
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion Papers in Economics 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Department of Economics and Related Studies 

University of York 

Heslington 

York, YO10 5DD 

No. 14/19 

 

Specification Testing in Nonstationary Time Series 

Models 

 

Jia Chen, Jiti Gao, Degui Li and Zhengyan Lin 



 

 

 



Specification Testing in Nonstationary Time Series Models

Jia Chen1, Jiti Gao2, Degui Li3 and Zhengyan Lin4

1Department of Economics and Related Studies, University of York, York, UK

2Department of Econometrics and Business Statistics, Monash University, Melbourne, Australia

3Department of Mathematics, University of York, York, UK

4Department of Mathematics, Zhejiang University, Hangzhou, China

� In this paper, we consider a specification testing problem in nonlinear time series models with non-

stationary regressors and propose using a nonparametric kernel-based test statistic. The null asymptotics

for the proposed nonparametric test statistic have been well developed in the existing literature such as

Gao et al (2009b) and Wang and Phillips (2012). In this paper, we study the local asymptotics of the

test statistic, i.e., the asymptotic properties of the test statistic under a sequence of general nonparamet-

ric local alternatives, and show that the asymptotic distribution depends on the asymptotic behaviour

of the distance function which is the local deviation from the parametrically specified model in the null

hypothesis. In order to implement the proposed test in practice, we introduce a bootstrap procedure to

approximate the critical values of the test statistic and establish a novel result of Edgeworth expansion

which is used to justify the use of such an approximation. Based on the approximate critical values, we

develop a bandwidth selection method, which chooses the optimal bandwidth that maximises the local

power of the test while its size is controlled at a given significance level. The local power is defined as the

power of the proposed test for a given sequence of local alternatives. Such a bandwidth selection is made

feasible by an approximate expression for the local power of the test as a function of the bandwidth. A

Monte-Carlo simulation study is provided to illustrate the finite sample performance of the proposed test.

Keywords: Asymptotic distribution; Edgeworth expansion; local power function; nonlinear time

series; quadratic form; size function; specification testing; unit root.

JEL Classifications: C12; C13; C14.
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1. Introduction

In the past two decades or so, there exists a rich literature on specification testing of a

parametric model versus a nonparametric/semiparametric alternative involving stationary time

series. Many testing procedures have been proposed based on nonparametric kernel methods.

The existing literature includes Fan and Li (1996), Li and Wang (1998), Li (1999), Fan and

Linton (2003), Juhl and Xiao (2005a), and Chen and Gao (2007). It is shown that the leading

term of each of these existing nonparametric kernel test statistics is of a quadratic form (c.f.,

Chapter 3 of Gao 2007). With the help of an Edgeworth expansion for quadratic forms, Gao

and Gijbels (2008) developed an asymptotic theory to support a local power function-based

bandwidth selection method for optimal testing purposes. Some general asymptotic distributions

for nonparametric kernel test statistics have also been discussed in the books by Fan and Yao

(2003), Gao (2007), and Li and Racine (2007).

As pointed out in the literature, stationarity might be a quite restrictive assumption on time

series data in real-world problems. When tackling economic issues from a time perspective, we

often deal with nonstationary components. For example, substantial empirical evidence suggests

that many exchange rates, prices, aggregate consumption and other macroeconomic variables

are nonstationary. Hence, practitioners might feel more comfortable avoiding restrictions like

stationarity for time series data. In this respect, some papers already discussed parametric and

nonparametric estimation in nonlinear time series models with possible nonstationarity. Such

studies include Phillips and Park (1998), Park and Phillips (1999, 2001), Karlsen and Tjøstheim

(2001), Karlsen, Myklebust and Tjøstheim (2007), Cai, Li and Park (2009), Lin, Li and Chen

(2009), Wang and Phillips (2000a, 2009b), Chen, Li and Zhang (2010), Wang and Phillips (2011),

Chen, Gao and Li (2012), and Gao and Phillips (2013).

Meanwhile, there are also some papers on model specification testing in nonstationary time

series case. Juhl and Xiao (2005b) focused on testing for cointegration using a partially linear

model. Marmer (2008) developed a functional form test in dealing with nonlinearity, nonstation-

arity and spurious forecasts. Kasparis (2008), and Hong and Phillips (2010) considered model

specification testing in cointegration models. Recently, Gao et al (2009a) established an asymp-

totically consistent test for a nonparametric unit–root specification problem in a nonlinear time

series autoregression. In a paper closely related to the current paper, Gao et al (2009b) proposed

a nonparametric kernel test statistic for detecting whether the regression function is of a known

parametric form indexed by an unknown parameter vector and then established an asymptotic

null distribution for the proposed test statistic. More recently, Wang and Phillips (2012) studied

this test statistic and established some asymptotic properties under a nonlinear null hypothesis

and a sequence of local alternatives that are different from those in Gao et al (2009b). In this

paper, we study the same test statistic as in Gao et al (2009b) and establish its asymptotic

property under a sequence of local alternative hypotheses which will be specified later. Further-
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more, since most of the existing literature did not thoroughly study bandwidth selection issue in

the nonparametric kernel-based tests with nonstationarity, this paper aims to fill in this gap by

developing a bandwidth selection method that chooses the optimal bandwidth as the one that

maximises the local power of the test while the size is controlled at a given significance level.

This paper is concerned with a nonlinear time series model of the form

Yt = g(Vt) + et, t = 1, · · · , n, (1.1)

where g(·) is a smooth regression function, {Vt} is an integrated process of order one

Vt = Vt−1 + vt, t ≥ 1, V0 = 0, (1.2)

in which vt =
∑∞

i=0 φiεt−i is a stationary linear process with {εt} being a white noise sequence, and

{et} is a sequence of stationary martingale differences. Equation (1.1) provides a very general

regression framework for studying the relationship between Yt and Vt. While nonparametric

smoothing techniques can be used to estimate the regression function g(·) when no information

about its functional form is known, in a lot of economic studies researchers often specify, based

on related economic theories or prior information, a particular nonlinear parametric form for g(·),

i.e. g(v) = g(v, θ), where θ ∈ Θ is a vector of unknown parameters and Θ is a suitable parameter

space. The exact form of g(·) will depend on the question under consideration. Although these

model specifications have the support of economic theories, they may not fit the real world very

well and hence, small local deviations from them are possible. In this paper, we are interested in

testing

H0 : g(v) = g(v, θ) (1.3)

against a sequence of local alternative hypotheses

HL
1 : g(v) = g(v, θ) + ∆n(v), (1.4)

where g(v, θ) is a given real function indexed by the unknown parameter vector θ belonging to the

parameter space Θ, and ∆n(·) is an unknown function satisfying ∆(v) → 0 for any v as n → ∞

and represents the small deviation of the regression function from the specified functional form in

the null H0. Since ∆n(v) diminishes as n increases, it is hence described as a local deviation. In

what follows we will call ∆n(v) the distance function as it measures the magnitude of departure

of the model from the null specification. We assume that there is a unique parameter vector

θ0 ∈ Θ such that E[Yt|Ft−1] = g(Vt, θ0) almost surely (a.s.) under the null H0.

The reason for choosing a nonparametric distance function ∆n(v) is that when there exists

evidence that suggests we reject the null hypothesis, the level of the departure from the null is

often unknown. Instead of establishing an asymptotic distribution of the proposed test statistic

under the null hypothesis H0, as has been done in Gao et al (2009b), the current paper focuses

on studying the asymptotic properties of the test statistic under a sequence of general local alter-

natives of the form (1.4). As shown in Theorems 2.1 and 2.2 in Section 2 below, we find that the
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asymptotic distribution of the proposed test statistic under a given sequence of local alternatives

depends on the asymptotic behaviour of the unknown distance function ∆n(·). Furthermore, our

results show that for different distance functions, the nonparametric kernel test in the nonstation-

ary time series case can detect alternatives with either smaller or larger magnitude of deviations

from the null than its counterpart in stationary time series case. This is mainly because the rate

of convergence of an estimator in the nonstationary case depends heavily on the functional form

of the function being estimated. Similar observations have been made in Park and Phillips (2001)

where the authors dealt with parameter estimation in nonlinear parametric regression models

with integrated regressors.

For the choice of bandwidth in the nonparametric test statistic, we propose a computer-

intensive bootstrap simulation procedure. The main idea of this bandwidth selection method is

to maximise the local power of the proposed test while the size is controlled at a given significance

level, where the local power is defined as the power of the test under a given sequence of local

alternative hypotheses. We also establish the asymptotic behaviour of the bootstrap scheme

under some mild conditions and obtain an Edgeworth expansion for a nonstationary kernel-

weighted quadratic form. Furthermore, we obtain the asymptotic approximation for the local

power function of the proposed test in Section 3, which enables us to construct a feasible procedure

for selecting an appropriate bandwidth for the kernel-based test statistic.

The rest of the paper is organized as follows. Section 2 proposes using a nonparametric kernel

test statistic for the testing problem (1.3)–(1.4), introduces some basic definitions for regular

functions, gives some technical assumptions and then establishes the asymptotic properties of

the test statistic under the local alternatives. Section 3 proposes using a simulated bootstrap

procedure for bandwidth selection and establishes an Edgeworth expansion for a nonstationary

kernel weighted quadratic form. Section 4 illustrates the finite sample performance of the proposed

test through a simulated example. Section 5 concludes this paper with some comments. Appendix

A gives some useful lemmas and then a sketch of the proofs of the main results. The full proofs of

the main results and the lemmas are given in Appendix B and Appendix C, respectively, which

are relegated to the supplementary appendix Chen et al (2014). Throughout the paper, we use

→D to denote convergence in distribution, →P to denote convergence in probability, an ∼ bn to

denote an
bn
→ 1 as n→∞, and an

P∼ bn to denote an
bn
→P 1 as n→∞.

2. The test statistic and its asymptotic properties under local alternatives

In this section, we present a nonparametric kernel test statistic, introduce some basic defini-

tions of regular functions, give some regularity conditions and then establish asymptotic properties

of the test statistic under a sequence of local alternative hypotheses HL
1 .

2.1. The test statistic
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It has been shown in both stationary and nonstationary time series cases (c.f., Gao, 2007; Li

and Racine, 2007; Gao et al, 2009b; and Wang and Phillips, 2012) that a nonparametric kernel

test statistic of the quadratic form

Qn(h) =

n∑
t=1

n∑
s=1, 6=t

êtK

(
Vt − Vs
h

)
ês (2.1)

works well in both large and finite samples, where K(·) is a kernel function, h = hn is a bandwidth

that tends to 0 as n tends to ∞, and êt = Yt − g(Vt, θ̂), in which θ̂ is the nonlinear least squares

(NLS) estimator of θ0 that is defined by

θ̂ = arg min
θ∈Θ

n∑
s=1

[Ys − g(Vs, θ)]
2 . (2.2)

Note that when H0 holds (i.e., there is no deviation from the specified parametric nonlinear

regression function in the null hypothesis H0), the NLS estimator θ̂ is consistent with its conver-

gence rate depending on the functional form of g(·, ·) (c.f., Park and Phillips, 2001). Lemma A.2

in Appendix A will further show that under a given sequence of local alternatives HL
1 , θ̂ is still

consistent with its convergence rate depending on the functional forms of both g(·, ·) and ∆n(·),

where ∆n(·) is the distance function defined in (1.4).

2.2. Basic definitions of regular functions

In order for the paper to be more self contained, we next give some basic definitions for

regular functions, some of which are introduced in the papers by Park and Phillips (1999, 2001).

A function T (x) on R ≡ (−∞,∞) is said to be regular if (i) it is continuous in a neighborhood of

infinity; and (ii) for any compact subset C of R and each ε > 0, there exist continuous functions

T ε and T ε as well as a constant δε > 0 such that T ε(x) ≤ T (y) ≤ T ε(x) for all |x− y| < δε on C,

and
∫
C(T ε − T ε)(x)dx → 0 as ε→ 0. It is obvious that any continuous or piece-wise continuous

function is regular. Before giving the definitions of I-regular and H-regular functions on Θ, we

first introduce two preliminary definitions.

Definition 2.1. We say that a function m(x, θ) is regular on Θ if

(i) for all θ ∈ Θ, m(·, θ) is regular;

(ii) for all x ∈ R, m(x, ·) is equicontinuous in a neighborhood of x.

Definition 2.2. We say that a function Z1(x, λ, θ) is of order smaller than Z2(λ, θ) on Θ if

Z1(x, λ, θ) = a(λ, θ)A(x, θ) or Z1(x, λ, θ) = b(λ, θ)A(x, θ)B(λx, θ)

where a(λ, θ) = o(Z2(λ, θ)) and b(λ, θ) = O(Z2(λ, θ)) as λ → ∞ for all θ ∈ Θ, supθ∈ΘA(x, θ) =

O(ec|x|) as |x| → ∞ for some c > 0, and supθ∈ΘB(x, θ) is bounded and tends to 0 as |x| → ∞.

We are now ready to introduce two classes of functions: I-regular on Θ and H-regular on Θ,

which are used in the present paper to classify parametric nonlinear regression functions.

5



Definition 2.3. A function m(x, θ) is said to be I-regular on Θ if the following two conditions

are satisfied:

(i) for each θ ∈ Θ, there exist a neighborhood N (θ) of θ and a bounded integrable function

M : R → R such that |m(x, θ′) −m(x, θ)| ≤ ‖θ′ − θ‖M(x) for all θ′ ∈ N (θ) where ‖ · ‖ is the

Euclidean norm;

(ii) for some C > 0, |m(x, θ)−m(y, θ)| ≤ C|x−y| for all θ ∈ Θ on each piece Si of their common

support S = ∪pi=1Si ⊂ R.

Definition 2.4. Let m(λx, θ) = κ(λ)H(x, θ) + R(x, λ, θ), where κ(·) is nonsingular. The

function m(x, θ) is said to be H-regular on Θ if the following two conditions are satisfied:

(i) H(x, θ) is regular on Θ;

(ii) R(x, λ, θ) is of order smaller than κ(λ) as λ→∞ for all θ ∈ Θ.

We call κ(·) the asymptotic order of m(x, θ) and H(x, θ) the limit homogeneous function.

Remark 2.1. The two conditions in Definition 2.3 are called the I-regularity conditions

(c.f., Section 3.2(a) in Park and Phillips, 2001). The first condition indicates that for all x,

m(x, ·) is continuous on Θ, and the second condition indicates that the function m(·, θ) is piece-

wise Lipschitz continuous on a common support which does not rely on the value of θ. Let

m∗(v) =
∑p

i=1mi(v)I(v ∈ Si), where mi(·) is some continuous and integrable function on the

set Si, Si ∩ Sj = ∅ for 1 ≤ i 6= j ≤ p, ∪pi=1Si is the support of m∗(·) and I(·) is the indicator

function. It is easy to check that the two I-regularity conditions in Definition 2.3 are satisfied when

m(v, θ) = m∗(v)θ and the parameter space Θ is bounded. We can further show thatm(v, α0, α1) =

α0 exp{−α1v
2} with θ = (α0, α1)T ∈ Θ and m(v, θ) = 1

1+θv2
also belong to the class of I-

regular functions on their respective Θ. The two conditions in Definition 2.4 are called the

H-regularity conditions (c.f., Section 3.2(b) in Park and Phillips, 2001). In particular, the second

H-regularity condition indicates that the function m(·, θ) can be asymptotically approximated

by the product of its asymptotic order and a limit homogeneous function. This approximation

would facilitate the establishment of the asymptotic theory involving H-regular functions. If

m(v, α0, α1, · · · , αp) = α0x
p + α1x

p−1 + · · · + αp−1x + αp with θ = (α0, α1, · · · , αp)T ∈ Θ, it is

easy to check that the two H-regularity conditions in Definition 2.4 are satisfied with κ(λ) = λp

and H(x, θ) = α0x
p. Furthermore, letting m�(·) be the distribution function of a random variable

which may not be continuous, we can also show that the two H-regularity conditions in Definition

2.4 are satisfied if m(v, θ) = m�(v)θ. More discussions and examples on I-regular and H-regular

functions can be found in Park and Phillips (1999, 2001).

Under the local alternatives HL
1 , êt = Yt−g(Vt, θ̂) will contain a deviation from the null spec-

ification. Hence, the asymptotic behaviour of the test statistic Qn(h) =
n∑
t=1

n∑
s=1, 6=t

êtK
(
Vt−Vs
h

)
ês

may depend on that of the deviation ∆n(·). We next consider two families of functions for the

distance ∆n(v), i.e., δn-integrable functions and δn-asymptotically homogeneous functions with

δn → 0 as n→∞.
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Definition 2.5. The distance function ∆n(x) is said to be δn-integrable if

δnΓ1(x) ≤ ∆n(x) ≤ δnΓ2(x)

for all x ∈ R, where for each k = 1, 2, Γk(x) is square integrable.

Definition 2.6. The distance function ∆n(x) is said to be δn-asymptotically homogeneous if

δnΛ1(x) ≤ ∆n(x) ≤ δnΛ2(x)

for all x ∈ R, where both Λ1(x) and Λ2(x) are asymptotically homogeneous. That is,

Λk(λx) = vk(λ)Hk(x) +Rk(x, λ), k = 1, 2,

and v(λ) = v1(λ) + v2(λ) is defined as the asymptotically homogeneous order of ∆n(x), v1(λ) ∼

v2(λ), Hk(x), k = 1, 2, are locally integrable and Rk(·, ·), k = 1, 2, satisfy one of the following

conditions:

(i) |Rk(x, λ)| ≤ ak(λ)Pk(x), where lim sup
λ→∞

ak(λ)
vk(λ) = 0 and Pk(x) is locally integrable; or

(ii) |Rk(x, λ)| ≤ bk(λ)Qk(λx), where lim sup
λ→∞

bk(λ)
vk(λ) < ∞ and Qk(x) is locally integrable and van-

ishes at infinity, i.e., Qk(x)→ 0 as |x| → ∞.

Definitions 2.5 and 2.6 above can be regarded as extensions of Definitions 4.1 and 4.2 in Park

and Phillips (1999) to our hypothesis testing setting.

2.3. Assumptions

We next give some regularity conditions, which will be used for establishing our asymptotic

theory.

Assumption 1 (i) Let Vt be generated as Vt = Vt−1 + vt with V0 = 0, and vt =
∑∞

i=0 φiεt−i,

where {εt} is a sequence of independent and identically distributed (i.i.d.) random errors

with E[ε1] = 0, E[ε8
1] <∞ and σ2

0 ≡ E[ε2
1] > 0, {φj} is a sequence of real numbers satisfying

φ ≡
∑∞

j=0 φj 6= 0 and
∑∞

j=0 j
1+λ0 |φj | < ∞ for some λ0 > 0. The characteristic function

ϕ(·) of ε1 satisfies |r|ϕ(r)→ 0 as r →∞.

(ii) Let {(et,Ft) : t ≥ 1} be a stationary sequence of martingale differences satisfying

E[e2
t |Ft−1] = σ2

e > 0 and supt≥1 E
[
e4
t |Ft−1

]
<∞ almost surely (a.s.), where

Ft = σ (e1, · · · , et; ε−∞, · · · , εt+1)

is a σ-field generated by {ei, εj : 1 ≤ i ≤ t,−∞ < j ≤ t+1}. Furthermore, εt is independent

of es for all t ≥ s+ 1.

(iii) Letting En(r) = 1√
n

∑[nr]
t=1 et and Vn(r) = 1√

n

∑[nr]
t=1 vt, there exists a vector Brownian

motion (E, V ) such that (En(r), Vn(r)) ⇒ (E(r), V (r)) on D[0, 1]2 as n → ∞, where “⇒”

denotes the weak convergence.
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Assumption 2 (i) The kernel K(·) is a continuous, positive and symmetric probability density

function with a compact support.

(ii) For some 0 < λ1 <
1
4 , nλ1h→ 0 and n

1
2
−λ1h→∞ as n→∞.

Assumption 3 (i) The nonlinear regression function g(v, θ) is I-regular on Θ and∫ ∞
−∞

[
g(v, θ′)− g(v, θ)

]2
dv > 0 for all θ′ 6= θ.

(ii) Both ġθ(v, θ) and g̈θ(v, θ) are I-regular on Θ, where ġθ(v, θ) = ∂g(v,θ)
∂θ and g̈θ(v, θ) =

∂2g(v,θ)
∂θ∂θT

. Furthermore,
∫
ġθ(v, θ)

[
ġθ(v, θ)

]T
dv is positive definite.

Assumption 3′ (i) The nonlinear regression function g(v, θ) is H-regular on Θ with limit homo-

geneous function h(v, θ) and asymptotic order κ(·), which is independent of θ. Furthermore,

κ(λ) is bounded away from zero as λ → ∞, and
∫
|v|≤δ0

[
h(v, θ) − h(v, θ′)

]2
dv > 0 for all

θ′ 6= θ and all δ0 > 0.

(ii) Both ġθ(v, θ) and g̈θ(v, θ) are H-regular on Θ with asymptotic orders κ̇(·) and κ̈(·),

respectively. Furthermore, κ̇(λ) is bounded away from zero as λ→∞, ‖(κ̇⊗ κ̇)−1κκ̈‖ <∞,

and
∫
|v|≤δ1 ḣ(v, θ)

[
ḣ(v, θ)

]T
dv is a positive definite matrix for all δ1 > 0, where ḣ(v, θ) is the

limit homogeneous function of ġθ(v, θ) (both ḣ(v, θ) and ġθ(v, θ) are of the same dimension

as θ), and ⊗ is the Kronecker product.

Remark 2.2. The condition V0 = 0 on the initial state of the unit root process {Vt} in

Assumption 1(i) is imposed to simplify the proofs of the main results and it can be relaxed to

V0 = OP (1). The summability assumption
∑∞

j=0 j
1+λ0 |φj | <∞ in Assumption 1(i) is a commonly

used condition for stationary linear processes and indicates that the process {vt} is short-range

dependent. Assumption 1(ii) imposes a stationary martingale differences structure on the model

errors, which is much weaker than the mutual independence assumption between {et} and {vt}

(c.f., Gao et al, 2009b). Wang and Phillips (2012) used a set of distributional assumptions

slightly weaker than Assumption 1, but required stronger restrictions on the kernel function and

the bandwidth than Assumption 2 (such as requiring limn→∞ nh
4 log2(n) = 0). Assumption 1(iii)

assumes a joint weak convergence result for the two partial sum processes En(r) and Vn(r). Such

an assumption is not uncommon in the literature on nonstationary regression modelling (c.f., Park

and Phillips, 2001; Wang and Phillips, 2012) and can be satisfied under certain restrictions on

the stationary processes {et} and {vt} (c.f., Wu and Min, 2005). Note that the mixing condition

is not required in the paper. Assumption 2(i) and (ii) in the present paper are mild conditions

on the kernel function K(·) and the bandwidth h.

Assumptions 3 and 3′ are two sets of regularity conditions on the smoothness and functional

form of g(v, θ) so that under either set of conditions, θ̂ is a consistent estimator of θ0. Such condi-

tions were initially introduced by Park and Phillips (2001) when they established the asymptotic
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theory for an NLS estimator in a parametric nonlinear regression model with integrated time

series. We have given in Remark 2.1 some examples of I-regular and H-regular functions, which

satisfy Assumptions 3 and 3′, respectively.

2.4. Asymptotic distributions under local alternatives

Our analysis of the asymptotic properties of the test statistic Qn(h) will be based on the

following decomposition under the local alternative hypotheses HL
1

Qn(h) =

n∑
t=1

n∑
s=1, 6=t

etKs,tes +

n∑
t=1

n∑
s=1,6=t

g̃tKs,tg̃s +

n∑
t=1

n∑
s=1,6=t

∆n(Vt)Ks,t∆n(Vs)

+2
n∑
t=1

n∑
s=1, 6=t

∆n(Vt)Ks,tg̃s + 2
n∑
t=1

n∑
s=1,6=t

g̃tKs,tes + 2
n∑
t=1

n∑
s=1,6=t

∆n(Vt)Ks,tes

≡
6∑
j=1

Qn,j(h), (2.3)

where Ks,t = K
(
Vs−Vt
h

)
, g̃t = g(Vt, θ0)− g(Vt, θ̂).

Define a standardized version of Qn(h) as

Q̂n(h) =
Qn(h)

σn
with σ2

n = 2
n∑
t=1

n∑
s=1,6=t

ê2
tK

2

(
Vt − Vs
h

)
ê2
s. (2.4)

In Theorems 2.1 and 2.2 below, we give some asymptotic properties for Q̂n(h) under the sequence

of local alternatives HL
1 . We first consider the case where both ∆n(v) and its derivative ∆̇n(v) ≡

d∆n(v)
dv are δn-integrable.

Theorem 2.1. Suppose that Assumptions 1–3 in Section 2.3 hold, and both ∆n(v) and ∆̇n(v)

are δn-integrable.

(i) If δn = o
(
n−1/8h−1/4

)
, then under the sequence of local alternative hypotheses HL

1 ,

Q̂n(h) =
Qn(h)

σn
→D N(0, 1) as n→∞. (2.5)

(ii) If n1/8h1/4δn → ∞ as n → ∞, then under the sequence of local alternative hypotheses HL
1 ,

Q̂n(h)→P ∞ as n→∞.

For the case where both ∆n(v) and ∆̇n(v) are δn-asymptotically homogeneous, we have the

following asymptotic result.

Theorem 2.2. Suppose that Assumptions 1, 2, and 3′ in Section 2.3 are satisfied, and both

∆n(v) and ∆̇n(v) are δn-asymptotically homogeneous with asymptotically homogeneous orders

v(·) and v̇(·), respectively, and v(n) = O(κ̇(n)) as n→∞, where κ̇(·) is the asymptotic order of

ġθ(v, θ).

(i) If δn = o
(
n−3/8v−1(

√
n)h−1/4

)
, then the asymptotic normal distribution (2.5) holds under the

sequence of local alternatives HL
1 .
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(ii) If n3/8v(
√
n)h1/4δn → ∞ as n → ∞, then under the sequence of local alternatives HL

1 ,

Q̂n(h)→P ∞ as n→∞.

Remark 2.3. When δn = O
(
n−1/8h−1/4

)
, which includes the boundary case of δn =

Cn−1/8h−1/4 for some 0 < C < ∞ in Theorem 2.1, or δn = O
(
n−3/8v−1(

√
n)h−1/4

)
which

includes the boundary case of δn = Cn−3/8v−1(
√
n)h−1/4 in Theorem 2.2, we can show that

under the sequence of local alternative hypotheses HL
1 ,

Q̂n(h)−Bn =
Qn(h)

σn
−Bn →D N(0, 1) as n→∞, (2.6)

where Bn = 1
σn

[
Qn,2(h) +Qn,3(h) +Qn,4(h)

]
= OP (1) with Qn,i(h), i = 2, 3, 4, defined in (2.3).

Theorems 2.1 and 2.2 show that whether the proposed test under HL
1 is asymptotically pow-

erful depends on the rate at which δn decays. For example, when the decaying rate of δn is faster

than that of n−1/8h−1/4 → 0, Theorem 2.1(i) shows that Q̂n(h) converges in distribution to the

standard normal distribution. This implies that the proposed test is not asymptotically powerful.

However, when the decaying rate of δn is slower than that of n−1/8h−1/4 → 0, Theorem 2.1(ii)

shows that Q̂n(h) → ∞ in probability, which indicates that the test is asymptotically powerful.

Similar conclusions can be drawn from Theorem 2.2. Furthermore, as shown in Theorems 2.1

and 2.2, the asymptotic property of the test statistic under the local alternative hypotheses de-

pends on the asymptotic behaviour of the unknown distance function ∆n(·). For example, if the

distance function is δn-integrable, the proposed nonparametric kernel test can detect departures

from the specified function g(v, θ) when δnn
1/8h1/4 → ∞. In contrast, if the distance function

is δn-asymptotically homogeneous, the test can detect departures when δnn
3/8v(

√
n)h1/4 → ∞.

It is worth pointing out that Theorem 2.2 also holds in the case where g(v, θ) is H-regular and

∆n(v) is δn-integrable (c.f., the earlier version of the paper Chen et al, 2011).

Existing literature such as Wang and Phillips (2012) has only established results similar to

those in Theorem 2.1(ii) and Theorem 2.2(ii) (c.f., Theorem 3.2 in Wang and Phillips, 2012)

when the nonparametric test is asymptotically powerful. In contrast, this paper uses different

conditions on the distance function ∆n(·) and provides more accurate asymptotic results by also

studying the case where the test may not be asymptotically powerful. In the next section, we

will introduce a bootstrap procedure for approximating the critical values of the test and then

propose a data-driven bandwidth selection method for optimal testing purposes.

3. Edgeworth expansion and optimal bandwidth selection

This section proposes using a bootstrap simulation procedure to approximate the critical

values of the test statistic. The main reason for using the bootstrap method is to avoid the possible

size distortion which often occurs when the critical values of a test are chosen from asymptotic

distribution theory. Some existing literature such as Li and Wang (1998) has shown that the
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bootstrap method can provide a more accurate approximation of the finite sample distribution of

the test statistic than the asymptotic distribution theory. Proposition 3.1 below justifies the use

of the bootstrap approximation in our testing setting. Based on the approximate critical values,

the size and local power of the test are studied, and the bandwidth for optimal testing purposes

is selected so that the local power of the test is maximised while its size is controlled at a given

significance level α. For a given significance level α, let lα be the corresponding critical value of

the test, which is the (1− α)-quantile of the exact finite sample distribution of Q̂n(h) under the

null hypothesis. The bootstrap procedure is proposed as follows.

Step 1: Generate the bootstrap error terms {e∗t } by e∗t = σ̂eη
∗
t , where

σ̂2
e =

1

n

n∑
t=1

[
Yt − g(Vt, θ̂)

]2
, (3.1)

in which {η∗t } is a sequence of i.i.d. random variables drawn from a pre-specified continuous

distribution with E[η∗1] = 0, E[η∗21 ] = 1 and E[|η∗1|6] <∞.

Step 2: Obtain Y ∗t = g(Vt, θ̂) + e∗t . The resulting sample {(Y ∗t , Vt), 1 ≤ t ≤ n} is called a

bootstrap sample.

Step 3: Use the sample {(Y ∗t , Vt), 1 ≤ t ≤ n} to re-estimate the parameter vector θ0 and denote

the resulting estimate by θ̂∗. Then calculate the test statistic Q̂∗n(h), which is the corre-

sponding version of Q̂n(h) by replacing {(Yt, Vt)} and θ̂ with {(Y ∗t , Vt)} and θ̂∗, respectively.

Step 4: Repeat Steps 1–3 M times and obtain M values of Q̂∗n(h). Denote these M values

of Q̂∗n(h) by Q̂∗n,m(h), m = 1, 2, · · · ,M . Then, construct the empirical distribution of the

bootstrap test statistic Q̂∗n,m(h) as

P∗
(
Q̂∗n(h) ≤ x

)
≡ 1

M

M∑
m=1

I
(
Q̂∗n,m(h) ≤ x

)
.

For each fixed h, calculate the bootstrap critical value l∗α as

l∗α = inf
x

{
x : P∗

(
Q̂∗n(h) > x

)
< α

}
and estimate lα by l∗α.

We next establish more explicit results for the asymptotic distribution and the local power (as

a function of the bandwidth h) of the proposed test statistic than those in the previous section.

In order to use the Edgeworth expansion to facilitate our analysis, we need to assume that {et}

is a sequence of i.i.d. continuous random variables independent of {εt}. Proposition 3.1 below

is crucial for justifying the use of the above bootstrap precedure for approximating the critical

values the test.

11



Proposition 3.1. Suppose that Assumptions 1(i), 2 and either 3 or 3′ are satisfied, and {et}

is a sequence of i.i.d. continuous random variables with E[e1] = 0, σ2
e ≡ E[e2

1] > 0, E[|e1|6] <∞,

and {et} is independent of {εt}. Letting Q̂n,1(h) = Qn,1(h)/σn,1 with Qn,1(h) defined in (2.3)

and σ2
n,1 = 2σ4

e

n∑
t=1

∑
s=1, 6=t

K2
s,t, we have

sup
x∈R

∣∣∣P(Q̂n,1(h) ≤ x
∣∣Fn(V )

)
− Φ(x) + ρn(h)Φ(3)(x)

∣∣∣ = OP (n−1/2), (3.2)

where Fn(V ) = (V1, · · · , Vn), Φ(·) is the cumulative distribution function of the standard normal

distribution, Φ(3)(·) is the third derivative of Φ(·), and

ρn(h) =

√
2

3

Tr(A3
0(h))( n∑

t=1

n∑
s=1, 6=t

K2
s,t

)3/2
= OP

(
n−1/4h1/2

)
, (3.3)

in which Tr(A) represents the trace of a matrix A, and A0(h) is defined as

A0(h) =



0 K1,2 · · · K1,n

K2,1 0 · · · K2,n

...
...

...

Kn,1 Kn,2 · · · 0


. (3.4)

In addition, under the null hypothesis H0,

sup
x∈R

∣∣∣P∗ (Q̂∗n(h) ≤ x
)
− P

(
Q̂n(h) ≤ x

)∣∣∣ = oP (1) (3.5)

and as a consequence

P
(
Q̂n(h) > l∗α

)
= α+ o(1). (3.6)

Based on Proposition 3.1, we estimate the critical value lα by l∗α and define the following size

and local power of the test statistic Q̂n(h) based on l∗α:

α∗n(h) = P
(
Q̂n(h) > l∗α|H0

)
and β∗n(h) = P

(
Q̂n(h) > l∗α|HL

1

)
. (3.7)

Note that both the size and the local power may depend on h, and hence they have been denoted

by α∗n(h) and β∗n(h), respectively.

For the purpose of optimal testing, we propose choosing an optimal bandwidth htest at the

significance level α such that the local power of the test is maximised, i.e.,

htest = arg max
h∈Hn

β∗n(h), (3.8)

where Hn = {h : α − εα ≤ α∗n(h) ≤ α + εα}, in which εα (εα < α) is a small positive constant

(say, εα = α
10 or εα = α√

n
which decays to zero as n tends to infinity). The chosen htest thus

maximises the local power of the test for the given sequence of local alternatives while controls
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the size at the specified significance level α. Such a method is motivated by the existing literature

in stationary time series case, such as Gao and Gijbels (2008). In the simulation study in Section

4, we show that this method has good finite sample performance for nonstationary time series.

As the exact functional dependence of β∗n(h) on h is unknown, in order to make the bandwidth

selection approach in (3.8) feasible, we establish, in Proposition 3.2 below, an asymptotic expres-

sion for the leading term of β∗n(h) when the distance function ∆n(v) and its derivative ∆̇n(v) are

δn-integrable or δn-asymptotically homogeneous.

Proposition 3.2. Assume that Assumptions 1(i) and 2 are satisfied, and the bootstrap errors

e∗t are generated as in Step 1 of the bootstrap procedure detailed above.

(i) Suppose that both ∆n(v) and ∆̇n(v) are δn-integrable and Assumption 3 holds, and n1/8h1/4δn →

∞ as n→∞. Then for given Fn(V ) = (V1, · · · , Vn), we have, under HL
1 ,

β∗n(h)
P∼ 1− Φ(l∗α −$n)− ρn(h)[1− (l∗α −$n)2]φ(l∗α −$n), (3.9)

where

$n ≡
Qn,3(h)

σn,1
(1 + oP (1)),

Qn,3(h) is defined in (2.3), σ2
n,1 and ρn(h) are defined in Proposition 3.1, and φ(·) is the standard

normal probability density function.

(ii) Suppose that both ∆n(v) and ∆̇n(v) are δn-asymptotically homogeneous and Assumption 3′

holds, and n3/8v(
√
n)h1/4δn → ∞ as n → ∞, then given Fn(V ) = (V1, · · · , Vn), equation (3.9)

holds under HL
1 .

As far as we know, Propositions 3.1 and 3.2 are new to the literature, and complement the

results obtained in Gao et al (2009b) and Wang and Phillips (2012) on nonparametric specification

testing with nonstationarity. With the help of the two propositions above, we next give a feasible

procedure for estimating the local power function and then obtaining the optimal bandwidth for

the nonparametric kernel test.

• Construct the local linear estimate of the distance function ∆n(v):

∆̂n(v) =

n∑
t=1

w̃nt(v)
[
Yt − g(Vt, θ̂)

]
, (3.10)

where the weights are defined by

w̃nt(v) = L̃n
(Vt − v

b

)
/
[ n∑
s=1

L̃n
(Vs − v

b

)]
, L̃n

(Vt − v
b

)
= L

(Vt − v
b

)[
Sn2(v)−

(Vt − v
b

)
Sn1(v)

]
,

in which L(·) is a kernel function, b is a bandwidth, Snj(v) = 1√
nb

∑n
t=1

(
Vt−v
b

)j
L
(
Vt−v
b

)
for

j = 0, 1, 2, and θ̂ is the NLS estimate of θ0 defined in (2.2).
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• Estimate $n in Proposition 3.2 by

$̂n =
1

σ̂n,1

n∑
t=1

n∑
s=1, 6=t

∆̂n(Vt)Ks,t∆̂n(Vs), σ̂2
n,1 = 2σ̂4

e

n∑
t=1

∑
s=1, 6=t

K2
s,t, (3.11)

where σ̂2
e is defined in (3.1).

• Approximate the local power function β∗n(h) by

β̂∗n(h) = 1− Φ(l∗α − $̂n)− ρn(h)[1− (l∗α − $̂n)2]φ(l∗α − $̂n), (3.12)

which is motivated by (3.9) in Proposition 3.2. Here, l∗α is the bootstrap critical value at

the significance level α and ρn(h) is defined in (3.3) of Proposition 3.1.

• Choose the optimal bandwidth using the rule in (3.8) with β∗n(h) replaced by β̂∗n(h).

In practice, one usually does not know, a priori, whether the null H0 or the local alternative

HL
1 is true. When the local alternative HL

1 is true, the above procedure chooses a bandwidth

that maximises the local power; and when the null H0 is true, by Proposition 3.1, the right-hand

side of (3.12) is close to α (since $̂n is close to 0), and the above procedure chooses a bandwidth

that ensures the size of the test is controlled within [α − εα, α + εα] for a chosen small constant

εα. A simple Monte-Carlo simulation study in the next section shows that the above bandwidth

selection method works reasonably well in finite samples.

4. Monte-Carlo simulation

This section provides a simulated example to illustrate the proposed nonparametric specifica-

tion test and the bandwidth selection procedure.

Example 4.1. Consider the following time series model

Yt = g(Vt) + et with Vt = Vt−1 + vt, t = 1, 2, · · · , n, (4.1)

where both {et} and {vt} are sequences of i.i.d. standard normal random variables, {vt} is

independent of {et} and V0 = 0.

We then consider the following testing problem:

H0 : g(v) = g(v, θ) ↔ HL
1 : g(v) = g(v, θ) + ∆n(v), (4.2)

where g(v, θ) = 1
1+θv2

with the true value of θ being θ0 = 1, and the distance function ∆n(·) in

the local alternatives HL
1 is chosen as one of the following:

Case 1 : ∆n(v) =
δ1nv

1 + v2
with δ1n = 0.6n−1/4 log(n);

Case 2 : ∆n(v) = e−v
2(

1− e−δ2nv2
)

with δ2n = n−1/32 log(n).
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We use the NLS method to estimate the unknown parameter θ0 and choose K(x) = 0.5I
(
−1 ≤

x ≤ 1
)

as the kernel function throughout this section. We will use htest to denote the bandwidth

selected by the procedure detailed in Section 3 and hcv to denote the bandwidth selected by the

leave-one-out cross-validation (CV) method, which is commonly used in nonparametric and semi-

parametric kernel-based estimation (c.f., Fan and Yao, 2003). We also compare the performance

of the test using these two bandwidths. For easy distinction, we let h0test and h0cv represent

htest and hcv under H0, h1test and h1cv for the two bandwidths under HL
1 in Case 1, and h2test

and h2cv for the two bandwidths under HL
1 in Case 2. Moreover, for i = 0, 1, 2, let fitest denote

the frequency that Q̂n(hitest) > l∗α(hitest) occurs over the simulation replications and ficv the fre-

quency that Q̂n(hicv) > l∗α(hicv) occurs. The simulation is carried out with R = 1000 replications,

and in each replication M = 250 bootstrap samples of {e∗t } are drawn from the standard normal

distribution N(0, 1). Sample sizes are chosen as n = 200, 500, and 800. The simulation results

are summarised in Table 4.1.

Table 4.1 near here

Table 4.1 shows that the test associated with htest avoids any size distortion, when compared

with the test based on hcv. This is basically because htest is chosen to ensure that the size of the

test is controlled at the given significance level. It is also shown in Table 4.1 that while the local

power values of the test based on both hcv and htest are satisfactory, the test based on htest is

more powerful than that based on hcv. Note also that f2test and f2cv are smaller than f1test and

f1cv, respectively, since the distance function ∆n (Vn) in Case 2 is smaller than that in Case 1 (in

the sense that ∆n(v) in Case 2 decays faster than that in Case 1). In addition, the local power

of the proposed test in each case increases as the sample size increases. Since very similar results

are obtained for several other simulation examples, such simulation results are not reported here,

but the reader can find them in an early version of the paper (Chen et al, 2011).

5. Conclusions and discussions

The main contributions of this paper can be summarized as follows. We have proposed

using a nonparametric kernel test for testing whether the regression function in a model with

a nonstationary regressor is of a known parametric form. We have established the asymptotic

properties of the test statistic under a sequence of local alternative hypotheses and shown that the

asymptotic distribution depends on the functional form of the distance function. The asymptotic

theory developed in this paper differs from existing work on nonparametric specification testing

for stationary time series (c.f., Gao, 2007). In order to implement the proposed test in practice, we

have developed a bootstrap simulation procedure for approximating the critical values of the test

statistic and then for selecting a bandwidth for optimal testing purposes. We have also established
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some higher-order asymptotic properties for a nonstationary kernel-weighted quadratic form and

the bootstrap version of the nonparametric kernel test statistic. Such results complement existing

results on nonparametric specification testing with nonstationarity (c.f., Gao et al, 2009b; Wang

and Phillips, 2012). The proposed methodologies have been illustrated using a simulated example

which shows that the proposed testing method works well in finite samples.

When the regressor is multivariate, certain dimension-reduction technique needs to be em-

ployed to avoid the curse of dimensionality problem in nonparametric estimation and specification

testing. For example, Chen, Gao and Li (2012), and Gao and Phillips (2013) considered the semi-

parametric estimation of partially linear models with nonstationary multivariate regressors; Cai,

Li and Park (2009) studied the nonparametric estimation of functional-coefficient models with

nonstationarity. It is possible to extend the testing procedure developed in this paper to the par-

tially linear or functional-coefficient models and investigate the asymptotic property and finite

sample behaviour of the test in these settings. However, we will leave this in our future study.
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Appendix A: A sketch of the proofs

In this appendix, we sketch the proofs of the main results in this paper. The full versions of

the proofs can be found in the supplementary appendix Chen et al (2014). We first introduce

several lemmas whose proofs are relegated to Appendix C in the supplementary appendix Chen

et al (2014). Let pt(·) be the marginal density function of Vt =
∑t

s=1 vs and pst(·, ·) be the joint

density function of (Vt, Vs) for t > s ≥ 1. The following lemma gives the asymptotic orders of

pt(·) and pst(·, ·), which will be used, in the supplementary appendix Chen et al (2014), to prove

the main results and the technical lemmas such as Theorem 2.1(i) and Lemma A.4(ii) below.

Lemma A.1. Suppose that Assumption 1(i) holds. Then, there exists a sufficiently large

c0 > 0 such that as t→∞ and t− s→∞

sup
x∈R

∣∣pt(x)
∣∣ ≤ c0t

−1/2, sup
(x1,x2)∈R2

∣∣pst(x1, x2)
∣∣ ≤ c0(t− s)−1/2s−1/2. (A.1)
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Park and Phillips (2001) studied the asymptotic properties of the NLS estimator θ̂ under the

null hypothesis H0. The following lemma establishes the rates of convergence of θ̂ under the local

alternatives HL
1 .

Lemma A.2. Suppose that Assumption 1 holds. Let θ̂ be the NLS estimator defined in (2.2).

(i) If Assumption 3 is satisfied and ∆n(v) is δn-integrable, then under HL
1 , we have

θ̂ − θ0 = OP
(
δn + n−1/4

)
. (A.2)

(ii) If Assumption 3′ is satisfied and ∆n(v) is δn-asymptotically homogeneous with order v(·),

then under HL
1 , we have

θ̂ − θ0 = OP
(
δnv(
√
n)[κ̇(

√
n)]−1 + [

√
nκ̇(
√
n)]−1

)
, (A.3)

where κ̇(·) is defined in Theorem 2.2.

Define

p̂n(v) =
σφ
√
n

nh

n∑
t=1

K
(Vt − v

h

)
=

σφ√
nh

n∑
t=1

K
(Vt − v

h

)
(A.4)

where σ2
φ = φ2σ2

0 with φ and σ2
0 defined in Assumption 1(i), K(·) is the kernel function and h is

the bandwidth, and let LB(t, s) be the local time process of the standard Brownian motion B(·)

defined by

LB(t, s) = lim
δ→0

1

2δ

∫ t

0
I
(
|B(r)− s| < δ

)
dr.

The following lemma can be obtained as a special case of Theorem 2.1 in Wang and Phillips

(2009a).

Lemma A.3. Suppose that Assumptions 1(i) and 2 hold. Then, as n→∞

p̂n(v)→D LB(1, 0). (A.5)

Furthermore, by re-defining {εt} on a richer probability space such that

sup
0≤r≤1

∣∣ 1

σφ
√
n
Vbnrc −B(r)

∣∣ = oP (1),

where b·c denotes the integer part, (A.5) can be strengthened to

p̂n(v)→P LB(1, 0). (A.6)

We next give a lemma which is crucial for proving the asymptotic distribution of the proposed

test statistic in Sections 2.4.

Lemma A.4. (i) Suppose that Assumptions 1 and 2 are satisfied and let σ2
n,1 be defined as

in Proposition 3.1. Then, as n→∞,

c1n
3/2h(1 + oP (1)) ≤ σ2

n,1 ≤ c2n
3/2h(1 + oP (1)), (A.7)
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where 0 < c1 < c2 <∞ are two positive constants.

(ii) Suppose that Assumptions 1 and 2 are satisfied and let Qn,1(h) be defined as in (2.3). Then,

as n→∞,

Q̂n,1(h) =
Qn,1(h)

σn,1
→D N(0, 1). (A.8)

With the above lemmas, we next sketch the proofs of the main results. The full versions of

the proofs are given in Appendix B of the supplementary appendix Chen et al (2014).

Proof of Theorem 2.1. By (2.3), we have, under HL
1

Qn(h) =
6∑
i=1

Qn,i(h). (A.9)

Following arguments similar to those used in the proof of Theorem 2.1 in Gao et al (2009b),

we have, by Lemma A.4(ii),

Qn,1(h)

σ̃n,1
=
Qn,1(h)

σn,1
+ oP (1)→D N(0, 1) and

σ2
n − σ̃2

n,1

σ̃2
n,1

= oP (1), (A.10)

where σ2
n,1 = 2σ4

e

n∑
t=1

∑
s=1, 6=t

K2
s,t, σ

2
n = 2

∑n
t=1

∑n
s=1,6=t ê

2
tK

2
(
Vt−Vs
h

)
ê2
s, σ̃

2
n,1 = 2σ̃4

e

n∑
t=1

n∑
s=1,6=t

K2
s,t

and σ̃2
e = 1

n

n∑
t=1

e2
t .

By (A.10), in order to prove Theorem 2.1(i), we only need to show that

Qn,i(h)

σn
= oP (1), i = 2, · · · , 6, (A.11)

if δn = o
(
n−1/8h−1/4

)
. The proof of (A.11) is given in Appendix B of the supplementary appendix

Chen et al (2014) and details are omitted here to save the space.

When δnn
1/8h1/4 →∞, we can show that Qn,3(h) is the leading term of Qn(h) asymptotically

under HL
1 . Hence, by Lemma A.4(i), to complete the proof of Theorem 2.1(ii), we need only to

show that
1

n3/4h1/2
Qn,3(h)→P ∞, (A.12)

when δnn
1/8h1/4 →∞. The proof of (A.12) is given in Appendix B of the supplementary appendix

Chen et al (2014). We thus complete the proof of Theorem 2.1 �

Proof of Theorem 2.2. The main idea of the proof is similar to that in the proof of Theorem

2.1. In order to save space, we only give a brief proof of (A.12) when n3/8ν(
√
n)h1/4δn → ∞.

The rest of the proof (including the proof of Theorem 2.2(i)) is given in Appendix B of the

supplementary appendix Chen et al (2014).

By Definition 2.6, there exist an asymptotically homogeneous function Λ̃(v) such that

∆2
n(v) ≥ δ2

nΛ̃(v), Λ̃(λx) = v2(λ)H̃(x) + R̃(x, λ) and

∫ ∞
−∞

H̃(v)LB(1, v)dv > 0, (A.13)
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where H̃(x) is locally integrable and R̃(x, λ) satisfies condition (i) or (ii) in Definition 2.6. Note

that

Qn,3(h) =

n∑
t=1

n∑
s=1, 6=t

∆2
n(Vs)Ks,t +

n∑
t=1

n∑
s=1, 6=t

[∆n(Vt)−∆n(Vs)]Ks,t∆n(Vs)

≡ Qn,3,1(h) +Qn,3,2(h). (A.14)

By (A.13), Lemma A.3 and Theorem 5.3 in Park and Phillips (1999), we have, as n→∞,

σφ

n3/2LB(1, 0)v2(
√
n)hδ2

n

Qn,3,1(h) ≥ 1

nv2(
√
n)

n∑
s=1

Λ̃(Vs) (1 + oP (1))

→P

∫ ∞
−∞

H̃(v) LB(1, v)dv, (A.15)

which, together with the condition n3/8ν(
√
n)h1/4δn →∞, implies

1

n3/4h1/2
Qn,3,1(h)→P ∞. (A.16)

On the other hand, by Definition 2.6 again, there exists an asymptotically homogeneous

function Λ(·) such that

max
{

∆2
n(v),

∣∣∣∆n(v)∆̇n(v)
∣∣∣} ≤ δ2

nΛ(v), (A.17)

where Λ(λx) = v2(λ)H(x) + R(x, λ), in which H(·) is locally integrable and R(·, ·) satisfies

condition (i) or (ii) in Definition 2.6. Then, by (A.17) and a first order Taylor expansion of ∆n(·)

at Vs, we have, as n→∞,

∣∣Qn,3,2(h)
∣∣ ≤ n∑

t=1

n∑
s=1, 6=t

|∆n(Vt)−∆n(Vs)|Ks,t |∆n(Vs)|

≤ (1 + oP (1))
√
nh2

n∑
s=1

∣∣∆̇n(Vs)∆n(Vs)
∣∣[ 1√

nh

n∑
t=1,6=s

∣∣Vt − Vs
h

∣∣Ks,t

]
= OP

(
n3/2v2(

√
n)h2δ2

n

)
, (A.18)

which, together with (A.15), implies that Qn,3,2(h) is of smaller asymptotic order than Qn,3,1(h).

Hence, the combination of (A.14), (A.16) and (A.18) leads to (A.12). �

Proof of Proposition 3.1. The proof of (3.2) in Proposition 3.1 relies on the application

of Lemma C.3 given in Appendix C of the supplementary appendix Chen et al (2014). To save

space for the main document, we relegate the detailed proof of (3.2) into Appendix B of the

supplementary appendix. We next only prove (3.5) by using (3.2). Observe that under the null

hypothesis H0

Qn(h) =

n∑
t=1

n∑
s=1, 6=t

êtKs,tês = Qn,1(h) +Qn,2(h) +Qn,5(h), (A.19)

where Qn,j(h), j = 1, 2, 5, are defined in (2.3). Define the event

Dn =
{∣∣∣Qn,2(h) +Qn,5(h)

σn

∣∣∣ > sn

}
∪
{∣∣∣σn,1 − σn

σn,1

∣∣∣ > sn

}
,
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where sn = n−1/8h1/4, and let Dcn be the complement of Dn. Using arguments similar to those

used in the proof of Theorem 2.1(i) and the proof of (A.5) in Gao et al (2009b), we can show that

P
(
Dn
)

= o(1). (A.20)

Note that

P
(
Q̂n(h) ≤ x

)
= P

({
Q̂n(h) ≤ x

}
∩ Dcn

)
+ P

({
Q̂n(h) ≤ x

}
∩ Dn

)
,

which together with (A.20), indicates that

P
(
Q̂n(h) ≤ x

)
= P

({
Q̂n(h) ≤ x

}
∩ Dcn

)
+ o(1). (A.21)

On the event Dcn, both
Qn,2(h)+Qn,5(h)

σn
and

σn,1−σn

σn,1
are bounded by sn which converges to zero as

n tends to infinity. Hence, by (3.2), (A.19) and (A.21), we have, as n→∞,∣∣P(Q̂n(h) ≤ x
)
− Φ(x)

∣∣→ 0 (A.22)

uniformly in x ∈ R. Similarly, we have, as n→∞,∣∣P∗ (Q̂∗n(h) ≤ x
)
− Φ(x)

∣∣→P 0 (A.23)

uniformly in x ∈ R. We can then prove (3.5) by (A.22) and (A.23). The result (3.6) follows

directly from (3.5). We thus complete the proof of Proposition 3.1. �

Proof of Proposition 3.2. Since the proof of Proposition 3.2(ii) is similar to that of

Proposition 3.2(i), we only provide the proof of Proposition 3.2(i). Observe that

β∗n(h) = P
(
Q̂n(h) > l∗α|HL

1

)
= 1− P

(
Q̂n(h) ≤ l∗α|HL

1

)
= 1− P

(
Q̂n,1(h) ≤ l∗α −

Qn,3(h)

σn
−
∑6

j=2,6=3Qn,j(h)

σn
|HL

1

)
. (A.24)

Following the detailed proof of Theorem 2.1 in Appendix B of the supplementary appendix Chen

et al (2014), we have, as n→∞,

Qn,i(h) = oP
(
nhδ2

n

)
, i = 2, 4, 5, 6 (A.25)

and

P
(
c∗3nhδ

2
n <

∣∣Qn,3(h)
∣∣ < c∗4nhδ

2
n

)
→ 1, (A.26)

for some 0 < c∗3 < c∗4 <∞. By (A.25) and (A.26), we may show that

Qn,i(h)

σn
= oP

(Qn,3(h)

σn

)
for i = 2, 4, 5, 6. (A.27)

By (A.27),
∑6

j=2,6=3Qn,j(h)

σn
is dominated by

Qn,3(h)

σn
which is asymptotically equivalent to

Qn,3(h)

σn,1

by (B.54) in Appendix B of the supplementary appendix. Hence, we have

β∗n(h)
P∼ 1− P

(
Q̂n,1(h) ≤ l∗α −

Qn,3(h)

σn,1
(1 + oP (1))

)
. (A.28)
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Noting that l∗α −
Qn,3(h)

σn,1
is independent of {et}, by (3.2) in Proposition 3.1 and (A.28), we can

complete the proof of Proposition 3.2 (i). �
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Table 4.1. Size and local power of the test for the simulated example in Section 4

Level 1% Level 5% Level 10%

size of test with bandwidths hcv and htest

n f0cv f0test f0cv f0test f0cv f0test

200 0.0160 0.0110 0.0580 0.0510 0.1110 0.0990

500 0.0150 0.0100 0.0560 0.0500 0.0960 0.1000

800 0.0100 0.0100 0.0550 0.0500 0.0950 0.1000

local power of test in Case 1 with bandwidths hcv and htest

n f1cv f1test f1cv f1test f1cv f1test

200 0.1640 0.2390 0.3370 0.3980 0.4520 0.5140

500 0.3190 0.3740 0.4750 0.5140 0.5690 0.5870

800 0.3900 0.4250 0.5350 0.5600 0.6050 0.6650

local power of test in Case 2 with bandwidths hcv and htest

n f2cv f2test f2cv f2test f2cv f2test

200 0.1060 0.1150 0.2240 0.2400 0.3210 0.3240

500 0.1610 0.1580 0.2850 0.2860 0.3800 0.3930

800 0.2030 0.2230 0.3410 0.3410 0.4430 0.4500
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