff by choosing t+i (ξi).

Given t+ ∈ T+, for each π ∈ Π(t+) and ξi ∈ Ξi, we treat s+
i (π, ξi) and t+i (ξi)

interchangeably.

4.2 First Stage

For each i ∈ N and t+ ∈ T+, although the actions chosen by t+i are fixed (i.e.,

t+i (ξi) for each ξi ∈ Ξi), by changing the corresponding message π ∈ Π(t+)

and thus the likelihood of each ξi ∈ Ξi, the sender can change her expected

payoff. Hence, for each t+ ∈ T+, the sender can identify π ∈ Π(t+) which

maximizes her expected payoff. Remember, however, that we do not consider

the “origins” in the box diagrams: there is no ξi such that π(ξi | θ) = 0 for

each θ ∈ Θ. This implies that Π(t+) is not closed, and no solution may exist

for the sender (e.g., (c) of Figure 3). For the sender’s optimization problem,

we instead look at the closure of Π(t+), denoted by Π̄(t+). We treat Π̄(t+) as

the sender’s constraint corresponding to each t+.

At the first stage, for each t+ ∈ T+ with the corresponding Π̄(t+), the

sender can compute the set of messages which maximizes her expected payoff:

Π̄+(t+) = argmax
π∈Π̄(t+)

∑
θ∈Θ

∑
ξ∈Ξ

uS(t+(ξ), θ)π(ξ | θ)p0
S(θ). (7)

This gives the sender’s optimal message with respect to t+ ∈ T+. Note that

both (6) and (7) are linear in π. In other words, this maximization problem

can be viewed as a linear programing problem given t+ ∈ T+. Given t+ ∈ T+

and Π̄+(t+), let u+
S (t+) be the corresponding maximized expected payoff for

the sender.
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As seen in (c) of Figure 3, however, there may exist t+ ∈ T+ such that

given Π̄+(t+), the optimal message for the sender corresponds to an origin

and therefore is not an element of Π(t+) (i.e., there exists ξ′i ∈ Ξi such that

π(ξ′i | θ) = 0 for each θ ∈ Θ), suggesting the possibility that no solution exists.

The following result shows that there always exists t̂+ ∈ T+ which replaces t+

as seen in Example 2.

Proposition 1 Given t+ ∈ T+, suppose that the solution for the sender, π+ ∈
Π̄+(t+), is such that π+ 6∈ Π(t+). Then, there exist t̂+ ∈ T+ such that u+

S (t̂+) =

u+
S (t+) and the corresponding optimal message, π̂+ ∈ Π̄+(t̂+), is such that

π̂+ ∈ Π(t̂+).

See Appendix B for the proof. It is important to note that π̂+ ∈ Π(t̂+) and

hence π̂+ is a feasible message. Proposition 1 suggests that if we encounter

t+ with π+ ∈ Π̄+(t+)\Π(t+), we can always look for another t̂+ ∈ T+ and

π̂+ ∈ Π̄+(t̂+) ∩ Π(t̂+) with u+
S (t̂+) = u+

S (t+).

The sender can then identify a rationalizable message. The sender’s ratio-

nalizable message π∗ is such that π∗ ∈ Π(t∗) where

t∗ ∈ argmax
t+∈T+

u+
S (t+). (8)

Accordingly, the sender’s optimization problem can be viewed as a set of linear

programming problems. That Ai and Ξi for each i ∈ N are finite implies the

following result.

Proposition 2 A rationalizable message π∗ exists.

4.3 Redundant Signals

As the construction of message used in Proposition 1 suggests, given a ratio-

nalizable message for the sender, it is possible that there are multiple signals

which induce the same action for some receiver (e.g., a null message with multi-

ple signals as seen in the case of p0
S(θ′) > p0

1(θ′) in Example 2). For such cases,

the sender can simply reduce the number of signals by removing “redundant”

signals.
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Proposition 3 Given the sender’s rationalizable message π∗, suppose that

there exist receiver i ∈ N and signals ξ̃i, ξ̂i ∈ Ξi such that t∗i (ξ̃i) = t∗i (ξ̂i).

Then, there exists Ξ∗i ⊂ Ξi such that (i) for any ξ̃i, ξ̂i ∈ Ξ∗i , t
∗(ξ̃i) 6= t∗(ξ̂i) and

(ii) the sender’s maximized expected payoff with respect to Ξ∗i × Ξ−i remains

the same.

See Appendix C for the proof. Our focus is on Ξ∗i for each i ∈ N for our results

(except Proposition 4 and Corollary 1) hereafter. Note that if the sender uses

a null message for receiver i ∈ N , Ξ∗i is singleton.

5 Generalization

In this section, we generalize the observations from the previous examples

discussed in Subsection 3.3.

5.1 On Constraints

In the box diagrams of the examples in Subsection 3.1 (except when p0
1(θ′) = 1

2

in Figure 2), not only are the two constraints parallel to each other, but also

one implies the other when each signal corresponds to a different action. We

now show that this is generically true by taking into account the probabilities

that the message assigns to the two signals.

Given s+ and π ∈ Π(s+), consider receiver i ∈ N with ξ̃i, ξ̂i ∈ Ξi such that

s+
i (π, ξ̃i) 6= s+

i (π, ξ̂i).
21 We have∑

θ∈Θ

[
ui(s

+
i (π, ξ̃i), θ)− ui(s+

i (π, ξ̂i), θ)
]
π(ξ̃i | θ)p0

i (θ) ≥ 0 (9)∑
θ∈Θ

[
ui(s

+
i (π, ξ̃i), θ)− ui(s+

i (π, ξ̂i), θ)
]
π(ξ̂i | θ)p0

i (θ) ≤ 0. (10)

We say that (9) implies (10) if any π ∈ Π(s+) satisfying (9) also satisfies (10).

The definition for “(10) implies (9)” is defined analogously. Let c(ξ̃i, ξ̂i | θ) =

21Note that we are still looking at Ξi, not Ξ∗i .
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π(ξ̃i | θ) + π(ξ̂i | θ) for each θ ∈ Θ. We consider the following expression:∑
θ∈Θ

[
ui(s

+
i (π, ξ̃i), θ)− ui(s+

i (π, ξ̂i), θ)
]
c(ξ̃i, ξ̂i | θ)p0

i (θ). (11)

The following result shows that the relationship between (9) and (10) depends

on the value of (11).

Proposition 4 Given s+ and π ∈ Π(s+), consider receiver i ∈ N with ξ̃i, ξ̂i ∈
Ξi such that s+

i (π, ξ̃i) 6= s+
i (π, ξ̂i). Then,

• (11) is negative if and only if (9) implies (10),

• (11) is positive if and only if (10) implies (9), and

• (11) is zero if and only if (9) and (10) hold simultaneously with equalities.

The proof can be found in Appendix D. That small perturbations in the

sender’s payoffs make (11) non-zero implies our claim.

Corollary 1 Given s+ and π ∈ Π(s+), consider receiver i ∈ N with ξ̃i, ξ̂i ∈ Ξi

such that s+
i (π, ξ̃i) 6= s+

i (π, ξ̂i). Then, generically either (9) implies (10) or

(10) implies (9).

Proposition 4 also has a strong implication for each receiver i ∈ N with

|Ξ∗i | = 2 when the sender chooses a rationalizable message π∗. Let Ξ∗i =

{ξ̃i, ξ̂i}. This means (i) that there are only two actions receiver i would take,

and (ii) that c(ξ̃i, ξ̂i | θ) = 1 for each θ ∈ Θ. Consider Example 1 again. Note

that the constraint for ξ′′1 is the one which binds (Figure 2 (c)), corresponding

to a′′1 which receiver 1 would not have taken if there is no belief update. Indeed,

for the case of |Ξ∗i | = 2, if one of the two constraints binds, this corresponds to

the action which would not have been chosen under the initial belief. In this

sense, receiver 1 “changes her mind” after observing ξ̂′′1 (corresponding to the

binding constraint) and chooses a′′1.

Corollary 2 Given π∗, consider receiver i ∈ N with |Ξ∗i | = 2. Only the

constraint corresponding to the action which would not have been chosen under

p0
i binds if and only if (11) is non-zero.
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(b) Unintended Best Response

θ′

θ′′

a′1 a′′1 a′′′1

2, 1 2, 0 0, 1
2

1, 0 1, 1 0, 1
2

Figure 5: Multiple Best Responses

Proof. Suppose without loss of generality that (11) is positive, and hence

s+
i (π∗, ξ̃i) leads to a higher expected payoff for receiver i compared to si(π

∗, ξ̂i)

under p0
i . Proposition 4 then says that if one of (9) and (10) binds, it is (10)

(and (9) holds with strict inequality), implying the result. �

5.2 Multiple Best Responses for Receivers

The receivers’ multiple best responses may arise due to two possibilities:

1. The rationalizable messages needs some binding constraints, and

2. Expected payoffs for the receivers simply take the same value.

Kamenica and Gentzkow (2011) sidestep such considerations by using the no-

tion of sender-preferred equilibrium – if there are multiple best responses for

the receiver, she will take the one with which the sender receives the highest

payoff.

We begin by considering the first possibility. Take again Example 1 in

Subsection 3.1. When the receiver observes ξ′′1 , both actions are best responses.

The solution from Kamenica and Gentzkow (2011) and Example 1 suggest

that the receiver chooses a′′1 after observing ξ′′1 . Suppose instead that the

receiver chooses a′1 after observing ξ′′1 if she is indifferent (Remark 1).22 This is

22Note that this is different from another strategy “a′1 for each ξ1 ∈ Ξ1”.
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visualized in (a) of Figure 5. Under this particular strategy for receiver 1, there

exists no rationalizable message for the sender; while strictly positive expected

payoff is achievable for the sender, such messages are all strictly dominated.23

This is because the sender’s expected payoff is not uppersemicontinuous at the

points on the boundary of the constraint.24

Proposition 5 Given π∗, consider receiver i ∈ N with ξ̃i, ξ̂i ∈ Ξ∗i such that

(9) holds with equality while (10) holds with strict inequality. Consider receiver

i’s alternative strategy such that after observing ξ̃i, she chooses s+
i (π∗, ξ̂i) in-

stead of s+
i (π∗, ξ̃i), and everything else remains the same. Then, there exists

no rationalizable message with respect to the receiver’s strategy profile corre-

sponding to this change.

Proof. That (9) binds simply means that any other message satisfying (9)

with strict inequality is not rationalizable. This leads to the claim. �

We now consider the second possibility. Consider the following example.

Example 4. We have one receiver, three actions A1 = {a′1, a′′1, a′′′1 }, and two

states Θ = {θ′, θ′′}. Players’ payoffs are shown in (b) of Figure 5 where for

each cell, the first element is the sender’s payoff and the second element is

receiver 1’s payoff. If receiver 1 assigns equal probability to each state after

signal realization, each action is a best response.

Suppose that the receiver’s initial belief assigns equal probability to each state.

In this case, our approach uses two signals, and the receiver chooses either a′1

or a′′1 depending on the realization of signal. Moreover, any message (with two

signals) is rationalizable. As noted, if the receiver’s interim belief assigns equal

probability to each state, a′′′1 becomes a best response as well. If the sender

expects that the receiver chooses a′′′1 in this case, she will simply avoid the mes-

sage which results in this particular interim belief. Unlike the first possibility

23A similar observation can be found in the ultimatum game with the continuous action
space for the first mover, for example.

24See, for example, Dufwenberg and Stegeman (2002).
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considered above, the presence of multiple best responses for the receivers

may create multiple rationalizable messages in this type of circumstance.25

The second possibility is however generically avoided (via perturbations in the

receivers’ payoffs), and hence we have the following result.

Proposition 6 If the sender is indifferent between two actions after signal

realization, it is generically because rationalizable message needs binding con-

straints.

5.3 Beneficial Persuasion and Uniqueness of Rational-

izable Message

Let a0
i be a best response to a null message π0 (and hence her initial belief)

for each i ∈ N . Given a rationalizable message π∗, we say that the persuasion

from a0 to t∗ is beneficial if u+
S (t∗) > u+

S (a0). If a0 and t∗ are both unique best

responses (to the initial beliefs and the interim beliefs, respectively), we simply

say that the persuasion is beneficial. Note that if π∗ is null, the persuasion is

not beneficial. Therefore, we immediately have the following result.

Lemma 2 Given π∗, if the persuasion is beneficial, there exists receiver i ∈ N
such that |Ξ∗i | ≥ 2.

The converse does not hold, however. That there exists receiver i ∈ N such

that |Ξ∗i | ≥ 2 could suggest that receiver i may choose an action different from

a0
i depending on signal realization. However, Example 4 suggests this is not

the case.26 Even if the sender avoids a′′′1 , it is still the case that a rationalizable

message may use two signals. Although these two actions have the same payoff

implication for the sender and hence the sender can actually use a null message

(unless the receiver’s initial belief says that two states are equally likely), our

argument in Subsection 4.3 does not rule out non-null messages. It is, however,

the case that perturbations in the sender’s payoffs generically avoid this type

of redundancy.

25Sender-preferred equilibrium simply eliminates a′′′1 . Since receiver 1 chooses an action
from {a′1, a′′1} independent of her interim belief, there is no role for persuasion.

26Example 2 (with common prior) can be used as well.
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θ′

θ′′

a′1 a′′1 a′′′1

2, 1 0, 0 0, 1
2

+ ε

0, 0 1, 1 0, 1
2

+ ε

Figure 6: ξ0
1 does not exist

Proposition 7 Ξ∗ is generically unique.

We make three points regarding a0
i . First, since Ai is finite, a0

i is generically

unique for each i ∈ N . Second, if π∗ is null for receiver i ∈ N (and hence Ξ∗i

is a singleton), receiver i chooses a0
i . Third, given π∗, there may be no signal

in Ξ∗i which induces a0
i , as shown in the following example.

Example 5. We have the sender and receiver 1. The payoffs are summarized

in Figure 6, where (i) the first and second elements are the sender’s and receiver

1’s payoffs respectively, and (ii) ε > 0 is arbitrarily small. Assume that p0
1(θ′) ≈

1
2

and the unique best response to the initial belief is a′′′1 . The rationalizable

message is such that the sender reveals the state. After observing any signal,

receiver 1 has a unique best response, which is different from a′′′1 .

As shown in the previous subsection, even if a receiver has multiple best

responses, (i) it is generically due to the sender’s strategic motive, and (ii)

in such cases, there is no corresponding rationalizable message if the sender

chooses another best response. Moreover, Proposition 7 says that Ξ∗i is gener-

ically unique for each i ∈ N . Perturbations in the sender’s payoff therefore

lead to the following result:27

Proposition 8 The following two statements hold generically:

27Regarding part 1 of Proposition 8, Proposition 1 in Mangasarian (1979) provides the
formal treatment. Regarding part 2 of Proposition 8, the same result for the case of one re-
ceiver with the common prior can be deduced from Proposition 2 of Kamenica and Gentzkow
(2011) by refining their notion of “information the sender would share”.
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1. π∗ is unique, and

2. persuasion is beneficial or π∗ is null.

Part 1 of Proposition 8 immediately implies that while π∗ is sensitive to

the receivers’ beliefs, small changes in the sender’s belief do not affect π∗ if

π∗ is unique. In other words, two senders with slightly different beliefs would

choose the same rationalizable message. In addition, part 2 of Proposition 8

implies that if π∗ is null, persuasion is not beneficial. This however only holds

for unlinked Bayesian persuasion games. For a linked Bayesian persuasion

game where the sender also plays the stage game as a receiver, the sender

may persuade the receivers with the null message, which is demonstrated by

our example in the next section. This suggests that the notion of beneficial

persuasion is appropriate only for unlinked Bayesian persuasion games.

6 Linked Bayesian Persuasion Games

The presence of strategic interactions at the stage game makes it more chal-

lenging to analyze linked Bayesian persuasion games. Several points:

• The informational content of signals becomes richer – the sender may

reveal to the receivers some information regarding others’ signal obser-

vations.

• That the sender can play the stage game may sharpen the predictions –

there is a possibility of tacit understanding.28

• The linear programming approach does not work since players’ beliefs

concern not only the states, but also the opponents’ behavior. However,

we can still analyze any linked Bayesian persuasion game.

28Note that if the sender plays the stage game in an unlinked Bayesian persuasion game,
it is a single-person decision problem by definition.
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Figure 7: Privately Talking about Others

• Unlike unlinked Bayesian persuasion games, the application of rational-

izability may involve more than two steps of elimination procedures.29

Generic properties discussed in Section 5 do not necessarily hold.

We already discussed the first two points in the Introduction. In the following

subsections, we elaborate on them by means of examples.

6.1 Privately Talking about Others

In unlinked Bayesian persuasion games, the sender does not have an incentive

to provide with the receivers information regarding others’ signal observations,

since it would provide more information regarding the states. But in a linked

Bayesian persuasion game, the sender may find it optimal. The sender, how-

ever, would have to choose how much information to provide to each receiver.

Example 6. We have the sender and receivers 1 and 2. The incomplete

information game is shown in Figure 7 where for each cell, the first, the second,

and the third elements are the payoffs for the sender, receiver 1, and receiver 2

respectively. Receiver 2 would like to coordinate with receiver 1, either (a′1, a
′
2)

or (a′′1, a
′′
2), when the state is θ′, while she would like to avoid coordination when

the state is θ′′. The sender obtains a positive payoff for (a′′1, a
′′
2) for θ′ or (a′1, a

′′
2)

for θ′′. Receiver 1 not only has the unique dominant action for each state, a′1

29For linked games, it is often easier to use the dominance argument. The dominance
counterpart of ∆-rationalizability can be viewed as the incomplete information version of
conditional dominance by Shimoji and Watson (1998).
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for θ′ and a′′1 for θ′′, but also does not care about receiver 2’s action. We

assume that p0
S(θ′) < p0

1(θ′). Note that this example is similar to Example 2

regarding the sender and receiver 1, except that (dis)coordination between the

receivers is required in this example.

Consider the following message. We have Ξ1 = {ξ′1, ξ′′1} and Ξ2 = {ξ′2, ξ′′2}.
For receiver 1, follow the solution identified in (b) of Figure 3 so that receiver

1 chooses a′1 for ξ′1 and a′′1 for ξ′′1 . For receiver 2, signal realization depends

on both the state and receiver 1’s signal: (i) ξ′2 will be realized if {θ′, ξ′1} or

{θ′′, ξ′′1}, and (ii) ξ′′2 will be realized if {θ′, ξ′′1} or {θ′′, ξ′1}. Given receiver 1’s sig-

nal, the sender recommends a′2 with ξ′2 and a′′2 with ξ′′2 . The (dis)coordination

of actions between the receivers is perfect from the sender’s point of view.

Remember that receiver 1’s payoff is independent of receiver 2’s action. Given

the argument provided for the solution in Example 2 which is shown in (b) of

Figure 3, the sender’s overall message is optimal.

In this example, the sender lets only receiver 2 know receiver 1’s signal

observation. Note that if receiver 1 knows the signal that receiver 2 observes,

combined with her own signal observation, she will know the state. The sender

would never provide such information to receiver 1.

6.2 Tacit Understanding

In the following example, the sender also plays at the stage game as a re-

ceiver. In unlinked Bayesian persuasion games, if the sender chooses a null

message, it is necessarily the case that persuasion is not beneficial. The exam-

ple shows that this is no longer the case: “silence” (null message) may have

some meanings.

Example 7. We have the sender and receiver 1. The sender not only chooses

a message, but also plays the stage game (as a receiver). The incomplete

information game is shown in (a) of Figure 8. They have different views

regarding the likelihood of each state. While receiver 1 believes that each state

is equally likely, the sender is pessimistic and believes that the probability of
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(a) Stage Game

θ′

Sender

U

D

Receiver 1

L R

4, 2 3, 0

2, 1 2, 0

θ′′

Sender

U

D

Receiver 1

L R

1, -1 -1, 0

0, -2 0, 0
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Figure 8: Tacit Understanding
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θ′ is only 2
5
.

As a benchmark, consider the message which reveals the actual state to

both. In this case, receiver 1 has a dominant action for each state: L for θ′ and

R for θ′′, implying that the outcomes are (U,L) for θ′ and (D,R) for θ′′. The

sender’s expected payoff is then 8
5
(= 4× 2

5
+ 0× 3

5
). It is however desirable for

the sender that receiver 1 chooses L independent of the state (and she chooses

high effort).

Suppose instead that the sender chooses the null message and they play

the second-stage game with their priors. The corresponding expected payoffs

for receiver 1 are shown in (b) of Figure 8. It is no longer the case that

receiver 1 has a dominant action; she would choose L for U and R for D. The

corresponding expected payoffs for the sender are shown in (c) of Figure 8.

The sender would choose U for L and D for R – coordination problem.

However, the fact that the sender could have revealed the state solves this

coordination problem. If the sender reveals the state, her expected payoff is
8
5

as shown above. Note that this is strictly greater than her expected payoffs

with D shown in (c) of Figure 8. Hence, if the sender chooses not to reveal any

information, receiver 1 infers that the sender will not choose D and will choose

L. Hence, by choosing not to influence their beliefs, the sender successfully

persuades receiver 1 to choose L even though the state could be θ′′.

This example shows a possibility that the sender may not reveal any addi-

tional information to persuade the receivers; having a chance to disclose the

state is sufficient. The conclusion depends on the receiver’s counterfactual

reasoning regarding the sender’s behavior. This is the implication of forward

induction by rationalizability.30

30In this example, there are other rationalizable messages. If, for example, we introduce a
small cost of communication, the message we identified is the unique rationalizable message.
Moreover, if iterative weak dominance is used instead, any message surviving iterative weak
dominance will lead to the outcome where receiver 1 always chooses L. For the epistemic
foundation of weak dominance, see Brandenburger, Friedenberg, and Keisler (2008). For
the relationship between sequential best response and weak dominance, see Shimoji (2004).
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7 Conclusion

In this paper, we analyzed Bayesian persuasion games from Kamenica and

Gentzkow (2011). We showed that it is possible to analyze multiple-receiver

Bayesian persuasion games with heterogeneous beliefs. Our departure from

Kamenica and Gentzkow (2011) is that we directly analyze the sender’s mes-

sages. With our approach, the sender’s optimization problem is the examina-

tion of a set of linear programming problems for unlinked Bayesian persuasion

games. This is supported by rationalizability.

For linked Bayesian persuasion games, we also showed (i) that the sender

strictly prefers either “doing nothing (null message)” or “persuading receivers”,

and (ii) that the rationalizable message is generically unique. We also showed

some results on the constraints. In particular, for a receiver with two actions,

if she is indifferent between the two actions, it is after observing the signal

inducing the action which she will not choose without persuasion.

In addition, we provided two examples for linked Bayesian persuasion

games. The first example showed that the message may contain richer in-

formation (i.e., not only about the states, but also other receivers’ signals).

The second example, where the sender also plays the stage game, showed that

“silence” may have some meanings. This implies that the notion of beneficial

persuasion would be appropriate only for unlinked Bayesian persuasion games.

Our linear programming approach implies that any unlinked Bayesian per-

suasion game can be “mechanically” analyzed. Many interesting examples

would be linked Bayesian persuasion games. There is no reason to exclude

dynamic games as stage games. Although the analyses of linked Bayesian per-

suasion games may not be straightforward, we hope that there will be more

studies of such games.31

31If the stage game is a Bayesian potential game, the sender can utilize the potential
function to analyze the receivers’ behavior via Bayes Nash equilibrium. The definition of
potential games is by Monderer and Shapley (1996). For Bayesian potential games, see van
HeuMen, Peleg, Tijs, and Born (1996) and Ui (2009).
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Figure 9: Persuading Only One Receiver

A Multiple Receivers: Example

Suppose that the sender attempts to persuade only one receiver. Remember

that receiver 1 chooses a with her initial belief while receiver 2 chooses b

with her initial belief. Suppose first that the sender only persuades receiver

1. Consider the strategy for receiver 1 “a after ξ′1 and b after ξ′′1 .” The

corresponding constraints are in (2), also visualized in (a) of Figure 9. Given

that receiver 2 will choose b with her initial belief, the sender wants to increase

the chance that ξ′′1 is observed (southwest). We then have π(ξ′1 | A) = 4
7
,

π(ξ′′1 | A) = 3
7
, π(ξ′1 | B) = 0 and π(ξ′′1 | B) = 1. The sender’s expected payoff

is 8
10

3
7

+ 2
10

= 19
35
≈ 0.54.

Likewise, suppose that the sender only persuades receiver 2. For the strat-

egy “a after ξ′2 and b after ξ′′2 ”, the corresponding constraints are in (3), also

visualized in (b) of Figure 9. Given that receiver 1 will choose a with her initial

belief, the sender wants to increase the chance that ξ′2 is observed (northeast).

We have π(ξ′2 | A) = 2
3
, π(ξ′′2 | A) = 1

3
, π(ξ′2 | B) = 1 and π(ξ′′2 | B) = 0. The

sender’s expected payoff is 8
10

2
3

+ 2
10

= 11
15
≈ 0.73.
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π+

· · · θ · · ·

...

ξ̃i

...

ξ′i

...
...

...
...

0 · · · 0 · · · 0

...
...

...

π+(ξ̃i | θ)

...
...

...

π̃+

· · · θ · · ·

...
...

...

π̃+(ξ′i | θ) = (1− β)π+(ξ̃i | θ)

...
...

...

π̃+(ξ̃i | θ) = βπ+(ξ̃i | θ)

...
...

...

Figure 10: Construction of π̃

B Proof of Proposition 1

Lemma 3 Consider t+ ∈ T+. Suppose that the solution for the sender, π+ ∈
Π̄+(t+), is such that π+ 6∈ Π(t+). Then, there exists t̃+ ∈ T+ and π̃+ ∈ Π̄+(t̃+)

such that

π̃+(ξi | θ) > 0 for every ξi ∈ Ξi and θ ∈ Θ

and ∑
θ∈Θ

∑
ξ∈Ξ

uS(t̃+(ξ), θ)π̃(ξ | θ)p0
S(θ) = u+

S (t+).

Proof. We start with π+(ξi | θ) while fixing π+(ξj | θ) for every j 6= i. Take

ξ̃i ∈ Ξi such that π+(ξ̃i | θ̃) > 0 for some θ̃ ∈ Θ. Take any β ∈ (0, 1) and let (i)

π̃+(ξ̃i | θ) = βπ+(ξ̃i | θ) for each θ ∈ Θ and (ii) π̃+(ξ′i | θ) = (1 − β)π+(ξ̃i | θ)
for each θ ∈ Θ (see Figure 10). Given this, let t̃+i be the corresponding best

response for receiver i. Note that while t+i (ξ′i) is not well defined, t̃+i (ξ′i) =

t̃+i (ξ̃i) = t+i (ξ̃i) since the interim belief is homogeneous of degree zero in π.

Hence, we have t̃+ ∈ T+ and π̃+ ∈ Π̄+(t̃+). Since the outcome does not

change, they lead to the same expected payoff for the sender. �

40



If it is still the case that π̃+ 6∈ Π(t̃+), we repeat the same argument. Since

Ai is finite, there exist t̂+ ∈ T+ and π̂+ ∈ Π̄+(t̂+) ∩ Π(t̂+).

C Proof of Proposition 3

The following result immediately implies Proposition 3.

Lemma 4 Given π∗, suppose that there exist i ∈ N and ξ̃i, ξ̂i ∈ Ξi such that

t∗i (ξ̃i) = t∗i (ξ̂i). Consider π̃∗ with Ξ̃i = Ξi\{ξ̂i} such that

1. π̃∗(ξ̃i | θ) = π∗(ξ̃i | θ) + π∗(ξ̂i | θ) for each θ ∈ Θ, and

2. π̃∗(ξi | θ) = π∗(ξi | θ) for each ξi ∈ Ξ̃i\{ξ̃i} and θ ∈ Θ.

Let Ξ̃ = Ξ̃i × Ξ−i. Then, s̃∗ with s̃∗(π̃∗, ξ) = s∗(π∗, ξ) for each ξ ∈ Ξ̃ is a best

response profile with respect to π̃∗.

Proof. Note that the comparison of any two actions after observing any signal

in Ξ̃i\{ξ̃i} remains the same. The comparison of the expected payoffs from

s∗i (π
∗, ξ̃i) and ai ∈ Ai\{s∗i (π∗, ξ̃i)} after observing ξ̃i gives

∑
θ∈Θ ui(s

∗
i (π
∗, ξ̃i), θ)

π̃∗(ξ̃i|θ)p0
i (θ)∑

θ′∈Θ π̃∗(ξ̃i|θ′)p0
i (θ
′)
−
∑

θ∈Θ ui(ai, θ)
π̃∗(ξ̃i|θ)p0

i (θ)∑
θ′∈Θ π̃∗(ξ̃i|θ′)p0

i (θ
′)

=
[

1∑
θ′∈Θ π̃∗(ξ̃i|θ′)p0

i (θ
′)

]
×
[∑

θ∈Θ ui(s
∗
i (π
∗, ξ̃i), θ)π̃

∗(ξ̃i | θ)p0
i (θ)−

∑
θ∈Θ ui(ai, θ)π̃

∗(ξ̃i | θ)p0
i (θ)

]
=

[
1∑

θ′∈Θ π̃∗(ξ̃i|θ′)p0
i (θ
′)

]
×
[∑

θ∈Θ ui(s
∗
i (π
∗, ξ̃i), θ)[π

∗(ξ̃i | θ) + π∗(ξ̂i | θ)]p0
i (θ)

−
∑

θ∈Θ ui(ai, θ)[π
∗(ξ̃i | θ) + π∗(ξ̂i | θ)]p0

i (θ)
]

=
[

1∑
θ′∈Θ π̃∗(ξ̃i|θ′)p0

i (θ
′)

]
×
{[∑

θ∈Θ ui(s
∗
i (π
∗, ξ̃i), θ)π

∗(ξ̃i | θ)p0
i (θ)−

∑
θ∈Θ ui(ai, θ)π

∗(ξ̃i | θ)p0
i (θ)

]
×
[∑

θ∈Θ ui(s
∗
i (π
∗, ξ̃i), θ)π

∗(ξ̂i | θ)p0
i (θ)−

∑
θ∈Θ ui(ai, θ)π

∗(ξ̂i | θ)p0
i (θ)

]}
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=
[∑

θ′∈Θ π∗(ξ̃i|θ′)p0
i (θ
′)∑

θ′∈Θ π̃∗(ξ̃i|θ′)p0
i (θ
′)

]
×
[∑

θ∈Θ ui(s
∗
i (π
∗, ξ̃i), θ)

π∗(ξ̃i|θ)p0
i (θ)∑

θ′∈Θ π∗(ξ̃i|θ′)p0
i (θ
′)
−
∑

θ∈Θ ui(ai, θ)
π∗(ξ̃i|θ)p0

i (θ)∑
θ′∈Θ π∗(ξ̃i|θ′)p0

i (θ
′)

]
+
[∑

θ′∈Θ π∗(ξ̂i|θ′)p0
i (θ
′)∑

θ′∈Θ π̃∗(ξ̃i|θ′)p0
i (θ
′)

]
×
[∑

θ∈Θ ui(s
∗
i (π
∗, ξ̃i), θ)

π∗(ξ̂i|θ)p0
i (θ)∑

θ′∈Θ π∗(ξ̂i|θ′)p0
i (θ
′)
−
∑

θ∈Θ ui(ai, θ)
π∗(ξ̂i|θ)p0

i (θ)∑
θ′∈Θ π∗(ξ̂i|θ′)p0

i (θ
′)

]
.

Remember that s∗i (π
∗, ξ̃i) = s∗i (π

∗, ξ̂i). Hence, s̃∗i (π̃
∗, ξi) = s∗i (π

∗, ξi) for each

ξi ∈ Ξ̃i. The result follows.

D Proof of Proposition 4

Given ξ̃i, ξ̂i ∈ Ξ∗i , let Π(s+, ξ̃i, ξ̂i) ⊂ Π(s+) be such that for any π′, π′′ ∈
Π(s+, ξ̃i, ξ̂i), (i) π′(ξj | θ) = π′′(ξj | θ) for each j 6= i and θ ∈ Θ and (ii)

π′(ξi | θ) = π′′(ξi | θ) for each ξi 6= ξ̃i, ξ̂i and θ ∈ Θ. In other words, π′ and

π′′ can be different only with respect to ξ̃i and ξ̂i. Note that this implies that

c(ξ̃i, ξ̂i | θ) is fixed for each θ ∈ Θ. Let

Π̃(s+, ξ̃i, ξ̂i) =
{
π ∈ Π(s+, ξ̃i, ξ̂i) | (9) holds with equality

}
Π̂(s+, ξ̃i, ξ̂i) =

{
π ∈ Π(s+, ξ̃i, ξ̂i) | (10) holds with equality

}
The following result shows that (9) and (10) hold simultaneously with equali-

ties if and only if (11) is zero.

Lemma 5 It is either (i) Π̃(s+, ξ̃i, ξ̂i)∩ Π̂(s+, ξ̃i, ξ̂i) = ∅ or (ii) Π̃(s+, ξ̃i, ξ̂i) =

Π̂(s+, ξ̃i, ξ̂i). Moreover, the latter holds if and only if (11) is zero.

Proof. (9) and (10) can be rewritten as∑
θ∈Θ

[
ui(s

+
i (π, ξ̃i), θ)− ui(s+

i (π, ξ̂i), θ)
] [
c(ξ̃i, ξ̂i | θ)− π(ξ̂i | θ)

]
p0
i (θ) ≥ 0

⇔
∑
θ∈Θ

[
ui(s

+
i (π, ξ̃i), θ)− ui(s+

i (π, ξ̂i), θ)
]
c(ξ̃i, ξ̂i | θ)p0

i (θ)
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≥
∑
θ∈Θ

[
ui(s

+
i (π, ξ̃i), θ)− ui(s+

i (π, ξ̂i), θ)
]
π(ξ̂i | θ)p0

i (θ) (12)

and ∑
θ∈Θ

[
ui(s

+
i (π, ξ̃i), θ)− ui(s+

i (π, ξ̂i), θ)
] [
c(ξ̃i, ξ̂i | θ)− π(ξ̃i | θ)

]
p0
i (θ) ≤ 0

⇔
∑
θ∈Θ

[
ui(s

+
i (π, ξ̃i), θ)− ui(s+

i (π, ξ̂i), θ)
]
c(ξ̃i, ξ̂i | θ)p0

i (θ)

≤
∑
θ∈Θ

[
ui(s

+
i (π, ξ̃i), θ)− ui(s+

i (π, ξ̂i), θ)
]
π(ξ̃i | θ)p0

i (θ). (13)

Suppose that (9) and (10) (and hence (12) and (13)) hold with equalities.

Suppose that (11) is positive. Then the right-hand side of (13) is positive,

contradicting (9) with equality. Likewise, suppose that (11) is negative. Then,

the right-hand side of (12) is negative, contradicting (10) with equality. Hence,

if (11) is non-zero, Π̃(s+, ξ̃i, ξ̂i) ∩ Π̂(s+, ξ̃i, ξ̂i) = ∅.
Suppose that (11) is zero. Then, the comparisons of (i) (9) and (13) and

(ii) (10) and (12) show that (9) and (10) hold with equalities simultaneously,

implying that Π̃(s+, ξ̃i, ξ̂i) = Π̂(s+, ξ̃i, ξ̂i). This implies the “if” part of the

second part. Suppose that Π̃(s+, ξ̃i, ξ̂i) = Π̂(s+, ξ̃i, ξ̂i), meaning that (9) and

(10) hold with equalities for any π ∈ Π̃(s+, ξ̃i, ξ̂i) = Π̂(s+, ξ̃i, ξ̂i). This simply

means that (11) is zero, implying the “only if” part of the second part. �

Lemma 5 implies the last part of Proposition 4. If (11) is negative, (12)

(and hence (9)) implies that (10) holds with strict inequality while (11) is

positive, (13) (and hence (10)) implies that (9) holds with strict inequality,

implying the “only if” part of the first two of Proposition 4. Suppose that

(10) holds with equality. If (9) and hence (12) hold, the left-hand side of (12)

is positive. Suppose that (9) holds with equality. If (10) and hence (13) hold,

the left-hand side of (13) is negative. They imply the “if” part of the first two

of Proposition 4.
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