Discussion Papers in Economics

No. 16/02

Sibling spillover effects in school achievement

Cheti Nicoletti and Birgitta Rabe

Department of Economics and Related Studies
University of York
Heslington
York, YO10 5DD
Sibling spillover effects in school achievement

Cheti Nicoletti
DERS, University of York and ISER, University of Essex

Birgitta Rabe
ISER, University of Essex

This version: February 19, 2016

Abstract

This paper provides empirical evidence on direct sibling spillover effects in school achievement using English administrative data. We extend previous strategies to identify peer effects by exploiting the variation in school test scores across three subjects observed at ages 11 and 16 as well as variation in the composition of school mates between siblings. We find a statistically significant positive spillover effect from the older sibling to the younger but not vice versa. Spillover effects from high achieving older siblings are larger than from low achieving ones, but this relationship is weaker for students from disadvantaged backgrounds.

Keywords: Family effects, peer effects, social interaction, education

JEL codes: I22, I24

Contact: Cheti Nicoletti: cheti.nicoletti@york.ac.uk; Birgitta Rabe: brabe@essex.ac.uk

We thank the Department for Education for making available, under terms and conditions, data from the National Pupil Database. This research was supported by core funding of the Research Centre on Micro-Social Change at the Institute for Social and Economic Research by the University of Essex and the UK Economic and Social Research Council (awards RES-518-28-001 and ES L009/53/1).
1 Introduction

In this paper we study the extent to which school achievements of an older sibling directly improve the school outcomes of their younger sibling. Assessing the magnitude of sibling spillover effects is important to understand whether interactions between siblings are a relevant mechanism through which intergenerational transmission of disadvantage operates. It also helps us to understand whether sibling interactions are a mechanism through which the effect of investments in children may be amplified by the so called social multiplier effect (see Manski 1993 and 2000; Glaeser et al. 2003). A large positive spillover effect would suggest that there are externalities of parental and public investments into children through their positive effects on siblings.

While the economic literature recognizes the important role of parent-child interactions for child development, the role of sibling interactions is yet to be clearly established. Previous economic papers concentrating on siblings have mainly focused on the intrafamily allocation of resources (Becker 1981), where parental investments into children’s human capital depend on parental preferences regarding inequality between children, on birth order and the number and gender composition of siblings. It is only recently that economists have begun to look at the effect of interactions between siblings on educational outcomes. In particular, Oettinger (2000), Qureshi (2015a), Adermon (2013) and Joensen and Nielsen (2015) provide evidence on the causal sibling spillover effect on years of schooling, high school graduation, and subject choices. We add to this literature by providing empirical evidence on the extent to which cognitive ability of a child is transmitted to his/her younger sibling. More precisely, we estimate the sibling spillover effect of a child’s school test scores at age 16 on her younger sibling’s test scores at the same age. By focusing on spillover effects in compulsory study subjects (English, Science and Maths), we are able to capture sibling influence on skills, effort and motivation rather than on subject choice.

A direct causal link between the cognitive ability of the older and younger sibling may exist for several reasons. For example, there may be productivity spillovers from the older

1 See, for example, Akabyashi (2006), Hotz et al. (2008), Heckman and Mosso (2014).

to the younger sibling through teaching, help with homework and joint formative and leisure activities. Conversely, a badly behaved older sibling might cause disruption at home, causing negative productivity spillovers. Another mechanism may be imitation, which happens because a sibling gains utility from behaving similarly to their sibling (see Barr and Hayne 2003, Calvó-Armengol et al. 2009, Joensen and Nielsen 2015). Here a sibling may be a role model for academic behavior, educational aspirations and values. Finally, a further mechanism is information transmission. A sibling may share information about the costs and benefits of exerting effort, as well as knowledge pertaining to a school or specific teachers.

In this paper we are interested in estimating the role of interactions between siblings in the transmission of cognitive abilities from older to younger siblings. For this reason we aim at producing an estimate of the sibling spillover effect that is cleaned of indirect effects caused by behavioral responses or other confounding factors, i.e. to provide an estimate of the endogenous peer effect (see for a definition Manski 1993). Our estimation strategy allows us to improve on the previous literature in the field by identifying the spillover of school attainment between siblings while minimizing biases caused by omitted variables, in particular those related to parental investments. This strategy can be viewed as a combination of two different methods. The first method exploits the variation of school test scores across subjects to eliminate individual fixed effects, while the second instruments the older sibling’s school test score with the predetermined school performance of the older sibling’s peers.

Simply regressing a child test score on the older sibling’s corresponding test score would not produce a consistent estimate of the sibling spillover effect because the estimated sibling association would be in part explained by similarities in inherited abilities, in school and family investments and characteristics, and in the environment siblings are exposed to. To clean the sibling association in test scores of these confounding factors, we make use of school register data in England which provides information on tests scores at the end of compulsory schooling, at about age 16, in Mathematics, English and Science for the full population of students in state schools. We regress a child’s test score on her older sibling’s test score using within-pupil between-subject estimation, i.e. estimating child fixed effects.\footnote{This estimation is similar in spirit to the within-pupil between-subject estimation used by Dee (2005) and (2007), Clotfelter et al. (2010) and Slater et al. (2010) and it has been used by Lavy et al. (2012) to estimate school peer effect on test scores.} The two main
gains of this fixed effect estimation are that it allows us to (i) control for the younger child’s unobservable average ability and other characteristics that are invariant across the three subjects and may confound the spillover effect because they are similar between siblings, (ii) clean the sibling spillover effect of the impact of investments by schools and parents between siblings that do not vary across subjects. Further, to account for subject-specific school characteristics we rely on school-by-cohort-by-subject fixed effects.

To further take account of subject-specific skills acquired from parents through family investments and/or inheritance and that are shared by siblings we instrument the older sibling’s test scores at age 16 using the average test scores at age 11 of her school mates. To avoid reverse causality running from the older sibling to her school mates, we consider only the performance of new peers that the older sibling first encountered in secondary school and we use the new peers’ prior test scores obtained in primary school to measure attainment (see Gibbons and Telhaj, 2008; Lavy et al., 2012). Because in our model we control for school-by-cohort-by-subject fixed effects our instrument captures whether the older sibling’s new school mates were relatively better in a specific subject than the younger sibling’s school mates. The variation in the instrument is caused by idiosyncratic changes in average subject-specific test scores across schools and/or across cohorts, and we present descriptive statistics of this variation later in the paper.

Our peer identification strategy is similar to that adopted by Kelejian and Prucha (1998), Lee (2003), Bramoullé et al. (2009), De Giorgi et al. (2010), De Giorgi et al. (2015) and Nicoletti et al. (2015) and is based on the presence of some intransitivity in the network of peers. Intransitivity occurs if a person interacts with her peers but not with all of the peers of her peers. In our application we have intransitivity because we assume that the older sibling’s school mates do not interact directly with the younger sibling. This implies that, while the older sibling’s test scores can be affected directly by her school mates’ results, there is no effect from the older sibling’s school mates on the younger sibling (other than indirectly through the older sibling). We scrutinize this identifying assumption by performing sensitivity checks on the data, for example by excluding from the estimation sample school mates of the older sibling who live in the same area and might therefore interact directly with the younger sibling.
Empirical researchers estimating a causal effect between individuals’ outcomes are usually concerned with the reflection problem (see Manski 1993; Brock and Durlauf 2001; Moffitt 2001), i.e. simultaneity of the individuals’ behavior and potential reverse causality. We cannot exclude the existence of spillover effects going from the younger to the older sibling, but in our application the younger sibling’s age 16 exam is in the future with respect to the corresponding older sibling’s exam at age 16. Therefore reverse causality seems unlikely. In any case, our instrumental variable estimation is able to control for the potential reflection issue because the prior average test scores of the older sibling’s new school peers cannot be affected by the younger sibling and therefore there cannot be any reverse causality.

Based on our instrumental variable estimation we find that an increase of a standard deviation in a child’s test score at age 16 leads to a small but statistically significant increase in the corresponding test score observed for his/her younger sibling of about 10% of a standard deviation. This means that for each exam grade improvement of the older sibling - for example from a B to an A - the younger sibling’s exam marks increase by about 6% of a standard deviation on average, which is equivalent to the impact of increasing yearly per pupil school expenditure in the younger sibling’s school by around £1,000 (see Nicoletti and Rabe 2012).

We investigate potential mechanisms explaining the sibling spillover effect from the older to the younger sibling by performing sub-group analysis (see Dahl et al. 2014). We find suggestive evidence of strong productivity spillovers for children whose older siblings are at the top of the achievement distribution. This indicates that older siblings who perform well in school are more effective teachers for their younger siblings. We also find that spillover effects of older siblings who perform badly in school are stronger for disadvantaged children, suggesting that there are externalities from investing in learning of disadvantaged children which have so far been overlooked.

The remainder of this paper unfolds as follows. The next section discusses the related literature. Section 3 lays out our identification strategy and Section 4 introduces our data set. Section 5 presents our empirical results including the estimation of heterogeneous spillover effects by subgroups and robustness checks, and Section 6 concludes.

5Ewin Smith (1993) suggests that the cognitive abilities of older children might improve thanks to teaching younger siblings.
2 Related literature

Over many years, social scientists have used sibling correlations in socio-economic and educational outcomes to measure the importance of family background, where any sibling resemblance indicates that family background matters. Since Solon et al. (2000) introduced the variance decomposition approach to put bounds on the possible magnitude of family and neighborhood effects, using correlations between siblings and between unrelated neighbors, a large number of empirical papers have analyzed sibling correlations in different outcomes (see Raaum et al. 2006; Mazumder 2008; Björklund et al. 2002; Björklund et al. 2009; Lindahl 2011; Björklund and Salvanes 2011; Nicoletti and Rabe 2013). Furthermore, sibling correlations have been decomposed into the part that is related to intergenerational transmission and a residual part, see Corcoran et al. 1990; Solon 1999; Bingley and Cappellari 2013). Nevertheless, this decomposition does not provide estimate the causal sibling spillover effect directly attributable to sibling interactions, i.e. of the endogenous sibling spillover effect.

In Table 1 we summarize the results of previous papers on sibling spillover effects that have identified a causal spillover effect. In all papers, the reflection problem is dealt with by using instrumental variables that explain the outcome of one sibling but not the other. These papers study a wide range of outcomes, including high school graduation (Oettinger 2000), years of schooling (Qureshi 2015a; Adermon 2013), school subject choices (Joensen and Nielsen 2015), teenage motherhood (Monstad et al. 2011), household formation (Aparicio-Fenoll and Oppedisano 2014), and paternity leave take-up (Dahl et al. 2014).

The majority of these papers use the introduction of policy reforms that changed the conditional probability (cost) of a given outcome for a random portion of siblings to identify sibling spillover effects. For example, Joensen and Nielsen (2015) look at a pilot school reform implemented in Denmark which reduced the cost for students of choosing advanced Mathematics and Science courses because of the introduction of a more flexible choice set for subject combinations. The probability of choosing advanced Mathematics and Science increases by about 33.4 percentage points for children whose older sibling chose these advanced subjects and this spillover effect is statistically significant at the 10% level. Both

6 Another two papers looking at spillover effects of siblings which do not use instrumental variables for their estimation are Kuziemko (2006) and Altonji et al. (2013). Both papers use panel data and estimate dynamic models to identify sibling spillover effects on fertility and teenage substance use, respectively.
Adermon (2013) and Monstad et al. (2011) exploit the increase in the minimum school leaving age, in Sweden in the 1940s and 1950s and Norway in the 1960s. An increase of two years in the school leaving age was introduced at different times in different municipalities creating variation over time and space in years of schooling of the older sibling (and therefore of fertility in the case of Monstad et al. 2011). Adermon (2013) finds no effect of an older sibling’s years of schooling on the younger sibling while Monstad et al. (2011) find positive effects on teenage motherhood.

One possible concern with using policy reforms to identify the direct effect of sibling interactions is that some of these reforms are implemented over long time-periods, leaving parents time to adjust their investments between siblings. For example, in the case of a rise in the school leaving age parents might motivate the older sibling not affected by the reform to stay in school for longer and/or discourage the younger sibling from staying on after compulsory schooling ends in a bid to equalize between siblings, leading to estimates of the sibling spillover effect that are biased downwards. This paper is affected by this problem to a much lesser extent because our identification is based on an instrumental variable that exploits group membership and idiosyncratic changes in the average subject-specific test score across cohorts that we will argue are not readily observable by parents and therefore less susceptible to behavioral responses.

Another advantage of our approach is that our identification strategy does not require a policy reform to generate variation in the outcome for the older sibling and is therefore applicable regardless of specific policies or contexts. Assuming that there is idiosyncratic variation in peer quality over time and across schools and our identifying assumption holds, the identification strategy we propose can be applied at any time in any country where appropriate data are available.

There are some recent papers that have estimated the total effect on a child’s educational outcomes of conditions or policy reforms affecting his/her sibling (see Fletcher et al. 2012; Breining 2014; Breining et al. 2015; Qureshi 2015b). The estimation of such total spillover

7Joensen and Nielsen (2015) who look at the effect on siblings’ subject choices of improved access to advanced Mathematics and Science courses avoid the issue of parental responses by focusing on the first year of implementation only.
effects, which include both the direct causal effect and the indirect effect through e.g. behavioral responses by parents, can be of policy interest; but it is difficult if not impossible to generalize the indirect effect to other contexts.

Other papers we are aware of that focus on the direct, but likely not causal, effect of sibling interactions on child cognitive development belong to the psychology literature and usually focus on early child development. Cicirelli (1972) and Dunn (1983) provide evidence that young children are effective teachers for their younger siblings. Gregory and Williams (2001) emphasize the importance of older siblings in transmitting school values to their younger siblings, especially in immigrant households where parents have difficulty speaking the language used at school. Azmitia and Hesser (1993) compare sibling and peer influence on child cognitive development and find that older siblings are more effective in teaching their younger siblings than unrelated children of the same age.

Other strands of the economic literature closely related to our paper on sibling spillover effects in test scores are the literature on educational production and child development (see Todd and Wolpin 2003; Cunha and Heckman 2007; Cunha and Heckman 2008; Hanushek and Woessmann 2011) and on school peer effects (see Calvó-Armengol et al. 2009; Lavy et al. 2012; Boucher et al. 2014; and Sacerdote 2011, for a review). These research strands have provided a theoretical framework to model the production of children’s cognitive abilities taking account of family and school inputs and of possible school peer effects, but they have not focused on the potential effect of interactions between siblings. In this paper, we extend the recent work on education production models and school peer effects by Nicoletti and Rabe (2012) and Lavy et al. (2012), who both use school register data for England as in our application, and we provide detail on how to identify the causal sibling spillover effect in school test scores at age 16, i.e. the effect of sibling interactions on child development during adolescence.
3 Identification strategy

To identify the sibling spillover effect on test scores at the end of compulsory schooling (at about age 16) we consider the following value added model:8

\[
Y_{1, isqt, 16} = \alpha + Y_{1, isqt, 11} \rho + Y_{2, is'qt', 16} \gamma + I_{1, it}^F \beta_{1, F} + I_{1, ist}^S \beta_{1, S} + X_{1, isqt} \beta_{1, X} + \mu_{sqt} + \mu_{1, i} + e_{1, isqt, 16}, \tag{1}
\]

where \(Y_{1, isqt, 16} \) is the age 16 test score of the younger child of the sibling-pair \(i \), in school \(s \) and subject \(q \), who belongs to the cohort \(t \);9 \(Y_{1, isqt, 11} \) is the corresponding test score at age 11; \(Y_{2, is'qt', 16} \) is the test score at age 16 of the older sibling, who might have attended a different school \(s' \) and belongs to a different cohort \(t' \);10 \(I_{1, it}^F \) is the family investment in the younger child of the sibling-pair \(i \) between age 11 and 16; \(I_{1, ist}^S \) is the corresponding school investment that is not subject-specific; \(X_{1, isqt} \) is a row vector of other child, household and school characteristics, which are not direct investments in a child’s cognitive skills but may affect them; \(\mu_{sqt} \) are unobserved investments that vary by school, subject and cohort; \(\mu_{1, i} \) is the younger child’s unobservable ability; and \(e_{1, isqt, 16} \) is an error term which is assumed to be identically and independently distributed with mean zero and homoscedastic. In this model \(\rho \) measures the persistence in test scores between age 11 and 16; \(\gamma \) is our main parameter of interest which measures the spillover effect from the older sibling to the younger; \(\beta_{1, F} \) and \(\beta_{1, S} \) are the productivity of family and school investments; and \(\beta_{1, X} \) is a column vector with the effects of the remaining explanatory variables \(X_{1, i} \), and \(\alpha \) is the intercept. We observe for each sibling-pair their test scores in Mathematics, English and Science so that \(q \) takes value 1 for Mathematics, 2 for English and 3 for Science.

Identifying the causal spillover effect in test scores from the older to the younger sibling, \(\gamma \), is challenging because of two main issues: (i) unobserved correlated effects, i.e unobserved common characteristics of two siblings that may explain their similar test scores and (ii) the reflection problem.

We control for unobserved child-specific endowments and characteristics that do not vary across subjects but that could be similar between siblings by transforming model (1) in deviations from the mean across subjects, i.e. we transform the dependent variable in

8See Todd and Wolpin (2003) for a definition.

9Two students belong to the same school cohort if they began school in the same year.

10We do not consider twins or siblings whose age gap is such that they begin school in the same year.
\[DevY_{1, isqt, 16} = Y_{1, isqt, 16} - \frac{\sum_{j=1}^{3} Y_{1, isqt, 16}}{3} \] and we apply an analogous transformation to all right hand side variables, leading to

\[DevY_{1, isqt, 16} = DevY_{1, isqt, 11} + DevY_{2is'qt', 16} + Dev\mu_{isqt} + Dev\epsilon_{1, isqt, 16}. \] (2)

This transformation eliminates from the equation all inputs that do not vary across subjects as well as the unobserved child endowment, \(\mu_{1,i} \), which comprises cognitive and non-cognitive abilities and health. The endowment could be similar between siblings and therefore confound the sibling spillover effect. The transformation also eliminates possible indirect spillover effects between siblings that result from changes in the intra-household allocation of resources between siblings. Parents may re-allocate resources between siblings because of differences in their abilities, for example investments in one child might decrease if her sibling develops a health issue, or because parents have more children and therefore decrease the parental investment per child.

Nevertheless, the deviation from the mean across subjects is unable to eliminate unobserved characteristics that vary by subject. In particular we are concerned about unobserved subject-specific abilities shared by the siblings because of similar family and school investments, which might favor one subject over another, or because of family inheritance of skills in particular subjects. We partial out shared subject-specific school background by using school-by-cohort-by-subject fixed effects that control for \(\mu_{isqt} \), i.e. for unobserved subject-specific school investments and characteristics for the cohort \(t \). In our sample a high percentage of siblings, 83.5\%, attend the same secondary school, but even if two siblings attend two different schools they might sort into schools with similar characteristics, e.g. similar quality of teachers in a particular subject or peers with similar subject-specific abilities. Controlling for school-by-cohort-by-subject fixed effects allows us to clean the sibling spillover effect from the confounding effect of such school similarities between siblings.

The issue of unobserved subject-specific family investments and skills inheritance is more challenging. By controlling for the lagged test score, i.e. the test score in subject \(q \) at age 11, we estimate a spillover effect that is purged of the influence of such family characteristics up to the age of 11.11 To also control for the effect of these unobserved subject-specific

\[11 \text{In our empirical model we control both for same-subject and cross-subject past test scores, in other words we let the age 16 English score depend on age 11 scores in English, Science and Mathematics, and the same for the other subjects.} \]
characteristics between ages 11 and 16, we adopt instrumental variable estimation where we instrument the subject-specific test scores of the older sibling at age 16 using the average attainment of the school-by-cohort peers of the older sibling. However, in constructing such an instrument we have to confront the possibility of reverse causality (the reflection problem) between the older sibling and her peers. While we can be quite confident that there is no reverse causality between younger siblings whose tests are in the future with respect to the older sibling, reverse causality between the older sibling and her peers could affect the validity of our instrument. Therefore we adopt the strategy used by Lavy et al. (2012) who measure peers’ ability using prior achievements in end-of-primary-school national tests at age 11 but only considering new peers that a pupil (in our case the older sibling) encounters for the first time in secondary school. These are immune to reflection problems because in the compulsory transition from primary to secondary school a major reshuffling of pupils takes place so that on average students meet more than 80% new peers. There may be a concern that students do not sort randomly into secondary schools, but by including student fixed effects (as well as school-by-cohort-by-subject fixed effects) we should be controlling effectively for the sorting of students and their peers into schools.

We therefore instrument the subject-specific test scores of the older sibling at age 16 using the average of $DevY_{j_{s'q't},11}$ (measured in attainment percentiles) over the new school-by-cohort peers of the older sibling, which we call $NewMDevY_{2,s'q't,11}$. Because in equation (1) we control for both child fixed effects and school-by-cohort-by-subject fixed effects, the instrument captures whether the older sibling’s new school-cohort mates were relatively better in a specific subject than the younger sibling’s school-cohort mates. The variation in the instrument is caused by idiosyncratic changes in the average subject-specific test score across schools or within the same school but across different cohorts. These changes can occur because of changes in the quality of teaching in a specific subject (e.g. because of teacher turnover) or in the composition of the new school-cohort mates in terms of subject-specific abilities. We use the same type of instrumental variable estimation to compute the spillover effect from the younger to the older sibling. The model specification is identical to model 1 with the subscripts 1 and 2 exchanged to swap the role of the younger sibling with the one of the older sibling.

12We call the variable corresponding to $NewMDevY_{2,s'q't,11}$, but defined using all peers belonging to the same cohort and school, $MDevY_{2,s'q't,11}$.
Our identifying assumption is that a student can be affected by the test scores of the new school peers of her sibling only through her sibling. This assumption could be invalid if there is direct interaction between the older sibling’s new school mates and the younger sibling, for example. We discuss this and other possible threats to identification in section 5.2 and present a number of robustness checks. For example, we exclude the older sibling’s school peers who live in the same neighborhood from the computation of $NewMDevY_{2,s\prime \prime qt,11}$ to assess whether possible interaction within a neighborhood may affect results. We conclude from these checks that our estimated sibling spillover effect holds across a number of specifications.

To be a valid instrumental variable $NewMDevY_{2,s\prime \prime qt,11}$ must be also uncorrelated with any unobserved variables which affect the younger sibling’s test results $DevY_{1,isqt,16}$. The younger sibling’s test result $DevY_{1,isqt,16}$ can be affected by the prior average test results of her school peers, i.e. $MDevY_{1,sqt,11}$ and more in particular by the prior average test results of her new school peers, $NewMDevY_{1,sqt,11}$. Because siblings tend to sort into similar schools with similar subject-specific characteristics, the instrument $NewMDevY_{2,s\prime \prime qt,11}$ is likely to be correlated with $MDevY_{1,sqt,11}$ and $NewMDevY_{1,sqt,11}$. To ensure the validity of our instrumental variable, we control for both $MDevY_{1,sqt,11}$ and $NewMDevY_{1,sqt,11}$ in our equation 2. We do this by considering school-by-cohort-by-subject fixed effects for the younger sibling, which implicitly control for any subject-specific average test results of peers $MDevY_{1,sqt,11}$, and including $NewMDevY_{1,sqt,11}$ among the explanatory variables in model 2.

In order to isolate the causal effect of the older sibling’s attainment on the younger we also need to assume that there are no behavioral responses by parents. Our identification strategy is more immune to this problem than previous papers that rely on policy reforms that affect one sibling and not the other, for example an increase in the school leaving age. In the case of policy reforms we expect parents to adjust the allocation of their investments between siblings so that the instrumental variable is not independent of these investments. Of course parents could also react to idiosyncratic between-subject differences in ability across cohorts, our instrument, but we assume that these differences would be hard for parents to perceive. While it seems plausible that parents would perceive a general improvement or

$^{13}MDevY_{1,sqt,11}$ and $NewMDevY_{1,sqt,11}$ are the variables corresponding to $MDevY_{2,sqt,11}$ and $NewMDevY_{2,sqt,11}$ but defined for the younger rather than the older sibling.
deterioration of school results across cohorts it seems less likely that they would observe an increase or decrease in the test score gap between two subjects across cohorts.

4 Data

The empirical analysis is based on the National Pupil Database (NPD), which is available from the English Department for Education and has been widely used for education research. The NPD is a longitudinal register dataset for all children in state schools in England, covering roughly 93% of English students. It combines student level attainment data with student characteristics as they progress through primary and secondary school.

Educational system in England

Full-time education is compulsory for all children aged between 5 and 16, with most children attending primary school from age 5 to 11 and secondary school from age 11 to 16. The education during these years is divided into four Key Stages. Students take externally marked National Curriculum Tests at the end of Key Stages 2 and 4. Until recently such national tests were also carried out at Key Stages 1 and 3 but today progress at these stages is examined via individual teacher assessment.

Key Stage 2 National Curriculum Tests are taken at the end of primary school, usually at age 11. Pupils take tests in the three core subjects of English, Mathematics and Science. Key Stage 4 tests are taken at age 16 at the end of compulsory schooling. Pupils enter General Certificate of Secondary Education (GCSE) or equivalent vocational or occupational exams at this stage. They decide which GCSE courses to take, and because English, Mathematics and Science are compulsory study subjects, virtually all students take GCSE examinations in these topics, plus others of their choice, with a total of ten different subjects normally taken. In addition to GCSE examinations, a pupil’s final grade may also incorporate coursework elements. Key Stage 2 and 4 test results receive a lot of attention nationally as they play a prominent role in the computation of so-called school league tables, which are used by policy makers to assess schools and by parents to inform school choice.

Outcome and observed background
We focus on GCSEs (Key Stage 4) because they mark the first major branching point in a young person's educational career, and lower levels of GCSE attainment are likely to have a longer term impact on experiences in the labor market. We consider results in the core subjects English, Mathematics and Science which are directly comparable to test results at the end of primary school. Students receive a grade for each GCSE course, where pass grades include A*, A, B, C, D, E, F, G. We use a scoring system developed by the Qualifications and Curriculum Authority to transform these grades into a continuous point score which we refer to as the Key Stage 4 score.14

We control for lagged cognitive achievement using Key Stage 2 National Curriculum tests taken at the end of primary school, usually at age 11, in English, Mathematics and Science. In the Key Stage 2 exams, pupils can usually attain a maximum of 36 points in each subject, but teachers will provide opportunities for very bright pupils to test to higher levels. We control for past test scores in the same as well as the other subjects (same- and cross-subject effects). All test scores are standardized to have a mean of zero and a standard deviation of one.

The NPD annual school census provides a number of individual and family background variables. These include month and year of birth and gender of the student, ethnicity, whether or not the first language spoken at home is English, any special educational needs identified for the child, eligibility for free school meals (FSM)15, area of residence and the number of siblings in the family. As we control for child fixed effects in all our models we do not use these variables as explanatory variables, apart from an interaction term between pupil gender and subject-specific effects to control for gender differences in attainment. We do use several of the background characteristics in the estimation of heterogeneous spillover effects by subgroups and in our robustness checks.

\textit{Sibling definition}

The NPD includes address data, released under special conditions, which allows us to match siblings in the data set in the year 2007. Siblings are therefore defined as pupils in state schools aged 4-16 and living together at the same address in January 2007. Siblings that

14A pass grade G receives 16 points, and 6 points are added for each unit improvement from grade G.

15FSM eligibility is linked to parents' receipt of means-tested benefits such as income support and income-based job seeker's allowance and has been used in many studies as a low-income marker (see Hobbs and Vignoles 2010 for some shortcomings).
are not school-age, those in independent schools and those living at different addresses in January 2007 are excluded from our sibling definition. Step and half siblings are included if they live at the same address, and we are not able to distinguish them from biological siblings (see Nicoletti and Rabe 2013 for details).

Peer Ability

For each older sibling in our data set we construct a measure of peer ability based on the peers’ end-of-primary school test scores that are unaffected by the older sibling. By using information on the primary schools attended by all pupils we restrict this measure to the new peers encountered by the older sibling for the first time in secondary school. Each student in our sample has 187 cohort peers on average, of which 160 (86%) are new peers. As class identifiers are not available in the data we use grade-level ability to proxy the quality of peers experienced by the older sibling. Measurement error in peer quality may bias estimates downward but should not affect the validity of our instrument, and unlike Lavy et al. (2012) we do not need to restrict our sample to small secondary schools because our aim is not to identify an endogenous school mate effect in the first stage. We do follow Lavy et al. (2012) in expressing peer ability in terms of percentiles by subject. Moreover, for robustness analysis we adopt their definition of the very worst performing students as the fraction of new peers that were in the bottom 5th percentile of the subject ability distribution at Key Stage 2.

Sample restrictions

The main sample for our analysis includes all sibling pairs taking their Key Stage 4 exams in 2007, 2008, 2009 or 2010. We remove from the data all twins and siblings attending the same academic year. When we have multiple pairs of siblings from one family in the observation window we consider the two oldest students to avoid any multiplier spillover effects (what Dahl et al. 2014 call the snowball effect). We also remove pupils with duplicate data entries or with missing data on background variables from the dataset (4% of the sample). Moreover, we retain only pupils for whom we have non-missing test scores for all outcomes at both Key Stages 2 and 4 which leads to a reduction in sample size of 10.5%. Missing cases are concentrated among low attaining students that are more likely to be absent at the exams.

\footnote{The percentage of siblings who have more than one older siblings is about 1.4% of the sample which already excludes twins and siblings attending the same academic year.}
or, at Key Stage 4, choose not to take exams in one or more of the core subjects. Comparing the original with the retained sample the average test score is increased by about 1%. We also exclude “special schools” that exclusively cater for children with specific needs, for example because of physical disabilities or learning difficulties, as well as schools specifically for children with emotional and/or behavioral difficulties. Further we adopt some of the sampling restrictions used in Lavy et al. (2012), namely we exclude secondary schools with fewer than 15 pupils and schools where the fraction of pupils below the 5th or above the 95th percentile exceeds 20%. The final sample contains 414,360 siblings (207,180 sibling pairs) who go to 2,948 secondary schools in England. We use data that is pooled across 3 subjects, so that we have 621,540 sibling pair observations in total.

Descriptives

Table 2 reports the means and standard deviations of the unstandardized test scores at age 11 and 16 (Key Stages 2 and 4) respectively; but in all our estimated models we consider the standardized test scores by subject. The bottom panel of the Table also provides mean and standard deviation of other characteristics used for the estimation of heterogeneous spillover effects and in our robustness analysis.

Table 3 gives an overview of the identifying variation in our dependent variable, i.e. the younger sibling’s standardized school test score at age 16, and in our instrumental variable, which is the average of the subject-specific Key Stage 2 test score percentile across the older sibling’s new school peers. The top panel of Table 3 shows the mean and total variation measured by the standard deviation of the younger sibling’s test score, the variation net of the child fixed effect and finally the variation net of both the child and of the school-by-cohort-by-subject fixed effects (see first, second and third rows). The variation net of the child fixed effect is the within individual (child) variation measured by the standard deviation of the residuals of a child fixed effect regression. Similarly the variation net of the child and of the school-by-cohort-by-subject fixed effects is measured by the standard deviation of the residuals of the regression that controls for both child fixed effect and school-by-cohort-by-subject fixed effects. The within child variation is quite substantial, about 40% of the overall variation. Further applying a child and school-by-cohort-by-subject fixed effects estimation does not reduce the variation in the data by much, there is still over a third of the original variation left.
The bottom panel of Table 3 shows the variation in our instrument. First we show the total variation in the mean test score percentiles of the older siblings’ new peers, excluding the older sibling. On average the older sibling has 160 new peers in the same school-cohort. The total variation in the average peer test score percentile (49.07) is 9.35. By considering the variation net of the child fixed effect we capture the extent to which the older sibling’s peers are relatively better in one subject than the others, for example because they have a good teacher in a particular subject. The standard deviation net of the child fixed effect is 2.34 percentiles. The last row of the Table shows the variation in the data net of both the child and school-by-cohort-by-subject fixed effect. This is the instrument we use to identify our model, and it captures whether the older sibling’s peers were relatively better in a specific subject than the younger sibling’s peers. As we can see, about 20% of the original variation in the data is remaining after applying the various fixed effects.

5 Empirical Results

5.1 Main empirical results

We begin by reporting in Table 4 the correlations in sibling’s test scores which are a general measure of the importance of background shared between siblings on educational outcomes. Since the test scores at ages 11 and 16 are standardized by subject to have zero mean and unit variance, we can estimate the raw correlation in test scores by a simple regression of the test scores at age 16 on the sibling’s test score at age 16.\footnote{For all regression models we take account that the error terms are clustered at school-cohort-subject level and report robust standard errors. We do not find any difference in the standard errors if we allow for cluster correlation in the error terms within school or within school-cohort level, rather than within school-cohort-subject.} This produces the so called sibling intraclass correlation that does not generally capture a causal peer effect (see Angrist 2014). The raw correlation in test scores is shown in column (1) of Table 4 and estimated to be 0.478 which is in line with results of previous papers (e.g. Nicoletti and Rabe 2013; Björklund et al. 2010).

In column (2) we display the sibling correlation in test scores net of the effect of past test scores obtained by the younger sibling at the end of primary school, which we estimate by using a value added model, i.e. by regressing the test scores at 16 on the sibling’s test
scores at 16 and controlling for same and cross-subject test scores at age 11 (as well as subject-gender interactions). This sibling correlation captures the effect of shared family and environment characteristics which operate between ages 11 and 16. We can see that the net sibling correlation is 0.285. In column (3) we show the correlation estimated using the same value added model as in column (2) and controlling for the younger child fixed effects (0.136). This eliminates the influence of all environment, family and child characteristics that are invariant across subjects, including the intra-household allocation of resources between siblings.

Finally, in column (4) we show the sibling correlation estimated using both child fixed effects and school-by-cohort-by-subject fixed effects. The latter net out subject-specific school characteristics. This correlation (0.102) therefore comes closest to capturing a causal relationship, but it can still be overestimated because of unobserved subject-specific skills transmitted in the family that are similar between siblings. Families are likely to have subject-specific traits - being a ‘maths’ or ‘music’ family, for example - which can affect both subject-specific inherited child endowments and subject-specific family investments.

In Table 5 we present our main estimates of the sibling spillover effect in school test scores from the older to the younger sibling at age 16 (end of compulsory schooling) when controlling for individual fixed effects as well as for school-by-cohort-by-subject fixed effects and using instrumental variable estimation to eliminate the bias caused by omitted subject-specific family investments and characteristics (see column 1). Furthermore in column (2) we report the corresponding instrumental variable estimation for the sibling spillover effect going from the younger to the older sibling, using the average ability of the younger sibling’s new school peers as instrument. For both estimations we consider the value added model (1), where the control variables include past (same and cross-subject) test scores obtained at the end of primary school, the younger (older in column 2) sibling’s average peer performance and gender-subject interactions. We are not concerned about the endogeneity of the lagged test caused by the fact that child unobserved endowments influence both the test scores at ages 11 and 16 because all our estimations control for child fixed effects and therefore eliminate child unobserved endowments.\(^{18}\)

\(^{18}\)This method to correct for the endogeneity of the lagged test has already been applied for example in Nicoletti and Rabe (2012), Slater et al. (2012) and Del Boca et al. (2012).
Our instrumental variable estimation is a two-stage least square (2SLS) estimation with fixed effects. The first stage consists in the regression of the older sibling’s test score at 16 on all explanatory variables plus an instrument given by the average subject-specific ability at age 11 of the older sibling’s new school peers encountered for the first time in secondary school; whereas the second stage is the regression of the younger sibling’s test score on all explanatory variables and with the older sibling’s test score replaced by its prediction from the first stage regression. Both first and second stage regression control for the individual fixed effect and the younger siblings’ school-by-cohort-by-subject fixed effect. Furthermore, we control for the subject-specific average test score of the new peers of the younger sibling, i.e. her secondary school cohort peers who attended a different primary school. Therefore, our instrument captures whether the older sibling’s school-cohort new mates were relatively better in a specific subject than the younger sibling’s new school-cohort mates, for example because of changes in the quality and quantity of school inputs in a specific subject or in the subject-specific abilities of the school-cohort mates.

The first stage regression is very similar to the model adopted in Lavy et al. (2012) to estimate school peer effects using the same school administrative data that we use, but looking at test scores at age 14 (Key Stage 3) rather than at age 16 (Key Stage 4) as outcomes. As in Lavy et al. (2012) we are concerned with the reverse causality that goes from older siblings to their school peers and deal with this by using predetermined peer ability measures. But, contrary to them, we are not interested in interpreting the coefficient of the ability of the older sibling’s school peers as an endogenous school peer effect. What we are concerned with is the validity of our instrument, which holds even if the effect of the older sibling’s school peers is explained by unobserved contextual factors such as the subject-specific teaching ability of the older sibling’s teachers. Indeed our first stage regression does not control for unobserved contextual factors that are school and subject-specific for the older sibling’s school cohort because our school-by-cohort-by-subject fixed effect is defined on the younger sibling’s school and cohort. Therefore we do not expect to exactly replicate

19Recall that to avoid reverse causality in the first stage equation our instrument is computed averaging the subject-specific ability at the end of primary school (age 11) only of new school peers, i.e. excluding all old peers that went to the same primary school as the older sibling.
in our first stage estimation the results of Lavy et al. (2012) who find no effect of average peer ability but a negative effect of being surrounded by very badly performing peers.\footnote{There are also other differences between our first stage estimation and the main equation estimated in Lavy et al. (2012), including differences in (i) the estimation method (we control for younger sibling’s school-by-cohort-by-subject fixed effects additionally to the child fixed effect), (ii) the point in time when school test scores are measured (at 16 rather than 14), the selection of the sample (e.g. we do not focus on small schools).}

The first row of Table 5 shows the estimated sibling peer effect. Looking first at the sibling spillover effect from the older to the younger sibling (column 1), we find that an increase of one standard deviation in the test score of the older sibling leads to an increase of 9.8\% of a standard deviation in the corresponding test score of the younger sibling, and this effect is strongly statistically significant. This spillover effect seems fairly small, indeed it is smaller than most sibling peer effects estimated in previous papers on other outcomes, listed in Table 1. In contrast, there is no statistically significant spillover effect in test scores going from the younger to the older sibling (see column 2). This is in line with expectations, as we would not expect the age 16 test scores of the older sibling to be affected by their younger sibling’s tests that take place in the future.

The F-statistics for the significance of the instrumental variable in the first stage is large and does not leave any doubt on the validity of the instrument. In contrast to Lavy et al. (2012) we find a positive and statistically significant effect of average peer ability on the older sibling’s test scores. We report the first stage results, as well as first stage results that use the percentage of school peers in the top and bottom 5\% of the test score distribution (the latter is the main peer effect identified by Lavy et al., 2012) respectively in panels A, B and C in Table A1 in the Appendix. In our first stage equation it is the average ability of school peers rather than the percentage of badly performing peers that matters.

The endogeneity test reported in Table 5 suggests that after controlling for child fixed effects and school-by-cohort-by-subject fixed effects there is no residual endogeneity of the older sibling’s test score and we cannot reject the equality of the estimation with fixed effects and the 2SLS estimation with fixed effects. The difference between the two estimates is very small and equivalent to just 0.004 of a standard deviation in the younger sibling’s test score for an increase of a standard deviation in the older sibling’s test score (compare column 4 in Table 4 and column 1 in Table 5). Although we prefer the 2SLS estimation, the estimation
with fixed effects is more precise, and we will therefore use it to produce estimates that allow for a heterogenous sibling spillover effect (see Section 5.3).

5.2 Threats to identification: Robustness checks

In this section we discuss threats to the validity of our identification strategy and probe the stability of our benchmark estimates to alternative specifications.

Direct influence of older sibling’s school mates on the younger sibling

Our identifying assumption is that the older sibling’s peers have no direct influence on the younger sibling’s test score. We investigate here the possibility that older sibling’s school mates could directly interact with the younger sibling in the neighborhood and therefore violate the exogeneity assumption. Although we are excluding peers from the older sibling’s primary school including ‘forever friends’ who the younger sibling may know and have interacted with as a child, it may be that some new secondary school peers live in the same neighborhood and interact with each other even if they do not belong to the same cohort. Evidence for England shows that there are no neighborhood peer effects in school achievement (Gibbons et al. 2013), but we still want to test this possibility. In our data, we can define neighborhoods based on Lower Level Super Output Areas which are statistical geographies created to reflect proximity and social homogeneity and have an average of roughly 1,500 residents and 650 households. In our sample, an average of 9 peers from the same school and cohort live in a neighborhood defined in this way (a school cohort comprises 188 pupils on average). Among these, 5 students are old and 4 are new peers. Secondary students may interact within a wider geographical area, so we also look at Middle Layer Output Areas (with a minimum size of 5,000 residents and 3,000 households with an average population size of 7,500). An average of 34 peers from the same school and cohort live in an area thus defined, of which 22 are new peers. We take this as the maximum proportion of the older sibling’s school mates a (very sociable) younger sibling could be exposed to within the residential area. Note that MSOAs are quite large geographical areas, with an average size of 1,958 hectares across England (1 hectare=10,000m²) which cannot easily be covered by a child on a regular basis, in particular in rural areas.
To test the possibility of neighborhood interaction, we exclude the older sibling’s new school peers living in the same neighborhood from the computation of the instrumental variable to remove the potential direct effects that go from children living in the same neighborhood to the younger sibling. We also perform the same test by excluding older sibling’s new school peers living in the same area, defined at the Middle Layer Super Output Area (MSOA) level. Table 6 displays the results of this exercise. Excluding older sibling’s new school mates living in the same neighborhood from the calculation of the instrument changes the estimated sibling spillover effect by very little. Excluding older sibling’s school mates living in the same area again produces a result that is comparable to the benchmark estimate. This suggests that direct interaction within neighborhoods and wider areas does not threaten our identifying assumption.

Another possibility is that younger siblings directly interact with their older sibling’s school mates at school. However, unlike the cases of Bramoullé et al. (2009) and Calvó-Armengol et al. (2009), where the unrelated peers of peers can be taught in the same school class, in our case the older sibling’s peers are in different classes and cohorts than the younger sibling, sometimes several years apart. In English schools cohorts are taught strictly separately, and because of the large cohort size of secondary schools even school assemblies and trips usually take place separately by cohort. This means that interactions that are relevant for learning are unlikely to take place across cohorts in school.

Our instrumental variable could also fail because of the way our sample is constructed. We have data for four cohorts of students taking age-16 exams, and it is possible that an older sibling has school mates whose younger siblings are in the same cohort and same school as her younger sibling. In this case there could be a direct effect of the older sibling’s school mates on the younger sibling through their younger siblings. However, because we control for the younger sibling’s school-by-cohort-by-subject fixed effects, any link to the older sibling’s school mates through the younger siblings’ school mates is broken.

Exploring additional instruments

Next we check the validity of our instrument further by using additional instruments, which allows us to test the over-identifying restrictions. We consider as first additional instrument the proportion of the older sibling’s school mates that had a particular subject as their best subject. This may reflect the selection of similarly talented students into the same school
or the presence of better teachers in a specific subject within a school. As we can see in the first row of the bottom panel of Table 6, the F-test of the excluded instruments is very high, indicating that the instruments are relevant, and the estimated sibling spillover effect remains the same as before. The Hansen’s J test shows that the null that the instruments are exogenous cannot be rejected.

We consider as our second additional instrumental variable the fraction of the older sibling’s new peers that were in the bottom 5-th percentile of the subject ability distribution at the end of the primary school. This variable is identical to the one used in Lavy et al. (2012) to estimate school peer effects. We show the results of our IV estimates using both our original instrument and the fraction of bad peers of the older sibling as instruments in the second row of the bottom panel of Table 6. As we can see, this does not change the results and the Hansen’s J test suggests that our instruments are valid.

5.3 Heterogeneous spillover effect and possible mechanisms

In this section we perform sub-group analysis to explore the heterogeneity of the results and to assess what we can learn about possible mechanisms that may drive the sibling spillover effects (imitation, productivity spillovers and information transmission).

We begin by estimating spillover effects from the older to the younger sibling by sex composition and age gap between the siblings (measured in academic years) using fixed effect estimation. Results are shown in the second and third panels of Table 7 whereas in the first panel we report for comparison the homogenous spillover effects obtained using our preferred estimates, i.e. the fixed effect estimations without and with instrumental variable. We might expect siblings who are of the same sex or closer in age to interact more and feel closer to each other and therefore to be more likely to engage in imitation, direct help/teaching or information sharing. Indeed we find that the sibling spillover effect is substantially higher for siblings of the same gender (brother and sister pairs) than for mixed gender siblings, and somewhat larger for siblings who are more closely spaced. However, this analysis does not allow us the discriminate between the different candidate mechanisms.

\[21\text{The heterogeneous sibling spillover effects are estimated by interacting the older sibling’s subject-specific test score with dummy variables for different subgroups.}\]
To assess the possible role of productivity spillovers we split the sample by the older sibling’s attainment. Productivity spillovers are produced through learning of the younger sibling from their older sibling, for example by spending time together in doing formative activities, by being taught or by receiving help with their homework. This type of spillover should arguably be larger when the older sibling performs well at school as this will affect the quality of the interaction. In the fourth panel of Table 7 we report the sibling peer effect separately by the position of the older sibling in the distribution of school test scores at age 16 (Key Stage 4). More precisely, we report the sibling spillover effect for older siblings with average school test score across the three subjects (English, Science and Maths) in the bottom 5th percentile, between the 5th and 95th percentiles, and in the top 5th percentile of the distribution. The Table shows that the sibling peer effect for older siblings who are in the top 5th percentile of the distribution is almost three times larger than the peer effect observed for older siblings in the bottom 5th percentile. This seems to suggest that at least part of the sibling spillover we estimate in this paper is caused by productivity spillovers, particularly through teaching and help with homework provided by older siblings.

Another possible mechanism explaining the sibling spillover effect is information transmission. Some of the information transmitted from the older to the younger sibling may include information on subject-specific exam preparation, homework requirements, teachers and learning techniques that is particular to the school attended. Therefore we might expect spillover effects to be larger for siblings going to the same school than for siblings at different schools if information transmission is an important channel for sibling spillovers. In the fifth panel of Table 7 we report the sibling peer effect estimated separately for siblings going and not going to the same school. We find that siblings attending the same school have larger spillover effects which could suggest that part of the spillover effect is caused by information transmission, which is likely to be more effective for children going to the same school whatever the older sibling’s school achievements are. Clearly the subsample of siblings attending different secondary schools is not a random sample, therefore we might be concerned that the lower spillover effect observed for this sub-sample could be in part caused by endogenous selection into schools. Nevertheless, because our model controls for the subject specific test

22 We choose these bands following Lavy et al., 2011. Notice that we do not have an issue of regression to the mean because the sibling spillover effect is estimated by regressing the relative advantage of the younger sibling in a subject-specific test score on the corresponding older sibling’s relative advantage, i.e. considering the difference between test scores in two different pairs of subjects.

23
scores obtained at the end of primary school, any unobserved subject-specific and cohort-
specific school characteristics and any subject-invariant child characteristics, we think that
the larger peer effect for siblings going to the same school is unlikely to be exclusively caused
by endogenous sample selection and at least in part related to information transmission.

To further assess the relevance of imitation, productivity and information spillovers, we
next examine effects by family background and the older sibling’s position in the age 16 exam
score distribution. We expect that children from disadvantaged families have parents who
are less likely to help them in their learning and to transmit subject-specific information and
therefore sibling interactions to play a larger role. This may vary by older sibling’s school
performance. We measure family disadvantage in three different ways, by deprivation of
neighborhood of residence,23 eligibility for free school meals and by whether the language
spoken at home is English. Neighborhood deprivation captures income deprivation of the area
while free school meal eligibility indicates low income in the student’s household. Families
who do not speak English at home are not necessarily income deprived, but they likely lack
knowledge of the English education system as the parents in such families will in most cases
not have been raised and educated in England.

Table 8 shows results for all children, and for children by neighborhood deprivation, free
school meal status and language spoken at home in separate panels. Within each panel the
first row gives results for all children. We see that the sibling spillover effect is larger for
children who are not speaking English at home than it is for those who do, but it is lower
for children who live in deprived areas or are eligible for free school meals than for children
from more affluent backgrounds. When focusing on older siblings who are in the bottom
5th percentile of the attainment distribution, all three disadvantaged groups of siblings have
a stronger sibling spillover effect than the corresponding advantaged groups. Conversely,
the spillover from a high achieving older sibling (in the top 5th percentile) is lower for
children on free school meals and living in deprived neighborhoods. This seems to suggest
that imitation of bad behavior and performance is more prevalent in disadvantaged families,
whereas teaching and help by siblings is less common (except in families that do not speak
English at home). Given that disadvantaged children are more likely to have an older sibling

23Deprivation is measured using the Income Deprivation Affecting Children Index at the Lower Level
Super Output Area, which is a sub-domain of the English Indices of Deprivation. We divide children’s
neighborhoods into the most, middle and least deprived tertiles.
who is not performing well in school and to be more exposed to other examples of bad performing peers in school and in the neighborhood than affluent children, this asymmetry seems to exacerbate performance gaps between students by background. Students with English as additional language seem to be badly affected by poorly performing older siblings also, but results for the middle and to of the older sibling’s attainment distribution indicate that productivity spillover are at work for them.

Taken together, the results on heterogenous spillovers by groups seem to suggest that all three mechanisms of imitation, productivity spillovers and information transmission play a role in driving the sibling spillover effect with perhaps a more dominant role of productivity spillovers for children whose older siblings are at the top of the achievement distribution and for this reason probably more effective teachers for their younger siblings. A positive and encouraging result is that the sibling peer effect is higher for children whose older siblings are performing well rather than badly in school. Nevertheless, this positive result is less pronounced among children who are economically disadvantaged. We observe a larger role played by positive productivity spillovers and information transmission among children who are economically more advantaged and a larger role of imitation of the older sibling’s bad school performance among disadvantaged children. This seems to suggest the need for more positive role models for disadvantaged children.

6 Conclusions

In this paper we provide empirical evidence of sibling spillover effects in school achievement based on administrative data of 220 thousand siblings taking their end-of-compulsory schooling (age 16) exams in a four year time-window. We measure school achievement using test scores obtained in national exams in England in the compulsory subjects English, Mathematics and Science. We find strong evidence of direct sibling spillover effects in school achievement. An increase in the test scores of an older sibling of one standard deviation leads to an increase in the corresponding test score of the younger sibling of about 10% of a standard deviation, which is equivalent to the effect of increasing the school expenditure per pupil by £1,000 (see Nicoletti and Rabe 2012). As expected, we find no spillover effect going from younger to older siblings. Our paper adds to the economic literature on child
development by highlighting the direct role of sibling interactions, whereas the previous literature has mainly focused on parent-child interactions. We add to the emerging literature on sibling spillover effects by providing evidence of spillovers of cognitive ability.

Our main methodological contribution is to propose a new strategy to identify sibling spillover effects in education which can be universally applied because it does not rely on context-specific instruments. Moreover it does not rely on the introduction of policy reforms where parents may reallocate resources between siblings in reaction to the policy, confounding the direct spillover effect. Our main concern when estimating the spillover effect is unobserved heterogeneity, in particular potential unobserved family and school investments that are shared by siblings and that can cause a spurious association between siblings. We use within-pupil between-subject estimation to control for child, school and family characteristics that are subject-invariant. Furthermore, we control for subject-specific school characteristics by applying school-by-cohort-by-subject fixed effects estimation. Finally, we account for subject-specific skills acquired from parents through inheritance or investments and shared by siblings by using instrumental variable estimation. We instrument the older siblings’ test scores using the average prior test scores of her new school mates encountered for the first time in secondary school, exploiting idiosyncratic changes in the average subject-specific test score across schools and/or cohorts. We make use of the fact that the older siblings’ test scores can be affected directly by her school mates’ results, whereas we assume there is no direct effect of the older sibling’s school mates on the younger sibling. We present checks testing this assumption, and the results lend credibility to the causal interpretation of our results.

The large sample size available in our data allows us to perform subgroup analysis and to explore potential mechanisms behind the sibling spillover effect. We find evidence for a larger sibling spillover for closely spaced and same gender siblings who we might expect to have closer interactions than different gender and widely spaced siblings. Siblings going to the same school have larger spillover effects than siblings going to different schools, which may mean that transmission of school-specific information is one channel through which spillovers are created. We find substantially larger sibling spillovers when focusing on older siblings who are high achievers while the effect of a badly performing older sibling is smaller on average. This seems to suggest that older sibling are effective teachers for their younger
siblings especially when they perform well in school. Nevertheless, the positive effect of high achieving older siblings is reduced for children from economically disadvantaged backgrounds whereas the effect of badly performing older siblings is amplified in these families.

Taken together, our paper has important implications for policy that seeks to narrow the attainment gaps between children from different socio-economic backgrounds. Our results indicate that negative role models by older siblings is more of a concern for disadvantaged children who are probably less exposed to positive role models in their school and in their neighborhood. This suggests that investments into students from deprived families can have considerable externalities through their benefits on younger siblings.
References

<table>
<thead>
<tr>
<th>Authors</th>
<th>Outcome</th>
<th>Method</th>
<th>Data</th>
<th>Effect from older sibling</th>
<th>Effect from younger sibling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oettinger (2000)</td>
<td>High school graduation</td>
<td>2SLS, using child-specific variables as IV</td>
<td>NLSY79</td>
<td>0.188-0.240+</td>
<td>0.043-0.082</td>
</tr>
<tr>
<td>Monstad, Propper, Salvanes (2011)</td>
<td>Teenage motherhood</td>
<td>2SLS, using a schooling reform as IV</td>
<td>Register data from Norway</td>
<td>0.242**</td>
<td></td>
</tr>
<tr>
<td>Qureshi (2015a)</td>
<td>Years of schooling</td>
<td>2SLS, using distance from closest school</td>
<td>Learning and Educational Achievement in Punjab Schools</td>
<td>0.420**</td>
<td>0.163</td>
</tr>
<tr>
<td>Adermon (2013)</td>
<td>Years of schooling</td>
<td>2SLS, using a school reform as IV</td>
<td>Register data from Sweden</td>
<td>not sig</td>
<td>not sig</td>
</tr>
<tr>
<td>Aparicio-Fennoll and Oppedisano (2015)</td>
<td>Leaving parental home</td>
<td>2SLS, using rental subsidy eligibility as IV</td>
<td>Spanish Survey on Income and Living Conditions</td>
<td>-0.493+</td>
<td>negative</td>
</tr>
<tr>
<td>Dahl, Loken Mogstad (2014)</td>
<td>Paternity leave take-up</td>
<td>2SLS, using a father’s leave reform as IV</td>
<td>Register data from Norway</td>
<td>0.153*</td>
<td>older or younger</td>
</tr>
<tr>
<td>Joensen and Nielsen (2015)</td>
<td>Advanced Maths and Science choice</td>
<td>2SLS, using a high school reform as IV</td>
<td>Register data from Denmark</td>
<td>2-3* percentage points</td>
<td></td>
</tr>
</tbody>
</table>

Notes: + p < .10, * p < .05, ** p < .01. 2SLS=two-stage least squares, IV=instrumental variable
Table 2: Descriptive statistics

<table>
<thead>
<tr>
<th>Unstandardized test scores</th>
<th>Older mean</th>
<th>Older std dev</th>
<th>Younger mean</th>
<th>Younger std dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Stage 2 English score (age 11)</td>
<td>27.1</td>
<td>4.5</td>
<td>26.4</td>
<td>5.0</td>
</tr>
<tr>
<td>Key Stage 2 Science score (age 11)</td>
<td>29.0</td>
<td>4.1</td>
<td>28.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Key Stage 2 Maths score (age 11)</td>
<td>27.5</td>
<td>4.9</td>
<td>27.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Key Stage 4 English score (age 16)</td>
<td>40.6</td>
<td>9.1</td>
<td>40.2</td>
<td>8.9</td>
</tr>
<tr>
<td>Key Stage 4 Science score (age 16)</td>
<td>40.1</td>
<td>10.4</td>
<td>40.4</td>
<td>9.8</td>
</tr>
<tr>
<td>Key Stage 4 Maths score (age 16)</td>
<td>39.7</td>
<td>10.6</td>
<td>39.5</td>
<td>10.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sibling characteristics</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same school</td>
<td>84.9</td>
</tr>
<tr>
<td>Brothers</td>
<td>25.8</td>
</tr>
<tr>
<td>Older brother, younger sister</td>
<td>24.9</td>
</tr>
<tr>
<td>Older sister, younger brother</td>
<td>24.2</td>
</tr>
<tr>
<td>Sisters</td>
<td>25.1</td>
</tr>
<tr>
<td>Age gap 1 year</td>
<td>29.4</td>
</tr>
<tr>
<td>Age gap 2 years</td>
<td>49.4</td>
</tr>
<tr>
<td>Age gap 3 years</td>
<td>21.2</td>
</tr>
<tr>
<td>2 children in family</td>
<td>59.4</td>
</tr>
<tr>
<td>3+ children in family</td>
<td>40.6</td>
</tr>
<tr>
<td>Urban neighbourhood</td>
<td>78.3</td>
</tr>
<tr>
<td>Free School Meal eligible</td>
<td>10.5</td>
</tr>
<tr>
<td>English additional language</td>
<td>8.1</td>
</tr>
</tbody>
</table>

No. of observations pooled across subjects	621,540
No. of sibling pairs	207,180
No. of schools	2,948

Notes: National Pupil Database, 2007-2010.

Table 3: Identifying variation in test scores and instrumental variable

<table>
<thead>
<tr>
<th>Younger sibling’s test scores at 16</th>
<th>mean</th>
<th>std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total variation</td>
<td>0.090</td>
<td>0.899</td>
</tr>
<tr>
<td>Variation net of child fixed effect</td>
<td>0.000</td>
<td>0.357</td>
</tr>
<tr>
<td>Variation net of child and school-cohort-subject fixed effects</td>
<td>0.000</td>
<td>0.330</td>
</tr>
</tbody>
</table>

Instrumental variable: KS2 percentiles

Total variation	49.07	9.352
Variation net of child fixed effect	0.000	2.340
Variation net of child and school-cohort-subject fixed effects	0.000	1.709

| No. of observations | 621,540 |

Notes: National Pupil Database, 2007-2010. *The instrumental variable is the average of the subject-specific Key Stage 2 test score percentiles across the older sibling’s new school peers, excluding the older sibling.
Table 4: Sibling correlations in test scores

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw correlation</td>
<td>Correlation value</td>
<td>Correlation value</td>
<td>Correlation value</td>
</tr>
<tr>
<td></td>
<td>value added</td>
<td>Child FE</td>
<td>value added</td>
<td>Child-School-Coh-Subj FE</td>
</tr>
<tr>
<td>Corr.</td>
<td>0.478** (0.001)</td>
<td>0.285** (0.002)</td>
<td>0.136** (0.001)</td>
<td>0.102** (0.001)</td>
</tr>
<tr>
<td>Observations</td>
<td>621,540</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: + p < .10, * p < .05, ** p < .01. National Pupil Database, 2007-2010. Column (3) includes child fixed effects, column (4) Child-by-school-by-cohort-by-subject fixed effects. Standard errors clustered at school-cohort-subject level in parentheses. Pooled sample, pooling the observations for Mathematics, English and Science. Value added model in column (2) and subsequent models in columns (3) and (4) control for younger siblings’ same-subject and cross-subject age 11 test scores and subject-by-gender dummies.

Table 5: Sibling spillover effect: Main results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From older to younger</td>
<td>From younger to older</td>
</tr>
<tr>
<td></td>
<td>Child-School-Coh-Subj FE with IV</td>
<td>Child-School-Coh-Subj FE with IV</td>
</tr>
<tr>
<td>γ</td>
<td>0.098** (0.033)</td>
<td>-0.123 (0.145)</td>
</tr>
<tr>
<td>F-test first stage</td>
<td>485.6</td>
<td>30.73</td>
</tr>
<tr>
<td>Endogeneity test</td>
<td>0.017 (0.896)</td>
<td>2.548 (0.110)</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>621,255</td>
<td>629,925</td>
</tr>
</tbody>
</table>

Notes: + p < .10, * p < .05, ** p < .01. National Pupil Database, 2007-2010. IV regression with child-by-school-by-cohort-by-subject fixed effects. Dependent variables are standardised Key Stage 4 scores in English, Science and Maths. Value added models control for same-subject and cross-subject age 11 test scores and subject-by-gender dummies. Standard errors clustered at school-cohort-subject level in parentheses. Pooled sample, pooling the observations for Mathematics, English and Science. The instrument is the average Key Stage 2 attainment percentile of the older sibling’s new peers in secondary school. The F-test is the Angrist-Pischke multivariate F-test of excluded instruments in the first stage. The endogeneity test is the robust Durbin-Wu-Hausman test.
Table 6: Robustness checks

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sibling spillover effect</td>
<td>0.098**</td>
<td>485.6</td>
<td>0.0172</td>
<td></td>
<td>621,255</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.896)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding older sibling’s</td>
<td>0.095**</td>
<td>480.0</td>
<td>0.0468</td>
<td></td>
<td>621,255</td>
</tr>
<tr>
<td>school mates living in the</td>
<td>(0.033)</td>
<td>(0.829)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>same neighbourhood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding older sibling’s</td>
<td>0.100**</td>
<td>478.1</td>
<td>0.00702</td>
<td></td>
<td>621,255</td>
</tr>
<tr>
<td>school mates living in the</td>
<td>(0.034)</td>
<td>(0.933)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>same area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using additional instruments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. New peers’ KS2 percentiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and best KS2 subject</td>
<td>0.089**</td>
<td>259.1</td>
<td>0.231</td>
<td>3.635</td>
<td>621,255</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.631)</td>
<td>(0.057)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. New peers’ KS2 percentiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and percentage of KS2</td>
<td>0.088**</td>
<td>241.5</td>
<td>0.174</td>
<td>1.399</td>
<td>621,255</td>
</tr>
<tr>
<td>bottom 5% pupils</td>
<td>(0.033)</td>
<td>(0.677)</td>
<td>(0.237)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: + p < .10, * p < .05, ** p < .01. National Pupil Database, 2007-2010. Sibling spillover effects from the older to the younger sibling using instrumental variable estimation child and school-by-cohort-by-subject fixed effects. Standard errors clustered at school-cohort-subject level and p-values in parentheses. Pooled sample, pooling the observations for Mathematics, English and Science. The instrument in the benchmark estimation is the average Key Stage 2 attainment percentile of the older sibling’s new peers in secondary school. The F-test is the Angrist-Pischke multivariate F-test of excluded instruments in the first stage. The endogeneity test is the robust Durbin-Wu-Hausman test. Neighborhood refers to the Lower Level Super Output Area, Area to the Middle Layer Output Area of residence. Additional instruments are the proportion of new peers that had English, Science or Maths as their best subject at the end of primary school and that was in the bottom 5% of pupils in Key Stage 2 respectively.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>IV</td>
<td>FE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibling spillover</td>
<td>0.098*</td>
<td>0.102*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-Test</td>
<td>485.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex combination:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibling spillover</td>
<td>brother→brother</td>
<td>brother→sister</td>
<td>sister→brother</td>
<td>sister→sister</td>
</tr>
<tr>
<td></td>
<td>0.122*</td>
<td>0.083*</td>
<td>0.093*</td>
<td>0.111*</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Age gap:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibling spillover</td>
<td>1 year</td>
<td>2 years</td>
<td>3 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older sib KS4 results:</td>
<td>bot 5th percentile</td>
<td>5-95th percentile</td>
<td>top 5th percentile</td>
<td></td>
</tr>
<tr>
<td>Sibling spillover</td>
<td>0.049*</td>
<td>0.110*</td>
<td>0.142*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibling’s school:</td>
<td>same</td>
<td>different</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibling spillover</td>
<td>0.107*</td>
<td>0.081*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>621,540</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: + p < .10, * p < .05, ** p < .01. National Pupil Database, 2007-2010. Benchmark estimates reported in column (1) are IV estimations using child-by-school-by-cohort-by-subject fixed effects. All other results are from child-by-school-by-cohort-by-subject fixed effect estimation. Standard errors clustered at school-cohort-subject level in parentheses. Pooled sample, pooling the observations for Mathematics, English and Science. Each panel represents one estimation with interaction terms used to derive coefficients by sub-group. Age gap is measured in academic years. Older siblings attainment at Key Stage 4 grouped by whether the pupil was in the top (bottom) 5% of the national attainment distribution for his/her cohort or in the midle 90%.
Table 8: Sibling spillovers in disadvantaged families

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV</td>
<td>FE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibling spillover</td>
<td>0.098**</td>
<td>0.102**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-Test</td>
<td>485.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood deprivation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>0.093**</td>
<td>0.106**</td>
<td>0.112**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td></td>
</tr>
<tr>
<td>Older sibling bottom 5%</td>
<td>0.058**</td>
<td>0.038**</td>
<td>0.039**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.007)</td>
<td></td>
</tr>
<tr>
<td>Older sibling middle 90%</td>
<td>0.104**</td>
<td>0.116**</td>
<td>0.110**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td></td>
</tr>
<tr>
<td>Older sibling top 5%</td>
<td>0.125**</td>
<td>0.145**</td>
<td>0.149**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Free School Meal status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM eligible</td>
<td>0.087**</td>
<td>0.105**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older sibling bottom 5%</td>
<td>0.061**</td>
<td>0.045**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older sibling middle 90%</td>
<td>0.097**</td>
<td>0.112**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older sibling top 5%</td>
<td>0.133**</td>
<td>0.143**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language at home:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not English</td>
<td>0.130**</td>
<td>0.100**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older sibling bottom 5%</td>
<td>0.080**</td>
<td>0.047**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older sibling middle 90%</td>
<td>0.139**</td>
<td>0.107**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older sibling top 5%</td>
<td>0.144**</td>
<td>0.142**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>621,540</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: + p < .10, * p < .05, ** p < .01. National Pupil Database, 2007-2010. Benchmark estimates reported in column (1) are IV estimations using child-by-school-by-cohort-by-subject fixed effects. All other results are from child-by-school-by-cohort-by-subject fixed effect estimation. Standard errors clustered at school-cohort-subject level in parentheses. Pooled sample, pooling the observations for Mathematics, English and Science. Each panel includes results from two regressions, one with interaction terms capturing family disadvantage, the other using disadvantage x older sibling attainment interaction terms. Older siblings attainment at Key Stage 4 grouped by whether the pupil was in the top (bottom) 5% of the national attainment distribution for his/her cohort or in the midle 90%.
Appendix Table A1: First stage results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effect on older sibling’s attainment</td>
<td>Standard error</td>
<td>F-test</td>
</tr>
<tr>
<td>New peers’ average of the KS2 percentile</td>
<td>0.0074</td>
<td>(0.000)</td>
<td>485.65</td>
</tr>
</tbody>
</table>

Panel A

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage new peers in top 5%</td>
<td>0.0057</td>
<td>(0.848)</td>
<td></td>
</tr>
<tr>
<td>Percentage new peers in bottom 5%</td>
<td>-0.3435</td>
<td>(0.000)</td>
<td>26.71</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage new peers in top 5%</td>
<td>-0.4618</td>
<td>(0.000)</td>
<td></td>
</tr>
<tr>
<td>New peers’ average of the KS2 percentile</td>
<td>0.0100</td>
<td>(0.000)</td>
<td></td>
</tr>
<tr>
<td>Percentage new peers in bottom 5%</td>
<td>0.1374</td>
<td>(0.007)</td>
<td>214.33</td>
</tr>
</tbody>
</table>

Panel C

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations</td>
<td>621,255</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: + p < .10, * p < .05, ** p < .01. National Pupil Database, 2007-2010. Coefficients are first stage results from IV estimations using child-by-school-by-cohort-by-subject fixed effects. Standard errors clustered at school-cohort-subject level in parentheses. Pooled sample, pooling the observations for Mathematics, English and Science. Panels A, B and C report the estimates of three different first stage equations. Panel A shows the effect on the older sibling’s attainment of average new peers’ KS2 percentiles. This is the first stage results of our benchmark model reported in Table 5. Panel B shows first stage results when using the percentage of new peers that were in the top (bottom) 5% of the national attainment distribution for his/her cohort at the end of primary school; Panel B shows the first stage results using the top and bottom 5% as well as the average KS2 percentiles of new peers.