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Abstract

In this paper we argue that differences in the investment projects’ features can help to explain
the observed differentials in output growth and in output volatility across countries. This result is
achieved by studying analytically an endogenous growth model where investments are (generically)
distributed over multi-period flexible projects leading to new capital once completed. Recently devel-
oped techniques in dynamic programming are adapted and used to fully characterized the balanced
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1 Introduction
The notion of investment project was introduced for the first time in a general equilibrium model by

Kydland and Prescott [31] to allow for gestation lags in the production of capital goods. A project, as
defined by these authors, has three features. First, it requires several stages before its completion and,
once completed, leads to new productive capital; therefore an (exogenously given) lag of several periods
exists between the beginning of a project and the formation of new productive capital. Secondly, the
amount of resources allocated to a project, as well as its objective, are decided at its beginning and
cannot be adjusted afterward. As a consequence, a project initiated one year ago and to be completed in
the current year cannot be enhanced, reduced, or even scrapped whatever positive or negative shock may
affect the economy. For this reason, we may well refer to this kind of projects as fixed projects. 1 Lastly,
the investment over the fixed projects is either spread evenly over all the projects independently on their
degree of completion (uniform distribution), or concentrated on the project at its earliest stage (i.e. pure
investment lag case). Therefore the investment distribution is exogenously given and, furthermore, not
generic. 2

While the first feature is confirmed by several empirical evidences (e.g. Koeva, [29]) the other two
features are less convincing. For example, the assumption of fixed projects seems quite restrictive es-
pecially when the capital stock is construed broadly “to encompass human capital, knowledge, public
infrastructure, and so on" (see Barro and Sala-i-Martin [6]) as it is usually the case with endogenous
growth models having linear technology.

In fact, several empirical evidences point to projects with a certain degree of flexibility. Among them,
those on public infrastructures are probably the most popular. In the United Kingdom, the government
started in 2009, as a consequence of the recession, a public spending review which comprehended 217
projects, totalling £34 billion (The Independent 17 June 2010); following the review, several of these
projects were reduced or even axed as the building of new schools for around £5 billion (Guardian, 6
July 2010), or the building of new hospitals for more than £2.5 billion (The Telegraph, 3 March 2009).
Evidences of opposite sign can be also found in the literature. Recently Flyvbjerg et al. [23], [22] have
estimated that additional resources were required to complete around 90% of a sample of 258 public
transportation infrastructure projects in the United States and that the additional resources added over
time amount for the 20%-40% of the initially planned investment. Finally modifications to public works
are also contemplated and regulated by law in some European Countries as shown, for example, by the
Italian Law 109 approved in 1994.

The third feature is also not confirmed by several recent contributions pointing out to alternative
distributions over the projects. One of these is the decreasing exponential distribution according to which
a declining proportion of resources is allocated to the projects closer to completion. In a model with
projects lasting 4 quarters, Altug [2] estimates that the 70 per cent of the resources are allocated in the
first two quarters and strongly reject the hypothesis of uniform distribution. Similar results are found by
Park [38] when the projects take three quarters to be completed. On the other hand, some authors have
found evidences in support of an increasing exponential distribution according to which a close to zero
proportion of resources is allocated in the first stage of the project (planning) and increasingly higher in
the other stages (construction); this is indeed referred as the time to plan specification and was originally
suggested by Christiano and Todd [14]. This specification has been also empirically confirmed by Del
Boca et al. [8] looking at the annual Italian firms investment data on structures. Other distributions
identified by the literature are a U-shaped distribution (e.g. Zhou [45], and Peeters [40]) and a hump-
shaped distribution (e.g. Altug [2]). Interestingly, there is also evidence that the heterogeneity in the
distributions can be country-specific (e.g. Peeters [40]).

The heterogeneity in the project’s characteristics (i.e. investment distribution and project’s length)
seems even more compelling when we consider not only physical capital but also human capital, public

1. It is worth noting that a project already started is fixed not because the investment is irreversible but because the
resources necessary to complete it are predetermined or committed at its beginning. This difference will result plainly clear
in Section 2.1 where we will formally define the projects.

2. More precisely, Kydland and Prescott propose a model setup with a generic distribution but the equilibrium path is
numerically computed by assuming the two previously described distributions (i.e. uniform distribution or pure investment
lag).
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infrastructure, etc. For example, human capital formation projects, such as first university degrees, have
been quite different even across European countries in the period 1950-1999. 3 Ruegg [42] distinguishes
countries with a first university degree of 3 years (such as the U.K. bachelor) from other countries with a
longer degree of at least 4 years (e.g. Italy, Spain, Austria, Finland) which is usually prolonged by more
than 2 years (e.g. MIUR [35]). Similarly the realization of public infrastructures projects varies signif-
icantly across countries with some reporting significant delays in their completion as documented, for
example, by the list of the incomplete public projects recently published by the Italian Public Infrastruc-
ture and Transport Ministry (see “Elenco Anagrafe Opere Incompiute”, Ministero per le Infrastrutture e
Transporti). Of course, the heterogeneity in the project’s features becomes even more evident when we
compare developed with developing countries as emerges from a quite large literature on construction
projects pointing out how the actual project’s length is, on average, longer in developing countries where
it can arrive to be twice the estimated project duration. 4

Therefore, the aim of this paper is to develop an endogenous growth model characterized by generi-
cally distributed investment over flexible multi-period projects to account for the empirical evidences just
described and to investigate how the growth rate, welfare, and transitional dynamics can be affected
both qualitatively and quantitatively by differences in the project’s characteristics. In this extent, we
depart from Kydland and Prescott original framework by modifying the second and third feature of an
investment project and embedding it in an endogenous growth framework.

The engine of growth in our economy is the presence of constant returns to scale in the capital stock
which is the only accumulating factor of production; for this reason, capital is indeed defined in a broader
sense, and our results can be related to the empirical evidences on investments in public infrastructures,
human capital formation, and construction mentioned before. In our economy, the benevolent social plan-
ner decides, as usual, how much to consume and save in each period; however the aggregate investment
contributes to the development of all the projects not yet completed (flexibility), each of them leading to
new capital at different dates in the future. Then new capital is obtained as the weighted (Riemann) sum
of all the investments undertaken over a given (finite) time interval, and as its limit when we move to con-
tinuous time. If we think again to the capital stock as public infrastructure and assuming two years long
projects, then shares of the investment today are allocated, for example, to the development/realization
of new bridges today, new roads within one year, and new schools within two years. Resources allocated
to investments in public infrastructure a year later, will be useful to build up new more roads in the
current year, new more schools within one year, and start a project for the realization of new hospitals
in two years. The other departure from the existing literature is to allow for a generic distribution of the
investment over the (flexible) projects by keeping generic, but still exogenous as in Kydland and Prescott,
the weights in the previously mentioned (Riemann) sum.

The paper contributes to the existing literature in three ways. First it provides a full analytical
characterization of an endogenous growth model with investment generically distributed over flexible
multi-period projects; this is done in the core part of the paper where we use a dynamic programming
approach to unveil the transitional dynamics and balanced growth path properties of the economy as well
as the closed-form optimal path of all the aggregate variables. These results are important since represent
the solid ground where the quantitative analysis is built on. Significantly, the dynamic programming
approach used in this paper represents a methodological contribution to the existing theoretical literature
as the first economic application of this method to a general equilibrium model where the state equation
is an integro-differential equation (see the next section for more details).

Secondly, our analysis shows that countries with different projects’ characteristics grow at different
rates and that the heterogeneity in the projects’ characteristics across countries can help to explain
a quantitatively relevant part of the growth rate differentials observed in the empirical literature for
choices of the parameters values usually considered realistic. For example, our first quantitative exercise
(Subsection 8.1) shows that the income gap after 100 years between two countries, which are similar but

3. In the Bologna declaration signed in 1999, the education ministers of many European countries agreed to establish a
framework of study programmes similar to the anglo-saxon tradition of the bachelor’s and master’s qualification (see Ruegg
[42], page 366).

4. Koushki et al. [30] shows that the estimated residential construction project duration in Kuwait is on average 8.3
months (planning) plus 9.4 months (construction) while the actual is 8.3 plus 18.2 months. Similar results are found in
studies focusing on other developing countries such as Nigeria (Mansfield et al. [34]), Jordan (Al-Momani [1]), etc.
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their investmentís distributions, is 9.4% when the two countries has the same length of a project, d, equal
to two years but the richest is characterized by time-to-plan (i.e. increasing exponential distribution)
while the poorest by a uniform distribution of the investment over the projects. The income gap changes
to 37.02% when the poorest country is characterized by pure investment lags in production (i.e. Dirac’s
Delta in −d). Even larger differentials are observed if the project length changes from 2 to 3, 4, and
5 years. 5 In the latter, the income gap after 100 years is 109.6% when the poorest country has pure
investment lags in production while there is time-to-plan in the richest.

Moreover we show (Subsection 8.2) that the investment projects are a source of endogenous fluctu-
ations with output, capital, and investment converging by damping fluctuations toward the balanced
growth path. Measuring the average and maximum absolute deviation from the GDP as well as the
speed of convergence towards the balanced growth path of the optimal path of output reveals that the
heterogeneity in the projects’ features across countries implies quantitatively relevant differences in the
persistence of output deviations from the balanced growth path and can be one of the determinants of i)
the negative correlation between mean output growth and output growth volatility and ii) the substantial
variation in the output volatility across countries as observed in several empirical studies (e.g. Ramey
and Ramey [41]). 6

Lastly, although we make no attempt to bring the model to the data, our analysis carries several
interesting implications for policy and future empirical works as it will be discussed in the concluding
section.

The rest of the paper is organized as follows. The next Section 2 is devoted to present the related
theoretical literature while Section 3 contains an accurate description of the model setup; in particular,
we define the flexible multi-period investment projects and the investment distribution (Subsection 3.1),
then we write the social planner problem (Subsection 3.2) and state it formally as an optimal control
problem (Subsection 3.3). In Section 4 we first state some important preliminary results (Subsection 4.1)
and then we explain the methodology used to solve the problem (Subsection 4.2). In Section 5 we apply
the procedure explained in Subsection 4.2 to our problem. This section is divided in 5 subsection for
the sake of clarity. In Section 6 and Section 7 we use the results of Section 5 to describe the balanced
growth paths (Section 6) and the transitional dynamics (Section 7) of the economy; Section 8 focuses on
a numerical analysis of the quantitative implications of our model in term economic growth (Subsection
8.1) and endogenous fluctuations (Subsection 8.2). Appendix A is devoted to present the decentralized
economy, Appendix B contain some notations on function spaces that can be useful for the reader, while
Appendix C collects all the proofs.

2 Related Theoretical Literature
In our economy, new capital requires time to be built: new capital is added to the existing capital

stock once a project, initiated in the past, is completed. Then the accumulation of capital is sluggish,
but once added, capital becomes productive immediately. This definition of “time to build” differs from
the one commonly proposed in the recent economic growth literature (see, among others, Benhabib
and Rustichini [7], example 7, page 332, Asea and Zak [3], Bambi [4], and Bambi et al. [5]) for three
reasons. First of all, the resources necessary to complete a project are allocated at different stages and
not concentrated in only one stage of the project itself; then the investment distribution used throughout
our paper is kept generic, while in the other contributions a Dirac’s delta in the last stage of the projects
is used. Secondly, the projects are flexible in our paper while fixed, in the sense explained previously,
in these other contributions. The third and last difference is more subtle: the contributions, just cited,
consider always economies where net investments become immediately new productive capital but final
output takes time to be built because there is a delay between the use of the new added capital and the
production of new goods. In contrast, we consider a delay between the initial investment and the arrival
of new capital with the latter immediately productive once added to the production process. This second

5. Projects longer than two years is reasonable since with a linear technology, capital is broadly defined to include also
human capital, knowledge, etc..

6. The deviation from the balanced growth path depends on an initial exogenous shock to the existing amount of capital
stock.
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description of “time to build” was used for the first time by Kalecki [28], who called it gestation lags in
production, and later used by Kydland and Prescott [31] and by Lucas [33]. It is indeed the specification
which is mostly used in the business cycle literature. With respect to the last cited contribution, our
paper shares some similarities. Lucas [33] studies the optimal investment policy for a single firm whose
objective is to maximize the discounted flow of profits by choosing the number of projects to initiate
taking into account that the limit of the weighted (Riemann) sum of all the initiated projects undertaken
over a given (finite) time interval generates new capital stock. Therefore the capital’s formation equation
is an integro-differential equation, closely resembling ours. 7 However, there are three crucial differences
with respect to his contribution. The first is the ownership right of capital; in our model, the firms rent
capital at each date from the households and then their profit maximization problem is static while the
households’ problem is dynamic and their saving/investment is spread over the not yet completed projects
as described previously in this introduction. 8 The second difference is the aim of the analysis, since we are
interested in understanding how different distributions and lengths of the projects may affect the growth
rate, welfare, and transitional dynamics of the economy. The last difference is that the main analytical
results in Lucas (see [33], page 43) are obtained by restricting the analysis to those distributions which
allow the author to convert the original complicated problem to a classical problem in the calculus of
variations. On the other hand, our approach avoids any restriction on the distribution of the investment
over the projects. In this extent we contribute also from a methodological viewpoint by providing an
approach which can be used to solve a broader class of problems.

Similarly, our paper is related to the stream of literature on optimal dynamic advertising and to
the one of vintage capital. Concerning optimal advertising, the original model of Arrow and Nerlove [36]
describes the optimal decision of a monopolistic firm which has to decide the stock of advertising goodwill
which maximizes the discounted flow of profits taking into account that advertising is a costly activity,
and it has a positive, but decreasing over time, effect on the revenue. As extensively documented by the
survey of Feichtinger et al. [21], several contributions have generalized the seminal model and one line of
literature investigates the optimal investment decision when the instantaneous rate of change of the stock
of advertising goodwill follows an integro-differential equation in order to account for two effects: the lag
between the investment in advertising and the corresponding increase of goodwill, and the distribution
of the forgetting time (for more details, Feichtinger et al. [21], page 200). The resulting law of motion
of the stock of advertising goodwill is similar to the capital’s formation used in our model. Also in this
case, our paper is different in the assumption on the ownership of the stock variable and on the scope of
the analysis. Moreover, all these contributions (e.g. Pauwels [39] and Hartl [26]) characterize analytically
the optimal investment decision for specific distributions using a modification of the maximum principle,
while in our paper we apply dynamic programming techniques and we are able to find the optimal plan
of the economy without imposing any restriction on the distribution of the investment over the projects.

Concerning vintage capital models, there is indeed an extensive literature as summarized recently by
Boucekkine et al. [9]. For the sake of brevity, we remind here just three papers: Benhabib and Rustichini
[7] who were probably the first to show how some depreciation profiles, as for example the one-hoss shay,
may lead to endogenous fluctuations once embedded in an otherwise standard Ramsey model; Boucekkine
et al. [12] who extended this result further by characterizing the dynamics of the same economy when
the scrapping time is endogenous; and Feichtinger et al. [20] who considered a vintage capital framework
where agents are allowed to invest in capital goods having different vintages.

Finally, this paper belongs to the class of optimal control problems where the state equation is a
functional-differential equation. From a methodological viewpoint, most of the papers treating this kind
of problems, and in particular all those just cited, use maximum principle techniques. Recently, starting
from Fabbri and Gozzi [17], new techniques based on the dynamic programming approach have been
developed and applied to these problems. These techniques allow to solve such problems more explicitly;
in particular it is possible to find the closed loop policy function and unveiling economic mechanisms
which were otherwise hidden (e.g., see Bambi et al. [5], Boucekkine et al. [10, 11]).

7. Lucas [33] represents a generalization of the results in Lucas [27] to the case of distributed delays.
8. In the main text, we solve a social planner problem but in Appendix A we have also briefly described the decentralized

economy.
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3 Model Setup

3.1 Description of the Flexible Multi-period Projects
We start with a description of the flexible-multiperiod projects, or investment plans, when time is

discrete and then we move to its continuous counterpart. In line with Kydland and Prescott, we indicate
with sj,t a project at time t, j stages from completion. 9 Once completed a project generates new capital:

s1,t = ∆kt+1,

no project requires more than d periods to be completed, sd+1,t = 0, and the initial capital stock, k0, is
exogenously given.

On the other hand, the dynamics of a project is different from the specification in Kydland and
Prescott to allow for modifications in the already initiated projects; in fact, in our economy, the aggregate
investment at time t is allocated over a menu of d projects:

s1,t, s2,t, . . . sd,t

so that each project completed after j periods, receives an (exogenous) share, aj , of the aggregate invest-
ments, it. Formally, an investment distribution is so defined:

Definition 3.1 (Investment’s Distribution). Given the (maximal) project’s length d ∈ N, an invest-
ment distribution over the projects is a vector

(a1, a2, ..., ad) ∈ Rd
+ with

d∑

j=1

aj = 1 and aj ≥ 0 ∀j

where, for every j and t, ajit is the share of the investment it over the projects j periods from comple-
tion. 10

To understand the dynamics of the projects, it may be useful to follow how one of them evolves over
time, from its beginning to its completion after, for example, d = 3 periods. At time t = 0 the resources
allocated to it are

a3i0 = s3,0

For example, we can think to the raw resources allocated initially to build up some single-lane roads. In
the next period, new resources are available and a share of them can be again allocated to the project

a3i0 + a2i1 = s2,1

These new resources are used, for example, to add another lane to the previously planned single-lane
roads. Finally in the last stage we have

a3i0 + a2i1 + a1i2 = s1,2

meaning that further resources are allocated to the project to add, for example, a couple of roundabouts.
The double-lane roads and the roundabouts are now completed and can be added to the existing capital
at the beginning of the next period:

s1,2 = ∆k3

Then we may obtain recursively the dynamics of the projects as:

sj,t = sj+1,t−1 + ajit

9. It is worth noting that there is no relevant change in the analytical derivations and interpretation of the results if sj,t
indicates the group of projects at time t, j-stages from completion.
10. Observe that the investment distribution can be read as a probabilistic distribution with aj the probability of investing

in a project j stages from completion.
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It is indeed worth noting that all the resources added to a project, even those at the very last stage,
increase the capital stock generated by completing the project itself: for this reason, the project is said
to be flexible. In our example, it is clear that

i2 ↑ ⇒ k3 ↑
since it implies a change in the project started at t = 0. Flexibility implies also that the total resources
needed to complete a project are not determined at its beginning but only at the end because a project
can be modified at each stage. It is also worth noting that in the continuous-counterpart, which will
be adopted later, a completed project leads instantaneously to new capital and therefore the investment
decision at that date may modify its magnitude. Flexibility as just described, is fully specified as long
as the initial history of the investment, it with t ∈ [−d, 0) is exogenously given; therefore any investment
decision taken at t = 0 influences, according to equation (3.1), all the projects not yet completed at that
date.

Flexibility is indeed the first main difference we introduce to the Kydland and Prescott’s specification.
In fact, in their framework, the projects dynamics is given by sj,t = sj+1,t−1 and aggregate investment
is equal to it =

∑d
j=1 bjsj,t with

∑d
j=1 bj = 1 and bj ≥ 0 for all j. Moreover the exogenously given

initial conditions are k0 and sj,0, with j ∈ [1, d − 1] which, together with (3.1), imply that ∆kd−j are
predetermined. Focusing, as before, on the case d = 3 and t = 0 we have that

i0 = b1s1,0 + b2s2,0 + b3s3,0 or
1

b3


i0 − b1∆k1 − b2∆k2︸ ︷︷ ︸

exog. given


 = ∆k3

and, therefore, i0 determines completely s3,0 and then k3. For the same reason, it follows that

i1 ↑ and/or i2 ↑ ⇒ k3 unchanged

since these investments do not affect the project started at date t = 0. Then, it is clear that, in Kydland
and Prescott, the resources to be allocated to the different projects are decided at the very beginning
while, in our context, more resources can be added during the works in progress and crucially till the last
period before the projects’ completion.

Disinvestment from existing project is also possible. In fact, investments are assumed reversible and,
therefore, any project can be reduced or scrapped even before its completion. Then the main difference
with the no gestation lags case, d = 1, is that a disinvestment can affect resources not yet productive.
Coming back to our example on public infrastructure, it could be that a reallocation of resources takes
place in the last stage of the project and instead of some double-lane roads and a couple of roundabouts,
only one double-lane road is built up. This feature is probably more appealing from an empirical point
of view than the fixed plan case, as for example testified by the empirical evidences provided in the
introduction. 11

The continuous counterpart of (3.1) is

−∂s

∂j
+

∂s

∂t
= a(j)i(t), j ∈ [0, d], t ≥ 0

with the boundary condition s(d, t) = 0 and s(0, t) = k′(t) for every t ≥ 0 which are the continuous
counterpart of the discrete time ones. Integrating this last equation leads to

s(0, t)− s(d, t− d) =

∫ d

0

(
− ∂

∂j
+

∂

∂t

)
s(j, t− j)dj =

∫ d

0

a(j)i(t− j)dj

so, thanks to the boundary conditions, we have

k′(t) =
∫ d

0

a(j)i(t− j)dj

11. It is also worth noting that the realization of “big" projects is possible in the sense that the capital added at the end of
the project can be higher than the total amount of resources available at its very beginning (in our example, and assuming
a linear technology, it could be that a3i0 + a2i1 + a1i2 = ∆k3 > Ak0).
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or by replacing j with −r

k′(t) =
∫ 0

−d

a(r)i(t+ r)dr

whose notation is now the one commonly used in optimal control problem where the state equation is a
delay differential equation with distributed delays. Consistently with Definition 3.1, we also assume that
Before moving to the social planner problem, it is worth noting that (3.1) embeds all the specifications
of time-to-build used in the literature. This feature is the other main difference of our framework with
respect to the existing contributions where a specific distribution is always assumed. Finally it can be
observed that our generic distribution contains the purely gestation lags case

i(t− d) = k′(t)

when a(r) = δ−d, the standard case with no time-to-build

i(t) = k′(t)

when a(r) = δ0, the case of time-to-plan when the distribution is increasing exponential, etc 12.

3.2 The Social Planner Problem
In this section we embed the project structure just described in an AK model. The social planner

problem for this economy is presented in the following while the decentralized version can be found in
Appendix A. The social planner wants to maximize the functional

∫ +∞

0

c(t)1−σ

1− σ
e−ρtdt, σ > 0, σ 6= 1,

subject to the resource constraint of the economy and the production function, which write respectively

c(t) = y(t)− i(t), and y(t) = Ak(t) with A > 0,

the state equation describing the capital formation




k′(t) =
∫ 0

−d
a(r)i(t+ r)dr, t ≥ 0,

k(0) = k0, i(s) = i0(s), s ∈ [−d, 0),

(3.1)

and the pointwise (inequality) constraints

(c1) k(t) > 0, ∀t ≥ 0; (c2) i(t) ≤ Ak(t), for a.e. t ≥ 0. (3.2)

In the problem above, k is the state variable and i is the control variable. The constraint (c1) is
a constraint on the state variable imposing the nonnegativity of capital, and immediately implies to
consider initial data k0 > 0; the constraint (c2) is a mixed state-control constraint imposing that the
current investment cannot exceed the current production, so it is a kind of no-borrowing constraint. We
note that in (3.1), i0(s) must be assigned for a.e. s ∈ [−d, 0) and is not part of the control: indeed, it is
an initial datum together with k0.

The state equation (3.1) is an example of differential equation with delays (DDE) in the control
variable. The fact that the initial datum is a real number k0 together with a function i0 illustrates that
the nature of the problem is infinite dimensional.

We notice that we do not impose a priori nonnegativity constraints either on the function i0 or on
the function i: in particular, since i may be negative, disinvestment is allowed, i.e. the investment is
reversible.
12. It is worth noting that in the above cases a can also be a measure (e.g. in the gestation lag case, a is the Dirac delta

δ−d). For sake of simplicity, the theoretical part focuses only on the case where a is a function. However, a straightforward
generalization of the arguments presented in this paper can be done to include also the case where a is a measure (e.g.
Bambi et al. [5, 17]). For this reason, our quantitative analysis (Section 8) considers also the pure gestation lag case and
the one without time-to-build.

8



3.3 Formal Statement of the Control Problem
As explained before, standard pointwise initial conditions are not enough to determine solution paths

of DDEs. Rather, we need an initial function defined on a time-interval whose span depends on the delays’
structure; in particular, the initial conditions in our model consist of the initial, exogenously given, capital
stock k0 and the history of investment, i0(s) with s ∈ [−d, 0) where the latter is an exogenously given
function. Accordingly, we shall work on functional spaces. Therefore it is useful to introduce by the very
beginning some notations for functional spaces. This is done in Appendix B which provides a list of all
the functional spaces used in our analysis.

Consistently with the definition 3.1 of investment distribution, we also assume, from now on, the
following.

Hypothesis 3.2. The share of investment a is specified such as a ∈ L2([−d, 0];R+) and
∫ 0

−d
a(r)dr = 1

with a(r) ≥ 0 for any r ∈ (−d, 0).

Then we are ready to rewrite our optimal control problem. First of all, we may write more formally
(3.1): given a control strategy i0 ∈ L2([−d, 0];R) and i ∈ L2

loc([0,+∞);R), we denote by ı̃ : [−d,+∞) −→
R the function in L2

loc([−d,+∞);R) defined as follows.

ı̃(s) =

{
i0(s), s ∈ [−d, 0)
i(s), s ∈ [0,+∞).

(3.3)

For every i0 ∈ L2([−d, 0];R), k0 ∈ R and i ∈ L2
loc([0,+∞);R) there exists a unique continuously differ-

entiable solution to (3.1), i.e. a function of class C1([0,+∞);R), which will be denoted by k(k0,i0),i(·),
verifying pointwise (3.1) for each t ≥ 0 13. Using (3.3), such a solution can be explicitly written in integral
form as

k(k0,i0),i(t) = k0 +

∫ t

0

∫ 0

−d

a(r)̃ı(s+ r)dr ds, t ≥ 0 . (3.4)

The fact that k(k0,i0),i ∈ C1([0,+∞);R) is due to the continuity of the function s 7→ ∫ 0

−d
a(r)̃ı(s+ r)dr.

The functional to maximize is

J((k0, i0); i)
def
=

∫ +∞

0

(Ak(k0,i0),i(t)− i(t))1−σ

1− σ
e−ρtdt, σ > 0, σ 6= 1,

under the admissibility constraints (3.2), i.e. over the set

I(k0,i0)
def
= {i ∈ L2

loc([0,+∞);R) : k(k0,i0);i(t) > 0 ∀t ≥ 0, i(t) ≤ Ak(k0,i0),i(t) for a.e. t ≥ 0}.

We call (P) the problem of finding an optimal control strategy, i.e. finding i∗ ∈ I(k0,i0) such that

J((k0, i0); i
∗) = V (k0, i0)

def
= sup

i∈I(k0,i0)

J((k0, i0); i). (3.5)

The function V defined above is the so called value function of the problem, which will be a key tool
for solving our problem and whose properties will be studied in Section 4.1.

4 Methodology and Preliminary Results
In this section we provide some preliminary results and, after that, we will explain the methodology

we are going to use to solve the problem (P). The preliminary results include consideration on i) the
maximal growth rate of capital; ii) the existence and uniqueness of optimal paths; iii) the properties of
the value function V ; and iv) the asymptotic behavior of admissible paths.

13. Hereafter, the symbol · in the argument of a function represents the running independent variable of the function.
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4.1 Preliminary Results
To find conditions ensuring the finiteness of the value function, we need first to give an upper bound

for all the state trajectories. This is done by determining the maximum asymptotic growth rate of the
function k(k0,i0),i.

Equation (3.4), Hypothesis 3.2 (nonnegativity of the function a) and the structure of I(k0,i0) suggest
that the capital k is the highest possible when the control i satisfies the feedback relation i(t) = Ak(t)
for all t ≥ 0 (which is the maximum of the range of admissibility). Then, plugging the control defined by
the feedback relation i(t) = Ak(t) for t ≥ 0 into the state equation (3.1), we get the corresponding closed
loop DDE





k′(t) =
∫ (−d)∨(−t)

−d

a(r)i0(t+ r)dr +A

∫ 0

(−d)∨(−t)

a(r)k(t+ r)dr , t ≥ 0,

k(0) = k0, i0(s), s ∈ [−d, 0).

(4.1)

We notice that in (4.1) the delay is now in the state variable. 14

Proposition 4.1.
1. For every (k0, i0) ∈ H, the DDE (4.1) has a unique continuously differentiable solution denoted by

kM(k0,i0)
(·).

2. Let (k0, i0) ∈ H, i ∈ I(k0,i0). Then k(k0,i0),i(t) ≤ kM(k0,i0)
(t) for every t ≥ 0.

3. If kM(k0,i0)
(·) > 0, then I(k0,i0) 6= ∅.

Now we want to study the DDE (4.1) which becomes, for t ≥ d,

k′(t) = A

∫ 0

−d

a(r)k(t+ r)dr. (4.2)

For such equation we can apply standard statements on DDEs. Studying the properties of this equation
is crucial to fully characterize the solution of our problem. We begin with the characteristic equation of
(4.2), which is the transcendental equation

z = A

∫ 0

−d

a(r) erzdr , z ∈ C . (4.3)

The next proposition describes the properties of its spectrum of infinite roots 15.

Proposition 4.2 (Maximal Growth of Capital).
1. There exists a unique real root ξ of (4.3). It is simple and strictly positive.
2. If λ = µ + iν is a complex root of (4.3) (i.e. with ν 6= 0) then also λ̄ = µ − iν is a root of (4.3).

Taking the one with ν > 0 we have

−Ae−µd < µ < ξ,
ξ

d
< ν < A

(
1 ∨ e−µd

)
(4.4)

In particular the real part of all complex roots is strictly smaller than ξ. The real number ξ is then
called the maximal root associated to (4.3).

3. There exists a decreasing real sequence {µj} and a positive real sequence {νj} such that all the
complex and non real roots of (4.3) are given by {λj = µj + iνj , λ̄j = µj − iνj}j∈N.

14. Recall that given two real numbers a and b, by a ∨ b (respectively a ∧ b) we mean max{a, b} (respectively min{a, b}).
15. See Diekmann et al [15, Ch. 1] for more details about the characteristic equation associated to a general linear DDE.
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4. Let a1 and a2 be two functions in L2([−d, 0];R+) satisfying Hypothesis 3.2 and let ξ1 and ξ2 be the
corresponding maximal roots.

∫ s

−d

a1(r)dr ≤
∫ s

−d

a2(r)dr, ∀s ∈ [−d, 0] =⇒ ξ1 ≥ ξ2.

Since
∫ 0

−d
a1(r)dr =

∫ 0

−d
a2(r)dr = 1, this is true in particular if a1 is increasing and a2 is decreas-

ing. ¤

As one can infer from the discussion above, ξ is the maximal log-run growth rate of capital which can
be obtained by setting c(t) = 0, and therefore y(t) = i(t) at each date t. This is formalized in the next
proposition.

Proposition 4.3. Let (k0, i0) ∈ H. Then for some ε > 0, it holds the following.

kM(k0,i0)
(t) = α0e

ξt + o(e(ξ−ε)t),

where α0 is a coefficient depending on (k0, i0) and

lim
t→∞

∣∣∣∣
o(e(ξ−ε)t)

e(ξ−ε)t

∣∣∣∣ = 0.

We can now study the optimal control. Concerning the existence, it will be proved in the Section 5
through the solution of the HJB equation 16. In this section, we focus on uniqueness and we prove that
the optimal control, whenever it exists, it is unique. This result is proved in the following proposition.

Proposition 4.4 (Uniqueness of Optimal Paths). Let (k0, i0) ∈ H and assume that V (k0, i0) is
finite. There exists at most one optimal control for the problem (P) with the initial datum (k0, i0).

Now we study some properties of the value function which was defined in (3.5) on the points of H+

with the agreement that V (k0, i0) = −∞ if I(k0,i0) = ∅. However, to work on the Hilbert space H 17, we
define V on the whole space, i.e. also for initial data with negative capital, even though this case has no
economic interest. For initial data k0 ≤ 0 the set of admissible strategies is trivially empty, so V = −∞
over (H+)c. On the other hand, as we will see, if ρ is large enough, then V > −∞ in H++. Hence, letting

dom(V )
def
= {(k0, i0) ∈ H | V (k0, i0) > −∞},

we have the inclusions
H++ ⊂ dom(V ) ⊂ H+

In order to guarantee finiteness to the problem from now on we assume the following restriction on
parameters.

Hypothesis 4.5. The parameters are set such as ρ > ξ(1− σ).

This assumption is the counterpart of the restriction on parameters A(1−σ) < ρ in the standard AK
model without time-to-build. It requires that the level of technology (i.e. the maximal growth rate of
capital) has to be sufficiently low to avoid unbounded utility. In our model, the maximal growth rate of
capital is no more A but rather ξ < A. The last inequality reflects the “inefficiency” due to the presence
of delays in the formation of new capital stock.

Proposition 4.6 (Finiteness and homogeneity of the value function).
1. V (k0, i0) is finite for all (k0, i0) ∈ H++. In particular:

a) if σ ∈ (0, 1), then 0 ≤ V (k0, i0) < +∞.

16. Alternatively we could have used tools of Convex and Functional Analysis to prove it directly.
17. This is important since to solve the problem we pass through another problem whose set of initial data includes also

the case of negative capital.
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b) If σ > 1, then −∞ < V (k0, i0) ≤ 0.
2. The set where V is finite is a cone of H and V is homogeneous of degree (1− σ) therein:

V (α(k0, i0)) = α1−σV (k0, i0), ∀α > 0.

Finally we conclude this section with some information on the asymptotic behavior of capital paths.
Let us recall some known facts from the theory of DDEs. Let us consider the so called fundamental
solution to the equation for the maximal growth, i.e. the function γ solving the DDE





γ′(t) = A
∫ 0

−d
a(r)γ(t+ r)dr, t ≥ 0,

γ(0) = 1, γ(s) = 0, s ∈ [−d, 0).

(4.5)

Notice that, since a(·) ≥ 0, we have
γ(t) > 0, ∀t ≥ 0. (4.6)

From Diekmann et al [15, Th. 5.4, p. 34] and using the fact that ξ is the solution to (4.2) with the highest
real part (as proved in Proposition 4.2), we have, for some αξ > 0 and every ε > 0,

γ(t) = αξe
ξt + o(e(ξ−ε)t), (4.7)

where limt→∞
∣∣∣ o(e(ξ−ε)t)

e(ξ−ε)t

∣∣∣ = 0.

Let (k0, i0) ∈ H and i ∈ I(k0,i0), and consider the corresponding consumption strategy

c(t) = Ak(k0,i0),i(t)− i(t) ≥ 0. (4.8)

Clearly we can rewrite the evolution of k(k0,i0),i in terms of c as

k′(k0,i0),i
(t) =

∫ (−d)∨(−t)

−d

a(r)i0(t+ r)dr +

∫ 0

(−d)∨(−t)

a(r)(Ak(k0,i0),i(t+ r)− c(t+ r))dr, t ≥ 0.

Hence

k′(k0,i0),i
(t) =

∫ 0

−d

a(r)(Ak(k0,i0),i(t+ r)− c(t+ r))dr, t ≥ d.

Then setting
k̄0 := k(k0,i0),i(d), ı̄0(s) := i(s+ d), s ∈ [−d, 0], (4.9)

the variation of constants formula (see Hale and Lunel [25], Ch. 6, p. 170) allows to write k(k0,i0),i in terms
of kM

(k̄0 ,̄ı0)
(see the definition of kM in Proposition 4.1) and γ as

k(k0,i0),i(t) = kM(k̄0 ,̄ı0)
(t− d)−

∫ t

d

γ(t− s)ds

∫ 0

−d

a(r)c(s+ r)dr, t ≥ d. (4.10)

Lemma 4.7. Let (k0, i0) ∈ H, i ∈ I(k0,i0) and c as in (4.8). Then

∃ lim
t→+∞

e−ξt

∫ t

d

γ(t− s)ds

∫ 0

−d

a(r)c(s+ r)dr ∈ [0, ᾱ0],

where ᾱ0 is the constant of Proposition 4.3 related to the initial data (k̄0, ı̄0) defined in (4.9).

Proposition 4.8. Let (k0, i0) ∈ H, i ∈ I(k0,i0) and let ᾱ0 be the constant of Lemma 4.7.

1. There exists finite limt→+∞ e−ξtk(k0,i0),i(t) ∈ [0, ᾱ0],

2. Let limt→+∞ e−ξtk(k0,i0),i(t) = α > 0. Then, for every β ∈ (0, α) there exists iβ ∈ I(k0,i0) such that
– k(k0,i0),iβ (·) ≤ k(k0,i0),i(·),
– limt→+∞ e−ξtk(k0,i0),iβ (t) ≤ β;
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– J((k0, i0); iβ) > J((k0, i0); i).

The result of Proposition 4.8(1) is a nontrivial generalization of a much easier result in the case without
delays. In fact, the case without delays has γ(t− s) = eξ(t−s) and so the function t 7→ e−ξt

∫ t

0
γ(t− s)ds

is clearly monotone, whereas in the delay case this is not true anymore and one has to control the
fluctuations of such a function (see the proof of Lemma 4.7).

It is also worth noting that Proposition 4.8(2) has an immediate corollary: if the investment strategy
i∗ ∈ I(k0,i0) is optimal, then limt→+∞ e−ξtk(k0,i0),i∗(t) = 0. This will be crucial in Section 5.4 to prove
the main results in Theorem 5.11 and then find the solution of problem (P).

4.2 Methodology
Our problem (P) is an optimal control problem with state constraints where the state equation (3.1)

is a delay differential equation (DDE). This kind of problems is usually difficult to solve for two reasons.
Firstly, these problems are intrinsically infinite dimensional due to the fact that the solution of the state
equation (such as equation (3.1)) can be found only specifying an initial condition which is not a point in
Rn but a function (in our case, the initial capital stock and the past history of the investment), which is
an element of an infinite dimensional space. Secondly, there are state inequality constraints (in our case
c1 and c2).

The dynamic programming approach can be used successfully to solve these problems if a “regular”
(i.e. differentiable in a suitable sense) solution of the associated Hamilton-Jacobi-Bellman (HJB) equation
can be found and if such solution is indeed the value function V for, at least, a subset of initial data. The
first contribution in the economic literature which successfully dealt with an infinite dimensional optimal
control problem with state constraint was Fabbri and Gozzi [17], while other more recent contributions
are Bambi et al. [5], and Boucekkine et al. [10, 11] 18.

However the presence of the distributed delay term in the state equation, and the absence of the
irreversibility constraint make our problem more difficult than those faced in the previous contribu-
tions 19. For this reason we have developed a specific strategy to solve problem (P); this strategy can be
summarized in the following steps:

1. We rewrite (P) as an equivalent infinite dimensional problem (PH) (with value function V H) to
which the dynamic programming approach can be applied. This is done in section 5.1.

2. We write the HJB equation associated to (PH) and we find an explicit solution v. This is done in
section 5.2 20.

3. We show that such solution (as the HJB equation itself) is defined on a larger set than the one
of V H and, through a verification theorem, that it is equal to the value function Ṽ H of another
control problem (that we call (P̃H)) which is easier to solve. This is addressed in section 5.3.

4. We consider the problem (P̃) which is the optimal control problem equivalent to (P̃H) and we
derive its solution through the one found for (P̃H). Section 5.4 is dedicated to this, in particular
Proposition 5.9.

5. We show, through a delicate analysis of the asymptotic behavior of admissible trajectories that
indeed the problems (P) and (P̃) are equivalent on a suitable set of initial data. Section 5.5
contains this results.

We conclude this discussion saying that we are forced to use this quite complicated procedure because
the verification theorem for the problem (PH) cannot be proved directly due to the absence of the
irreversibility constraints.

18. Fabbri and Gozzi [18] is an extended version of [17] which provides more details on the techniques and on the literature.
19. In particular, the proof that the solution found for the HJB equation is indeed the value function is much more difficult

without an irreversibility constraint.
20. In this section, Remark 5.4 contains additional details on the procedure used to solve the problem.
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5 Solution of the Optimal Control Problem
In this section we apply the methodology just described. Each subsection corresponds to one of the

steps required by our strategy to solve the problem.

5.1 Rewriting (P) in Infinite Dimension
To rewrite our control problem with delay as a control problem without delay in infinite dimension

we define a new state variable (which we call structural state) and find the state equation that it satisfies.
To accomplish this task we first write the DDE (3.1) in a more formal way, defining suitable functions
and operators.

Our infinite dimensional setting is represented by the Hilbert space H def
= R×L2([−d, 0];R) as defined

in Appendix B. In order to write an infinite dimensional differential abstract equation satisfied by the
new state variable in the Hilbert space H, we introduce some operators and their adjoints.

Let us define the linear functional C ∈ H∗ as

ψ 7→ C(ψ0, ψ1)
def
=

∫ 0

−d

a(r)ψ1(r)dr = 〈a, ψ1〉L2([−d,0];R), ψ ∈ H.

One immediately sees that the adjoint C∗ : R→ H is the operator defined by

C∗(s) = (0, sa), s ∈ R,

since, for ψ ∈ H,

〈s , Cψ〉R = s〈a, ψ1〉L2([−d,0];R) = s

∫ 0

−d

a(r)ψ1(r)dr = 〈ψ, C∗s〉H .

Let us D denote the derivative operator in the Sobolev space W 1,2([−d, 0];R). Let B : D(B) ⊂ H → H
be the closed densely defined unbounded linear operator on H defined by

(ψ0, ψ1) 7→ B(ψ0, ψ1)
def
= (0,Dψ1),

where
D(B) def

= {(ψ0, ψ1) ∈ H : ψ1 ∈ W 1,2([−d, 0];R), ψ0 = ψ1(0)}.

It is well known that B generates a strongly continuous semigroup on H, whose explicit expression is

SB(t)ψ = (ψ0, ψ01[0,+∞)(t+ ·) + ψ1(t+ ·)1(−∞,0)(t+ ·)), ψ = (ψ0, ψ1) ∈ H.

The adjoint operator of B is the operator (see e.g. Vinter [43] and Vinter and Kwong [44])

φ = (φ0, φ1) 7→ B∗φ =
(
φ1(0),−Dφ1

)
, φ ∈ D(B∗).

where
D(B∗) = {φ = (φ0, φ1) ∈ H : φ1 ∈ W 1,2([−d, 0];R), φ1(−d) = 0} ⊂ H.

The operator B∗ generates the strongly continuous semigroup SB∗ on H, whose explicit expression,
computable starting from the expression of B, is given by

SB∗(t)ϕ =

(
ϕ0 +

∫ 0

(−t)∧(−d)

ϕ1(r)dr, ϕ1(· − t)1[−d,0](· − t)

)
, ϕ = (ϕ0, ϕ1) ∈ H.

Given i ∈ L2
loc([0,+∞);R), z0 ∈ H, we consider the abstract equation in H

{
Y ′(t) = B∗Y (t) + C∗i(t), t > 0,
Y (0) = z0.

(5.1)

We will use two concepts of solution to (5.1), that in our case coincide. For details we refer to Li and
Yong [32, Ch. 2, Sec. 5].
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Definition 5.1. 1. We call mild solution of (5.1) the function Y ∈ C0([0,+∞);H) defined as

Y (t)
def
= SB∗(t)z0 +

∫ t

0

SB∗(t− r) C∗i(r) dr , t ≥ 0,

where the integral above is understood as Bochner integral of H-valued functions.
2. We call weak solution of (5.1) a function Y ∈ C0([0,+∞);H) such that

〈Y (t), h〉H = 〈z0, h〉H +

∫ t

0

〈Y (r), Bh〉Hdr +

∫ t

0

〈C∗i(r), h〉Hdr, ∀t ≥ 0, ∀h ∈ D(B). (5.2)

We notice that (5.2) can be rewritten as

〈Y (t), h〉H = 〈z0, h〉H +

∫ t

0

〈Y (r), Bh〉Hdr + Ch

∫ t

0

i(r)dr, ∀t ≥ 0, ∀h ∈ D(B). (5.3)

From now on we denote by Yz0,i(·) the mild solution of (5.1) in H. We notice that the definition of mild
solution is the infinite-dimensional version of the variation of constant formula and, by definition the mild
solution exists and it is unique. By a well-known result (see Li and Yong [32, Ch. 2, Prop. 5.2]), the mild
solution is also the (unique) weak solution.

Now we want to connect the infinite dimensional differential problem defined above with the original
problem in DDE form. For that, let us introduce now the bounded linear operator

F : L2([−d, 0];R) −→ L2([−d, 0];R),

defined on f ∈ L2([−d, 0];R) as

[Ff ](s)
def
=

∫ s

−d

a(r)f(r − s)dr, s ∈ [−d, 0].

By using Hölder’s inequality, straightforward computations show that

‖f ∗ a‖L2([−d,0];R) ≤ ‖a‖L2([−d,0];R)‖f‖L2([−d,0];R),

which shows that F is bounded. Consider now the bounded linear operator

Q : H −→ H, (r, f) 7→ (r, Ff).

Given t ≥ 0, define
ı̃t : [−d, 0] → R; ı̃t(s)

def
= ı̃(t+ s), s ∈ [−d, 0].

The link between (3.1) and (5.1) is provided by the following.

Theorem 5.2. Let (k0, i0) ∈ H, i ∈ L2
loc([0,+∞);R). Set

z0
def
= Q(k0, i0) ∈ H; Y (t)

def
= Yz0,i(t), k(t)

def
= k(k0,i0),i(t), t ≥ 0.

Then
Y (t) = Q(Y 0(t), ı̃t), ∀t ≥ 0.

and
Y 0(t) = k(t), ∀t ≥ 0.

We are now ready to reformulate our optimal control problem (P) in the space H. For a given z0 ∈ H,
the new set of admissible controls is

IH
z0

def
= {i ∈ L2

loc([0,+∞);R) : Y 0
z0(t) > 0 ∀t ≥ 0, i(t) ≤ AY 0

z0,i(t) for a.e. t ≥ 0}.
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The objective functional over i ∈ IH
z0 is

JH(z0; i)
def
=

∫ ∞

0

e−ρt
(AY 0

z0,i
(t)− i(t))1−σ

1− σ
dt, (5.4)

and the value function in this setting is the function

V H : H −→ R, V H(z0)
def
= sup

i∈IH
z0

JH(z0; i),

with the convention sup ∅ = −∞. This problem will be called problem (PH).
Due to Theorem 5.2 the connection between (P) and (PH) is the following: let (k0, i0) ∈ H and set
z0 = Q(k0, i0); then

(i) I(k0,i0) = IH
z0 ; (ii) JH(z0; i) = J((k0, i0); i), ∀i ∈ I(k0,i0) = IH

z0 ; (iii) V H(z0) = V (k0, i0).

Remark 5.3. The set Q(H) ⊂ H is the subset of initial data in the Hilbert setting corresponding to the
initial data in the DDE setting. We notice that it is possible to prove that Q(H) is dense, but not closed
in H. In particular Q(H) 6= H, so the problem we have defined in H contains more initial data with
respect to the ones coming from the DDE setting, which are represented as points of Q(H).

5.2 Solving the HJB Equation associated to (PH)

We are going to study the problem by the dynamic programming approach in infinite dimension.
The core of the dynamic programming approach to control problems is represented by the so called HJB
equation that we are going to define for our problem.

Let y = (y0, y1) ∈ H. Define

E
def
= {(y, P, i) ∈ H ×D(B)× R : i ≤ Ay0}.

On the set E, we define the function current value Hamiltonian HCV : E −→ R, as

HCV (y, P, i)
def
= 〈y,BP 〉H + 〈i, CP 〉R + (Ay0 − i)1−σ

1− σ
.

For σ ∈ (0, 1), the map HCV is well-defined on E. When σ > 1 the above is not defined in the points in
which Ay0 = i. In such points we set then HCV = −∞. Also we define the maximum value Hamiltonian
(or simply Hamiltonian) of the system as

H : H ×D(B) −→ R, H : (y, P ) 7−→ sup
i≤Ay0

HCV (y, P, i).

The HJB equation of our infinite dimensional control problem is then

ρv(y)−H(y,∇v(y)) = 0, y ∈ H. (5.5)

Remark 5.4. We notice that we have defined the HJB equation in a larger set than the natural set where
it should be defined. Indeed, from the state constraint, we know that V H(y0, y1) = −∞ when y0 ≤ 0,
so it does not make sense to associate an HJB equation to V H over the set where y0 ≤ 0. Nevertheless
nothing prevents us to consider the HJB equation to be defined over the whole H, and actually this makes
sense: the reason to do that is that in the infinite-dimensional setting the natural constraint for the control
problem is not y0 > 0, but a more involved one, which allows also the case y0 ≤ 0. What we shall do is to
solve the HJB equation above in a set containing also points where y0 ≤ 0, and associate to this equation
another control problem (with different constraints) with value function Ṽ H . Then we do the inverse
path: we rephrase this new infinite-dimensional problem in the DDE setting and state its equivalence with
a DDE control problem with a new constraint. This problem will have a value function Ṽ , which is in
principle different from the original value function V . But at the end we show that, for some initial data
(the ones we are interested in), we have actually the equality Ṽ = V . This will provide the solution of
the original problem for such data.
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Making more explicit the expression of H in a specific case, we notice that if (CP )−1/σ > 0, then the
unique maximum point of HCV (y, P ; ·) over (−∞, Ay0] is

iMAX = Ay0 − (CP )−1/σ > 0. (5.6)

It follows that

(CP )−1/σ > 0 =⇒ H(y, P ) = 〈Y,BP 〉H +Ay0(CP ) +
σ

1− σ
(CP )

σ−1
σ , (5.7)

so the HJB equation (5.5) can be rewritten in this case as

ρv(y)− 〈y,B∇v(y)〉H +Ay0(C∇v(y)) +
σ

1− σ
(C∇v(y))

σ−1
σ = 0. (5.8)

Definition 5.5. Let Θ ⊂ H be open. A function v ∈ C1(Θ;R) satisfies the HJB equation (5.5) in Θ if

(y,∇v(y)) ∈ G+, ρv(y)−H(
y,∇v(y)

)
= 0 ∀y ∈ Θ.

We introduce now some objects that will be used in the sequel:

w ∈ L2([−d, 0];R+), w(r)
def
= eξr, r ∈ [−d, 0],

where ξ the real positive solution of the characteristic equation (4.3);

ϕ
def
= (1, w) ∈ D(B) ⊂ H; (5.9)

We note that

Bϕ = (0, ξw), Cϕ =

∫ 0

−d

a(r)eξrdr = ξ/A. (5.10)

Moreover we define
Θ

def
= {y ∈ H : 〈ϕ, y〉H > 0} ⊂ H;

ν
def
=

ρ− ξ(1− σ)

σ

A

ξ
. (5.11)

where ν > 0, since Hypothesis 4.5. It is now possible to present an explicit solution of the HJB equation
(5.5) in Θ.

Proposition 5.6. The function

v : Θ −→ R; v(y)
def
= α〈ϕ, y〉1−σ

H , where α
def
= ν−σ 1

(1− σ)

A

ξ
, (5.12)

belongs to C1(Θ) and is a solution to the HJB equation (5.5) in Θ in the sense of Definition 5.5.

In the standard AK optimal growth model without time-to-build, which is indeed the special case
d → 0 of the problem studied in this paper, it is trivial to show that the solution to the corresponding
HJB equation is actually (1− σ)-homogeneous, i.e. v(k0) =

(r−g)−σ

1−σ k1−σ
0 . With a finite strictly positive

d, the problem is infinite dimensional and the role of capital k is now played by 〈ϕ, y〉H , which can be
interpreted as the equivalent concept of capital in the case with time-to-build 21. A similar equivalence
was found and discussed extensively in Fabbri and Gozzi [17] in a vintage capital model with linear
technology.

The reason why we expect that the value function (and so the solution of the HJB equation) is of the
form of v above comes from the following considerations. Firstly the value function has to be (1 − σ)
homogeneous in the state variable due to the structure of the problem, see Proposition 4.6; secondly
〈ϕ, y〉H must be connected linearly with the amount of capital.

To prove that v is the value function we need to prove that the closed loop strategies are admissible.
The next subsection is devoted to find parameter’s restrictions under which this is indeed the case. It is
worth noting untill now that the conditions we will be able to find, are sufficient but not necessary for
the closed loop strategies to be admissible.

21. See also Section 5.4 where 〈ϕ, y〉H is explicitly expressed in terms of the economic variables.
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5.3 Verification Theorem and Optimal Feedbacks for the Problem (P̃H)

The goal of this subsection is to show that the solution v found in Proposition 5.6 coincides indeed
with the value function of the associated auxiliary control problem (P̃H). As usual this is done by a
verification theorem passing through the study of the so called closed loop equation. From expression
(5.6) we see that the candidate optimal feedback map is the linear map

Φ : Θ → R, Φy = Ay0 − (C∇v(y))−1/σ = Ay0 − ν〈ϕ, y〉H , (5.13)

and the associated closed loop equation is
{

Y ′(t) = B∗Y (t) + C∗ΦY (t), t ≥ 0,
Y (0) = z0.

(5.14)

This equation in the space H admits a unique weak solution (see Li and Yong [32]) in the sense that
there exists a unique function Y ∗

z0 ∈ C0([0,+∞);H) such that

〈Y ∗
z0(t), h〉H = 〈h, z0〉H +

∫ t

0

〈Bh, Y ∗
z0(r)〉Hdr +

∫ t

0

〈C∗ΦY ∗
z0(r), h〉Hdr, ∀t ≥ 0, ∀h ∈ D(B), (5.15)

i.e.

〈Y ∗
z0(t), h〉H = 〈h, z0〉H +

∫ t

0

〈Bh, Y ∗
z0(r)〉Hdr + Ch

∫ t

0

ΦY ∗
z0(r), dr, ∀t ≥ 0, ∀h ∈ D(B). (5.16)

Consider now this auxiliary problem that we call (P̃H). For a given z0 ∈ H, the new set of admissible
controls is

ĨH
z0

def
= {i ∈ L2

loc([0,+∞);R) : Yz0(t) ∈ Θ ∀t ≥ 0, i(t) ≤ AY 0
z0,i(t) for a.e. t ≥ 0}.

The objective functional over i ∈ ĨH
z0 is as in (5.4) and the value function is

Ṽ H : H −→ R, Ṽ H(z0)
def
= sup

i∈ ˜̃IH
z0

JH(z0; i),

with the convention sup ∅ = −∞.

Proposition 5.7. Let z0 ∈ Θ.
1. For every i ∈ L2

loc([0,+∞);R) be such that i(t) ≤ AY 0
z0,i

(t) for a.e. t ≥ 0, we have

〈ϕ, Yz0,i(t)〉H ≤ 〈ϕ, z0〉H eξt, ∀t ≥ 0.

2. For the weak solution Y ∗
z0 to the closed loop equation (5.13) we have

〈ϕ, Y ∗
z0(t)〉H = 〈ϕ, Y ∗

z0(0)〉H egt = 〈ϕ, z0〉H egt, ∀t ≥ 0,

where
g := ξ

(
1− ν

A

)
=

ξ − ρ

σ
. (5.17)

In particular, the solution of (5.14) remains in Θ 22.

Theorem 5.8 (Verification Theorem for (P̃H)). Let v be the function defined in Proposition 5.6.
1. Ṽ H = v on Θ.
2. Given z0 ∈ Θ, the control i∗z0(t) := ΦY ∗

z0(t), t ≥ 0, is optimal for (P̃H) starting at z0, i.e.
JH(z0; i

∗
z0) = Ṽ H(z0).

22. Note the analogy between the first claim of Proposition 5.7 and the statement of Proposition 4.3: Proposition 5.7(1)
estimates the maximal growth rate of 〈ϕ, Y (t)〉H by ξ as well as Proposition 4.3 estimates the maximal growth rate of k(t)
by ξ.
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5.4 The Problem (P̃) and its Solution

In the previous subsection we have solved (P̃H) over Θ. However (P̃H) is associated to a problem dif-
ferent from our original problem (P). Indeed, let (k0, i0) ∈ H, let z0 = Q(k0, i0), let i ∈ L2

loc([0,+∞);R).
Then, by Theorem 5.2, we have the equality

〈ϕ, Yz0,i(t)〉H = k(k0,i0),i(t) +

∫ 0

−d

dreξr
∫ r

−d

a(s)̃ı(t+ s− r)ds, ∀t ≥ 0.

Thus, defining the variable equivalent capital as

keq(k0,i0);i
(t)

def
= k(k0,i0),i(t) +

∫ 0

−d

dreξr
∫ r

−d

a(s)̃ı(t+ s− r)ds, t ≥ 0, (5.18)

we can rephrase (P̃H) in the DDE setting by modifying the set of admissible strategies as follows:

Ĩ(k0,i0)
def
= {i ∈ L2

loc([0,+∞);R) : keq(k0,i0);i
(t) > 0 ∀t ≥ 0, i(t) ≤ Ak(k0,i0),i(t) for a.e. t ≥ 0}.

Indeed, denoting by (P̃) the control problem

V (k0, i0)
def
= sup

i∈Ĩ(k0,i0)

J((k0, i0); i),

with the usual convention sup ∅ = −∞, we have

(i) Ĩ(k0,i0) = ĨH
z0 ; (ii) JH(z0; i) = J((k0, i0); i), ∀i ∈ Ĩ(k0,i0) = ĨH

z0 ; (iii) Ṽ H(z0) = Ṽ (k0, i0). (5.19)

Let (k0, i0) ∈ H and assume that z0
def
= Q(k0, i0) ∈ Θ. Given i ∈ Ĩ(k0,i0) we define the associated

consumption process
c(t)

def
= Ak(k0,i0),i(t)− i(t), t ≥ 0. (5.20)

We now use Theorem 5.8 to deduce explicitly the closed loop formula and the closed loop equation
for problem (P̃) from the corresponding ones for (P̃H).

Let us consider also the optimal investment strategy i∗z0 ∈ ĨH
z0 = Ĩ(k0,i0) for (P̃

H) provided by Theorem
5.8. Calling

k∗(k0,i0)
(·) def

= k(k0,i0),i∗z0
(·), (5.21)

by Theorem 5.2, we have k∗(k0,i0)
(·) = (Y ∗

z0)
0(·). So, setting

Λ(k0,i0)
def
= ν〈ϕ, z0〉H = ν

(
k0 +

∫ 0

−d

dr eξr
∫ r

−d

a(s)i0(s− r)ds

)
, (5.22)

we see that i∗z0(t) can be rewritten as

i∗z0(t) = Ak∗(k0,i0)
(t)− Λ(k0,i0)e

gt def
= i∗(k0,i0)

(t), t ≥ 0. (5.23)

Taking into account Theorem 5.8, next Proposition can be proved.

Proposition 5.9. Let (k0, i0) ∈ H and assume that z0
def
= Q(k0, i0) ∈ Θ. Then:

– Ṽ (k0, i0) = v(z0).
– i∗(k0,i0)

defined in (5.23) is an optimal investment strategy for (P̃) starting at (k0, i0), and the
associated optimal capital path is k∗(k0,i0)

defined in (5.21).
Moreover the optimal investment strategy i∗(k0,i0)

and the optimal capital path k∗(k0,i0)
can be charac-

terized as solutions of suitable DDEs as follows:

19



1. The optimal capital k∗(k0,i0)
is the unique continuously differentiable solution to the DDE:





k′(t) =
∫ (−d)∨(−t)

−d

a(r)i0(t+ r)dr +A

∫ 0

(−d)∨(−t)

a(r)
(
k(t+ r)− Λ(k0,i0)e

g(t+r)
)
dr , t ≥ 0,

k(0) = k0, i0(s), s ∈ [−d, 0).

2. The optimal investment i∗(k0,i0)
is the unique continuously differentiable solution to the the DDE





i′(t) = A
∫ 0

−d
a(r)i(t+ r)dr − gΛ(k0,i0)e

gt, t ≥ 0

i(0) = Ak0 − Λ(k0,i0), i(s) = i0(s), s ∈ [−d, 0).

(5.24)

We notice the optimal consumption path c∗(k0,i0)

def
= Ak∗(k0,i0)

− i∗(k0,i0)
for (P̃) is exponential: indeed

c∗(k0,i0)
(t) = Ak∗(k0,i0)

(t)− i∗(k0,i0)
(t) = Λ(k0,i0)e

gt, t ≥ 0. (5.25)

Clearly, positive consumption growth requires that g ≥ 0. In order to guarantee that, we assume,
from now on, the following restriction on parameters.

Hypothesis 5.10 (Strictly Positive Consumption Growth). The parameters are set such as ξ > ρ.

This restriction on parameters corresponds to the requirement in the AK model without time-to-build
that the interest rate has to be higher than the intertemporal discount factor, namely r > ρ. In fact,
as previously observed, in the case without delay ξ → r. Notice that Hypothesis 5.10 together with the
already stated Hypothesis 4.5 means that we are considering now the case ρ ∈ (ξ(1− σ), ξ).

5.5 Solution of (P) in a Suitable Set of Initial Conditions

In the previous subsection we have solved (P̃) over the subset of initial data Q−1(Θ). Now we want
to address the question of solving (P), which is the original problem we began with, at least on a suitable
set S ⊂ Q−1(Θ) of initial data (i.e. initial stock of capital and initial history of the investment). To do
that, we look for sufficient conditions which guarantee that, starting from (k0, i0) ∈ Q−1(Θ), the optimal
control i∗(k0,i0)

of (P̃) provided by Proposition 5.9 belongs to I(k0,i0) and, then, V (k0, i0) = Ṽ (k0, i0) and
i∗(k0,i0)

is optimal also for the original problem (P).

Theorem 5.11 (Unique Optimal Control). Let (k0, i0) ∈ S with

S
def
=

{
(k0, i0) ∈ H++ : i0 ∈ W 1,2([−d, 0);R), i′0(t)− gi0(t) ≥ 0 for a.e. t ∈ [−d, 0),

∫ 0

−d

a(s)i0(s)ds− gk0 ≥ 0, Ak0 − Λ(k0,i0) ≥ 0
}
.

and consider the investment strategy i∗(k0,i0)
defined in Proposition 5.9. Then V (k0, i0) = v(Q(k0, i0))

and i∗(k0,i0)
is the unique optimal investment strategy for (P).

Some considerations are useful before moving to the next section. First, it is worth noting that
Q(H++) ⊂ Θ, so S ⊂ Q−1(Θ) ∩ H++. Of course, the set S is not the largest set of admissible initial
data. For example, it excludes the case of a history of past investments with reversibility which is indeed
allowed by our original model setup. 23 Reversibility does not necessarily violate the initial inequality
constraints as it will be shown in the section on quantitative analysis. Yet it is more difficult to characterize
analytically a set of initial condition which contains this case. Secondly the optimal investment strategy
i∗(k0,i0)

and the optimal capital path k∗(k0,i0)
are found in the next section as solutions of the DDEs of

Proposition 5.9, while the optimal consumption path c∗(k0,i0)
is given by (5.25). Lastly, the set S is empty,

and therefore no optimal control exists on this set of initial conditions, if Hypothesis 5.10 does not hold
and then g < 0.

23. Clearly, this doe not preclude the possibility of reversible investment for t > 0.
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6 Balanced Growth Paths
We are now ready to define the couple Eb of initial data which puts the economy on a balanced growth

path from t = 0 on. Let us consider any b ∈ R, and define Eb as follows:

Eb = (k0, i0), where: i0(s)
def
= begs, for a.e. s ∈ [−d, 0); k0

def
=

b

g

∫ 0

−d

a(s)egsds.

Of course, the initial choice of the control variable, and therefore of initial consumption, Λ(k0,i0), takes
a very specific form under this specification of the initial data. This is indeed stated in the following
Lemma, which simply uses the general expression of Λ(k0,i0), as stated in (5.22), and rewrites it when the
initial conditions are Eb

Lemma 6.1. Let (k0, i0) = Eb. Then Λ(k0,i0) = Ak0 − b.

In the next proposition, we prove that the initial data Eb belongs to S. This result holds under the
restriction on parameters imposed in Hypothesis 5.10.

Proposition 6.2. For any b > 0 we have that Eb ∈ S 24.

Using the above results we can now characterize the optimal paths k∗, i∗, c∗ when the initial conditions
are Eb. We already know from expression (5.25) that the optimal consumption path is purely exponential
for each (k0, i0) ∈ S which includes the case Eb for Proposition 6.2. Therefore, the optimal consumption
path is

c∗(t) = (Ak0 − b)egt ∀t ≥ 0.

In the next proposition we prove under which condition the optimal paths k∗(k0,i0)
and i∗(k0,i0)

are purely
exponential as well.

Proposition 6.3. The optimal capital and investment paths are purely exponential if and only if (k0, i0) =
Eb for any b > 0. Formally we have that

k∗(k0,i0)
(t) = k0e

gt, i∗(k0,i0)
(t) = begt, ∀t ≥ 0.

If all the aggregate variables grow at the same rate g, their optimal path is purely exponential, and
the inequality constraints are respected then we say that the economy is on a balanced growth path.
It is also worth noting how the closed loop policy function writes when the economy is on a BGP and
compare it with the case without time-to-build. It is easy to verify that such function writes

c(t) =

(
A− g∫ 0

−d
a(s)egsds

)
k(t) ∀t ≥ 0.

Interestingly enough, the derivative of the second term in parenthesis with respect to d is always negative.
Therefore, a longer projects’ length implies a higher initial consumption and therefore a lower initial
investment since at t = 0 the initial output is Ak0 with k0 exogenously given. Consistently with g′(d) < 0
lower investment implies slower capital accumulation and therefore lower growth. Observe also that this
mechanism does not pass through different interest rates, which is always r = A independently on d
and a(·), but it depends on the resource left unproductive by the different time-to-build specifications.
Consistently with this observation the case without time to build implies an initial consumption c0 =
(A− g)k0 which is the lowest among the possible specification of d and a(·) and therefore it implies the
highest investment, the fastest accumulation of capital and the highest growth rate.

Moreover, Proposition 6.3 tells us that the economy is on a balanced growth path till the very begin-
ning, i.e. from t ≥ 0, if and only if it was already there in the past: in this extent, history matters. To

24. In the proof of this proposition we also show that, in the case of zero economic growth, (k0, i0) ∈ S if and only if
i0 ≡ 0.
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understand better this result, it is worth to read the restriction on the initial conditions in an alternative
way.

Consider an exogenously given k0, then the economy is on a BGP till t = 0 if and only if the initial
history of investment is i0(s) = k0g∫ 0

−d
a(s)egsds

egs with s ∈ [−d, 0). Observe that this past history of

investment becomes i0(0) = gk0 in the case without time-to-build (Dirac’s delta in 0). As well known,
this condition implies an initial “jump” of the control variable in order to put the economy on its BGP
till the very beginning. With a generic form of time-to-build, the “jump” is not on initial investment but
it is rather a very specific choice of the past history of investment among the admissible ones.

On the other hand, an economy with a past history of the investment, i0(s) with s ∈ [−d, 0), set as in
Eb, but with a capital stock different from b

g

∫ 0

−d
a(s)egsds but still in the feasible set of initial condition

S, will not be on its balanced growth path. Under these initial conditions, the optimal path of investment
and capital are no more purely exponential, and converge over time to the balanced growth path. The
next section is dedicated to find the explicit form of these optimal paths and to prove that an economy
which, generically, starts out of the BGP, meaning that the initial conditions are in S but are not Eb,
will converge to it over time by damping fluctuations.

7 Transitional Dynamics
Now we look at optimal trajectories other than balanced growth paths. The following assumption

will be done from now on.

Hypothesis 7.1. Concerning all the complex roots of the characteristic equation (4.3) we assume:
(i) the real part is smaller than g;
(ii) they are simple 25.

Remark 7.2. It is indeed theoretically viable to provide restrictions on parameters and on the distribution
a(·) such that (i) and (ii) hold. However we do not address this issue analytically but rather numerically
by checking Hypothesis 7.1 - case by case - in Section 8. Also, (ii) occurs generically and, while not
essential, it is useful to simplify the analysis of detrended optimal paths in the subsequent Proposition
7.3.

Let {λj} and {λ̄j} as in Proposition 4.2, item 3. Applying Corollary 6.4 in Diekmann et al [15], the
solution of (4.5) can be written as

γ(t) = αξe
ξt +

∞∑

j=1

(
eλjtpj(t) + eλ̄jtp̄j(t)

)
= αξe

ξt +

∞∑

j=1

2Re
(
pj(t)e

λjt
)
,

since ¯aeλ = āeλ̄ and where pj(t) are complex polynomial of degree mλj − 1, with mλj denoting the
multiplicity of the root λj . Also, the series above converges uniformly on compact subsets of (0,+∞).
Under Hypothesis 7.1(ii), the polynomials pj(·) are constants and we denote them simply by pj , i.e.

γ(t) = αξe
ξt +

∞∑

j=1

2Re(pje
λjt). (7.1)

Proposition 7.3. Consider a (k0, i0) ∈ S. Then the optimal paths are:

c∗(k0,i0)
(t) = Λ(k0,i0)e

gt, t ≥ 0, (7.2)

k∗(k0,i0)
(t) =

1

A
(i∗(k0,i0)

(t) + c∗(k0,i0)
(t)), t ≥ 0,

i∗(k0,i0)
(t) = αξ

(
−Λ(k0,i0)g

g − ξ

)
egt +

∞∑

j=1

pje
λjtaj + pje

gtbj , t ≥ 0, (7.3)

25. It can be proved that this event generically occurs.
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where αξ > 0 is the real constant in (4.7), aj and bj are the complex numbers

aj
def
= AΓj(k0, i0)− Λ(k0,i0) +

gΛ(k0,i0)

g − λj
, bj

def
= −gΛ(k0,i0)

g − λj
, (7.4)

and

Γj(k0, i0) := k0 +

∫ 0

−d

eλjr

∫ r

−d

a(s)i0(s− r)ds dr.

Moreover, defining the optimal detrended paths as:

k∗(k0,i0),g
(t)

def
= e−gtk∗(k0,i0)

(t) , i∗(k0,i0),g
(t)

def
= e−gti∗(k0,i0)

(t) , c∗(k0,i0),g
(t)

def
= e−gtc∗(k0,i0)

(t), t ≥ 0,

we have that the optimal detrended consumption path, see definition (5.20), c∗(k0,i0),g
(t)

def
= Ak∗(k0,i0),g

(t)−
i∗(k0,i0),g

(t) is constant and equal to Λ(k0,i0) by (7.2), and there exist positive constants kl and il such that

lim
t→+∞

k∗(k0,i0),g
(t) = kl, lim

t→+∞
i∗(k0,i0),g

(t) = il,

where kl and il satisfy the algebraic system

Akl − il = Λ(k0,i0), il

(
A

ξ

∫ 0

−d

a(η)egηdη

)
= (A− ν)kl.

Explicitely

kl =
Λ(k0,i0)

∫ 0

−d
egra(r)dr

A
∫ 0

−d
egra(r)dr − g

, il =
gΛ(k0,i0)

A
∫ 0

−d
egra(r)dr − g

.

From these reasonings, it is clear that countries with the same past history of investment and initial
stock of capital behave very differently if they differs in the projects’ structure. In fact, different invest-
ment distributions over the projects and different projects’ length across countries determine different
asymptotic growth rates, different balance growth paths and different adjustments over time to them.

8 Quantitative Analysis
In this section, we perform two exercises. The first evaluates the growth rate differentials across

countries which are on their respective balanced growth path, as defined in Proposition 6.3, and are
identical except for the projects’ structure; in fact the projects may be different in length and in term
of the investment distributions as defined in (the continuous-time counterpart of) Definition 3.1; the
relevance of these two features in affecting the maximal growth rate of capital, ξ, and therefore the growth
rate, g, was indeed proved analytically in Propositions 4.2 and 5.17 but their quantitative relevance is
assessed in this first exercise. In this context we also propose a welfare evaluation.

The second exercise consists in studying, from a quantitative viewpoint, how the damping fluctuations,
which we proved to emerge in Proposition 7.3, are affected by different choices of the projects’ length and
of the investment’s distribution over the projects. To do this assessment, we specify the parameters as in
the quantitative exercise on the growth rate differentials, but we also add an initial exogenous shock which
makes the economy deviate from its BGP by reducing the initial capital stock of ten percentage points.
As observed in Proposition 7.3 the economy will converge back to its BGP by damping fluctuations;
therefore our objective is to quantitatively evaluate the output volatility, measured looking at three
indicators: the average and maximum absolute deviation from the BGP and the speed of convergence to
the BGP. This information will turn out useful to measure how well the different projects’ features may
explain the negative link between mean output growth and output growth volatility, observed in the data
(e.g. Ramey and Ramey [41]).

Before moving to the two exercises we need to clarify how the projects’ length, d, and the investment’s
distribution, a(r), have been chosen. We assign to d a benchmark value of three years. This is slightly
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higher than the value usually suggested in recent empirical works (e.g. Del Boca et al. [8]); in fact, in our
model, the capital stock is broadly defined and includes not only physical capital but also human capital,
public infrastructure, etc. which encourages a choice of d larger than the usual setting of one year, for
equipment, or two years, for structure. For this reason, we consider a range of values for d, between two
and five years. This quite large interval of values accounts for the possible heterogeneity in the length of
projects across otherwise similar countries.

The empirical findings on the investment’s distributions are rich and sometimes controversial as also
explained in the Introduction. In our exercise, we do not focus on a specific contribution but rather we try
to account for all the specifications found by the literature even if obtained looking at different countries
and using different methodologies. In particular, we consider the following investment’s distributions
over the projects: Dirac’s Delta in 0 (no time to build); Dirac’s Delta in −d (i.e. pure gestation lag in
investment) and uniform (e.g. Kydland and Prescott [31] among others); decreasing exponential (e.g.
Peeters [40]); increasing exponential (e.g. Koeva [29]); U-shaped (e.g. Peeters [40] and Zhou [45]); and
hump-shaped (e.g. Altug [2], and Palm et al. [37]).

The decreasing exponential distributions have been introduced through the parametric distribu-
tion aµ(r) =

(
µ

eµd−1

)
e−µr with µ > 0, the increasing exponential through the distribution aµ(r) =(

µ
1−e−µd

)
eµr with µ > 0, while a combination of these two parametric distributions has been used to

get the hump-shape and U-shape distributions. In all these cases we have properly set the parameter µ
to reproduce a specific investment distribution over the projects: for example, in the case of a decreas-
ing exponential distribution, µ was set equal to either 0.3466 or 1.197 to have, respectively, a 75% and
95% of the investment concentrated on the projects which need more than two-years to be completed
when the full length of a project is three years. Similarly, when the increasing exponential distribution
has been chosen, we have set µ equal to either 0.3466 or 1.197 to have, respectively, a 75% and 95%
of the investment concentrated on the projects which need less than two-years to be completed when
the full length of a project is three years. In the U-shaped distribution, µ was set to have 50% of the
investment allocated to the projects which need more than two years to be completed and finally, in the
hump-shaped, µ was set to have 70% of the investment concentrated on the projects requiring less than
2 years to be completed.

Moreover, we have adjusted accordingly the distribution of the investment over the projects when the
projects’ lengths is different from 3 years.

Finally, all the numerical computations have been done using MATLAB; the section on output volatil-
ity has been performed using DDE-BIFTOOL, a MATLAB package developed by Engelborghs and Roose
[16].

8.1 First Quantitative Exercise (focus on Economic Growth)
The first quantitative exercise focuses on economies on their respective balanced growth path, see

Proposition 6.3, and on their growth rates. The parameters to be decided to perform this assessment
are A, ρ, σ, d, and the investment’s distribution aµ(r). All these parameters enter in the characteristic
equation (4.3) and then are relevant to determine the growth rate of the economy, g, as proved in
Propositions 4.2 and 5.17. We start considering an economy without time to build – aµ(r) is a Dirac’s
Delta in 0 – and we set ρ = 0.017 and 1

σ = 0.5 which are quite standard and non-controversial values
for the preference discount rate and the instantaneous intertemporal elasticity of substitution. A choice
of the interest rate equal to R = A = 0.077 implies a growth rate g = 0.03. Then we consider how
much the growth rate and welfare are affected by different choices of the delay parameter, d, and of the
investment’s distribution, aµ(r) while keeping unchanged all the other parameters. 26 These values of the
growth rates and welfare for the different specifications of the projects’ features are reported in Table 1
and Table 3, respectively.

26. It is worth remembering that A is always equal to the real interest rate as observed in the Appendix A, independently
on the different projects’ features.

24



Table 1: Growth Rate, g, on the Balanced Growth Path.

d = 2 d = 3 d = 4 d = 5

Investment’s Distributions

Dirac’s Delta in 0 0.03 0.03 0.03 0.03

Increasing Exponential (µ = 1.197) 0.0283 0.0280 0.0279 0.0278

Increasing Exponential (µ = 0.3466) 0.0276 0.0268 0.0262 0.0257

U-Shaped 0.0275 0.0265 0.0252 0.0252

Uniform 0.0274 0.0263 0.0252 0.0243

Hump-Shaped 0.0273 0.0261 0.0253 0.0243

Decreasing Exponential (µ = 0.3466) 0.0271 0.0257 0.0244 0.0231

Decreasing Exponential (µ = 1.197) 0.0265 0.0247 0.0230 0.0215

Dirac’s Delta in −d 0.02515 0.0233 0.0217 0.0204

Projects’ Structure and Growth Rate Differentials

The maximum growth rate differentials are observed when we compare a country with pure investment
lags in production – aµ(r) is a Dirac’s Delta in −d – with another country characterized by time-to-plan –
aµ(r) is increasing exponential distribution with µ = 1.197. 27 According to our computations the growth
differential, due to the different resource distributions over the projects, is around 12.5% when the length
of the project is two years. Moreover such differential enlarges to 21.45% when we increase the length of
the project to three years. This sharp increase in the growth differential can be immediately explained:
the growth rate of the country characterized by time-to-plan is not affected significantly (just around
-0.03 percentage points) by the increase in the length of the project because the largest amount of the
resources are concentrated on the last stages; on the other hand, in the pure investment lag case all the
resources are concentrated at the beginning of the project and therefore a larger amount of resources
remains “unproductive” for a longer period of time when the length, d, increases, with a larger negative
effect on the growth rate of the economy (around -0.2 percentage points). The growth differentials for
the case of d = 4 and d = 5 years are also computed and they are respectively the 28.6% and the
36.3%. Looking at the income gap after 100 years between two countries, which are identical except
the investment distributions, we find that the output of the country having an increasing exponential
distribution is around 37% larger than in the other country with a pure investment lag in production
when the length of the project is 2 years. This output gap increases to 60%, 86%, and 110% when the
length of the project in both countries increase to 3, 4, and 5 years respectively (see Table 2). 28

Comparisons between other different distributions suggest again how the projects’ features may explain
a quite significant part of the growth rate differentials across, otherwise identical, countries. Interestingly
enough, a comparison of the growth rates when the investment’s distribution is hump-shaped and when
it is uniform, reveals that the first distribution pins down higher growth rates only when the projects’
length is lower or equal than 3 years. Keeping aside this case, a ranking of the distributions in term of the

27. Intuitively the increasing exponential distribution is the distribution “closest” to the Dirac’s Delta in 0 (i.e. no time-
to-build case), and it indeed converges to it as the resources tends to be concentrated in the last stage of the project.
This is the reason why the highest growth rate differential is observed when we compare the time-to-plan economy with a
pure-investment lag economy.
28. The income gap has been computed by using the formula

(
−1 + e(max{gi,gj}−min{gi,gj})·100

)
· 100 where gi and gj

indicate respectively the growth rates associated with the investment distribution i and j.
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growth rates can be done: given A, ρ, σ, and d, the increasing exponential distribution is characterized
by the highest growth rates, followed by the U-shaped distribution, the uniform distribution and the
hump-shaped distribution to end with the decreasing exponentials and the Dirac’s delta in −d, the latter
characterized by the lowest growth rate. The robustness of this ranking has been checked for different
choices of the parameters σ, ρ, and r. The income gap after 100 years between two countries with different
investment’s distributions has been computed and reported in Table 2. The comparison has been done
focusing on those distributions more often used in the literature and it highlights how differences in the
investment’s distributions may lead to relevant output differential across countries in the long run.

Table 2: Income Gap (%) between 2 Countries with Different Investment Distributions after 100 years.

d = 2 d = 3 d = 4 d = 5

Investment’s Distributions

Incr. Exp. (µ = 1.197) vs. Dirac’s Delta −d 37.02% 60% 85.9% 109.6%

Uniform vs. Dirac’s Delta −d 25.2% 35% 41.9% 47.7%

Decr. Exp. (µ = 0.3466) vs. Dirac’s Delta −d 21.5% 27.1% 31% 31%

Incr. Exp. (µ = 1.197) vs. Decr. Exp. (µ = 0.3466) 12.7% 25.9% 41.9% 60%

Incr. Exp. (µ = 1.197) vs. Uniform 9.4% 18.5% 31% 41.9%

Finally all these findings can be used to shed some light on the growth differentials observed in the
data when we compare, for example, Italy with other developed countries. In the period 1990-2012,
Italy’s average GDP growth rate was around 0.87%, which is almost one percentage point below the
Euro Area average of 1.67%, with France, Germany, and United Kingdom growing at an average rate
of 1.55%, 1.68%, and 2.15% respectively (World Bank - World Development Indicators). A longer delay
in the human capital formation, due for example to the Italian university system, where the average
student gets a bachelor degree at around 27 years old in 2001 and 26 in 2009 (see Ruegg [42], and also
L’Universita’ in Cifre 2009/10 [35] - Gli Studenti graph 2.2.6) against an EU average of around 23 years
old, as well as longer delays in the realization of public infrastructures, as documented by the list of the
incomplete public projects (see “Elenco Anagrafe Opere Incompiute”, Ministero per le Infrastrutture e
Transporti), suggest the presence of a longer length of the investment projects in Italy than on average
in the other EU countries. Using our quantitative findings, specifically Table 1, we observe that this
difference may well explain a relevant part of the growth differential between Italy and the other EU
countries and that such differences may be significantly affected if the investment distributions between
Italy and the other countries are different.

Projects’ Structure and Welfare

The welfare of an economy on its BGP can be easily found by solving the integral of the discounted
instantaneous utility:

W (d) = − c0(d)
1−σ

(1− σ)[(1− σ)g(d)− ρ]

where W (.), c0(.), and g(.) indicate respectively the welfare, the initial value of consumption and the
growth rate of the economy as functions of the projects’ length d. Observe also that the term, inside the
square brackets, has to be always lower than zero to have bounded utility (i.e. the value function is finite,
see Hypothesis 4.5). Consistently with the numerical values in Table 3, the welfare is a positive number
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Table 3: Welfare evaluation when σ = 0.9 and σ = 2.

d = 2 d = 3 d = 4 d = 5

Investment’s Distributions

Increasing Exponential (µ = 1.197) 785.3 (-13.18) 782.5(−13.12) 781.4 (-13.10) 780.9 (-13.08)

Increasing Exponential (µ = 0.3466) 779.2 (-13.03) 771.5 (-12.83) 765.7 (-12.68) 761.2 (-12.56)

U-Shaped 778.1 (-13.01) 768.2 (-12.75) 757.6 (-12.45) 756.9 (-12.44)

Uniform 776.6 (-12.97) 766.5 (-12.70) 757.8 (-12.45) 750.3 (-12.22)

Hump-Shaped 776.2 (-12.95) 765.0 (-12.65) 758.0 (-12.44) 750.5 (-12.21)

Decreasing Exponential (µ = 0.3466) 774.1 (-12.90) 761.7 (-12.56) 750.7 (-12.22) 741.1 (-11.88)

Decreasing Exponential (µ = 1.197) 768.8 (-12.75) 753.4 (-12.30) 740.6 (-11.85) 730.3 (-11.42)

Dirac’s Delta in −d 757.2 (-12.41) 742.9 (-11.92) 731.9 (-11.48) 723.2 (-11.07)

The welfare values outside the parenthesis refer to the case σ = 0.9, while those inside to the case σ = 2.

if and only if σ < 1. If we now differentiate the welfare function with respect to d, we get

W ′(d)
W (d)

= (1− σ)



c′0(d)
c0(d)

+

(
g′(d)

ρ− (1− σ)g(d)

)

︸ ︷︷ ︸
≡¯̄c


 ≡ gW (d)

Observe that ¯̄c is always negative since g′(d) < 0 and the term at the denominator inside the parenthe-
sis is always positive to guarantee bounded utility. Consider the case σ > 1. According to our numerical
simulations reported in Table 3, see values in parenthesis (i.e. case σ = 2), there is an increase in welfare.
Looking at equation (8.1), this is possible only if there is a sufficiently high variation in the initial con-
sumption, formally only if c′0(d) is positive and sufficiently large. Under these circumstances, gW (d) < 0
and therefore the welfare increases since equal to W (d) = −|W (0)|egW (d)d.

This reaction of the initial consumption to an increase in d depends on the substitution effect which
dominates the income effect. In fact, a higher d implies lower output over time and therefore lower
resources to be allocated in consumption and investment; as a result, the households have an incentive
to reduce both initial investment and initial consumption (income effect). On the other hand, a longer
d implies a disincentive for the households to invest because now the investment is spread over a larger
number of projects, some of them taking longer than before, to be completed. This means that a share
of current output will be postponed to a further date in the future; therefore the discounted marginal
utility associated to the increase in future consumption is lower than in the case with a smaller d. For
this reason, the households are less willing to postpone current output when d is larger and they may
prefer to invest less and consume more at the beginning (substitution effect).

Consider now the alternative case σ = 0.9 and an increase in the projects’ length d. Since g′(d) < 0,
and ¯̄c < 0, a decrease in welfare, as observed in our numerical exercise reported in Table 3, is possible
only if there is a sufficiently small variation in the initial consumption, formally only if c′0(d) is sufficiently
small. Under this circumstance, gW (d) < 0 and therefore the welfare decreases since equal to W (d) =
|W (0)|egW (d)d.

Again the adjustment in the initial consumption can be explained in term of income and substitution
effect. In particular, a small adjustment as observed in our simulations is coherent with an income effect
sufficiently strong when compared to the substitution effect.

It is also worth mentioning that the same ranking of the distributions in term of the growth rates
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holds when we compare the welfare associated to the different distributions and σ = 0.9. Therefore the
increasing exponential is the distribution which leads to the highest welfare while the Dirac’s Delta in −d
to the lowest welfare. Also decreasing the length of the project is always welfare enhancing, independently
on the choice of the investments’ distribution. On the other hand, all these results are reversed when we
consider the case with σ = 2.

Table 4: Average and maximum absolute deviation from the BGP.

d = 2 d = 3 d = 4 d = 5

Investment’s Distributions

Dirac’s Delta in 0 0 0 0 0

Increasing Exponential (µ = 1.197) 0.3% (0.5%) 0.5%(0.6%) 0.55% (0.6%) 0.6% (0.65%)

Increasing Exponential (µ = 0.3466) 0.5% (0.7%) 0.95% (0.95%) 1.4% (1.1%) 1.85% (1.3%)

Hump-Shaped 0.59% (0.8%) 1.22% (1.18%) 1.8% (1.44%) 2.6% (1.74%)

Uniform 0.6% (0.8%) 1.22% (1.12%) 1.97% (1.44%) 3% (1.75%)

U-Shaped 0.65% (0.72%) 1.27% (1.05%) 2.36% (1.05%) 2.6% (1.45%)

Decreasing Exponential (µ = 0.3466) 0.75% (0.86%) 1.51% (1.3%) 2.58% (1.73%) 3.96% (2.16%)

Decreasing Exponential (µ = 1.197) 0.9% (1%) 2.1% (1.6%) 3.7% (2.2%) 5.86% (2.75%)

Dirac’s Delta in −d 1.6% (1.5%) 3.3% (2%) 5.5% (2.7%) 8% (3.2%)

The values outside (inside) the parenthesis refer to the average (maximum) deviation.

8.2 Second Quantitative Exercise (focus on Endogenous Fluctuations)
The second quantitative exercise focuses on transitional dynamics. As previously mentioned, the

parameters are chosen as in the previous quantitative exercise but we also add an initial exogenous shock
which makes the economy deviate from its BGP by reducing the initial capital stock of ten percentage
points. More precisely, we consider economies which are identical but the projects’ characteristics; each
of these economies is assumed to be on its respective balanced growth path, meaning that the initial
conditions are exactly Eb. Of course Eb varies across countries since the differences in the project’s
characteristics. Also, in a first instance, we set b = 1 and we will check later on what happens for
different values of b. At t = 0, each economy faces an exogenous shock which makes it deviate from its
balanced growth path by destroying the 10% of the initial capital. Under our parametrization the past
history of the investment and the capital stock after the negative shock are still in the set S and therefore
we know from Proposition 7.3 that each economy will converge by damping fluctuations to its balanced
growth path. The output volatility is measured looking at the maximum and average absolute deviation
from the BGP and at the speed of convergence. These three indicators have been computed by looking
respectively at the following quantities

sup
t∈(0,T )

|k∗(k0,i0),g
(t)− kle

gt|
klegt

,

∫ T

0

|k∗(k0,i0),g
(t)− kle

gt|
klegt

dt and |Re(λM )− g|

These three indicators have been computed for different investment’s distributions, aµ(r), and projects’
length, d, and reported in Tables 4 and 5. Output is said to be more volatile if characterized by a higher
maximum and absolute deviation and a lower speed of convergence. Keeping aside the U-shaped and
the hump-shaped distributions, we observe that the economy with the projects’ investment distribution
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leading to higher growth rates are also those with higher output volatility. In particular, the same ranking
on the investment distributions proposed for the growth rates, holds when we rank the economies from
those with lowest to those with highest output volatility.

Therefore these findings show that different investment projects’ distribution may explain the negative
relation between mean output growth (i.e. the g computed in Table 1) and output volatility documented
by several author in the empirical literature (e.g. Ramey and Ramey [41]). The same conclusion can be
derived if we look at any specific investment distribution and we increase the project length. In fact, also
in this case, the growth rate decreases while the volatility increases.

Interestingly enough our model is also consistent with the Ramey and Ramey finding that the average
investment share does not play any role in explaining the negative correlation between mean output
growth and output growth volatility. In fact this negative correlation is not affected if we change the
average investment share on the BGP, b

A . In other words, countries with the same level of technology,
A, but different project’s features have different negative correlation between mean output growth and
output growth volatility, but this correlation does not change if we consider different values of b and
therefore different investment shares.

Table 5: Speed of convergence to the BGP.

d = 2 d = 3 d = 4 d = 5

Investment’s Distributions

Dirac’s Delta in 0 ∞ ∞ ∞ ∞

Increasing Exponential (µ = 1.197) 3.69 2.61 2.13 1.87

Increasing Exponential (µ = 0.3466) 3.14 2.01 1.48 1.18

Hump-Shaped 3.14 1.91 1.43 1.11

Uniform 2.96 1.81 1.28 0.97

Decreasing Exponential (µ = 0.3466) 2.79 1.66 1.13 0.83

U-Shaped 2.63 1.65 1.08 0.93

Decreasing Exponential (µ = 1.197) 2.49 1.41 0.92 0.66

Dirac’s Delta in −d 1.79 1.05 0.71 0.53

9 Conclusion
In this paper we have assessed in an endogenous growth model how the investment project’s features

may affect the growth rate and the transitional dynamics of an economy. The analytical results are
tailored to quantify the changes in output growth and output volatility due to different choices of the
project’s length and of the investment distributions over the projects. Relatively small differences in
these features may induce significantly output growth differentials across otherwise identical countries;
this finding has implications for policy and empirical work. The policy implication is that countries
characterized by long project’s length and pure investment lag would increase significantly their output
growth by implementing policies acting to reduce the first and abandoning the latter for a different
investment distribution. If implemented such policies would also decrease the output volatility. For
the purposes of empirical analysis, our quantitative findings encourage empirical studies to collect more
information on the projects’ features across countries.
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Appendix

A Decentralized Economy
Assume an economy populated by infinitely many atomistic households and firms. The pattern of the

ownership right is the following: households own directly the capital stock and the firms while the firms
own nothing.

Observe that capital is productive immediately, meaning that yt = Akt. Therefore the firms’ maxi-
mization problem is the usual static one where firms rent the capital stock from the household at each
date. The first order condition of this problem pins down the following real interest rate:

Rt = A

On the other hand the households problem is

max

∫ ∞

0

e−ρt log ctdt

s.t. Rtkt = ct + it and

∫ 0

−d

ajit−jdj = k̇t

with k0 and i0(t) with t ∈ [−d, 0) exogenously given.

B Notation
The following notations for functional spaces is based on Brezis [13].
– L2([−d, 0];R) denotes to the space of all functions from [−d, 0] to R that are Lebesgue measurable

and square integrable. These functions are identified if they coincide almost everywhere (from now
on a.e.) with respect to the Lebesgue measure.

– L2
loc([0,+∞);R) denotes the space of all functions from [0,+∞) to R that are Lebesgue measurable

and square integrable on all bounded intervals. These functions are identified if they coincide a.e.
with respect to the Lebesgue measure.

– W 1,2([−d, 0];R) denotes the space of the functions in L2([−d, 0];R) whose weak first derivative exists
and belongs to L2([−d, 0];R) too. These functions admit a (unique) continuous representative.

– W 1,2
loc ([0,+∞);R) denotes the space of the functions in L2

loc([0,+∞);R) whose weak first derivative
exists and belongs to L2

loc([0,+∞);R) too. These functions admit a (unique) continuous represen-
tative

– C0([0,+∞);R) and C1([0,+∞);R) denote, respectively, the space of continuous and of continuously
differentiable functions from [0,+∞) to R.

Similar definitions are given when R is replaced by R+ def
= [0,+∞): simply, in this case, the functions

take values in R+. Also we define a Hilbert space as

H
def
= R× L2([−d, 0];R),

and the subsets of H

H+ def
= (0,+∞)× L2([−d, 0];R), H++ def

= (0,+∞)× L2([−d, 0];R+).

where given an element x = (x0, x1) ∈ H the scalar product in H is defined as 〈(x0, x1), (y0, y1)〉H def
=

x0y0 + 〈x1, y1〉L2([−d,0];R) for all (x0, x1), (y0, y1).
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C Proofs and Technical Results
Proof of Proposition 4.1.
1. Within the setting of [15], the DDE (4.1) is of type k′(t) = Lkt + b(t) with L a linear operator and b(t)

continuous. Hence, the existence and uniqueness of solutions to such DDE follows from Theorem 2.12 in [15].
The continuous differentiability is consequence of the continuity of t 7→ b(t).

2. By the admissibility constraint (c2), we have for t ∈ [0, d),

k(k0,i0),i(t) = k0 +

∫ t

0

(∫ −s

−d

a(r)i0(s+ r)dr +

∫ 0

−s

a(r)i(s+ r)dr

)
ds

≤ k0 +

∫ t

0

(∫ −s

−d

a(r)i0(s+ r)dr +A

∫ 0

−s

a(r)k(k0,i0),i(s+ r)dr

)
ds

while the function kM
(k0,i0)

(t) satisfies, for t ∈ [0, d)

kM
(k0,i0)(t) = k0 +

∫ t

0

(∫ −s

−d

a(r)i0(s+ r)dr +A

∫ 0

−s

a(r)kM
(k0,i0)(s+ r)dr

)
ds.

Then, by standard comparison results on DDEs (see, e.g. [19] , we get the claim in [0, d). Iterating the
argument one gets the claim.

3. Setting iM (·) def
= kM

(k0,i0)
(·), we have iM ∈ I(k0,i0), so the claim follows. ¤

Proof of Proposition 4.2.
1. Consider the function

h : R −→ R, h(x)
def
= x−A

∫ 0

−d

a(r)erxdr.

It is clear that all real solutions of the characteristic equation (4.3) are zeros of h and viceversa. We observe that

h(0) = −A < 0, lim
x→+∞

h(x) = +∞, lim
x→−∞

h(x) = −∞.

Moreover for all x ∈ R,

h′(x) = 1−A

∫ 0

−d

a(r)rerxdr > 1, h′′(x) = −A

∫ 0

−d

a(r)r2erxdr < 0,

so h is strictly increasing and strictly concave. This implies that g admits only one real root ξ > 0 which is the
only real solution of (4.3). Such solution has multiplicity 1 since h′(z) is never 0.

2. Let λ = µ + iν be a solution of (4.3). It is easy to check by direct substitution that, if λ = µ + iν solves
(4.3), then also λ̄ = µ− iν solves it. Take the one with ν > 0. Then

µ+ iν = A

∫ 0

−d

a(r)er(µ+iν)dr = A

(∫ 0

−d

a(r)eµr cos(νr)dr + i

∫ 0

−d

a(r)eµr sin(νr)dr

)
.

This gives the following two equations:

µ = A

∫ 0

−d

a(r)eµr cos(νr)dr, ν = A

∫ 0

−d

a(r)eµr sin(νr)dr.

Then concerning the real part we clearly get

−A

∫ 0

−d

a(r)eµrdr < µ < A

∫ 0

−d

a(r)eµrdr = µ− g(µ).

So, from the second inequality we get g(µ) < 0 = g(ξ) which implies, by the fact that g is strictly increasing, that
µ < ξ. On the other hand when µ < 0 we get, from the first inequality Ae−µd < µ, which give the first of (4.4).
Similarly, since ν > 0 we have

ν < A

∫ 0

−d

a(r)eµrdr < A
(
1 ∨ e−µd

)
.

On the other hand, since νr < 0 we have that sin(νr) < 0 for νr ∈ (−ξ, 0). So, to have ν > 0 in the equation for
ν we need to assume ν > ξ/d.
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3. First we recall that, by [15, Th. 4.4, Ch. I], all the solutions of (4.3) form a (countable) sequence. So complex
roots are at most countable and have the form λk = µk ± iνk for two sequences of real numbers {µk} and {νk}.

4. It is enough to prove that
∫ 0

−d

a1(r)e
xrdr ≥

∫ 0

−d

a2(r)e
xrdr, ∀x > 0, (C.1)

and then, calling h1, h2 the functions defined as h in the first item and associated respectively to a1, a2, we get
h1 ≥ h2 on R+ and the claim follows. But (C.1) is a consequence of a simple integration by parts:

∫ 0

−d

a1(r)e
xrdr = 1− x

∫ 0

−d

(∫ r

−d

a1(s)ds

)
exrdr ≥ 1− x

∫ 0

−d

(∫ r

−d

a2(s)ds

)
exrdr =

∫ 0

−d

a2(r)e
xrdr. ¤

Proof of Proposition 4.3. The claim follows from [15, Th. 5.4, p. 34] and using the fact that ξ is the solution
to (4.2) with the highest real part (as proved Proposition 4.2).

Proof of Proposition 4.4. Let us show uniqueness. Let i1, i2 ∈ I(k0,i0) and set iλ = λi1 + (1− λ)i2. Then,
by linearity of the state equation, one has

k(k0,i0),iλ(·) = λk(k0,i0),i1(·) + (1− λ)k(k0,i0),i2(·). (C.2)

First, this implies that the set I(k0,i0) is convex. Moreover, using (C.2) and the strict concavity of the real function
r 7→ r1−σ

1−σ
, it is straightforward to show that the functional J((k0, i0); ·) is strictly concave on its domain. So the

claim follows.

Proof of Proposition 4.6
1.a) We could prove this result directly (see e.g. [24]), but for sake of brevity we omit the proof here. The

finiteness will be proved a posteriori on a suitable subset of H++.
1.b) Clearly we have V ≤ 0. To prove that V (k0, i0) > −∞ it is enough to exhibit an admissible control ı̄

such that J((k0, i0); ı̄) > −∞. Since (k0, i0) ∈ H++, taking ı̄ ≡ 0 we have that k(k0,i0),ı̄(·) is nondecreasing. So,
we obtain

V (k0, i0) ≥ J((k0, i0); ı̄) =
A1−σ

1− σ

∫ +∞

0

e−ρt (k(k0,i0),ı̄(t)
)1−σ

dt ≥ (Ak0)
1−σ

1− σ

∫ +∞

0

e−ρtdt,

and the latter integral is finite by Hypothesis 4.5, which in this case reads as ρ > 0.
2. Let (k0, i0) be such that V (k0, i0) is finite. In particular i ∈ I(k0,i0) 6= ∅. The linearity of the state equation

yields for every α > 0
i ∈ I(k0,i0) ⇐⇒ αi ∈ I(k0,i0),

and kα(k0,i0),αi = αk(k0,i0),i. Then the claim is a straightforward consequence of the homogeneous structure of
the functional.

Proof of Lemma 4.7. The fact that if the limit exists it is nonnegative is due to (4.6) and (4.8). The fact
that if the limit exists it is smaller than α0 is due to Proposition 4.3, to (4.10) and to (4.6) and (4.8).

Let us show now the existence of the limit. By (4.7) there exists T ≥ d such that

γ(t) ≥ αξ

2
eξt, ∀t ≥ T. (C.3)

Setting

f(s) :=

∫ 0

−d

a(r)c(s+ r)dr ≥ 0, s ≥ d,

and using (4.10) and the admissibility of i, we can write

e−ξt

∫ t

d

γ(t− s)f(s)ds ≤ e−ξtkM
(k̄0,ı̄0)

(t− d), t ≥ d. (C.4)

Now (C.3) and (C.4) yield

e−ξt

∫ t−T

d

αξ

2
eξ(t−s)f(s)ds+ e−ξt

∫ t

t−T

γ(t− s)f(s)ds ≤ e−ξtkM
(k̄0,ı̄0)

(t− d), t ≥ T.
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Taking into account (4.6) we get
∫ t−T

d

αξ

2
e−ξsf(s)ds ≤ e−ξtkM

(k̄0,ı̄0)
(t− d), ∀t ≥ T.

Taking t → +∞ in the inequality above and considering the nonnegativity of f and Proposition 4.3, we see that
the function s 7→ eξsf(s) belongs to L1([d,+∞);R) and

lim
t→+∞

∫ t

d

e−ξsf(s)ds = L :=

∫ +∞

d

e−ξsf(s)ds < +∞. (C.5)

Now, using (4.7) we write for some C1, C2 > 0
∣∣∣∣e−ξt

∫ t

d

γ(t− s)f(s)ds−
∫ t

d

αξe
−ξsf(s)ds

∣∣∣∣ ≤ e−ξt

∫ t

d

(C1e
(ξ−ε)(t−s) + C2)f(s)ds

=

∫ +∞

d

gt(s)e
−ξsf(s)ds,

where
gt(s) := C1e

−ε(t−s) + C2e
−ξ(t−s), s, t ≥ d.

Now notice that |gt| ≤ C1 + C2 and gt(s) → 0 as t → +∞ for every s ≥ d. Hence, taking into account (C.5),
passing to the limit for t → +∞ in the inequality above, we get by dominated convergence in the right hand side

lim
t→+∞

∣∣∣∣e−ξt

∫ t

d

γ(t− s)f(s)ds−
∫ t

d

αξe
−ξsf(s)ds

∣∣∣∣ = 0.

Taking again into account (C.5), we conclude. ¤
Proof of Proposition 4.8.
1. This claim follows from Proposition 4.3, Lemma 4.7 and (4.10).
2. Let limt→+∞ e−ξtk(k0,i0),i(t) = α ≥ β > 0. Then, given ζ ∈ (0, α) there exists T ≥ d such that

e−ξtk(k0,i0),i(t) ≥ α− ζ > 0, ∀t ≥ T. (C.7)

Let c be defined as in (4.8) and consider the consumption strategy

cη,δ(s) := c(s) + ηeδs1[T,+∞)(s), s ≥ 0, η > 0, δ ∈ (0, ξ).

Let kη,δ be the solution to




k′(t) =
∫ (−d)∨(−t)

−d

a(r)i0(t+ r)dr +

∫ 0

(−d)∨(−t)

(Aa(r)k(t+ r)− cη,δ(t+ r))dr, t ≥ 0,

k(0) = k0, i0(s), s ∈ [−d, 0).

Then, setting iη,δ(·) := Akη,δ(·) − cη,δ(·), we clearly have k(k0,i0),iη,δ
(·) ≡ kη,δ(·). Clearly, since η > 0, we have

k(k0,i0),iη,δ
(·) ≤ k(k0,i0),i(·) and J((k0, i0), iη,δ) > J((k0, i0); i). So, we need to show that for suitable η, δ one has

iη,δ ∈ I(k0,i0) and limt→+∞ e−ξtk(k0,i0),iη,δ
(t) ≤ β.

Set k(·) := k(k0,i0);i(·) and kη,δ(·) := k(k0,i0);iη,δ
(·). Since i ≡ iη,δ in [0, T ], from the admissibility of i we get

kη,δ(t) = k(t) > 0, ∀t ∈ [0, T ]. (C.8)

On the other hand, from (4.10) we have

e−ξtk(t) = e−ξtkM
(k̄0,ı̄0)

(t− d)− e−ξt

∫ t

d

γ(t− s)ds

∫ 0

−d

a(r)c(s+ r)dr, t ≥ d

and

e−ξtkη,δ(t) = e−ξtkM
(k̄0,ı̄0)

(t− d)− e−ξt

∫ t

d

γ(t− s)ds

∫ 0

−d

a(r)cη,δ(s+ r)dr, t ≥ d.

Combining the two equalities above and using (C.7) we get for t ≥ T

e−ξtkη,δ(t) = e−ξtk(t)− ηe−ξt

∫ t

d

γ(t− s)eδsds

∫ 0

−d

a(r)eδr1[T,+∞)(s+ r)dr.
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Hence, setting Cδ :=
∫ 0

−d
a(r)eδrdr > 0, we have

e−ξtkη,δ(t) ≥ e−ξtk(t)− ηCδe
−ξt

∫ t

T

γ(t− s)eδsds, t ≥ T, (C.9)

e−ξtkη,δ(t) ≤ e−ξtk(t)− ηCδe
−ξt

∫ t

T+d

γ(t− s)eδsds, t ≥ T + d. (C.10)

Take χ ∈ (0, 1). Using (4.7) we can assume, without loss of generality, that for the same T fixed in the current
proof it holds true

(1− χ)αξe
ξt ≤ γ(t) ≤ (1 + χ)αξe

ξt, ∀t ≥ T. (C.11)

On the other hand there exists KT > 0 such that

γ(t) ≤ KT , ∀t ∈ [0, T ]. (C.12)

Then (C.9) combined to (C.11), (C.7) and (C.12) yields

e−ξtkη,δ(t) ≥ e−ξtk(t)− (1 + χ)αξηCδ

∫ t−T

T

e−(ξ−δ)sds− ηCδKT e
−ξt

∫ t

t−T

eδsds

≥ α− ζ − (1 + χ)αξηCδ

ξ − δ

(
e−(ξ−δ)T − e−(ξ−δ)(t−T )

)
− ηCδTKT e

−(ξ−δ)t 1− e−δT

δT

≥ α− ζ − (1 + χ)αξηCδ

ξ − δ
e−(ξ−δ)T − ηCδTKT e

−(ξ−δ)T

= α− ζ − e−(ξ−δ)TCδη

(
(1 + χ)αξ

ξ − δ
+ TKT

)
, t ≥ T.

Hence, if η, δ are such that

e−(ξ−δ)TCδη

(
(1 + χ)αξ

ξ − δ
+ TKT

)
< α− ζ, (C.13)

considering also (C.8), we see that iη,δ ∈ I(k0,i0). Now we notice that, for any given δ ∈ (0, ξ), the inequality
(C.13) is fulfilled by choosing

η = η(δ) := (α− ζ)e(ξ−δ)TC−1
δ

(
(1 + χ)αξ

ξ − δ
+ TKT

)−1

. (C.14)

On the other hand, using (C.10) and (C.11) , we can write

e−ξtkη,δ(t) ≤ e−ξtk(t)− ηCδ(1− χ)αξ

∫ t−T

T+d

e−(ξ−δ)sds, t ≥ T + d. (C.15)

Taking η = η(δ) as in (C.14), we can use part 1 of the present proposition and pass to the limit in (C.15) getting

lim
t→+∞

e−ξtkη(δ),δ(t) ≤ α− η(δ)Cδ(1− χ)αξ
e−(ξ−δ)(T+d)

ξ − δ

= α− (α− ζ)(1− χ)αξe
−(ξ−δ)d ((1 + χ)αξ + TKT (ξ − δ))−1 .

Then, setting
f(δ, χ, ζ) := α− (α− ζ)(1− χ)αξe

−(ξ−δ)d ((1 + χ)αξ + TKT (ξ − δ))−1 ,

since we have freedom in the choice of the parameters χ, ζ > 0 (they just affect the choice of T ), to complete the
proof we need to show that

∃ χ, ζ > 0 such that for suitable δ ∈ (0, ξ) it is f(δ, χ, ζ) ≤ β. (C.16)

Now notice that
lim
δ↑ξ

f(δ, χ, ζ) = α− (α− ζ)
1− χ

1 + χ
.

So, if χ, ζ are sufficiently close to 0, (C.16) can be obtained, and the proof is complete. ¤

Proof of Theorem 5.2 See Vinter and Kwong [44, Sec. 5].
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Proof of Proposition 5.6
Clearly v ∈ C1(Θ) and

∇v(y) =
(
α(1− σ)〈ϕ, y〉−σ

H , α(1− σ)〈ϕ, y〉−σ
H w

)
.

So ∇v(y) ∈ D(B) for every y ∈ Θ. Moreover w′ = ξw and ξ = A
∫ 0

−d
a(r)eξrdr = A〈a,w〉L2([−d,0];R) since ξ is by

definition the solution of the characteristic equation (4.3), and

B∇v(y) =
(
0, ξα(1− σ)w〈ϕ, y〉−σ

H

)
,

C∇v(y) = 〈a, α(1− σ)w〈ϕ, y〉−σ
H 〉L2([−d,0];R) = α(1− σ)〈ϕ, y〉−σ

H 〈a,w〉L2([−d,0];R) = α(1− σ)
ξ

A
〈ϕ, y〉−σ

H .

In particular (C∇v(y))−1/σ = ν〈ϕ, y〉H > 0. So, plugging these expressions into (5.5) and using (5.7) and (5.8),
we obtain the claim.

Proof of Proposition 5.7.
1. We have, taking h = ϕ in (5.3), where ϕ is defined in (5.9),

d

dt
〈ϕ, Yz0,i(t)〉H = 〈Bϕ, Yz0,i(t)〉H + (Cϕ)i(t), for a.e. t ≥ 0, ∀i ∈ L2

loc([0,+∞);R). (C.17)

The right hand-side of (C.17) is

〈Bϕ, Yz0,i(t)〉H + (Cϕ)i(t) = ξ〈w, (Y ∗
z0)

1(t)〉L2([−d,0];R) +
ξ

A
i(t) = ξ〈ϕ, Yz0,i(t)〉H − ξ

A
(AY 0

z0(t)− i(t)). (C.18)

So, if i ∈ L2
loc([0,+∞);R) is such that i(t) ≤ AY 0

z0,i(t) for a.e. t ≥ 0, we get from (C.17) and (C.18)

d

dt
〈ϕ, Yz0,i(t)〉H ≤ ξ〈ϕ, Yz0,i(t)〉H , for a.e. t ≥ 0.

The claim follows by standard comparison results for ODEs.
2. We have, taking h = ϕ in (5.16) where ϕ is defined in (5.9),

d

dt
〈ϕ, Y ∗

z0(t)〉H =
d

dt
〈ϕ, Y ∗

z0(t)〉H = 〈Bϕ, Y ∗
z0(t)〉+ (Cϕ)ΦY ∗

z0(t) (C.19)

So, using (5.10), the right-hand side of (C.19) equals

ξ〈w, (Y ∗
z0)

1(t)〉L2([−d,0];R) +
(
A(Y ∗

z0)
0(t)− ν〈ϕ, Y ∗

z0(t)〉H
) ξ

A
= ξ

(
1− ν

A

)
〈ϕ, Y ∗

z0(t)〉H ,

and the claim follows. ¤

Proof of Theorem 5.8. First of all we notice that, by definition of i∗z0 , we have that Yz0,i∗z0
is a weak

solution of (5.15). By uniqueness of weak solution of (5.15), this implies Yz0,i∗z0
= Y ∗

z0 . So, using Proposition 5.7,
we see that i∗z0 ∈ ĨH

z0 .
Defining, for i ∈ R, the differential operator Li acting on v as

[Liv](y) := 〈y,B∇v(y)〉H + (Cϕ)i.

we have (see, e.g., [32, Ch. 2, Prop. 5.5]) the following chain’s rule:

e−ρtv(Yz0,i(t))− v(z0) =

∫ t

0

e−ρs(−ρv(Yz0,i(s)) + [Li(s)v](Yz0,i(s)))ds, ∀ t ≥ 0, ∀i ∈ ĨH
z0 .

Using the fact that v solves he HJB equation (5.5) in Θ, we can rewrite the equality above as

e−ρtv(Yz0,i(t))− v(z0) = −JH(z0; i) +

∫ t

0

e−ρs[HCV (Yz0,i(s),∇v(Yz0,i(s); i(s))−H(Yz0,i(s),∇v(Yz0,i(s))]ds,

i.e.

v(z0) = JH(z0; i)+

∫ t

0

e−ρs[H(Yz0,i(s),∇v(Yz0,i(s))−HCV (Yz0,i(s),∇v(Yz0,i(s); i(s))]ds+e−ρtv(Yz0,i(t)), (C.20)

for every t ≥ 0 and every i ∈ ĨH
z0 . Taking t → +∞ in (C.20):
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1. Using Hypothesis 4.5, (5.12), and Proposition 5.7(1), we can get rid of the term e−ρtv(Yz0,i(t)) which
converges to 0.

2. Since H ≥ HCV , we can use monotone convergence in the integral term.
So, we can write the equality

v(z0) = JH(z0; i) +

∫ ∞

0

e−ρs[H(Yz0,i(s),∇v(Yz0,i(s))−HCV (Yz0,i(s),∇v(Yz0,i(s); i(s))]ds, ∀ t ≥ 0, ∀i ∈ ĨH
z0 .

Now noticing that H ≥ HCV , we get the inequality v(z0) ≥ Ṽ H(z0). On the other hand by definition of i∗z0 we
also have

H(Yz0,i∗z0
(s),∇v(Yz0,i∗z0

(s))−HCV (Yz0,i∗z0
(s),∇v(Yz0,i∗z0

(s); i∗z0(s)) = 0, ∀s ≥ 0.

Hence Ṽ H(z0) ≤ v(z0) = JH(z0; i
∗
z0) ≤ Ṽ H(z0), getting both the claims. ¤

Proof of Proposition 5.9 The fact that Ṽ (k0, i0) = v(z0) the couple (i∗(k0,i0)
, k∗

(k0,i0)
) is an optimal invest-

ment/capital couple starting from (k0, i0) for (P̃) is consequence of Theorem 5.8 and of (5.19). Let us show the
other claims.

1. This claim follows from (5.23).
2. Differentiating (5.23) and using 1. of the present proposition the differential part of claim follows. The

structure of the initial datum i(0) comes from (5.23) as well.

Proof of Theorem 5.11
Let (k0, i0) ∈ S. By Propositions 5.9 and C.1, we have

V (k0, i0) ≥ J((k0, i0); i
∗
(k0,i0)) = Ṽ (k0, i0) = v(Q(k0, i0)).

On the other hand, since we have the inequality V ≤ Ṽ (Proposition C.2), we deduce the optimality of i∗(k0,i0)
for

(P) starting at (k0, i0).

Then, uniqueness is stated by Proposition 4.4, and the last claim follows from Proposition 5.9.

Proof of Lemma 6.1. We have

Λ(k0,i0) = νk0 + νb

∫ 0

−d

eξrdr

∫ r

−d

a(s)eg(s−r)ds

= νk0 + νb

∫ 0

−d

a(s)egsds

∫ 0

s

e(ξ−g)rdr

= νk0 + νb

∫ 0

−d

a(s)egs
1− e(ξ−g)s

ξ − g
ds

= νk0 + b
ν

ξ − g

∫ 0

−d

a(s)(egs − eξs)ds

= νk0 + b
ν

ξ − g

(
gk0
b

− ξ

A

)

= νk0
ξ

ξ − g
− b

νξ

A(ξ − g)
.

Since νξ
A(ξ−g)

= 1, see (5.17) and (5.11), the proof is complete.

Proof of Proposition 6.2.
1. If b > 0, g > 0, then Eb ∈ H++. Moreover, by Lemma 6.1, we have Ak0 − Λ(k0,i0) = b > 0. So, all the

properties defining the set S are fulfilled by (k0, i0), concluding the proof.
2. Observe that g = 0 is equivalent to A − ν = 0. Hence, if k0 > 0 and i0 ≡ 0, then clearly (k0, i0) ∈ S. On

the other hand, if (k0, i0) ∈ S, the conditions (k0, i0) ∈ H++ and Ak0 − Λ(k0,i0) ≥ 0 imply k0 > 0 and i0 ≡ 0.

3.Observe that g < 0 is equivalent to A− ν < 0. Hence, the conditions (k0, i0) ∈ H++ and Ak0 −Λ(k0,i0) ≥ 0

are not compatible in this case, so S is empty.

Proof of Proposition 6.3 If (k0, i0) = Eb for some b > 0, using Theorem 5.11 by straightforward computa-
tions we get the claim.
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Conversely, let us assume that the optimal paths k∗
(k0,i0)

, i∗(k0,i0)
are exponential. Then, since Ak∗

(k0,i0)
(t) −

Λ(k0,i0)e
gt = i∗(k0,i0)

(t), we see that the common growth rate of k∗
(k0,i0)

, i∗(k0,i0)
is g. Hence i∗(t) = begt, for some

b ∈ R and k∗
(k0,i0)

= k0e
gt, with k0 > 0. Defining the function λ as in the proof of Proposition C.1, we see then

that λ ≡ 0 over R+. Since λ solves (C.23)-(C.24), we see that (k0, i0) = Eb, and finally that b > 0 since k0 > 0.

Proposition C.1. Let (k0, i0) ∈ S and consider the investment strategy i∗(k0,i0)
defined in Proposition

5.9. Then i∗(k0,i0)
∈ I(k0,i0).

Proof. Let (k0, i0) ∈ S and i∗(k0,i0)
defined as in Proposition 5.9. Consider the function

ı̃∗(s) =
{

i0(s), s ∈ [−d, 0),
i∗(k0,i0)

(s), s ∈ [0,+∞).

Define the function
λ(t)

def
= (̃ı∗)′(t)− gı̃∗(t), t ∈ [−d,+∞).

Differentiating in (5.23) yields for every t ≥ 0

(i∗(k0,i0))
′(t)− gi∗(k0,i0)(t) = A(k∗

(k0,i0)
′(t)− νΛ(k0,i0)ge

gt − gi∗(k0,i0)(t)

= A
(
(k∗

(k0,i0))
′(t)− gk∗

(k0,i0)(t)
)
+ g

(
Ak∗

(k0,i0)(t)− νΛ(k0,i0)e
gt)− gi∗(k0,i0)(t)

= A
(
(k∗

(k0,i0))
′(t)− gk∗

(k0,i0)(t)
)
.

(C.21)

On the other hand we have

(k∗
(k0,i0))

′(t) =
∫ 0

−d

a(r)̃ı∗(t+ r)dr, ∀t ≥ 0.

We then see, by definition of S, that (k∗
(k0,i0)

)′ ∈ W 1,2
loc ([0,+∞);R), and we can differentiate the equality above

getting

(k∗
(k0,i0))

′′(t)− g(k∗
(k0,i0))

′(t) =
∫ 0

−d

a(r)
(
(̃ı∗)′(t+ r)− gı̃∗(t+ r)

)
dr, for a.e. t ≥ 0. (C.22)

Hence, using (C.21) and (C.22) we see that λ ∈ W 1,2
loc ([0,+∞);R) and solves the DDE

λ′(t) = A

∫ 0

−d

a(r)λ(t+ r)dr, for a.e. t ≥ 0. (C.23)

The initial data for such DDE are




λ(s) = i′0(s)− gi0(s), for a.e. s ∈ [−d, 0),

λ(0) = (i∗(k0,i0)
)′(0)− gi∗(k0,i0)

(0)

= A
∫ 0

−d
a(r)i0(r)dr − gΛ(k0,i0) − g(Ak0 − Λ(k0,i0)) = A

(∫ 0

−d
a(r)i0(r)dr − gk0

)
.

(C.24)

By the assumption (k0, i0) ∈ S, the initial data in the DDE above are nonnegative. Since also the constant A
and the function a(·) are nonnegative, we get λ(t) ≥ 0 for a.e. t ≥ 0, i.e. (i∗(k0,i0)

)′(t) ≥ gi∗(k0,i0)
(t) for a.e. t ≥ 0.

Using again the assumption (k0, i0) ∈ S, we also see that i∗(k0,i0)
(0) = Ak0 − Λ(k0,i0) ≥ 0, so we conclude that

i∗(k0,i0)
(t) ≥ 0 for every t ≥ 0 (the passage from a.e. t ≥ 0 to every t ≥ 0 is due to continuity of i∗(k0,i0)

).
Now notice that, by (3.4),

i ∈ Ĩ(k0,i0), i(·) ≥ 0, (k0, i0) ∈ H++ =⇒ i ∈ I(k0,i0),

so the proof is complete.

The following proposition, which follows from the work done in Subsection ??, is crucial to prove our
main result Theorem 5.11.

Proposition C.2. Let (k0, i0) ∈ H.
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1. Let

ĨL
(k0,i0)

def
= {i ∈ L2

loc([0,+∞);R) : keq(k0,i0);i
(t) ≥ 0 ∀t ≥ 0, i(t) ≤ Ak(k0,i0),i(t) for a.e. t ≥ 0},

Then I(k0,i0) ⊂ ĨL
(k0,i0)

.

2. V (k0, i0) ≤ Ṽ (k0, i0).

Proof. 1. Let i ∈ I(k0,i0), assume, by contradiction, that i /∈ ĨL
(k0,i0)

, and set keq(·) := keq
(k0,i0);i

(·) and
k(·) := k(k0,i0),i(·). Since i ∈ I(k0,i0), it is k(·) > 0 everywhere, whereas, since i /∈ Ĩ(k0,i0), there exists t0 such
that keq(t0) < 0. Then, by (??), we can deduce that

lim sup
t→+∞

e−ξtkeq(t) = e−ξt0keq(t0) =: −c0 < 0. (C.25)

Now, we distinguish two cases: I) limt→+∞ e−ξtk(t) = 0; II) limt→+∞ e−ξtk(t) = α > 0.
Case I. From (5.18) and taking into account that i+(·) ≤ Ak(·), we get

e−ξtkeq(t) = e−ξtk(t) +

∫ t+d

t

e−ξudu

∫ t−u

−d

a(s)i(u+ s)ds

= e−ξtk(t) +

∫ t+d

t

e−ξudu

∫ t−u

−d

a(s)[i+(u+ s)− i−(u+ s)]ds

≥ e−ξtk(t) +

∫ t+d

t

e−ξudu

∫ 0

−d

a(s)[i+(u+ s)− i−(u+ s)]ds−
∫ t+d

t

e−ξudu

∫ 0

t−u

a(s)i+(u+ s)ds

≥ e−ξtk(t) +

∫ t+d

t

e−ξuk′(u)du−
∫ t+d

t

e−ξudu

∫ 0

−d

a(s)i+(u+ s)ds

≥ e−ξtk(t) +

∫ t+d

t

e−ξuk′(u)du−
∫ t+d

t

e−ξudu

∫ 0

−d

Aa(s)k(u+ s)ds

= e−ξtk(t) +
[
e−ξuk(u)

]t+d

t
+ ξ

∫ t+d

t

e−ξuk(u)du−
∫ t+d

t

e−ξudu

∫ 0

−d

Aa(s)k(u+ s)ds

= e−ξ(t+d)k(t+ d) + ξ

∫ t+d

t

e−ξuk(u)du−
∫ t+d

t

e−ξudu

∫ 0

−d

Aa(s)k(u+ s)ds

≥ −
∫ t+d

t

e−ξudu

∫ 0

−d

Aa(s)k(u+ s)ds.

Now consider the sequence (tn)n≥1, where tn := dn, and let

t̄n ∈ argmaxu∈[tn−1,tn+1]
k(u), n ≥ 2.

Then, from the inequality above we get

e−ξt̄nkeq(t̄n) ≥ −Ade−ξt̄nk(t̄n). (C.26)

Letting n → ∞, since t̄n → +∞, from (C.26) and (C.25) we get −c0 ≥ 0, absurd.
Case II. Let (βj)j∈N be a sequence in (0, α) such that βj → 0 when j → ∞. For each j ∈ N consider

an associated strategy ij ∈ I(k0,i0) satisfying the claim of Proposition 4.8(2) with β = βj , and call kj(·) :=
k(k0,i0),ij (·), kj

eq(·) := keq
(k0,i0),ij

(·). By construction of ij
29 and considering (??), we see that kj

eq(·) ≤ keq(·),
hence, from (C.25), we have

lim sup
t→+∞

e−ξtkj
eq(t) ≤ e−ξt0keq(t0) =: −c0 < 0, ∀j ∈ N. (C.27)

Now, arguing as above in case I, we end up with

e−ξt̄jnkeq(t̄
j
n) ≥ −Ade−ξt̄jnk(t̄jn), ∀j ∈ N. (C.28)

29. Better is to look at the associated consumption strategy cj .
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Letting n → ∞, from (C.27) and (C.28) we get

−c0 ≥ −Adβj , ∀j ∈ N. (C.29)

Letting j → ∞ in (C.29), we finally get −c0 ≥ 0, absurde.
2. From part 1 of the present proposition we get

V (k0, i0) = sup
i∈I(k0,i0)

J((k0, i0); i) ≤ sup
i∈ĨL

(k0,i0)

J((k0, i0); i). (C.30)

On the other hand, Remark ?? shows that (P̃) is a very standard one, for which we know that the solution with
the strict and the large state constraint (keq(·) > 0 and keq(·) ≥ 0, respectively) has the same solution when
starting from keq(0) = keq

0 > 0, hence

sup
i∈ĨL

(k0,i0)

J((k0, i0); i) = sup
i∈Ĩ(k0,i0)

J((k0, i0); i) = Ṽ (k0, i0).

Combining with (C.30), we get the claim. ¤
Proof of Proposition 7.3. For simplicity of notation we set i(·) = i∗(k0,i0)

(·), k(·) = k∗
(k0,i0)

(·) and Λ =
Λ(k0,i0).

The explicit expression of c is already provided by Theorem 5.11. The expression of k in terms of c, i comes
from definition of c. Let us prove (7.3). From Theorem 5.11 we know that i solves (5.24). The solution to this
DDE is the sum of the solution of the associated linear homogeneous DDE, i.e. without the forcing term, plus a
convolution term (see [25], Chapter 6, pag 170). In our case it means that the solution of (5.24) can be rewritten
as (see Example 1.5, pag. 168, and formula (1.18), pag. 172, in [25]),

i(t) = γ(t)i(0) +

∫ 0

−d

∫ d+r

0

γ(t− s)Aa(r − s)ds i0(r) dr −
∫ t

0

γ(t− s)Λgegsds (C.31)

where γ is defined in series form in (7.1). By the change of variables s = −w, r = z − w in the second term of
(C.31), i can be rewritten as

i(t) = γ(t)i(0) +

∫ 0

−d

∫ w

−d

γ(t+ w)Aa(z)i0(z − w)dz dw −
∫ t

0

γ(t− s)Λgegsds . (C.32)

We observe that (4.5) is a special case (with special initial data) of (4.2). Plugging (7.1) into (C.32), in view of
the linearity of (C.32) with respect to γ, we can analyze the contribution of the real and the complex roots. We
start with αξe

ξt: its contribution to i(t) is

αξe
ξt (Ak0 − Λ) +

∫ 0

−d

αξe
ξ(t+w)

∫ w

−d

Aa(z)i0(z − w)dz dw −
∫ t

0

αξe
ξ(t−s)Λgegsds

= αξe
ξt

(
AΓ(x0)− Λ +

Λg

g − ξ

)
+ αξe

gt

(
− Λg

g − ξ

)

= αξe
ξt

(
ΛA

σ

ρ− ξ(1− σ)

ξ

A
− Λ +

Λ ξ−ρ
σ

ξ−ρ
σ

− ξ

)
+ αξe

gt

(
− Λg

g − ξ

)

= αξe
gt

(
− Λg

g − ξ

)

where the second equality is obtained using (5.22) and (5.17).
Now, to analyze the contribution of the series, we can use the dominated convergence theorem to exchange

the series and the integral in (C.32). Then, for each term pje
λjt, we can develop the integrals as above, obtaining

as contribution the sum of two terms:

pje
λjt

(
AΓj(k0, i0)− Λ +

Λg

g − λj

)
+ pje

gt

(
− Λg

g − λj

)
.

So by definition of aj , bj (7.4), we get (7.3).
Now let us show the second part of the claim, i.e. the existence of the limits for the detrended paths. Let us

set, for simplicity of notation,

kg(t)
def
= k∗

(k0,i0),g(t), ig(t)
def
= i∗(k0,i0),g(t), t ≥ 0,
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Being i(·) real (7.3) can be rewritten as

i(t) = αξe
gt

(
− Λg

g − ξ

)
+

∞∑
j=1

Re
[
pje

λjtaj + pje
gtbj

]

= αξe
gt

(
− Λg

g − ξ

)
+

∞∑
j=1

eµjtRe
[
pje

iνjtaj

]
+ egtRe [pjbj ] .

By Hypothesis 7.1(i), we then have

i(t) = C0e
gt + o(egt), where C0

def
= −Λg

[
αξ

g − ξ
+

∞∑
j=1

Re

(
pj

g − λj

)]
,

where it can be proved that the last series converges.
This proves that there exists a constant il such that limt→+∞ ig(t) = il. Of course by relation Akg(·)− ig(·) ≡ Λ
this implies also that there exists a constant kl such that limt→+∞ kg(t) = kl. We now calculate explicitly such
il and kl using the explicit form of the optimal feedback provided by (5.22)-(5.23). We have

ig(t) = (A− ν)kg(t)− ν

∫ 0

−d

e(ξ−g)rdr

∫ r

−d

a(s)ig(t+ s− r)egsds,

and taking the limit for t → +∞ we obtain

il = (A− ν)kl − νil

∫ 0

−d

e(ξ−g)rdr

∫ r

−d

a(s)egsds,

i.e.

il

(
1 + ν

∫ 0

−d

e(ξ−g)rdr

∫ r

−d

a(s)egsds

)
= (A− ν)kl .

Exchanging tjhe order of integration and using the definitions of ν and ξ, we get

il

(
A

ξ

∫ 0

−d

a(η)egηdη

)
= (A− ν)kl. (C.33)

Moreover from the relation Akg(t)− ig(t) = Λ we have

Akl − il = Λ. (C.34)

Using (C.33) and (C.34) we find the values il and kl and so the claim. ¤

41



References
[1] A. H. Al-Momani, Construction delay: a quantitative analysis, International Journal of Project

Management 18 (2000), 51–59.
[2] S. Altug, Time-to-build and aggregate fluctuations: some new evidence, International Economic

Review 30 (1989), 889–920.
[3] P.K. Asea and P.J Zak, Time-to-build and cycles, Journal of Economic Dynamics and Control 23

(1999), 1155–1175.
[4] M. Bambi, Endogenous growth and time to build: the AK case, Journal of Economic Dynamics and

Control 32 (2008), no. 4, 1015–1040.
[5] M. Bambi, G. Fabbri, and F. Gozzi, Optimal policy and consumption smoothing effects in the time-

to-build AK model, Economic Theory 50 (2012), 635–669.
[6] R. Barro and X. Sala-i Martin, Economic growth, second ed., MIT Press, 2004.
[7] J. Benhabib and A. Rustichini, Vintage capital, investment, and growth, Journal of Economic Theory

55 (1991), 323–339.
[8] A. Del Boca, M. Galeotti, C. P. Himmelberg, and P. Rota, Investment and time to plan and build: A

comparison of structures vs. equipment in a panel of italian firms, Journal of the European Economic
Association (2008), no. 6, 864–889.

[9] R. Boucekkine, D. de la Croix, and O. Licandro, Vintage capital growth theory: Three breakthroughs,
Frontiers of Economic Growth and Development 20 (2011), no. 1, 14–27.

[10] R. Boucekkine, G. Fabbri, and F. Gozzi, Maintenance and investment: complements or substitutes?
a reappraisal, Journal of Economic Dynamics and Control 34 (2010), 2420–2439.

[11] , Egalitarism under population change: The role of growth and lifetime span, AMSE Working
Papers 1211 11 (2012), 44.

[12] R. Boucekkine, M. Germain, and O. Licandro, Replacement echoes in the vintage capital growth
model, Journal of Economic Theory 74 (1997), 333–348.

[13] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext,
Springer, New York, 2011.

[14] L. J. Christiano and R. M. Todd, Time to plan and aggregate fluctuations, Federal Reserve Bank of
Minneapolis 20 (1996), no. Quarterly Review, 14–27.

[15] O. Diekmann, S.A Van Gils, S.M. V. Lunel, and H.O. Walther, Delay equations, Springer, Berlin,
1995.

[16] K. Engelborghs and D. Roose, Numerical computation of stability and detection of hopf bifurcations
of steady state solutions of delay differential equations, Advanced Computational Mathematics 10
(1999), no. 3/4, 271–289.

[17] G. Fabbri and F. Gozzi, Solving optimal growth models with vintage capital: The dynamic program-
ming approach, J. Econ. Theory 143 (2008), no. 1, 331–373.

[18] , Vintage capital in the AK growth model: a dynamic programming approach. extended ver-
sion., preprint. http://ideas.repec.org/p/pra/mprapa/2863.html, 2008.

[19] S. Federico, B. Goldys, and F. Gozzi, HJB equations for the optimal control of differential equations
with delays and state constraints, i: regularity of viscosity solutions, SIAM Journal on Control and
Optimization 48 (2009), no. 8, 4821–5653.

[20] G. Feichtinger, R. F. Hartl, P. M. Kort, and V.M. Veliov, Anticipation effects of technological progress
on capital accumulation: a vintage capital approach, Journal of Economic Theory 126 (2006), 143–
164.

[21] G. Feichtinger, R. F. Hartl, and S. P. Sethi, Dynamic optimal control models in advertising: recent
developments, Management Science 40 (1994), no. 2, 195–226.

42



[22] B. Flyvbjerg, M. K. S. Holm, and S.L. Buhl, How common and how large are cost overruns in
transport infrastructure projects?, Transport Reviews 23 (2003), no. 1, 71–88.

[23] B. Flyvbjerg, M.K.S. Holm, and S.L. Buhl, Cost underestimation in public works projects: Error or
lie?, Journal of the American Planning Association 68 (2002), no. 3, 279–295.

[24] G. Freni, F. Gozzi, and N. Salvadori, Existence of optimal strategies in linear multisector models,
Economic Theory 29 (2006), no. 1, 25–48.

[25] Jack K. Hale and Sjoerd M. Verduyn Lunel, Introduction to functional-differential equations, Applied
Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993.

[26] R. F. Hartl, Optimal dynamic advertising policies for hereditary processes, Journal of Optimization
Theory and Applications 43 (1984), no. 1, 51–72.

[27] R.E. Lucas Jr., Optimal investment policy and the flexible accelerator, International Economic Review
8 (1967), no. 1, 78–85.

[28] M. Kalecki, A macroeconomic theory of the business cycle, Econometrica 3 (1935), 327–344.
[29] P. Koeva, The facts about time-to-build, IMF Working Paper No.00/138 (2000).
[30] P. Koushki, K. Al-Rashid, and N. Kartam, Delays and cost increases in the construction of private

residential projects in kuwait, Construction Management and Economics 23 (2005), 285–294.
[31] F. Kydland and E.C. Prescott, Time to build and aggregate fluctuations, Econometrica 50 (1982),

1345–1370.
[32] Xun Jing Li and Jiong Min Yong, Optimal control theory for infinite-dimensional systems, Systems

& Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 1995.
[33] R. E. Lucas, Jr., Distributed lags and optimal investment policy, in Rational Expectations and

Econometric Practice (1981), 39–54.
[34] N. Mansfield, O. Ugwu, and T. Doran, Causes of delay and cost overruns in nigerian construction

projects, International Journal of Project Management 12 (1994), 254–260.
[35] MIUR, L’università in cifre 2009/10. MIUR - ufficio di statistica, Tech. report, MIUR, 2011.
[36] M. Nerlove and K. J. Arrow, Optimal advertising policy under dynamic conditions, Economica 29

(1962), no. 114, 129–142.
[37] C. Palm, M. Peeters, and G. Pfann, Adjustment costs and time-to-build in factor demand in the u.s.

manufacturing industry, studies in empirical economics, pp. 83-115 ed., Springer, 1994.
[38] J. Park, Gestation lags with variable plans: an empirical study of aggregate investment, Ph.D. thesis,

Carnegie-Mellon University, 1984.
[39] W. Pauwels, Optimal dynamic advertising policies in the presence of continuously distributed time

lags, Journal of Optimization Theory and Applications 22 (1977), no. 1, 79–89.
[40] M. Peeters, Persistence, asymmetries and interrelation in factor demand, Scandinavian Journal of

Economics 100 (1998), no. 4, 747–764.
[41] G. Ramey and V. Ramey, Cross-country evidence on the link between volatility and growth, American

Economic Review 85 (1995), no. 5, 1138–1151.
[42] W. Ruegg, A history of the university in europe, Cambridge University Press, 2011.
[43] R. B. Vinter, On the evolution of the state of linear differential delay equations in m2: Properties of

the generator, IMA Journal of Applied Mathematics 21 (1978), no. 1, 13–23.
[44] R. B. Vinter and R. H. Kwong, The infinite time quadratic control problem for linear system with

state control delays: An evolution equation approch, SIAM J. of Control Optim. 19 (1981), 139–153.
[45] C. Zhou, Time-to-build and investment, Review of Economics and Statistics 82 (2000), no. 2, 273–

282.

43


