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Abstract 

 
This paper represents an intersection between two lines of research. The first is portfolio choice 
theory, which underlies much of finance; the second is the elicitation of preferences under 
uncertainty. The theory of the behaviour of financial markets builds heavily on portfolio choice 
theory; until recently this has assumed that preferences are of a particularly simple kind. In contrast 
research on preferences has revealed that people have more sophisticated preferences. This paper 
tries to bring the two fields together by investigating, in a portfolio choice context, the preferences 
that are revealed by decisions. In the second of these two fields, researchers are increasingly using 
allocation problems to elicit the preferences of subjects, believing that such problems are more 
informative, and perhaps more natural, than other elicitation methods. At the same time portfolio 
choice theory is itself concerned with an allocation problem. Usually in experimental finance the 
allocation problems are over Arrow securities each of which pays off only in one state of the world. 
Instead we study the more realistic case, familiar from finance, in which all assets pay off in all states 
of the world. To make our study more realistic we frame the problem as one under ambiguity, where 
the probabilities of the states are not known to the decision-maker. This enables us to compare the 
performance of some recent theories of behaviour under ambiguity as well as traditional ones (such 
as Mean-Variance) from the theory of finance. We also identify a ‘rule of thumb’ that decision-
makers may be using in this rather complex scenario. This research may help us to understand more 
fully actual portfolio choice decisions. 
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1. Introduction 

The theory of financial markets builds heavily on portfolio choice theory. In turn this is 

constructed on assumptions about preferences under uncertainty. Until recently these assumptions 

have been that decision-makers have mean-variance preferences or that they are expected utility 

maximisers.  However, in the research field of decision-making under uncertainty more sophisticated 

preference functionals have been proposed, and some appear to be empirically valid. This paper 

marries these two fields, by experimentally studying the portfolio choice decisions of subjects, and 

inferring from the data their underlying preferences. So we not only elicit preferences, we elicit 

them in a particularly relevant context. 

There are several methods used by economists to elicit the preference functionals of subjects in 

situations of uncertainty. These include Holt-Laury Price Lists (Holt and Laury 2002), Pairwise Choice 

questions (Hey and Orme 1994) and the Becker-DeGroot-Marschak (BDM) mechanism (Becker et al 

1964). More recently researchers have been using the Allocation Method, pioneered originally by 

Loomes (1991), revived by Andreoni and Miller (2002) in a social choice context, and later by Choi et 

al (2007) in a risky choice context. The allocation method seems potentially more informative than 

pairwise choice and price lists, and possibly easier to understand by subjects than the BDM 

mechanism. 

In finance, allocation problems are familiar and are usually referred to as portfolio choice 

problems. However, in the language of finance experts, the kinds of portfolio choice problems 

presented to subjects in experiments are almost always over what are termed Arrow securities, each 

of which pays off some amount in just one state of the world. In practice, portfolio choice problems 

are over more realistic assets – all of which have some payoff in each state of the world. That is what 

we implement in our experimental investigation. 

Clearly there is uncertainty (about which state of the world may occur) in practice. Most 

experimental studies characterise this uncertainty as risk, and subjects are told the probabilities of 

the various states occurring. In the real world, such probabilities are not known by the decision-
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makers so the uncertainty is better characterised as ambiguity. In our experiment we follow this 

route, as we shall describe. 

Characterising uncertainty as ambiguity rather than risk opens up many possibilities for 

theorists, and the last decade has witnessed a proliferation of new theories of behaviour under 

ambiguity – most of which are surveyed in Etner et al (2012). We use our experimental data to 

examine a subset of these theories to see which best explains the behaviour of the subjects. At the 

same time theorists in finance cling to Mean-Variance analysis, despite it being inconsistent with 

much of decision theory. But Mean-Variance analysis is much simpler to apply than many modern 

theories of behaviour under ambiguity, and decision-makers may well use this rather than some 

more complicated method of taking decisions. With Mean-Variance analysis decision-makers have to 

guess at the underlying probabilities, assume that they are true, and then work out the mean and 

variance of any given portfolio to determine their optimal portfolio. Contrast this with what 

decision-makers are presumed to do under the modern theories ‒ which we shall outline shortly. 

But what Mean-Variance postulates that decision-makers do may well be closer to what real 

decision-makers do: rather than complicate an already complicated problem with a complicated 

decision rule, they may simplify it by adopting a simple decision rule. Indeed one can push this 

argument further and argue that decision-makers adopt some ‘rule of thumb’. Ex ante, of course, we 

may not know what such a rule may look like – but we can search for evidence of it in our data. So 

we test how well mean-variance explains behaviour, and we search for a ‘rule of thumb’. 

In summary, we present a set of portfolio choice problems under ambiguity to our subjects. We 

fit a variety of models to our data. We see which model of preferences best explains the data. 

The paper is organised as follows. We start in section 2 by describing the kind of portfolio choice 

problems we presented to our subjects, and then look at various theories saying how people should 

behave. We start simple with a situation of risk and discuss the implications of Expected Utility (EU) 

theory and Mean-Variance theory. We then move on to ambiguity and look at MaxMin (Gilboa and 

Schmeidler 1989) preferences and then generalise them to α-MEU (Ghirardato et al 2004) 
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preferences. In section 3 we anticipate the constraints we put on our subjects (one of which was 

that they were not allowed to hold negative amounts of any assets) and explore the implications, 

particularly from the point of view of deriving the optimal decisions under any particular preference 

functional. In section 4 we give more detail about our experimental design. In section 5 we discuss 

the appropriate stochastic specification underlying our econometric analysis, linking it to the 

constraints imposed on our subjects. Section 6 reports our results and section 7 concludes. 

Additional material can be found on the EXEC website. 

 

2. The Portfolio Choice Problem and Possible Solutions 

The decision-maker (DM) is given an endowment (which we normalise here to 100, as was the 

case in our experiment) in cash to allocate to three assets: one with a certain return (which we 

normalise to 1); and the other two with uncertain1 returns, which depend upon which state of 

nature occurs. The number of such states is set at 3, which makes the problem a meaningful2 one 

while reducing its complexity. Denote by c1 and c2 the allocations to the two uncertain assets 1 and 

2. This implies that the allocation to the certain asset c0 is given by c0 = 100 – c1 – c2. Crucial to the 

allocation problem are the returns on the uncertain assets. Denoting by rij the absolute return on 

asset i if state j occurs, we have the following returns table: 

 state 1 state 2 state 3 

asset 1 r11 r12 r13 

asset 2 r21 r22 r23 

  

It follows that the portfolio payoff in state j, denoted by dj, is given by dj = c0 + r1jc1 + r2jc2  (j=1,2,3). 

The DM’s optimal allocations depend upon his or her preferences. If we start with Expected 

Utility (EU) theory under risk, or Subjective Expected Utility (SEU) under ambiguity, where pj (j=1,2,3) 

is the (subjective) probability of state j occurring, then the DM’s objective function is the 

maximisation of p1u(d1) + p2u(d2) + p3u(d3) where u(.) is the individual’s utility function. If instead the 

                                                           
1
 We are using this term at the moment to embrace both risk and ambiguity. 

2
 If there were just 2 states there would not be enough information in the data to allow us to infer 

preferences. 

http://www.york.ac.uk/economics/research/centres/experimental-economics/
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DM follows Mean-Variance (MV) theory using probabilities pj (j=1,2,3), then the objective is the 

maximisation of μ – rσ2, where r indicates the attitude to risk and the mean, μ,  and variance, σ2, of 

the portfolio are given by μ = p1d1 + p2d2 + p3d3 and σ2 = p1(d1-μ)2 + p2(d2-μ)2 + p3(d3-μ)2 . 

The above assumes that the DM works with either objective or subjective probabilities. If, 

however, the DM is in a situation of ambiguity and feels unable to attach unique probabilities to the 

various states of the world, then to model his or her behaviour we need to turn to one of the new 

theories of behaviour under ambiguity. In this paper we work with the simplest – MaxMin Expected 

Utility (MEU) and the α-MEU model. Both of these theories start by assuming that, while the DM 

cannot attach unique probabilities to the various states, he or she works with a set of possible 

probabilities. The theories do not say how this set is specified. We assume what appears to be the 

simplest: this set is all possible probabilities defined by (non-negative) lower bounds p1, p2 and p3 

(where p1 + p2 + p3 < 1) on the probabilities. If you like, it is a little triangle properly within the 

Marschak-Machina triangle. 

MEU postulates that the objective function of the DM is to choose the allocation which 

maximises the minimum expected utility over this set of possible probabilities. The α-MEU model 

generalises this to maximising the weighted average of the minimum and maximum expected utility 

over this set. More precisely, the α-MEU model’s objective function is the maximisation of  

αmin(p1≤p1, p2≤p2, p3≤p3)[ p1u(d1) + p2u(d2) + p3u(d3)] + (1-α)max(p1≤p1, p2≤p2, p3≤p3)[ p1u(d1) + p2u(d2) + p3u(d3)]. 

MEU is the special case when α=1. 

 Finally, we investigate a simple rule motivated in part by informally enquiring of the subjects 

how they had reached their decisions and in part by the data. We call this the Safety-First (SF) rule: 

allocations were made first such that their payoff in all states would be above some threshold w and 

then maximising the payoff in the most likely state3. When fitting this model, we estimate the 

parameter w. 

 

                                                           
3
 It was clear from the Bingo Blower that there were more balls of one colour than either of the other two, 

though the precise numbers could not be known. 
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3. Constraints and Their Implications 

In the experiment we did not allow the subjects to make negative allocations (which they might 

have wanted to do to maximise their objective function). We enforced this rule to stop the 

possibility of subjects making losses in the experiment. This meant that what we observe in the data 

are not optimal unconstrained allocations, but optimal constrained allocations. In order to fit the 

various models to the data we need to compute (for any given set of parameters) the optimal 

constrained allocations. While explicit analytical solutions are obtainable for the optimal 

unconstrained allocations for some of the preference functionals, they are not easily obtained for 

the optimal constrained ones. As a consequence we calculate them numerically. 

There was also an additional ‘constraint’ on the allocations that subjects could make. In the 

experiment, the endowment in each problem was 100, and subjects were forced to implement 

allocations to the nearest integer. Given the non-negativity constraint this implied a set of 5151 

possible allocations. Searching over these 5151 possible allocations proved to be a more efficient 

method of finding the optimal constrained allocations than using some built-in function, because of 

the complexity of the problem. 

 

4. The Experimental Design 

Subjects were presented with a total of 654 allocation problems, in each of which they were 

asked to allocate 100 experimental tokens to two possible assets or to keep some of them as tokens. 

In each of these they were shown a returns table. An example is the following: 

 pink green blue 

asset 1 1.7 0.9 0.6 

asset 2 0 0.1 3.1 

 
The colours relate to the way that ambiguity was implemented in the experiment. In the laboratory 

there was a Bingo Blower with pink, green and blue balls blowing around in continuous motion. 

Subjects could see the balls, and get a rough idea of the numbers and relative proportions of each 
                                                           
4
 These problems (and the number of them) were chosen after intensive pre-experimental simulations based 

on results from a pilot experiment, and were chosen to maximise the power of our estimates. 

http://www.york.ac.uk/economics/research/centres/experimental-economics/research/ongoing-projects/#tab-2
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colour, so, when at the end of the experiment, one ball was ejected by them, they could not be sure 

of the probability of getting a ball of a particular colour5.  Subjects were paid on a randomly chosen 

problem, with their payment being determined by the payoff (given their chosen allocations) for the 

state implied by the colour of a ball randomly ejected from the Blower. 

A screen shot from the experiment can be seen in Figure 1; the ‘returns table’ was called the 

‘Payoff Table’. The triangle shows the set of all allowable allocations; as the subject moved his or her 

cursor around the triangle the Portfolio entries on the screen dynamically changed, and the implied 

payoffs for each colour were shown in the entries under ‘Portfolio Payoff’. Subjects were forced to 

spend a minimum time of 30 seconds before registering their choice on any problem; there was a 

maximum time of 180 seconds per problem, and if they had not registered their choice by that time, 

it was taken to be an allocation of zero to the two uncertain assets. The instructions given to the 

subjects can be found here. 

 

5. Stochastic Specification6 

The object of the paper is to fit preference functionals to the experimental data and see which 

best explains the behaviour of the subjects. We do this subject by subject, as we believe that 

subjects are different. Our data are the actual allocations in each problem, denoted by x1, x2 and x3 

(where x1 + x2 + x3 = 100)7.  Each preference functional specifies, given the underlying behavioural 

parameters8, an optimal constrained allocation on any problem. Let us denote these by x1*, x2* and 

x3*; again these add to 100. These depend upon the underlying behavioural parameters. It would be 

pleasing if xi = xi* for all i, for a particular preference functional and particular parameters, as this 

would enable us to identify the best preference functional. But this is unlikely to happen – the 

                                                           
5
 There were actually 10 pink, 20 green and 10 blue balls in the Blower, so the objective probabilities were 

0.25, 0.5 and 0.25. 
6
 This section can be safely skipped by those mainly interested in the results. 

7
 We omit a subscript, indicating the problem number, for clarity 

8
 These include the risk aversion index, the subjective probabilities, and, for the ambiguity models, the lower 

bounds on the probabilities. For SP the parameter is the threshold w. 

http://www.york.ac.uk/economics/research/centres/experimental-economics/research/unpublishedpapers/
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reason being, as is well-known, that subjects make errors when implementing their decisions9. So we 

need to admit the possibility of errors. We need also to model how these are generated. As both x 

and x* are bounded (between 0 and 100) we proceed as follows. First we introduce new variables y 

and y* which are the corresponding x’s divided by 100. So yi = xi/100 and yi* = xi*/100 for i=1,2,3. 

These are bounded between 0 and 1. The obvious candidate distribution is the beta distribution 

which takes values over 0 and 1. Furthermore, it seems natural to begin with to assume that the 

actual allocations, whilst noisy, are not biased, so that each yi has a mean of yi* (and hence that each 

xi has mean xi*). Now a variable with a beta distribution has two parameters α and β, and the mean 

and variance of the variable are respectively α/(α+β) and αβ/[(α+β)2(α+β+1)].  Taking y1 first, if we 

assume that its distribution is beta with parameters α1 = y1*(s-1) and β = (1-y1*)(s-1), this guarantees 

that the mean of y1 is y1* and that its variance is y1*(1-y1*)/s. The parameter s here is an indicator of 

the precision of the distribution: the higher is s the more precise is the DM and the less noisy are the 

allocations.  

Notice, however, that the variance of the distribution depends upon y1* ‒ the closer it is to 

the bounds, the smaller it is, and at the bounds it becomes zero. This implies that this distribution 

cannot rationalise any non-zero allocation if the optimal is zero, nor can it rationalise any 

observation not equal to 1 if the optimal is 1. To get round this problem, we modify our definitions 

of the parameters α1 and β1. Instead of α1 = y1*(s-1) and β=(1-y1*)(s-1) we postulate that α1 = y1’(s-1) 

and β = (1-y1’)(s-1) where y1’=b/2+(1-b)y1*. There is a new parameter, b, which indicates the bias of 

the actual allocation, so that now the mean of y1 is not y1* but instead b/2+(1-b)y1*. If b is zero then 

it is not biased, and as b increases the bias increases. 

Now we turn to y2. We must take into account that this must be between 0 and 1-y1. Hence 

y2/(1-y1) is between 0 and 1. Here again a beta distribution is the natural candidate and we assume 

that the distribution of y2/(1-y1) is beta with parameters α2 and β2 given by α2 = y2’(s-1)/(1-y1) and β2 

= (1-y2’)(s-1)/(1-y1) where y2’=b/2+(1-b)y2*. Clearly if y1 = 1, this method is not applicable, and so in 

                                                           
9
 An alternative is that none of the preference functionals explain behaviour. 
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this case we assume that the error is made solely on y1. In all cases the third allocation, y3, is the 

residual. 

Finally, in order to proceed to the likelihood function we should remember that allocations 

could only be made in integers. We assume that subjects round their intended allocations. So, for 

example, the likelihood of an observation of x1  is equal to the cumulative probability from x1-0.5 to 

x1+0.5. The general form of the sum of log-likelihood function for all 65 problems can therefore be 

written as 

ℒ =∑𝑙𝑜𝑔(𝐿1𝐿2)

65

𝑗

 

Here 

{
 
 

 
 𝐿1 = 𝐹 (

𝑥1 + 0.5

100
, 𝛼1, 𝛽1) − 𝐹 (

𝑥1 − 0.5

100
, 𝛼1, 𝛽1)

𝐿2 = 𝐹 (
𝑥2 + 0.5

100 − 𝑥1
, 𝛼2, 𝛽2) − 𝐹 (

𝑥2 − 0.5

100 − 𝑥1
, 𝛼2, 𝛽2)  𝑤ℎ𝑒𝑛  𝑥1 ≠ 100

1 𝑤ℎ𝑒𝑛 𝑥1 = 100 

 

 
where F(x,α,β) is the cdf of a beta distribution with parameters α and β. These parameters are 

specified above. 

We use the Maximum Likelihood Routine in Matlab to find the optimal estimates for our 

parameters (which are r, s, b the underlying probabilities or the lower bounds on them), and the 

goodness-of-fit of the various preference functionals. 

 
 
6. Results 

We have explored a number of different specifications and we report here just the best. Our 

primary concern is about the best fitting preference functional; we start with that. We measure the 

goodness-of-fit by the maximised log-likelihood, but we need to correct for the number of 

parameters in the preference functional – the number of degrees of freedom in the estimation. 

We have already talked about the preference functionals we have fitted. Each of these involves 

a utility function; we have taken10 this to be the constant absolute risk aversion form so that utility 

                                                           
10

 We also tried the CRRA utility function but this generally fitted worse. 
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u(x) is proportional to -e-rx. In order to compare the goodness-of-fit of the different specifications, 

we need to distinguish between pairs of preference functionals one of which is nested within the 

other, and pairs of preference functionals where neither is nested within the other. We use the 

Likelihood Ratio Test (LRT) for the former and the Clarke test for the latter. We note that EU is 

nested within both MEU and α-MEU and that MEU is nested within α-MEU, but that none of the 

other functionals are nested within any other. 

When one model is nested within another, the test statistic is 

T = 2(ℒ1 − ℒ0) 

where ℒ0 is the maximised log-likelihood of the nested model and  ℒ1 is the maximised log-

likelihood of the nesting model. The test statistic has a Chi-square distribution with degrees of 

freedom equal to the difference in the number of parameters in the two competing models. As α-

MEU has one more parameter than MEU and as MEU has one more parameter than EU, the 

corresponding degrees of freedom for EU v MEU, EU v α-MEU and MEU v α-MEU are 1, 2 and 1. The 

results are summarised in Table 1, which reports the percentage of the subjects11 for which the test 

was significant. 

 
Table 1: Percentage of subjects significant using the Likelihood Ratio Test 

 significant at 5% significant at 1% 

MEU v EU 17% 13% 

α-MEU v MEU 11% 7% 

α-MEU v EU 21% 12% 

 
Both MEU and α-MEU do moderately better than EU for a small number of subjects, which 

may not be surprising as the decision problem was one under ambiguity rather than under risk. 

Nevertheless EU performs well. 

When models are not nested one within the other we use the Clarke Test (Clarke 2007). The 

null hypothesis is that the models are equally good, and hence on a particular problem the 

                                                           
11

 These are over 75 subjects. We had a total of 77 but we omit 2 from this analysis as they were 
extremely risk-averse, investing nothing in either risky asset; clearly all the models, with appropriate 
parameters, can equally well describe the behaviour of these subjects. 
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probability of the log-likelihood for one model being larger than the probability of the other model is 

½. That is: 

𝐻0:  𝑃(𝐿1 − 𝐿2 > 0) = 0.5 

Here 𝐿1 and 𝐿2 are the individual log-likelihoods of the 65 problems, which are calculated using the 

estimated parameters of the two competing models. The test statistic is  

𝑇 =∑𝐼𝑖(𝐿1 − 𝐿2)

65

𝑖

 

Here 

𝐼𝑖 = {
1,   𝐿1 − 𝐿2 > 0      
  0,   𝐿1 − 𝐿2 ≤ 0   .  

 

 

Under the null hypothesis T has a binomial distribution with parameters n=65 and p=0.5. Thus an 

observation greater than 40 or less than 25 rejects the null hypothesis at the 5% significance level. 

The results are summarised in Table 2.  These are the percentages of the 75 subjects for whom the 

test was significant. 

Table 2: Clarke Test 

(A) Comparisons between SF, EU, MEU and α-MEU (5% significance level) 

EU v SF MEU v SF α-MEU v SF 

EU 
better 

than SF 

SF better 
than EU 

Neither 
better 

than the 
other 

MEU 
better 

than SF 

SF better 
than 
MEU 

Neither 
better 

than the 
other 

α-MEU 
better 

than SF 

SF better 
than  α-

MEU 

Neither 
better 
than 
the 

other 

64% 9% 25% 64% 5% 31% 65% 5% 30% 

 

(B) Comparisons between MV, and EU, MEU and α-MEU (5% significance level) 

EU v MV MEU v MV α-MEU v MV 

EU 
better 

than MV 

MV 
better 

than EU 

Neither 
better 

than the 
other 

MEU 
better 

than MV 

MV 
better 
than 
MEU 

Neither 
better 

than the 
other 

α-MEU 
better 

than MV 

MV 
better 

than  α-
MEU 

Neither 
better 
than 
the 

other 

48% 7% 45% 48% 4% 48% 52% 5% 43% 
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 From the above, it seems that SF does not do particularly well and perhaps can be dismissed. 

More importantly, since much of finance theory is built on it, MV seems to be outperformed by EU 

and its generalisations for many of the subjects. 

As a side issue, it may be interesting to report on the estimated probabilities for EU and the 

estimated lower bounds on the probabilities for MEU and α-MEU; recall that the true probabilities 

were 0.25 (pink), 0.5 (green) and 0.25 (blue). The averages (over all subjects) of the estimated 

probabilities for EU were 0.262, 0.530 and 0.208, which are very close to the true probabilities 

(though there was considerable dispersion across subjects). For MEU the average lower bounds 

were 0.228, 0.507 and 0.190, while for α-MEU they were 0.212, 0.490 and 0.171. These are 

(necessarily) lower than the corresponding EU probabilities, but only marginally so. These figures 

suggest that while, for some subjects, MEU or α-MEU are statistically superior to EU, the economic 

importance is marginal. 

 While SF does not perform particularly well, it may be if interest to report the estimated 

values of the threshold w – the distribution is in Figure 2. It will be seen from this that many subjects 

had a very high threshold – some approaching 100%. This alternatively could be interpreted as the 

result of very high risk-aversion, but this will of course by picked up by EU (or MEU or α-MEU) with a 

high estimated level of risk-aversion. 

 

7. Conclusions 

The main conclusion from the experiment is that MV did rather badly as an explanation of 

behaviour; this is rather worrying for finance theory. In contrast EU does rather well, not only 

compared to MV, but also compared with the generalisations, MEU and α-MEU: for relatively few 

subjects do these latter perform better. This indicates that subjects do not use a more complicated 

preference functional when choosing their allocations in a complicated setting. At the same time our 

‘simple’ rule, SF, does worse than EU, suggesting some sophistication in subjects’ decisions. 
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Figures 
 
Figure 1: A screen shot from the experiment 
 

 
 
 
 
Figure 2: The distribution of the estimated threshold w for SF 
 

 


