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Abstract

In this article, we study a partially linear single-index model for longitudinal data under

a general framework which includes both the sparse and dense longitudinal data cases. A

semiparametric estimation method based on the combination of the local linear smoothing

and generalized estimation equations (GEE) is introduced to estimate the two parameter

vectors as well as the unknown link function. Under some mild conditions, we derive the

asymptotic properties of the proposed parametric and nonparametric estimators in different

scenarios, from which we find that the convergence rates and asymptotic variances of the

proposed estimators for sparse longitudinal data would be substantially different from those

for dense longitudinal data. We also discuss the estimation of the covariance (or weight) ma-

trices involved in the semiparametric GEE method. Furthermore, we provide some numerical

studies to illustrate our methodology and theory.
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1. Introduction

Consider a semiparametric partially linear single-index model defined by

Y (t) = Z>(t)β + η
(
X>(t)θ

)
+ e(t), t ∈ T , (1.1)

where T is a bounded time interval, β and θ are two unknown vectors of parameters with

dimensions d and p, respectively, η(·) is an unknown link function, Y (t) is a scalar stochastic

process, Z(t) and X(t) are covariates with dimensions d and p, respectively, and e(t) is

the random error process. For the case of independent and identically distributed (i.i.d.) or

weakly dependent time series data, there has been extensive literature on statistical inference

of model (1.1) since its introduction by Carroll et al. (1997). Several different approaches

have been proposed to estimate the unknown parameters and link function involved, see,

for example, Xia et al. (1999), Yu and Ruppert (2002), Xia and Härdle (2006), Wang et

al. (2010) and Ma and Zhu (2013). The recent paper by Liang et al. (2010) further developed

semiparametric techniques for the variable selection and model specification testing issues

in the context of model (1.1).

In this paper, we are interested in studying the above partially linear single-index model

in the context of longitudinal data which arise frequently in many fields of research, such

as biology, climatology, economics and epidemiology, and thus has attracted considerable

attention in the literature in recent years. Various parametric models and methods have

been studied in depth for longitudinal data; see Diggle et al. (2002) and the references

therein. However, the parametric models may be misspecified in practice, which may lead

to inconsistent estimates and incorrect conclusions being drawn from the longitudinal data.

Hence, to address this issue, in recent years, there has been a large literature on how to relax

the parametric assumptions on the longitudinal data models and many nonparametric and

semiparametric models have thus been investigated; see, for example, Lin and Ying (2001),

Lin and Carroll (2001, 2006), He et al. (2002), Fan and Li (2004), Wang et al. (2005), Wu

and Zhang (2006), Zhang et al. (2009), Li and Hsing (2010), and Jiang and Wang (2011).

Suppose that we have a random sample with n subjects from model (1.1). For the

ith subject, i = 1, . . . , n, the response variable Yi(t) and the covariates
{
Zi(t), Xi(t)

}
are

collected at random time points tij, j = 1, . . . ,mi, which are distributed in a bounded time

interval T according to the probability density function fT (t). Here mi is the total number

of observations for the ith subject. To accommodate such longitudinal data, model (1.1) is
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written in the following framework:

Yi(tij) = Z>i (tij)β + η
(
X>i (tij)θ

)
+ ei(tij) (1.2)

for i = 1, . . . , n and j = 1, . . . ,mi. When mi varies across the subjects, the longitudinal data

set under investigation is unbalanced. Several nonparametric and semiparametric models can

be viewed as special cases of model (1.2). For instance, when β = 0, model (1.2) reduces to

the single-index longitudinal data model (Jiang and Wang, 2011; Chen et al., 2013a); when

p = 1 and θ = 1, model (1.2) reduces to the partially linear longitudinal data model (Fan

and Li, 2004). To avoid confusion, we let β0 and θ0 be the true values of the two parameter

vectors. For identifiability reasons, θ0 is assumed to be a unit vector with the first non-

zero element being positive. Furthermore, we allow that there exists certain within-subject

correlation structure for ei(tij), which makes the model assumption more realistic but the

development of estimation methodology more challenging.

To estimate the parameters β0, θ0 as well as the link function η(·) in model (1.2), we

first apply the local linear approximation to the unknown link function, and then introduce

a profile weighted least squares approach to estimate the two parameter vectors based on

the technique of generalized estimation equations (GEE). Under some mild conditions, we

derive the asymptotic properties of the developed parametric and nonparametric estimators

in different scenarios. Our framework is flexible in that mi can either be bounded or tend

to infinity. Thus, both the dense and sparse longitudinal data cases can be included. Dense

longitudinal data means that there exists a sequence of positive numbers Mn such that

minimi ≥Mn, and Mn →∞ as n→∞ (see, for example, Hall et al., 2006; and Zhang and

Chen, 2007), whereas sparse longitudinal data means that there exists a positive constant

M∗ such that maximi ≤ M∗ (see, for example, Yao et al., 2005; Wang et al., 2010). We

show that the convergence rates and asymptotic variances of our semiparametric estimators

in the sparse case are substantially different from those in the dense case. Furthermore,

we show that the proposed semiparametric GEE (SGEE)-based estimators are generally

asymptotically more efficient than the profile unweighted least squares (PULS) estimators,

when the weights in the SGEE method are chosen as the conditional covariance matrix of

the errors given the covariates. We also introduce a semiparametric approach to estimate

the covariance matrices (or weights) involved in the SGEE method, which is based on a

variance-correlation decomposition and consists of two steps: first estimate the conditional

variance function using a robust nonparametric method that accommodates heavy-tailed
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errors; and second estimate the parameters in the correlation matrix. A simulation study

and a real data analysis are provided to illustrate our methodology and theory.

The rest of the paper is organized as follows. In Section 2, we introduce the SGEE

methodology to estimate β0, θ0 and η(·). Section 3 establishes the large sample theory for

the proposed parametric and nonparametric estimators and gives some related discussions.

Section 4 discusses how to determine the weight matrices in the estimation equations. Section

5 gives some numerical examples to investigate the finite sample performance of the proposed

approach. Section 6 concludes the paper. Technical assumptions are given in Appendix A.

The proofs of the main results are given in Appendix B. Some auxiliary lemmas as well as

their proofs are provided in Appendix C.

2. Estimation methodology

Various semiparametric estimation approaches have been proposed to estimate model

(1.1) in the case of i.i.d. observations (or weakly dependent time series data). See, for ex-

ample, Carroll et al. (1997) and Liang et al. (2010) for the profile likelihood method; Yu

and Ruppert (2002) and Wang et al. (2010) for “remove-one-component” technique using

penalized spline and local linear smoothing, respectively; Xia and Härdle (2006) for the min-

imum average variance estimation approach. However, there is limited literature on partially

linear single-index models for longitudinal data because of the more complicated structures

involved. Recently, Chen et al. (2013b) studied a partially linear single-index longitudinal

data model with individual effects. To remove the individual effects and derive consistent

semiparametric estimators, they had to limit their discussions to the dense and balanced

longitudinal data case. Ma et al. (2013) considered a partially linear single-index longitudi-

nal data model by using polynomial splines to approximate the unknown link function, but

their discussion was limited to the sparse and balanced longitudinal data case. In contrast,

as mentioned in the Introduction, our framework includes both the sparse and dense lon-

gitudinal data cases. Meanwhile, observations are allowed to be collected at irregular and

subject specific time points. All this provides much wider applicability in our framework.

Furthermore, to improve the efficiency of the semiparametric estimation, we develop a new

profile weighted least squares approach to estimate the parameters β0, θ0 as well as the link

function η0(·).

To simplify the presentation, let Yi =
(
Yi(ti1), . . . , Yi(timi)

)>
,Xi =

(
Xi(ti1), . . . ,Xi(timi)

)>
,

Zi =
(
Zi(ti1), . . . ,Zi(timi)

)>
, ei =

(
ei(ti1), . . . , ei(timi)

)>
, and η(Xi,θ) =

(
η
(
X>i (ti1)θ

)
, . . . ,
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η
(
X>i (timi)θ

))>
. With the above notation, model (1.2) can then be re-written as

Yi = Ziβ0 + η(Xi,θ0) + ei. (2.1)

We further let Y = (Y>1 , . . . ,Y
>
n )>, Z =

(
Z>1 , . . . ,Z

>
n

)>
, E = (e>1 , . . . , e

>
n )>, η(X,θ) =(

η>(X1,θ
)
, . . . ,η>(Xn,θ)

)>
. Then, model (2.1) is equivalent to

Y = Zβ0 + η(X,θ0) + E. (2.2)

Our estimation procedure is based on the profile likelihood method, which is commonly

used in semiparametric estimation; see, for example, Fan and Huang (2005) and Fan et

al. (2007). Let Yij = Yi(tij), Zij = Zi(tij), and Xij = Xi(tij). For given β and θ, we can

estimate η(·) and its derivative η′(·) at point u by minimizing the following loss function

Ln
(
a, b
∣∣β,θ) =

n∑
i=1

{
wi

mi∑
j=1

[
yij − Z>ijβ − a− b(X>ijθ − u)

]2
K
(X>ijθ − u

h

)}
, (2.3)

where K(·) is a kernel function, h is a bandwidth and wi, i = 1, . . . , n, are some weights.

It is well-known that the local linear smoothing has advantages over the Nadaraya-Watson

kernel method, such as higher asymptotic efficiency, design adaption and automatic boundary

correction (Fan and Gijbels, 1996). As in the existing literature such as Wu and Zhang

(2006), the weights wi can be specified by two schemes: wi = 1/Tn (type 1) and wi = 1/(nmi)

(type 2), where Tn =
∑n

i=1 mi. The type 1 weight scheme corresponds to an equal weight

for each observation, while the type 2 scheme corresponds to an equal weight within each

subject. As discussed in Huang et al. (2002) and Wu and Zhang (2006), the type 1 scheme

might be a practical choice if the number of observations is relatively similar across the

subjects, while the type 2 scheme may be appropriate otherwise. As the longitudinal data

under investigation are allowed to be unbalanced, in this paper, we use wi = 1/(nmi), which

was also used by Li and Hsing (2010), and Kim and Zhao (2012). We denote

(
η̂(u
∣∣β,θ), η̂′(u

∣∣β,θ)
)>

= arg min
a,b

Ln
(
a, b
∣∣β,θ). (2.4)

By some elementary calculations (see, for example, Fan and Gijbels, 1996), we have

η̂(u
∣∣β,θ) =

n∑
i=1

si(u
∣∣θ)
(
Yi − Ziβ

)
(2.5)
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for given β and θ, where

si(u
∣∣θ) = (1, 0)

[ n∑
i=1

X
>
i (u
∣∣θ)Ki(u

∣∣θ)Xi(u
∣∣θ)
]−1

X
>
i (u
∣∣θ)Ki(u

∣∣θ),

Xi(u
∣∣θ) =

(
Xi1(u

∣∣θ), . . . ,Ximi(u
∣∣θ)
)>
, Xij(u

∣∣θ) =
(
1,X>ijθ − u

)>
,

Ki(u
∣∣θ) = diag

(
wiK

(X>i1θ − u
h

)
, . . . , wiK

(X>imiθ − u
h

))
.

Based on the profile least squares approach with the first-stage local linear smoothing,

we can construct estimators of the parameters β0 and θ0. We start with the PLUS (pro-

file unweighted least squares) method which ignores the possible within-subject correlation

structure. Define the loss function by

Qn0(β,θ) =
n∑
i=1

[
Yi − Ziβ − η̂(Xi|β,θ)

]>[
Yi − Ziβ − η̂(Xi|β,θ)

]
=

[
Y− Zβ − η̂(X|β,θ)

]>[
Y− Zβ − η̂(X|β,θ)

]
, (2.6)

where, for given β and θ, η̂(Xi|β,θ) and η̂(X|β,θ) are the local linear estimators of the

vectors η(Xi,θ) and η(X,θ), respectively. The PULS estimators of β0 and θ0 are obtained

by minimizing Qn0(β,θ), and we denote them by β̃ and θ̃, respectively.

Although it is easy to verify that both β̃ and θ̃ are consistent, they are not efficient as

the within-subject correlation structure is not taken into account. Hence, to improve the

efficiency of the parametric estimators, we next introduce a GEE-based method to estimate

the parameters β0 and θ0. Existing literature on GEE-based method in longitudinal data

analysis includes Liang and Zeger (1986), Xie and Yang (2003) and Wang (2011). Let

W = diag{W1, . . . ,Wn}, where Wi = R−1
i and Ri is an mi×mi working covariance matrix

whose estimation will be discussed in Section 4. Define

ρZ(Xi,θ) =
(
ρZ(X>i1θ|θ), . . . , ρZ(X>imiθ|θ)

)>
, ρZ(u|θ) = E

[
Zij|X>ijθ = u

]
,

ρX(Xi,θ) =
(
ρX(X>i1θ|θ), . . . , ρX(X>imiθ|θ)

)>
, ρX(u|θ) = E

[
Xij|X>ijθ = u

]
,

Λi(θ) =
(
Zi − ρZ(Xi,θ),

[
η′(Xi,θ)⊗ 1>p

]
�
[
Xi − ρX(Xi,θ)

])
,

where η′(Xi,θ) is a column vector with its elements being the derivatives of η(·) at points

X>ijθ, j = 1, . . . , mi, 1p is a p-dimensional vector of ones, ⊗ is the Kronecker product, and

� denotes the componentwise product. The construction of the parametric estimators is

based on the following equation:

n∑
i=1

Λ̂
>
i (θ)Wi

[
Yi − Ziβ − η̂(Xi|β,θ)

]
= 0, (2.7)
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where Λ̂i(θ) is an estimator of Λi(θ) with ρZ(Xi,θ), ρX(Xi,θ), and η′(Xi,θ) replaced

by their corresponding local linear estimated values. Let β̂ and θ̂ be the solutions to the

weighted estimation equations defined in (2.7). Corollary 3.1 below shows that the SGEE-

based estimators β̂ and θ̂ are generally asymptotically more efficient than the PULS esti-

mators β̃ and θ̃, when the weights are chosen appropriately.

Replacing β and θ in η̂(·) by β̂ and θ̂, respectively, we obtain the local linear estimator

of the link function η(·) at u by

η̂(u) = η̂(u|β̂, θ̂) =
n∑
i=1

si(u
∣∣θ̂)
(
Yi − Ziβ̂

)
. (2.8)

In Section 3 below, we will give the large sample properties of the estimators proposed

above, and in Section 4, we will discuss how to choose the working covariance matrix Ri.

3. Theoretical properties

Before establishing the large sample theory for the proposed parametric and nonpara-

metric estimators, we introduce some notations. Let Λi = Λi(θ0), and assume that there

exist two positive definite matrices Ω0 and Ω1 as well as a sequence ωn such that ωn →∞,

1

ωn

n∑
i=1

Λ>i WiΛi
P→ Ω0, (3.1)

1

ωn

n∑
i=1

E
[
Λ>i Wieie

>
i WiΛi

]
→ Ω1, (3.2)

max
1≤i≤n

E
[
Λ>i Wieie

>
i WiΛi

]
= o(ωn), (3.3)

as n→∞. The conditions (3.2) and (3.3) ensure that the Lindeberg-Feller condition can be

satisfied and thus the classical central limit theorem for independent sequence (Petrov, 1995)

would be applicable. Throughout the paper, we assume that the choice of Wi would not

affect the form of ωn. We first give the asymptotic distribution theory for the SGEE-based

estimators β̂ and θ̂.

Theorem 3.1. Suppose that Assumptions 1–5 in Appendix A, and (3.1)–(3.3) are satisfied.

Then, we have

ω1/2
n

 β̂ − β0

θ̂ − θ0

 d−→ N
(
0,Ω+

0 Ω1Ω
+
0

)
(3.4)

as n→∞, where A+ is the Moore-Penrose inverse matrix of A.
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Remark 3.1. Theorem 3.1 establishes the asymptotically normal distribution theory for β̂

and θ̂ with convergence rate ω
1/2
n , which is usually with the same asymptotic order as T

1/2
n

(Tn is the total number of observations). The specific forms of ωn, Ω0 and Ω1 can be derived

for some particular cases. For instance, when longitudinal data is balanced, i.e., mi ≡ m,

ωn = nm. Furthermore, if E[e2
ij] ≡ σ2

e , and Wi, i = 1, . . . , n, are m ×m identity matrices

(i.e., eij are i.i.d.), where eij = ei(tij) is independent of the covariates, then we can show

that

Ω0 =

 Ω0(1) Ω0(2)

Ω>0 (2) Ω0(3)

 and Ω1 = σ2
e

 Ω0(1) Ω0(2)

Ω>0 (2) Ω0(3)

 ,

where

Ω0(1) = E
{[

Z(t)− ρZ(X(t)>θ0|θ0)
][

Z(t)− ρZ(X(t)>θ0|θ0)
]>}

,

Ω0(2) = E
{
η′(X(t)>θ0)

[
Z(t)− ρZ(X(t)>θ0|θ0)

][
X(t)− ρX(X(t)>θ0|θ0)

]>}
,

Ω0(3) = E
{[
η′(X(t)>θ0)

]2[
X(t)− ρX(X(t)>θ0|θ0)

][
X(t)− ρX(X(t)>θ0|θ0)

]>}
.

Hence, Ω+
0 Ω1Ω

+
0 reduces to σ2

eΩ
+
0 .

In Theorem 3.1 above, we only require n → ∞. Thus, both the sparse and dense

longitudinal data cases can be included in a unified framework. For the sparse longitudinal

data case whenmi is bounded by certain positive constant, we can take ωn = n and prove that

(3.4) still holds. For the dense longitudinal data case where minimi ≥ Mn with Mn → ∞,

we assume that there exists v(·) such that

v(mi)→∞,
Λ>i WiΛi

v(mi)

P→ Ω0 and
E
[
Λ>i Wieie

>
i WiΛi

]
v(mi)

→ Ω1, as mi →∞.

Letting ωn =
∑n

i=1 v(mi), we can prove (3.4). As more observations are available in the

dense longitudinal data case, the convergence rate for the parametric estimators is faster

than OP (
√
n) in the sparse longitudinal data case.

The following corollary shows that the SGEE-based estimators β̂ and θ̂ are generally

asymptotically more efficient than the PULS estimators β̃ and θ̃ when the weights Wi in

(2.7) are chosen as the inverse of the conditional covariance matrix of ei given Xi and Zi.

Corollary 3.1. Suppose that the weights Wi in (2.7) are chosen as the inverse of the

conditional covariance matrix of ei given Xi and Zi, and the conditions of Theorem 3.1

are satisfied. Then, the SGEE-based estimators β̂ and θ̂ are generally asymptotically more
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efficient than the PULS estimators β̃ and θ̃ which minimize Qn0(β,θ) in (2.6) with respect

to β and θ.

To establish the asymptotic distribution theory for the nonparametric estimator η̂(u)

under a unified framework, we assume that there exist a sequence ϕn(h) and a constant

0 < σ2
∗ <∞ such that

ϕn(h) = o(ωn), ϕn(h) max
1≤i≤n

E
[
si(u|θ0)eie

>
i s>i (u|θ0)

]
= o(1), (3.5)

and

ϕn(h)
n∑
i=1

E
[
si(u|θ0)eie

>
i s>i (u|θ0)

]
→ σ2

∗ . (3.6)

The first restriction in (3.5) is imposed to ensure that the parametric convergence rates are

faster than the nonparametric convergence rates, and the second restriction in (3.5) and the

condition in (3.6) are imposed for the derivation of the asymptotic variance of the local linear

estimator η̂(u) and the satisfaction of the Lindeberg-Feller condition. The specific forms of

ϕn(h) and σ2
∗ will be discussed in Remark 3.2 below. Let µj =

∫
vjK(v)dv for j = 0, 1, 2, · · · ,

and η′′0(·) be the second-order derivative of η0(·).

Theorem 3.2. Suppose that the conditions of Theorem 3.1, (3.5) and (3.6) are satisfied.

Then, we have

ϕ1/2
n (h)

[
η̂(u)− η0(u)− bη(u)h2

] d−→ N(0, σ2
∗), (3.7)

where bη(u) = η′′0(u)µ2/2.

Remark 3.2. Theorem 3.2 provides the asymptotically normal distribution theory for the

nonparametric estimator η̂(u) with convergence rate ϕ
1/2
n (h). The forms of ϕn(h) and σ2

∗ can

be specified for some particular cases. As an example, consider the case where eij = vi + εij,

in which εij are i.i.d. across both i and j with E[εij] = 0 and E[ε2
ij] = σ2

ε , and {vi} is an i.i.d.

sequence of random variables with E[vi] = 0 and E[v2
i ] = σ2

v and is independent of {εij}. In

this case, we note that

E
{[ mi∑

j=1

K
(X>ijθ0 − u

h

)
eij
]2}

= E
{[ mi∑

j=1

K
(X>ijθ0 − u

h

)
(vi + εij)

]2}
=

mi∑
j=1

E
[
K2
(X>ijθ0 − u

h

)
(vi + εij)

2
]

+
∑
j1 6=j2

E
[
K
(X>ij1θ0 − u

h

)
×K

(X>ij2θ0 − u
h

)
(vi + εij1)(vi + εij2)

]
= mihν0fθ0(u)(σ2

v + σ2
ε) +mi(mi − 1)h2µ2

0f
2
θ0

(u)σ2
v ,
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where νj =
∫
vjK2(v)dv, j = 0, 1, 2, and fθ0(·) is the probability density function of X>ijθ0.

For the sparse longitudinal data case, mi(mi−1)h2µ2
0f

2
θ0

(u)σ2
v is dominated bymihν0fθ0(u)

(σ2
v + σ2

ε) as mi is bounded and h→ 0. Then, by Lemma C.1 in Appendix C and some ele-

mentary calculations, we can prove that

n∑
i=1

E
[
si(u|θ0)eie

>
i s>i (u|θ0)

]
=

1

(nh)2

n∑
i=1

mihν0fθ0(u)(σ2
v + σ2

ε)

m2
i

=
ν0fθ0(u)(σ2

v + σ2
ε)

n2h

n∑
i=1

1

mi

. (3.8)

Hence, in this case, we can take ϕn(h) = (n2h)
(∑n

i=1
1
mi

)−1

which has the same order as

nh, and σ2
∗ = ν0fθ0(u)(σ2

v + σ2
ε). Such result is similar to Theorem 1 (i) in Kim and Zhao

(2012).

For the dense longitudinal data case, mihν0fθ0(u)(σ2
v + σ2

ε) is dominated by mi(mi −
1)h2µ2

0f
2
θ0

(u)σ2
v if we assume that mih→∞. Then, by Lemma C.1 again, we can prove that

n∑
i=1

E
[
si(u|θ0)eie

>
i s>i (u|θ0)

]
=

1

(nh)2

n∑
i=1

mi(mi − 1)h2µ2
0f

2
θ0

(u)σ2
v

m2
i

=
µ2

0f
2
θ0

(u)σ2
v

n
.

Hence, in this case, we can take ϕn(h) = n and σ2
∗ = µ2

0f
2
θ0

(u)σ2
v , which are analogous

to Theorem 1 (ii) in Kim and Zhao (2012) and quite different from those in the sparse

longitudinal data case.

4. Estimation of covariance matrices

Estimation of the weight or working covariance matrices which are involved in the SGEE

(2.7) is critical to improving the efficiency of the proposed semiparametric estimators. How-

ever, the unbalanced longitudinal data structure, which can be either sparse or dense, makes

such covariance matrix estimation very challenging, and some existing estimation methods

based on balanced data (such as Wang, 2011) cannot be directly used here. In this sec-

tion, we introduce a semiparametric estimation approach that is applicable to unbalanced

longitudinal data. This approach is based on a variance-correlation decomposition, and

the estimation of the working covariance matrices then consists of two steps: first estimate

the conditional variance function using a robust nonparametric method that accommodates

heavy-tailed errors; and second estimate the parameters in the correlation matrix.

For each 1 ≤ i ≤ n, let Ri be the covariance matrix of ei, Σi = diag
{
σ2(ti1), . . . , σ2(timi)

}
with σ2(tij) = E

[
e2
i (tij)

∣∣tij] = E
[
e2
i (tij)

∣∣tij,Xi(tij),Zi(tij)
]

for j = 1, . . . ,mi, and Ci be the

10



correlation matrix of ei. Assume that there exists a q-dimensional parameter vector φ such

that Ci = Ci(φ) where Ci(·), 1 ≤ i ≤ n, are pre-specified. By the variance-correlation

decomposition, we have

Ri = Σ
1/2
i Ci(φ)Σ

1/2
i . (4.1)

We first estimate the conditional variance function σ2(·) in the diagonal matrix Σi by

using a nonparametric method. In recent years, there has been a rich literature on the study

of nonparametric conditional variance estimation; see, for example, Ruppert et al. (1997),

Fan and Yao (1998), Yu and Jones (2004) and Fan et al. (2007). However, when the errors

are heavy-tailed, which is not uncommon is economic and financial data analysis, most of

these existing methods may not perform well. This motivates us to devise an estimation

method that is robust to heavy-tailed errors. Let r(tij) =
[
Yij − Z>ijβ0 − η(X>ijθ0)

]2
, where

Yij = Yi(tij), Zij = Zi(tij), and Xij = Xi(tij). We can then find random variable ξ(tij) so

that r(tij) = σ2(tij)ξ
2(tij) and E

[
ξ2(tij)|tij

]
= 1 with probability 1. By applying the log-

transformation (see Peng and Yao, 2003; Gao, 2007; and Chen et al., 2009 for the application

of this transformation in time series analysis) to r(tij), we have

log r(tij) = log
[
τσ2(tij)

]
+ log

[
τ−1ξ2(tij)

]
≡ σ2

�(tij) + ξ�(tij), (4.2)

where τ is a positive constant such that E[ξ�(tij)] = E
{

log
[
τ−1ξ2(tij)

]}
= 0. Here, ξ�(tij)

could be viewed as an error term in the model (4.2). As rij = r(tij) are unobservable, we

replace them with r̂ij =
[
Yij − Z>ijβ̂ − η̂(X>ijθ̂)

]2
. To estimate σ2

�(t), we define

L̃n
(
a, b
)

=
n∑
i=1

{
wi

mi∑
j=1

[
log(r̂ij + ζn)− a− b(tij − t)

]2
K1

(tij − t
h1

)}
, (4.3)

where K1(·) is a kernel function, h1 is a bandwidth satisfying Assumption 9 in Appendix

A, wi = 1/(nmi) as in Section 2, and ζn → 0 as n → ∞. Throughout this paper, we set

ζn = 1/Tn, where Tn =
∑n

i=1mi. The ζn is added in log(r̂ij + ζn) to avoid the occurrence

of invalid log 0 as ζn > 0 for any n. Such a modification would not affect the asymptotic

distribution of the conditional variance estimation under certain mild restrictions. Then

σ2
�(t) can be estimated by

σ̂2
�(t) = â, where (â, b̂)> = arg min

a,b
L̃n(a, b). (4.4)

On the other hand, noting that

exp
{
σ2
�(tij)

}
τ

ξ2(tij) = rij and E[ξ2(tij)] = 1,

11



the constant τ can be estimated by

τ̂ =
[ 1

Tn

n∑
i=1

mi∑
j=1

r̂ij exp{−σ̂2
�(tij)}

]−1

. (4.5)

We then estimate σ2(t) by

σ̂2(t) =
exp{σ̂2

�(t)}
τ̂

. (4.6)

It is easy to see that thus defined estimator σ̂2(t) is always positive.

Suppose that there exist a sequence ϕn�(h1) which depends on h1, and a constant 0 <

σ2
� <∞ such that

ϕn�(h1) = o(ωn),
ϕn�(h1)

h2
1

max
1≤i≤n

w2
iE
[ mi∑
j=1

ξ�(tij)K1

(tij − t
h1

)]2
= o(1) (4.7)

and
ϕn�(h1)

h2
1

E
[ n∑
i=1

wi

mi∑
j=1

ξ�(tij)K1

(tij − t
h1

)]2 → σ2
�, (4.8)

which are similar to those in (3.5) and (3.6). Define

bσ1(t) =
exp{σ2

�(t)}
2τ

σ̈2
�(t)

∫
v2K1(v)dv,

bσ2(t) =
exp{σ2

�(t)}
2τ

E[σ̈2
�(tij)]

∫
v2K1(v)dv,

where σ̈2
�(·) is the second-order derivative of σ2

�(·). We then establish the asymptotic distri-

bution of σ̂2(t) in the following theorem, whose proof is given in Appendix C.

Theorem 4.1. Suppose the conditions in Theorems 3.1 and 3.2, Assumptions 6–9 in Ap-

pendix A, (4.7) and (4.8) are satisfied. Then, we have

ϕ1/2
n� (h1)

{
σ̂2(t)− σ2(t)− [bσ1(t)− bσ2(t)]h2

1

}
d−→ N

(
0,
σ4(t)

fT (t)
σ2
�
)
, (4.9)

where fT (·) is the density function of the observation times tij.

Remark 4.1. Theorem 4.1 can be seen as an extension of Theorem 1 in Chen et al. (2009)

from the time series case to the longitudinal data case. The longitudinal data framework

in this paper is quite flexible and includes both sparse and dense data types. Following the

discussion in Remark 3.2, we can also show that under some mild conditions, the nonpara-

metric conditional variance estimation would have different convergence rates for the two

data types.
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We next discuss how to obtain the optimal value of the parameter vector φ. Let Σ̂i be

the estimator of Σi with σ2(tij) being replaced by σ̂2(tij) which was defined in (4.6) and

R∗i (φ) = Σ̂
1/2

i Ci(φ)Σ̂
1/2

i . Recall that β̃ and θ̃ are the estimated values of the parameters

β0 and θ0, respectively, by taking Wi as the identity matrix in the estimation equations,

and that they are consistent. With β̃ and θ̃, we then construct the local linear estimator of

the link function η̃(u) = η̂(u|β̃, θ̃), the residuals ẽi ≡ Yi −Ziβ̃− η̃(Xi, θ̃), and Λ̃i ≡ Λ̂i(θ̃),

where η̃(Xi, θ̃) is defined in the same way as η(Xi,θ) but with η(·) and θ replaced by η̃(·)
and θ̃, respectively. Motivated by equations (3.1) and (3.2), we construct

Ω∗0(φ) =
n∑
i=1

Λ̃
>
i

[
R∗i (φ)

]−1
Λ̃i and Ω∗1(φ) =

n∑
i=1

Λ̃
>
i

[
R∗i (φ)

]−1
ẽiẽ
>
i

[
R∗i (φ)

]−1
Λ̃i. (4.10)

By Theorem 3.1, the sandwich formula estimate
[
Ω∗0(φ)

]+
Ω∗1(φ)

[
Ω∗0(φ)

]+
is asymptotically

proportional to the asymptotic covariance of
(
β̂
>
, θ̂
>)>

. The optimal value of φ, denoted by

φ̂, can be chosen to minimize the determinant
∣∣[Ω∗0(φ)

]+
Ω∗1(φ)

[
Ω∗0(φ)

]+∣∣. Such a method

is called the minimum generalized variance method (Fan et al., 2007). Then, we can choose

the covariance matrices as Ri(φ̂) = Σ̂
1/2

i Ci(φ̂)Σ̂
1/2

i .

5. Numerical studies

In this section, we first study the finite sample performance of the proposed SGEE

estimator through Monte Carlo simulation, and then give an empirical application of the

proposed model and methodology. In the simulation study, for comparison, we also report

the performance of the PULS estimators which minimizes the loss function defined in (2.6).

5.1. Simulation study

We investigate both sparse and dense longitudinal data cases with an average time di-

mension m of 10 for the sparse data and 30 for the dense data. The data are generated with

one of the two types of within-subject correlation structure: AR(1) and ARMA(1,1), and

with each type we investigate the robustness of the proposed estimator to misspecification

of the correlation structure.

Simulated data are generated from model (1.2) with two-dimensional Zi(tij) and three-

dimensional Xi(tij),

β0 = (2, 1)>, θ0 = (2, 1, 2)>/3 and η(u) = 0.5 exp(u).

The covariates (Z>i (tij),X
>
i (tij))

> are generated independently from a five-dimensional nor-

mal distribution with mean 0, variance 1 and correlation 0.1. The observation times tij are

13



generated in the same way as in Fan et al. (2007). For each subject, {0, 1, 2, . . . , T} is a

set of scheduled times, and each scheduled time from 1 to T has a 0.2 probability of being

skipped; each actual observation time is a perturbation of a non-skipped scheduled time,

i.e., a uniform [0, 1] random number is added to the non-skipped scheduled time. Here T

is set to be 12 or 36, which corresponds to an average time dimension of m = 10 or m = 30,

respectively. For each i, the error terms ei(tij) are generated from a Gaussian process with

mean 0, variance function

var[e(t)] = σ2(t) = 0.25 exp(t/12), (5.1)

and an ARMA(1,1) correlation structure

cor(e(t), e(s)) =

 1 t = s

γρ|t−s| t 6= s
(5.2)

or an AR(1) correlation structure with γ = 1 in (5.2). The number of subjects, n, is taken

to be 30 or 50. The values for γ and ρ are (γ, ρ) = (0.85, 0.9) in the ARMA(1,1) correlation

structure and (γ, ρ) = (1, 0.9) in the AR(1) structure.

For each combination of m, n, and the correlation structure, the number of simulation

replications is 200. For the selection of the bandwidth, however, due to the running time

limitation we first run a leave-one-unit-out (i.e., leave out observations on one subject at a

time) cross-validation (CV) to choose the optimal bandwidth in 20 replications. We then use

the average of the optimal bandwidths from these 20 replications as the bandwidth for the

following 200 replications. The bias – calculated as the average of the estimates from the 200

replications minus the true parameter values, the standard deviation (SD) – calculated as the

sample standard deviation of the 200 estimates, and the median absolute deviation (MAD)

– calculated as the median absolute deviation of the 200 estimates are reported in Tables 5.1

and 5.2. Table 5.1 gives the results obtained under the correct specification of an underlying

AR(1) correlation structure, and Table 5.2 gives those obtained under correct specification

of an underlying ARMA(1,1) structure. The results show that the SGEE estimates are

comparable with the corresponding PULS estimates in terms of bias and are more efficient

than the PULS estimates, which supports the asymptotic theory developed in Section 3.

The performance of both estimators improves as either time dimension or the number of the

subjects increases.

Insert Table 5.1 here
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Insert Table 5.2 here

In Figures 5.1 and 5.2, we also plot the local linear estimated link function from a typical

realization together with the real curve for each combination of n and m.

Insert Figure 5.1 here

Insert Figure 5.2 here

To study the robustness of the SGEE and PULS estimators to correlation structure mis-

specification, we fit an AR(1) working correlation structure in (2.7) when the true correlation

structure is ARMA(1,1). Table 5.3 reports the results under this misspecification. The table

shows that in the presence of correlation structure misspecification, the SGEE still produces

more efficient estimates of the parameters than the PULS method.

Insert Table 5.3 here

5.2. Real data analysis

We next illustrate the partially linear single-index model and the proposed SGEE esti-

mation method through an empirical example for exploring the relationship between lung

function and air pollution. There is voluminous literature studying the effects of air pollution

on people’s health. For a review of the literature, the reader is referred to Arden Pope III et

al. (1995). Many studies have found association between air pollution and health problems

such as increased respiratory symptoms, decreased lung function, increased hospitalizations

or hospital visits for respiratory and cardiovascular diseases, and increased respiratory mor-

bidity (Dockery et al., 1989, Kinney et al., 1989, Pope, 1991, Braun-Fahrlander et al., 1992,

Lipfert and Hammerstrom, 1992). While earlier research often used time series or cross-

sectional data to evaluate the health effects of air pollution, recent advances in longitudinal

data analysis techniques offer greater opportunities for studying this problem. In this paper,

we will examine whether air pollution has a significant adverse effect on lung function, and, if

so, by what extent. The use of the partially linear single-index model and the SGEE method

would provide greater modelling flexibility than linear models and allow the within-subject

correlation to be adequately taken into account. We will use a longitudinal data set obtained

from a study where a total of 971 4th-grade children aged between 8 years and 14 years old
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(at their first visit to the hospital/clinic) were followed over 10 years. During each yearly

visit of the children to the hospital/clinic, records on their forced expiratory volume (FEV),

asthma symptom at visit (ASSPM, 1 for those with symptoms and 0 for those without),

asthmatic status (ASS, 1 for asthma patient and 0 for non-asthma patient), gender (G, 1

for males and 0 for females), race (R, 1 for non-whites and 0 for whites), age (A), height

(H), BMI, and respiratory infection at visit (RINF, 1 for those with infection and 0 for those

without) were taken. Together with the measurements from the children, the mean levels

of ozone and NO2 in the month prior to the visit were also recorded. Due to dropout or

other reasons, the majority of children had 4 or 5 years of records, and the total number of

observations in the data set is 3809.

As in many other studies, the FEV will be used as a measure of lung function, and its log-

transformed values, log(FEV), will be used as the response values in our model. The main

interest is to determine whether higher levels of ozone and NO2 would lead to decrements in

lung function. To account for the effects of other confounding factors, we include all other

recorded variables. As age and height exhibit strong co-linearity (with a correlation of 0.78),

we will only use height in the study. In fitting the partially linear single-index model to the

data, all the continuous variables (i.e., FEV, H, BMI, OZONE and NO2) are log-transformed,

and the log(BMI), log(OZONE) and log(NO2) are included in the single-index part. The

log(H) and all the binary variables are included in the linear part of the model.

The scatter plots of the response variable against the continuous regressors are shown

in Figure 5.3, and the box plots of the response against the binary regressors are given in

Figure 5.4. The estimated model is as follows

log(FEV) = 0.0325 ∗G− 0.0111 ∗ASS− 0.0671 ∗ R− 0.0047 ∗ASSPM− 0.0068 ∗ RINF

(0.0041) (0.0080) (0.0059) (0.0085) (0.0043)

+ 2.3206 ∗ log(H) + η̂
[
0.9929 ∗ log(BMI)− 0.0924 ∗ log(OZONE)− 0.0753 ∗ log(NO2)

]
,

(0.0307) (0.0560) (0.0127) (0.0125)

where the numbers in the parentheses under the estimated coefficients are their respective

standard errors. The estimated link function and its 95% confidence band are plotted in

Figure 5.5.

From Figure 5.5, it can be seen that the estimated link function is overall increasing. The

95% confidence bands show that the linear approximation for the unspecified link function

would be rejected, and thus the partially liner single-index model might be more appropri-
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ate than the traditional linear regression model. Meanwhile, it can be seen from the above

estimated model that height and BMI are significant positive factors in accounting for lung

function. Taller children and children with larger BMI tend to have higher FEV. Further-

more, male and white children (R = 0 for whites and 1 for non-white) have, on average,

higher lung function than female or non-white children. Furthermore, both OZONE and

NO2 in the single-index component have negative effects on children’s lung function, as the

estimated coefficients for OZONE and NO2 are negative and the estimated link function is

increasing. And although these negative effects are relatively small in magnitude compared

to the effect of BMI, they are statistically significant. This means that higher levels of ozone

and NO2 tend to lead to reduced lung function as represented by lower values of FEV.

Insert Figure 5.3 here

Insert Figure 5.4 here

Insert Figure 5.5 here

6. Conclusions

In this paper, we study a partially linear single-index modelling structure for possible

unbalanced longitudinal data under a general framework which includes both the sparse and

dense longitudinal data cases. An SGEE method with the first-stage local linear smoothing

is introduced to estimate the two parameter vectors as well as the unspecified link function.

In Theorems 3.1 and 3.2, we derive the asymptotic properties of the proposed parametric

and nonparametric estimators in different scenarios, from which we find that the convergence

rates and asymptotic variances of the resulting estimators in the sparse longitudinal data

case could be substantially different from those in the dense longitudinal data. In Section

4, we also propose a semiparametric method to estimate the covariance matrices which are

involved in the estimation equations. The conditional variance function is estimated by using

the log-transformed local linear method, and the parameters in the correlation matrices are

estimated by the minimum generalized variance method. In particular, if the correlation

matrices are correctly specified, as is stated in Corollary 3.1, the SGEE-based estimators β̂

and θ̂ are generally asymptotically more efficient than the corresponding PULS estimators

β̃ and θ̃ in the sense that the SGEE estimators have equal or smaller asymptotic variances.
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Both the simulation study and empirical data analysis in Section 5 show that the proposed

approaches work well in the finite sample case.
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Appendix A: Regularity conditions

To establish the asymptotic properties of the SGEE estimators proposed in Section 2,

we introduce the following regularity conditions, although some of them might not be the

weakest possible.

Assumption 1. The kernel function K(·) is a bounded and symmetric probability density

function with compact support. Furthermore, the kernel function has the continuous

first-order derivative function denoted by K ′(·).

Assumption 2 (i). The errors eij ≡ ei(tij), 1 ≤ i ≤ n, 1 ≤ j ≤ mi, are independent across

i (i.e., ei, 1 ≤ i ≤ n, are mutually independent, where ei were defined in Section 2).

(ii). The covariates Xij and Zij, 1 ≤ i ≤ n, 1 ≤ j ≤ mi, are i.i.d. random vectors.

(iii). The errors eij are uncorrelated with the covariates Zij and Xij, and for each

i, eij, 1 ≤ j ≤ mi, may be correlated with each other. Furthermore, E[eij] = 0,

0 < E[e2
ij] <∞ and E[|eij|2+δ] <∞ for some δ > 0.

Assumption 3 (i). The density function fθ(·) of X>ijθ is positive and has a continuous

second-order derivative in U = {x>θ : x ∈ X , θ ∈ Θ}, where Θ is the parameter space

for θ and X is a compact support of Xij.

(ii). The function ρZ(u|θ) = E[Zij|X>ijθ = u] has a bounded and continuous second-

order derivative (with respect to u) for any θ ∈ Θ, and E
[
‖Zij‖2+δ

]
<∞, where δ was

defined in Assumption 2 (iii) and ‖ · ‖ is the Euclidean norm.

Assumption 4. The link function η(·) has continuous derivatives up to the second order.
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Assumption 5. Let the bandwidth h satisfy

ωnh
6 → 0,

n2h2

Nn(h) log n
→∞, T

2
2+δ
n log n

h2Nn(h)
= o(1), (A.1)

where Nn(h) =
∑n

i=1 1/(mih), Tn =
∑n

i=1mi and δ was defined in Assumption 2(iii).

We next give some regularity conditions, which are needed to derive the asymptotic

property of the nonparametric conditional variance estimators in Section 4.

Assumption 6. The kernel function K1(·) is a continuous and symmetric probability density

function with compact support.

Assumption 7. The observation times, tij, are i.i.d. and have a continuous probability

density function fT (t) which has a compact support T . The density function of ξ2(tij)

is continuous and bounded. Let δ > 2, which strengthens the moment conditions in

Assumptions 2 and 3.

Assumption 8. The conditional variance function σ2(·) has a continuous second-order

derivative and satisfies inft∈T σ
2(t) > 0. Let σ̇2(·) and σ̈2(·) be its first-order and

second-order derivative functions, respectively.

Assumption 9. Let the bandwidth h1 satisfy

h1 → 0,
T

2
2+δ/2
n log n

h2
1Nn(h1)

= o(1), (A.2)

where Nn(h1) =
∑n

i=1 1/(mih1).

Remark A.1. Assumptions 1 and 6 impose some mild restrictions on the kernel functions.

These conditions have been used by existing literature in i.i.d. and weakly dependent time

series cases (see, for example, Fan and Gijbels, 1996; Gao, 2007). The compact support

restriction on the kernel functions can be removed if we impose certain restriction on the

tail of the kernel function. In Assumption 2(i), the longitudinal data under investigation is

assumed to be independent across subjects i, which is not uncommon in longitudinal data

analysis (see, for example, Wu and Zhang, 2006; Zhang et al., 2009). Assumption 2(ii) is

imposed to simplify the presentation of the asymptotic results, and it can be relaxed at

the cost of more complicated forms for asymptotic variances of the proposed estimators.
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In Assumption 2(iii), we allow the error terms to have certain within-subject correlation,

which makes the model assumptions more realistic. Assumption 3 gives some commonly-

used conditions in partially linear single-index models; see Xia and Härdle (2006) and Chen

et al. (2013b) for example. Assumption 4 is a mild smoothness condition on the link function

imposed for the application of the local linear fitting. Assumptions 5 and 9 give a set of

restrictions on the two bandwidths h and h1, which are involved in the estimation of the link

function and the conditional variance function, respectively. Assumption 7 imposes a mild

condition on the observation times (see, for example, Jiang and Wang, 2011) and strengthens

the moment conditions on eij and Zij. However, such moment conditions are not uncommon

in the asymptotic theory for nonparametric conditional variance estimation (Chen et al.,

2009). Since the local linear smoothing technique is applied, certain smoothness condition

has to be assumed on σ2(·), as is done in Assumption 8.

Appendix B: Proofs of the main results

In this appendix, we provide the detailed proofs of the main results given in Section 3.

Proof of Theorem 3.1. By the definition of the weighted local linear estimators in (2.4)

and (2.5), we have

η̂(u
∣∣β,θ)− η(u) =

n∑
i=1

si(u
∣∣θ)
(
Yi − Ziβ

)
− η(u)

=
n∑
i=1

si(u
∣∣θ)ei +

n∑
i=1

si(u
∣∣θ)Zi

(
β0 − β

)
+

n∑
i=1

si(u
∣∣θ)
[
η(Xi,θ0)− η(Xi,θ)

]
+

n∑
i=1

si(u
∣∣θ)η(Xi,θ)− η(u)

≡ In1 + In2 + In3 + In4. (B.1)

For In1, note that by a first-order Taylor expansion of K(·), we have, for i = 1, . . . , n and

j = 1, . . . ,mi,

K
(X>ijθ − u

h

)
= K

(X>ijθ0 − u
h

)
+K ′

(X>ijθ∗ − u
h

)X>ij(θ − θ0)

h
,

where K ′(·) is the first-order derivative of K(·) and θ∗ = θ0 +λ∗(θ−θ0), 0 < λ∗ < 1. Hence,
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by some standard calculations and the assumption that n2h2/{Nn(h) log n} → ∞, we have

In1 =
n∑
i=1

si(u
∣∣θ0)ei +

n∑
i=1

[
si(u

∣∣θ)− si(u
∣∣θ0)

]
ei

=
n∑
i=1

si(u
∣∣θ0)ei +OP

(
‖θ − θ0‖ ·

√
Nn(h) log n

nh

)
=

n∑
i=1

si(u
∣∣θ0)ei + oP

(
‖θ − θ0‖

)
(B.2)

for any u ∈ U and θ ∈ Θ.

By Lemma C.2 in Appendix C, we can prove that

In2 = −ρ>Z(u)(β − β0) +OP

(
‖β − β0‖2 + ‖θ − θ0‖2

)
(B.3)

for any u ∈ U , where ρZ(u) ≡ ρZ(u|θ0) = E[Zij|X>ijθ0 = u].

Note that

η(X>ijθ)− η(X>ijθ0) = η′(X>ijθ0)X>ij(θ − θ0) +OP (‖θ − θ0‖2),

which, together with Lemma C.3 in Appendix C, leads to

In3 = −η′(u)ρ>X(u)(θ − θ0) +OP

(
‖θ − θ0‖2

)
(B.4)

for any u ∈ U , where ρX(u) ≡ ρX(u|θ0) = E
[
Xij|X>ijθ0 = u

]
.

By a second-order Taylor expansion of η(·) and the first-order Taylor expansion of K(·)
used to handle In1, we can prove that, for any u ∈ U , we have

In4 =
1

2
µ2η

′′(u)h2[1 +OP (h)] + oP (‖θ − θ0‖). (B.5)

By (B.1)–(B.5), we can prove that, uniformly for i = 1, . . . , n and j = 1, . . . ,mi,

η̂
(
X>ijθ̂

∣∣β̂, θ̂)− η(X>ijθ0)

= η̂
(
X>ijθ̂

∣∣β̂, θ̂)− η̂(X>ijθ0

∣∣β̂, θ̂)+ η̂(X>ijθ0

∣∣β̂, θ̂)− η(X>ijθ0)

= η̂′
(
X>ijθ0

∣∣β̂, θ̂)X>ij(θ̂ − θ0

)
+ η̂(X>ijθ0

∣∣β̂, θ̂)− η(X>ijθ0) +OP

(
‖θ̂ − θ0‖2

)
= η′(X>ijθ0)X>ij

(
θ̂ − θ0

)
+

n∑
k=1

sk(X
>
ijθ0)ek − ρ>Z(X>ijθ0)(β̂ − β0)(1 + oP (1))

−η′(X>ijθ0)ρ>X(X>ijθ0)(θ̂ − θ0)(1 + oP (1)) +
1

2
µ2η

′′(X>ijθ0)h2

+OP (h3) +OP

(
‖θ̂ − θ0‖2 + ‖β̂ − β0‖2

)
, (B.6)
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where sk(X
>
ijθ0) ≡ sk(X

>
ijθ0

∣∣θ0).

By the definitions of β̂ and θ̂ (see (2.7) in Section 2), we have

n∑
i=1

Λ̂
>
i (θ̂)Wi

[
Yi − Ziβ̂ − η̂(Xi|β̂, θ̂)

]
= 0. (B.7)

By the uniform consistency results for the local linear estimators (such as Lemmas C.2 and

C.3 in Appendix C), we can approximate Λ̂i(θ̂) in (B.7) by Λi = Λi(θ0) when deriving the

asymptotic distribution theory. Then, we have

0 =
n∑
i=1

Λ̂
>
i (θ̂)Wi

[
Yi − Ziβ̂ − η̂(Xi|β̂, θ̂)

]
=

n∑
i=1

Λ>i Wi

[
Yi − Ziβ̂ − η̂(Xi|β̂, θ̂)

]
+

n∑
i=1

(Λ̂i(θ̂)−Λi)
>Wi

[
Yi − Ziβ̂ − η̂(Xi|β̂, θ̂)

]
P∼

n∑
i=1

Λ>i Wi

[
Yi − Ziβ̂ − η̂(Xi|β̂, θ̂)

][
1 +OP (‖θ̂ − θ0‖)

]
, (B.8)

where an
P∼ bn denotes an = bn(1 + oP (1)). Furthermore, note that

Yi − Ziβ̂ − η̂(Xi|β̂, θ̂) = ei − Zi

(
β̂ − β0

)
−
[
η̂(Xi|β̂, θ̂)− η(Xi,θ0)

]
,

which together with (B.6), (B.8) and the bandwidth condition ωnh
6 = o(1), we can show

that
n∑
i=1

Λ>i Wiei −
n∑
i=1

Λ>i WiZi

(
β̂ − β0

)
−

n∑
i=1

Λ>i Wi

[
η̂(Xi|β̂, θ̂)− η(Xi,θ0)

]
=

n∑
i=1

Λ>i Wi

[
ei −

n∑
k=1

sk(Xi,θ0)ek

]
−

n∑
i=1

Λ>i Wi

[
Zi − ρZ(Xi,θ0)

](
β̂ − β0

)
(1 + oP (1))

−
n∑
i=1

Λ>i Wi

{[
η′(Xi,θ0)⊗ 1>p

]
�
[
Xi − ρX(Xi,θ0)

]}(
θ̂ − θ0

)
(1 + oP (1))

+OP

(
‖β̂ − β0‖2 + ‖θ̂ − θ0‖2

)
, (B.9)

where sk(Xi,θ) =
(
s>k (X>i1θ|θ), . . . , s>k (X>imiθ|θ)

)>
, ρZ(Xi,θ0) and ρX(Xi,θ0) were defined

in Section 2.

Following the standard proof in the existing literature (see, for example, Ichimura, 1993;

Chen et al., 2013b), we can show the weak consistency of β̂ and θ̂. Also note that

n∑
i=1

Λ>i WiΛi

 β̂ − β0

θ̂ − θ0

 =
n∑
i=1

Λ>i Wi

{[
η′(Xi,θ0)⊗ 1>p

]
�
[
Xi − ρX(Xi,θ0)

]}(
θ̂ − θ0

)
,

+
n∑
i=1

Λ>i Wi

[
Zi − ρZ(Xi,θ0)

](
β̂ − β0

)
(B.10)
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and
n∑
i=1

Λ>i Wi

[ n∑
k=1

sk(Xi,θ0)ek

]
= oP (ω1/2

n ). (B.11)

By (B.8)–(B.11) and the fact that
∑n

i=1 Λ>i WiΛi = OP (ωn), we have β̂ − β0

θ̂ − θ0

 P∼
[ n∑
i=1

Λ>i WiΛi

]+[ n∑
i=1

Λ>i Wiei

]
. (B.12)

By (3.1)–(3.3), (B.12) and the classical central limit theorem for independent sequence, we

can show that (3.4) in Theorem 3.1 holds. �

Proof of Corollary 3.1. By Theorem 3.1, the PULS estimators β̃ and θ̃ have the following

asymptotic normal distribution:

ω1/2
n

 β̃ − β0

θ̃ − θ0

 d−→ N
(
0,Ω+

0∗Ω1∗Ω
+
0∗

)
(B.13)

where Ω0∗ and Ω1∗ are two matrices such that

1

ωn

n∑
i=1

Λ>i Λi
P→ Ω0∗,

1

ωn

n∑
i=1

E
[
Λ>i ViΛi

]
→ Ω1∗,

and Vi is the conditional covariance matrix of ei given Xi and Zi.

On the other hand, when the weights Wi, i = 1, . . . , n, are chosen as the inverse of Vi,

by Theorem 3.1, we have

ω1/2
n

 β̂ − β0

θ̂ − θ0

 d−→ N
(
0,Ω+

∗

)
, (B.14)

where Ω∗ is a positive definite matrix such that

1

ωn

n∑
i=1

E
[
Λ>i V+

i Λi

]
→ Ω∗.

By (B.13) and (B.14), to prove Corollary 3.1, we only need to show Ω+
0∗Ω1∗Ω

+
0∗ −Ω+

∗ is

nonnegative definite. Letting Θi = Ω+
0∗ΛiV

1/2
i −Ω+

∗ ΛiV
−1/2
i , we have

ΘiΘ
>
i =

(
Ω+

0∗ΛiV
1/2
i −Ω+

∗ ΛiV
−1/2
i

)(
Ω+

0∗ΛiV
1/2
i −Ω+

∗ ΛiV
−1/2
i

)>
= Ω+

0∗ΛiViΛiΩ
+
0∗ −Ω+

0∗ΛiΛiΩ
+
∗ −Ω+

∗ ΛiΛiΩ
+
0∗ + Ω+

∗ ΛiV
+
i ΛiΩ

+
∗ ,
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which indicates that
1

ωn

n∑
i=1

E
[
ΘiΘ

>
i

]
→ Ω+

0∗Ω1∗Ω
+
0∗ −Ω+

∗ . (B.15)

As E
[
ΘiΘ

>
i

]
is nonnegative definite, by (B.15), we can prove that Ω+

0∗Ω1∗Ω
+
0∗ −Ω+

∗ is also

nonnegative definite. Hence, the proof of Corollary 3.1 is completed. �

Proof of Theorem 3.2. Note that

η̂(u)− η(u) =
n∑
i=1

si(u
∣∣θ̂)
(
Yi − Z>i β̂

)
− η(u)

=
n∑
i=1

si(u
∣∣θ̂)ei −

[ n∑
i=1

si(u
∣∣θ̂)η(Xi,θ0)− η(u)

]
+

n∑
i=1

si(u
∣∣θ̂)Z>i

(
β0 − β̂

)
≡ In1,∗ + In2,∗ + In3,∗. (B.16)

By Assumption 1, we have

K
(X>ijθ̂ − u

h

)
= K

(X>ijθ0 − u
h

)
+K ′

(X>ijθ♦ − u
h

)X>ij(θ̂ − θ0)

h
, (B.17)

where θ♦ = θ0 + λ♦(θ̂ − θ0) for some 0 < λ♦ < 1. By Theorem 3.1, we have

‖θ̂ − θ0‖+ ‖β̂ − β0‖ = OP (ω−1/2
n ). (B.18)

From (B.17), (B.18) and (3.6), it follows that

In3,∗ =
n∑
i=1

si(u
∣∣θ0)Z>i

(
β0 − β̂

)
+

n∑
i=1

[
si(u

∣∣θ̂)− si(u
∣∣θ0)

]
Z>i
(
β0 − β̂

)
= OP (ω−1/2

n ) +OP (ω−1
n ) = oP (ϕ−1/2

n (h)). (B.19)

Similarly to the proof of (B.5), we can show that

In2,∗ =
1

2
η′′(u)µ2h

2(1 + oP (1)). (B.20)

We finally consider In1,∗. By (B.17) and (B.18), we can show that
∑n

i=1 si(u
∣∣θ0)ei is the

leading term of In1,∗. Letting zi(θ0) = si(u
∣∣θ0)ei and by Assumption 2, it is easy to check

that {zi(θ0) : i ≥ 1} is a sequence of independent random variables. By Assumption 2(iii),

we have E[zi(θ0)] = 0. By (3.5), (3.6) and the central limit theorem, it can be readily seen

that

ϕ1/2
n (h)In1,∗

d→ N(0, σ2
∗). (B.21)

In view of (B.16), (B.19)–(B.21), the proof of Theorem 3.2 is completed. �
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Appendix C: Some auxiliary lemmas and proof of Theorem 4.1

In this appendix, we give some technical lemmas which have been used to prove the main

results in Appendix B, and the proof of Theorem 4.1 in Section 4. As in Appendix B, let C

denote a generic positive constant whose value may change from line to line. Define

Vij(u,θ, κ) =
1

h

(X>ijθ − u
h

)κ
K
(X>ijθ − u

h

)
, κ = 0, 1, 2, . . . ,

for i = 1, . . . , n and j = 1, . . . ,mi. We next give the uniform consistency results of the

weighted nonparametric kernel-based estimators for the longitudinal data, which are of in-

dependent interest.

Lemma C.1. Suppose that Assumptions 1, 2(ii) and 3(i) in Appendix A are satisfied and

h→ 0,
n2

Nn(h) log n
→∞, log n

h2Nn(h)
= O(1), (C.1)

where Nn(h) =
∑n

i=1 1/mih. Then, we have, for any integer κ ≥ 0 and as n→∞,

sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

Vij(u,θ, κ)− fθ(u)µκ

∣∣∣ = OP

(
hτκ +

√
Nn(h) log n

n

)
, (C.2)

where U(Θ) =
{

(u,θ>)> : u ∈ U , θ ∈ Θ
}

, U is defined in Assumption 3(i), Θ is a parameter

space, µκ =
∫
vκK(v)dv, τκ = 1 if κ is odd, and τκ = 2 if κ is even.

Proof. For simplicity, let εn =

√
Nn(h) logn

n
. To prove (C.2), it suffices to show that

sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij(u,θ, κ)− E[Vij(u,θ, κ)]

}∣∣∣ = OP (εn), (C.3)

and

sup
(u,θ>)>∈U(Θ)

∣∣∣E[Vij(u,θ, κ)]− fθ(u)µκ

∣∣∣ = O(hτκ). (C.4)

By Assumptions 1, 2(ii) and 3(i) in Appendix A, we have

E[Vij(u,θ, κ)] =
1

h

∫ (u1 − u
h

)κ
K
(u1 − u

h

)
fθ(u1)du1

=

∫
vκK(v)fθ(u+ hv)dv

= fθ(u)µκ + f ′θ(u)µκ+1h+O(h2)

uniformly for (u,θ>)> ∈ U(Θ), which implies that (C.4) holds.

Let us now turn to the proof of (C.3). The main idea is to consider covering of the set

U(Θ) by a finite number of subsets S(k), which are centered at s>k ≡
(
uk,θ

>
k

)
with radius
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r = o(h2). Letting Nn be the total number of such subsets, S(k), k = 1, 2, . . . , Nn, then

Nn = O(r−(p+1)). It is easy to show that

sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij(u,θ, κ)− E[Vij(u,θ, κ)]

}∣∣∣
= max

1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij(sk, κ)− E[Vij(sk, κ)]

}∣∣∣
+ max

1≤k≤Nn
sup

(u,θ>)>∈S(k)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

[
Vij(u,θ, κ)− Vij(sk, κ)

]∣∣∣
+ max

1≤k≤Nn
sup

(u,θ>)>∈S(k)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
E[Vij(u,θ, κ)]− E[Vij(sk, κ)]

}∣∣∣
≡ Πn1 + Πn2 + Πn3, (C.5)

where Vij(sk, κ) = Vij(uk,θk, κ).

Noting that K(·) is Lipschitz continuous by Assumption 1 and taking r = Cεnh
2 for

some positive constant C, we have

Πn2 = OP

( r
h2

)
= OP (εn), Πn3 = O(εn). (C.6)

For Πn1, we apply the Bernstein inequality for i.i.d. random variables (see, for example,

van der Vaart and Wellner, 1996) to obtain the convergence rate. Note that by Assumptions

1, 2(ii) and 3(i),

1

mi

mi∑
j=1

∣∣∣Vij(sk, κ)− E[Vij(sk, κ)]
∣∣∣ ≤ C

h
for some C > 0, (C.7)

and

Var
[ 1

mi

mi∑
i=1

Vij(sk, κ)
]

=
1

m2
i

· Var
[ mi∑
i=1

Vij(sk, κ)
]
≤ C

mih
, (C.8)

By (C.7), (C.8), Assumption 2(ii) and the Bernstein inequality, we have, for some sufficiently

large positive constant Cε,

P(Πn1 > Cεεn) ≤ Nn exp
{ −n2C2

ε ε
2
n(

2CNn(h) + 2nCεn
3h

)}
≤ Nn exp

{−n2C2
ε ε

2
n

CεNn(h)

}
≤ Nn exp{−Cε log n} = o(1), (C.9)

which implies that

Πn1 = OP (εn). (C.10)
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In view of (C.5), (C.6) and (C.10), we have shown (C.3), completing the proof of Lemma

C.1. �

Lemma C.2. Suppose that Assumptions 3(ii) and 5, and the conditions in Lemma C.1 are

satisfied. Then, we have

sup
(u,θ>)>∈U(Θ)

∣∣∣ n∑
i=1

si(u|θ)Zi − ρZ(u|θ)
∣∣∣ = OP

(
h2 + εn

)
, (C.11)

where si(u|θ) was defined in Section 2, ρZ(u|θ) = E
[
Zij|X>ijθ = u

]
, εn =

√
Nn(h) logn

n
and

Nn(h) was defined in Lemma C.1.

Proof. Letting H = diag(1, h), then by Lemma C.1 we have

H−1
[ 1

n

n∑
i=1

X
>
i (u|θ)Ki(u|θ)Xi(u|θ)

]
H−1 = fθ(u) diag(1, µ2) + oP (1). (C.12)

uniformly for (u,θ>)> ∈ U(Θ), where Xi(u|θ) and Ki(u|θ) were defined in Section 2.

We then use arguments similar to those in the proof of Lemma C.1 to show that

sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

Vij,Z(u,θ, κ)− fθ(u)µκρZ(u|θ)
∣∣∣ = OP (hτκ + εn), (C.13)

where

Vij,Z(u,θ, κ) =
Zij

h

(X>ijθ − u
h

)κ
K
(X>ijθ − u

h

)
, κ = 0, 1, . . . .

By the bandwidth condition in Assumption 5, we can choose a positive and slowly varying

function L(·) such that as n→∞

L(n)→∞ and
L(n)T

2
2+δ
n log n

h2Nn(h)
= o(1).

Furthermore, let l(·) be any positive function such that

l(n)→∞, l(n)� L(n), as n→∞,

where an � bn means an = o(bn). To prove (C.13), we need only to show that

sup
(u,θ>)>∈U(Θ)

1

n

n∑
i=1

1

mi

mi∑
j=1

{
Vij,Z(u,θ, κ)− E[Vij,Z(u,θ, κ)]

}
= oP (l(n)εn) (C.14)

and

sup
(u,θ>)>∈U(Θ)

∣∣∣E[Vij,Z(u,θ, κ)]− fθ(u)µκρZ(u|θ)
∣∣∣ = OP

(
hτκ
)
. (C.15)
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By Assumptions 1, 2(ii) and 3(ii), we have

E[Vij,Z(u,θ, κ)] =
1

h

∫ (u1 − u
h

)κ
K
(u1 − u

h

)
fθ(u1)ρZ(u1|θ)du1

=

∫
vκK(v)fθ(u+ hv)ρZ(u+ hv|θ)dv

= fθ(u)ρZ(u|θ)µκ + f ′θ(u|θ)ρZ(u|θ)µκ+1h

+fθ(u)ρ′Z(u|θ)µκ+1h+O(h2)

uniformly in (u,θ>)> ∈ U(Θ), which implies (C.15).

As in the proof of Lemma C.1, the main idea in proving (C.14) is to consider covering

of the set U(Θ) by a finite number of subsets S(k) centered at sk with radius r = o(h2).

Letting sk and Nn be defined as in the proof of Lemma C.1, it is easy to show that

sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij,Z(u,θ, κ)− E[Vij,Z(u,θ, κ)]

}∣∣∣
= max

1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij,Z(sk, κ)− E[Vij,Z(sk, κ)]

}∣∣∣
+ max

1≤k≤Nn
sup

(u,θ>)>∈S(k)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

[
Vij,Z(u,θ, κ)− Vij,Z(sk, κ)

]∣∣∣
+ max

1≤k≤Nn
sup

(u,θ>)>∈S(k)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
E[Vij,Z(u,θ, κ)]− E[Vij,Z(sk, κ)]

}∣∣∣
≡ Πn4 + Πn5 + Πn6, (C.16)

where Vij,Z(sk, κ) = Vij,Z(uk,θk, κ).

Similar to the proof of (C.6) as above, taking r = O (εnh
2), we have

Πn5 + Πn6 = OP

( r
h2

)
= OP (εn) = oP (εnl(n)). (C.17)

We next obtain the convergence rate for Πn4, which is slightly more complicated than its

counterpart in the proof of Lemma C.1. As Zij may be unbounded, we apply a truncation

method. For this purpose, we define

V ij,Z(k) = Vij,Z(sk, κ)I
{
‖Zij‖ ≤ T

1
2+δ
n l(n)

}
and

Ṽij,Z(k) = Vij,Z(sk, κ)− V ij,Z(k),
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where I{·} is an indicator function. It is easy to show that

Πn4 ≤ max
1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

(V ij,Z(k)− E[V ij,Z(k)])
∣∣∣

+ max
1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

(Ṽij,Z(k)− E[Ṽij,Z(k)])
∣∣∣

≡ Πn4,1 + Πn4,2. (C.18)

Note that for any η > 0,

P
(

Πn4,2 > ηεnl(n)
)
≤ P

(
max

1≤k≤Nn
max

1≤i≤n,1≤j≤mi
|Ṽij,Z(k)| > 0

)
≤

n∑
i=1

mi∑
j=1

P
(
‖Zij‖ > T

1
2+δ
n l(n)

)
= O

(
l−(2+δ)(n)

)
= o(1),

which leads to

Πn4,2 = oP (εnl(n)). (C.19)

We then use the Bernstein inequality to deal with the convergence of Πn4,1. Note that

for any k, we have

1

mi

mi∑
j=1

∣∣∣V ij,Z(k)− E[V ij,Z(k)]
∣∣∣ ≤ CT

1
2+δ
n l(n)

h
(C.20)

and

Var
[ 1

mi

mi∑
j=1

V ij,Z(k)
]
≤ C

mih
, (C.21)

where C is a positive constant which is independent of k.

By (C.20), (C.21), Assumptions 2(ii), 5 and the Bernstein inequality for i.i.d. random

variables, we have, for any η > 0,

P
(

Πn4,1 > ηεnl(n)
)
≤ Nn exp

{ −η2n2ε2nl
2(n)

2C
[
Nn(h) + nT

1
2+δ
n l(n)h−1ηεn

]}
≤ Nn exp {−Cl(n) log(n)}

= O(Nnn−Cl(n)) = o(1). (C.22)

Hence, we have

Πn4,1 = oP (εnl(n)). (C.23)

By (C.16)–(C.19) and (C.23), we know that (C.14) holds, which, together with (C.15),

implies that (C.13) holds. In view of (C.12) and (C.13) as well as the definition of si(u|θ),

(C.11) is readily seen. �
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Lemma C.3. Let

η̃(Xi,θ) =
(
η′(X>i1θ)Xi1, . . . , η

′(X>imiθ)Ximi

)>
,

and suppose that the conditions in Lemma C.2 are satisfied. Then we have

sup
(u,θ>)>∈U(Θ)

∣∣∣ n∑
i=1

si(u|θ)η̃(Xi,θ)− η′(u)ρX(u|θ)
∣∣∣ = OP

(
h2 + εn

)
, (C.24)

where ρX(u|θ) = E
[
Xij|X>ijθ = u

]
.

Proof. The proof is similar to the proofs of Lemmas C.1 and C.2 given above. We thus

omit the details. �

We next give the proof of Theorem 4.1, whose main idea is analogous to the proof of

Theorem 1 in Chen et al. (2009) in the time series context.

Proof of Theorem 4.1. Note that

σ̂2(t)− σ2(t) =
exp{σ̂2

�(t)}
τ̂

− exp{σ2
�(t)}
τ

=
[exp{σ̂2

�(t)}
τ̂

− exp{σ̂2
�(t)}
τ

]
+
[exp{σ̂2

�(t)}
τ

− exp{σ2
�(t)}
τ

]
≡ Ξn1 + Ξn2. (C.25)

We first consider Ξn2. By a first-order Taylor expansion and some standard techniques

in local linear estimation, we can show that

Ξn2
P∼ exp{σ2

�(t)}
τ

[
σ̂2
�(t)− σ2

�(t)
]

P∼ exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

[
log(r̂ij + ζn)− σ2

�(t)− σ̇2
�(t)(tij − t)

]
K1

(tij − t
h1

)}
=

exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

[
σ2
�(tij)− σ2

�(t)− σ̇2
�(t)(tij − t)

]
K1

(tij − t
h1

)}
+

exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

[
log(r̂ij + ζn)− log(rij)

]
K1

(tij − t
h1

)}
+

exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

ξ�(tij)K1

(tij − t
h1

)}
≡ Ξn2,1 + Ξn2,2 + Ξn2,3, (C.26)

where an
P∼ bn denotes an = bn(1 + oP (1)).
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Noting that E[ξ�(tij)] = 0, by (4.7) and the central limit theorem, it is readily proven

that

ϕ1/2
n� (h1) · Ξn2,3

d−→ N
(
0,

exp{2σ2
�(t)}

τ 2fT (t)
σ2
�
)
, (C.27)

where exp{2σ2
�(t)}

τ2
= σ4(t) by relevant definition in (4.2).

By Assumption 8 and a second-order Taylor expansion of σ2
�(·), we can show that

Ξn2,1 =
exp{σ2

�(t)}
2τ

σ̈2
�(t)h

2
1

∫
v2K1(v)dv + oP (h2

1) = h2
1bσ1(t) + oP (h2

1). (C.28)

We next prove that Ξn2,2 is asymptotically negligible (compared with Ξn2,3). Let χn =

log−2(Tn)ϕ
−1/2
n� (h1) and ξ(tij) be defined as in Section 4 such that r(tij) = σ2(tij)ξ

2(tij) and

E[ξ2(tij)|tij] = 1 with probability 1. Note that

Ξn2,2 =
exp{σ2

�(t)}
τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

[
log(r̂ij + ζn)− log(rij)

]
K1

(tij − t
h1

)
I{ξ2(tij) ≤ χn}

}
+

exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

[
log(r̂ij + ζn)− log(rij)

]
K1

(tij − t
h1

)
I{ξ2(tij) > χn}

}
≡ Ξn2,21 + Ξn2,22. (C.29)

Recalling that ζn = 1/Tn, by Assumption 7 and the definitions of r̂ij and rij, we have

|Ξn2,21| ≤
exp{σ2

�(t)}
τfT (t)h1

{
log(Tn)

n∑
i=1

wi

mi∑
j=1

K1

(tij − t
h1

)
I(ξ2(tij) ≤ χn)

}
+

exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

∣∣ log(σ2(tij)ξ
2(tij))

∣∣K1

(tij − t
h1

)
I(ξ2(tij) ≤ χn)

}
≤ OP (χn log Tn) +

exp{σ2
�(t)}

τfT (t)h1

{∣∣ logχn
∣∣ n∑
i=1

wi

mi∑
j=1

K1

(tij − t
h1

)
I(ξ2(tij) ≤ χn)

}
= OP (χn log Tn + χn| logχn|)

= oP (ϕ−1/2
n (h1)). (C.30)

In a way similar to Fan and Yao (1998) and Chen et al. (2009), we can show that Ξn2,22 =

oP (ϕ
−1/2
n (h1)), which, in combination with (C.30), implies

Ξn2,2 = oP (ϕ−1/2
n (h1)). (C.31)

We next consider Ξn1. Following the proofs of Lemmas C.2 and C.3 above, we can simi-

larly prove the uniform convergence rates for the local linear estimator of the link function.
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Then, by Theorem 3.1 and (4.5), we can show that

1

τ̂
− 1

τ

P∼
[ 1

Tn

n∑
i=1

mi∑
j=1

rij
(

exp{−σ̂2
�(tij)} − exp{−σ2

�(tij)}
)]

+
[ 1

Tn

n∑
i=1

mi∑
j=1

(r̂ij − rij) exp{−σ̂2
�(tij)}

]
=

1

Tn

n∑
i=1

mi∑
j=1

rij exp{−σ2
�(tij)}

(
exp{−σ̂2

�(tij) + σ2
�(tij)} − 1

)
+ oP (ϕ−1/2(h1) + h2

1)

= − 1

Tn

n∑
i=1

mi∑
j=1

ξ2(tij)

2τ
σ̈2
�(tij)h

2
1

∫
v2K1(v)dv + oP (ϕ−1/2(h1) + h2

1)

= −h
2
1

2τ
E
[
σ̈2
�(tij)

]
µ2 + oP (ϕ−1/2(h1) + h2

1),

which implies that

Ξn1 = −exp{σ2
�(t)}h2

1

2τ
E
[
σ̈2
�(tij)

]
µ2 + oP (ϕ−1/2(h1) + h2

1) = −h2
1bσ2(t) + oP (ϕ−1/2(h1) + h2

1).

(C.32)

In view of (C.25)–(C.32), we have completed the proof of Theorem 4.1. �
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Table 5.1. Performance of SGEE and PULS estimation methods under correct

specification of an underlying AR(1) correlation structure

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10

β1

PULS 0.0048 0.0402 0.0288 -0.0030 0.0308 0.0195

SGEE -0.0026 0.0508 0.0081 -0.0016 0.0259 0.0074

β2

PULS -0.0024 0.0409 0.0243 0.0049 0.0267 0.0180

SGEE -0.0018 0.0298 0.0110 0.0033 0.0310 0.0077

θ1

PULS -0.0049 0.0299 0.0180 -0.0009 0.0197 0.0134

SGEE -0.0013 0.0164 0.0083 -0.0002 0.0118 0.0046

θ2

PULS 0.0011 0.0380 0.0229 -0.0016 0.0237 0.0161

SGEE 0.0026 0.0188 0.0100 0.0006 0.0108 0.0067

θ3

PULS 0.0018 0.0314 0.0188 0.0006 0.0203 0.0147

SGEE -0.0007 0.0182 0.0090 -0.0004 0.0088 0.0052

30

β1

PULS 0.0003 0.0408 0.0277 0.0016 0.0328 0.0222

SGEE -0.0081 0.1134 0.0106 0.0007 0.0108 0.0083

β2

PULS -0.0020 0.0425 0.0317 0.0005 0.0351 0.0202

SGEE -0.0017 0.0420 0.0096 -0.0064 0.0152 0.0079

θ1

PULS 0.0020 0.0315 0.0213 -0.0020 0.0244 0.0182

SGEE -0.0008 0.0247 0.0075 0.0001 0.0148 0.0064

θ2

PULS -0.0035 0.0340 0.0240 -0.0083 0.0278 0.0163

SGEE -0.0027 0.0242 0.0090 -0.0013 0.0104 0.0066

θ3

PULS -0.0027 0.0321 0.0185 0.0045 0.0267 0.0169

SGEE 0.0009 0.0230 0.0074 0.0001 0.0162 0.0068
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Table 5.2. Performance of SGEE and PULS estimation methods under correct

specification of an underlying ARMA(1,1) correlation structure

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10

β1

PULS -0.0029 0.0400 0.0280 0.0006 0.0322 0.0221

SGEE -0.0025 0.0244 0.0155 0.0418×10−3 0.0193 0.0124

β2

PULS 0.0032 0.0386 0.0282 -0.0045 0.0299 0.0205

SGEE 0.0009 0.0249 0.0171 0.1378×10−3 0.0212 0.0126

θ1

PULS -0.0004 0.0267 0.0181 -0.2799×10−3 0.0188 0.0126

SGEE -0.0002 0.0161 0.0104 0.5767×10−3 0.0146 0.0073

θ2

PULS -0.0047 0.0343 0.0209 0.5278×10−3 0.0223 0.0156

SGEE -0.0031 0.0192 0.0113 -0.2302×10−3 0.0145 0.0087

θ3

PULS 0.0008 0.0253 0.0158 -0.9189×10−3 0.0201 0.0121

SGEE 0.0011 0.0148 0.0102 -0.9375×10−3 0.0146 0.0074

30

β1

PULS -0.0026 0.0450 0.0296 -0.0016 0.0374 0.0273

SGEE 0.0005 0.0214 0.0138 0.0015 0.0288 0.0105

β2

PULS -0.0013 0.0461 0.0291 0.0035 0.0361 0.0252

SGEE 0.0040 0.0335 0.0147 0.0014 0.0152 0.0104

θ1

PULS -0.0014 0.0296 0.0192 -0.0010 0.0207 0.0159

SGEE -0.0005 0.0166 0.0095 0.0006 0.0092 0.0063

θ2

PULS -0.0050 0.0355 0.0231 0.0011 0.0229 0.0173

SGEE -0.0037 0.0371 0.0120 -0.0003 0.0116 0.0072

θ3

PULS 0.0017 0.0279 0.0186 -0.0006 0.0215 0.0154

SGEE 0.0009 0.0181 0.0095 -0.0007 0.0100 0.0070

37



Table 5.3. Performance of parameter estimation methods under misspecification of an

underlying ARMA(1,1) correlation structure

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10

β1

PULS 0.0072 0.0410 0.0357 -0.0038 0.0299 0.0201

SGEE -0.0054 0.0261 0.0210 -0.0055 0.0211 0.0147

β2

PULS 0.0068 0.0336 0.0256 0.0037 0.0290 0.0163

SGEE 0.0025 0.0267 0.0157 0.0023 0.0190 0.0136

θ1

PULS 0.0037 0.0166 0.0114 0.0061 0.0157 0.0096

SGEE 0.0033 0.0144 0.0122 0.0016 0.0163 0.0081

θ2

PULS -0.0092 0.0303 0.0184 -0.0084 0.0224 0.0174

SGEE -0.0007 0.0198 0.0144 -0.0045 0.0203 0.0130

θ3

PULS -0.0005 0.0229 0.0158 -0.0028 0.0160 0.0111

SGEE -0.0035 0.0141 0.0094 0.0000 0.0134 0.0092

30

β1

PULS 0.0066 0.0403 0.0259 -0.0221 0.0502 0.0252

SGEE 0.0093 0.0144 0.0087 0.0001 0.0165 0.0118

β2

PULS -0.0138 0.0435 0.0353 0.0107 0.0312 0.0233

SGEE -0.0017 0.0268 0.0096 0.0035 0.0170 0.0096

θ1

PULS 0.0027 0.0252 0.0165 0.0020 0.0181 0.0067

SGEE 0.0054 0.0136 0.0078 0.0019 0.0096 0.0098

θ2

PULS -0.0063 0.0265 0.0245 0.0021 0.0315 0.0273

SGEE 0.0009 0.0198 0.0118 0.0046 0.0136 0.0094

θ3

PULS -0.0011 0.0285 0.0258 -0.0042 0.0217 0.0136

SGEE -0.0065 0.0178 0.0137 -0.0046 0.0120 0.0084
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Figure 5.1. Estimated link function (dot-dashed line), together with the true link function (solid line), from

a typical realization of model (1.2) with AR(1) correlation structure for each combination of n and m: (a)

n = 30, m = 10; (b) n = 50, m = 10; (c) n = 30, m = 30; (d) n = 50, m = 30.
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Figure 5.2. Estimated link function (dot-dashed line), together with the true link function (solid line), from

a typical realization of model (1.2) with ARMA(1,1) correlation structure for each combination of n and m:

(a) n = 30, m = 10; (b) n = 50, m = 10; (c) n = 30, m = 30; (d) n = 50, m = 30.
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Figure 5.3. The scatter plots of the response variable log(FEV) against the continuous regressors, i.e.,

(clockwise from top left) log(H), log(BMI), log(NO2), log(OZONE).
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Figure 5.4. The box plots of the response variable log(FEV) against the binary regressors, i.e., (clockwise

from top left) G, ASS, R, RINF, ASSPM.
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Figure 5.5. The estimated link function and its 95% confidence band.
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