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Abstract

We employ weak dominance to analyze both first-price and second-price

auctions under the discrete private-value setting. We provide a condition un-

der which the expected revenue from second-price auction is higher than that

of first-price auction. We also provide implications for large auctions, including

the “virtual” revenue equivalence.

Keywords: Discrete Private-Value Auctions, Revenue Comparison, Weak Dom-

inance.

JEL Classification: C72, D44.

1 Introduction

The comparison of the expected revenues from private-value first-price and second-

price auctions (FPA and SPA henceforth) has been extensively analyzed, including

the revenue equivalence result by Riley and Samuelson (1981) and Myerson (1981).

It also has been shown that once some underlying assumptions are relaxed, not only

the revenue equivalence result does not necessarily hold, but the comparison results
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their comments and suggestions. Financial support from Research and Impact Support Fund of the
Department of Economics and Related Studies at the University of York is gratefully acknowledged.
†Department of Economics and Related Studies, University of York, Heslington, York, YO10

5DD, UK, Email: makoto.shimoji@york.ac.uk
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become ambiguous.1 In addition, the analyses often have been limited to the two-

player case, implying the lack of implications for large auctions.

In this paper, we revisit the revenue comparison of FPA and SPA. There are two

departures from the literature. One is the use of the maximal elimination of weakly

dominated bids – all weakly dominated bids are eliminated – for both FPA and SPA.2

It has been typically the case that while SPA is analyzed by the maximal elimination

of weakly dominated bids, FPA is analyzed by Bayesian Nash equilibrium. It would be

ideal to use the same solution concept to assess the differences purely stemming from

the comparison of two distinct institutions. Another departure is that we follow a

seminal work by Dekel and Wolinsky (2003), which analyze FPA via rationalizability,

and adopt the discrete sets of bids and values.3 One advantage of the adoption of

weak dominance and discrete setting is that we require minimal assumptions. In

particular, our analysis allows asymmetry and an arbitrary number of players.

Our main result provides a condition under which SPA generates a higher expected

revenue compared to FPA.4 The key is the comparison of the winning bids in FPA

and SPA. The result on the winning bids in FPA is due to Battigalli and Siniscalchi

(2003) and Dekel and Wolinsky (2003) who provide upper bounds for bids via weak

dominance. The maximal elimination of weakly dominated bids implies that the

winning bids in SPA is higher than that of FPA. This leads to the comparison of the

highest bid in FPA and the second highest bid in SPA. Our condition concerns the

case where the highest and the second highest bids are the same in SPA, in which

case the price the winner pays in SPA is higher than that of FPA.

We also show that this result is asymptotically robust. Under the assumptions

of (i) independently distributed values and (ii) the same highest value (whose prob-

ability is bounded below by an arbitrary small number) for every player’s support,

the expected revenue from SPA is higher than that of FPA in large auctions.5 In

addition, if the iterative maximal elimination of weakly dominates bids is used with

1For example, Maskin and Riley (2000) and Kirkegaard (2012) analyzed the case of asymmetry.
See Maskin and Riley (2000), Krishna (2010) and Milgrom (2004) for the overview of related studies.

2We use interim weak dominance. That is, we apply weak dominance for the realization of each
value. We hence use “bids” instead of “strategies.” Note also that this does not imply an iterative
procedure. We use the iterative maximal elimination of weakly dominated bids later.

3Several other studies also analyze FPA via rationalizability, including Battigalli and Siniscalchi
(2003), Cho (2005), and Robles and Shimoji (2012).

4See also Kim (2013) who compares the revenues under the binary setting.
5See also Yu (1999) for the equilibrium analysis of the symmetric case.
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the additional assumption of (iii) players’ risk-aversion, the difference in the expected

revenues converges to the smallest monetary unit, which we denote d, as the number

of players increases.6 This implies the virtual revenue equivalence in large auctions

for small d.

For asymmetric auctions, Kirkegaard (2012) identified sufficient conditions under

which FPA generates a higher expected revenue compared to SPA. Note that our

result has a different implication. Both the use of weak dominance for FPA and the

discrete setting lead to this difference. We use an example to demonstrate that the

discretized version of the condition in Kirkegaard (2012) and ours are not mutually

exclusive.

2 Preliminaries

In this paper, we analyze first-price auction (FPA) and second-price auction (SPA).

We utilize the private-value setting. The set of players is N = {1, . . . , n} with n ≥ 2.

Player i’s utility function is ui : R → R which is assumed to be strictly increasing.

Before the auction starts, each player i ∈ N observes her value, vi ∈ Vi = {vi, vi +

d, . . . , v̄i − d, v̄i} where 0 ≤ vi ≤ v̄i and d is an increment. Let v̄ = maxj∈N{v̄j} and

v = maxj∈N{vj}. Let v be a typical element of V =
∏

j∈N Vj. We use the subscript

“−i” to represent player i’s opponents. We assume that each player i ∈ N with

any vi ∈ Vi assigns a strictly positive probability to every v−i ∈ V−i and that the

auctioneer assigns a strictly positive probability to every v ∈ V .

Each player i chooses her bid bi ∈ Bi = {0, d, . . . , b̄i − d, b̄i} where v̄ ≤ b̄i for each

i ∈ N and hence Vi ⊆ Bi. A player wins only if her bid is the highest. If there are

multiple players who chose the highest bid, each one of them has an equal chance of

winning. If player i ∈ N is the winner, the price she pays, s, is such that s = bi for

FPA and s = maxj 6=i{bj} for SPA. Player i’s utility is ui(vi− s) if she wins the object

while it is ui(0) otherwise.

6This depends on the uniqueness result for FPA which is a variant of the uniqueness results for
FPA via rationalizability in Dekel and Wolinsky (2003) and Robles and Shimoji (2012).
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3 Maximal Elimination of Weakly Dominated Bids

In this section, we solve both FPA and SPA via the maximal elimination of weakly

dominated bids.

3.1 Winning Bids in FPA and SPA

In SPA, for each i ∈ N and vi ∈ Vi, bi = vi is the only bid surviving the maximal

elimination of weakly dominated bids (i.e., weakly dominant bid). Given v ∈ V , the

winning bid in SPA is hence maxj∈N{vj}.
For FPA, Battigalli and Siniscalchi (2003, p.41) and Dekel and Wolinsky (2003,

Subsection 4.3) show that for each i ∈ N and vi ∈ Vi, the highest bid which survives

the maximal elimination of weakly dominated bids is strictly lower than vi.
7

Lemma 1 (Battigalli and Siniscalchi (2003) and Dekel and Wolinsky (2003))

For each i ∈ N and vi ∈ Vi, the highest bid which survives the maximal elimination

of weakly dominated bids in FPA is max{vi − d, 0}.

We then have the following result.

Corollary 1 Given v ∈ V , the highest possible winning bid in FPA is max{maxj∈N{vj−
d}, 0}.

Note that if v > 0, the expression is simply maxj∈N{vj − d}. Corollary 1 leads to the

following result.

Lemma 2 Given v ∈ V , the winning bid in SPA is weakly higher than the winning

bid in FPA. If maxj∈N{vj} > 0, the winning bid in SPA is strictly higher than the

winning bid in FPA.

If v > 0, the latter is indeed the case.

7Battigalli and Siniscalchi (2003) and Dekel and Wolinsky (2003) assume Vi = Vj for every
i, j ∈ N (i.e., identical support) with v = 0 and the former uses the continuous bid and value spaces.
Their insight remains valid even with the heterogeneous supports.
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3.2 Revenue Comparison

Lemma 2 implies that if two highest values are the same and strictly higher than 0, the

revenue of SPA is strictly higher than that of FPA. Let P represent the auctioneer’s

belief over players’ values. The following result shows a condition under which this

possibility of “ties” outweighs other possibilities, leading to our main result.

Proposition 1 The expected revenue from SPA is strictly higher than that of FPA if

d
∑

v′∈{max{v,d},...,v̄}

P

(
∃i, j ∈ N such that vi = vj = v′

v′ ≥ vk ∀k ∈ N ∈ {i, j}

)

>
∑

v′∈{max{v,2d},...,v̄}

∑
v′′∈{0,...,v′−2d}

[(v′ − d)− v′′]P

(
∃i, j ∈ N such that vi = v′

v′ − 2d ≥ vj = v′′ ≥ vk ∀k ∈ N\{i, j}

)
.

The expression on the left-hand side concerns the cases in which the first and second

highest values are equal, implying that the revenue from SPA is higher than that of

FPA. The expression on the right-hand side concerns the cases where the difference

between the first and second highest values are at least 2d, implying that the revenue

from FPA can be higher than that of SPA.8 Given that values are linear in d, note

also that the expressions on both sides are linear in d, implying that the size of d does

not matter for the result.

To visualize the implication of Proposition 1, Figure 1 plots the combination of

two order statistics, the highest and the second highest values, v′ and v′′ respectively.

A : v′ = v′′ corresponding to the left-hand side expression of Proposition 1. In this

case, (i) SPA leads to a higher revenue than FPA, and (ii) the difference in the

revenues is d.

B : v′ = v′′+d which does not appear in the expression. In this case, FPA and SPA

generates the same revenue.

C : v′ − v′′ ≥ 2d corresponding to the expression on the right-hand side. They

are the cases where (i) FPA generates a higher revenue than SPA and (ii) the

difference of revenues is (v′ − d)− v′′ ≥ d.

8Since we consider the best possible scenario for FPA, even if the condition in Proposition 1 does
not hold, this does not necessarily mean that FPA generates a higher expected return than SPA
does.
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Figure 1: Visualization of Proposition 1

The expression in Proposition 1 says that if the realizations in A are likely, SPA

generates a higher expected revenue than FPA.

3.3 Large Auctions

We now provide a condition under which Proposition 1 holds for sufficiently large n.

Given n, let

• N̄ = {i ∈ N | v̄ ∈ Vi} and n̄ = |N̄ |,

• qn(ñ) be the probability that n̄ = ñ where ñ ∈ {0, . . . , n̄}, and

• ρi(vi) be the probability that player i’s value is vi ∈ Vi.
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We need the following assumptions:

Assumption 1 Player’s values are independently distributed.

Assumption 2 There exists ρ ∈ (0, 1) such that ρi(v̄) ≥ ρ for each i ∈ N̄ .

The expression on the left-hand side in Proposition 1 contains the probabilities

that the highest and second highest values are the same. The following result identifies

a condition under which the expression in Proposition 1 holds as n→∞.9

Proposition 2 Given Assumptions 1 and 2, if

lim
n→∞

{
n∑
n̄=2

qn(n̄)
[
1− n̄ρ(1− ρ)n̄−1 − (1− ρ)n̄

]}
= 1,

Proposition 1 holds for sufficiently large n.

The condition implies that as n becomes large, there are a sufficient number of players

who has v̄ in the support and the chance that there is only one player whose value is

v̄ diminishes. Note that if v̄i = v̄ for each i ∈ N , n̄ = n and hence qn(n) = 1.

Corollary 2 Given Assumptions 1 and 2, if v̄i = v̄ for each i ∈ N , Proposition 1

holds for sufficiently large n.

As an example, consider the case of Vi = {0, . . . , v̄} for each i ∈ N and each

player’s value is independently and uniformly distributed. Let |V | = m + 1 (i.e.,

v̄ = md) and hence the probability attached to each value is 1
m+1

. The expression in

Proposition 1 becomes

d

m+1∑
i=2

(
n

2

)(
1

m+ 1

)2(
i

m+ 1

)n−2

>

m+1∑
i=3

i−2∑
j=1

[(i− 1)− j]d

(
n

1

)(
1

m+ 1

)(
n− 1

1

)(
1

m+ 1

)(
j

m+ 1

)n−2

9The proof in Yu (1999, Proposition 13) for the symmetric case carries the same observation; i.e.,
the probability that the first and second highest values coincide converges to one as n→∞.
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which can be simplified as:

m+1∑
i=2

in−2 − 2
m+1∑
i=3

i−2∑
j=1

(i− j − 1)jn−2 > 0. (1)

For large m, it is sufficient for the number of players, n, to be approximately 88.2%

of m to maintain (1).

4 Iterative Maximal Elimination of Weakly Dom-

inated Bids

The result for FPA is not as sharp as that of SPA. This is because we have focused

on (one round of) the maximal elimination of weakly dominated bids and strictly

increasing utility functions. If we use the iterative maximal elimination of weakly

dominated bids and weakly concave (still strictly increasing) utility functions, we

obtain a condition under which the uniqueness result is achieved for FPA. This is a

variant of the results from Dekel and Wolinsky (2003) and Robles and Shimoji (2012)

which use rationalizability. This result leads to the virtual revenue equivalence.

4.1 Uniqueness in FPA

In this subsection, we show a condition under which each player i ∈ N with vi ∈ Vi
has a unique bid surviving the iterative maximal elimination of weakly dominated

bids. Let

• pvi(v−i) corresponds to player i’s belief over the opponents’ values when her

value is vi ∈ Vi, and

• player i′ ∈ N be such that v̄i′ = v̄ and v̂ = maxj 6=i′{v̄j} (i.e., the second highest

upper bound).

We need the following assumption:

Assumption 3 For each i ∈ N , ui is weakly concave.

We then have the following result:
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Figure 2: Uniqueness in FPA

Proposition 3 Suppose Assumption 3 holds. For each α ∈ {2, . . . , min{v̄−d,v̂}
d

}, sup-

pose that the following expression holds for each i ∈ N with vi ≥ (α + 1)d:

n−1∑
k=0

pvi (|# of j’s such that vj ≥ αd| = k)
1

k + 1
≤ vi − αd
vi − (α− 1)d

.

Then,

• if v̄ − v̂ ≤ d, the only bid which survives iterative weak dominance is bi =

max{vi − d, 0} for each i ∈ N and vi ∈ Vi, and

• if v̄ − v̂ ≥ 2d, the only bid which survives iterative weak dominance is

1. bi = max{vi − d, 0} for each i with vi ≤ v̂ + d and

2. bi′ = v̂ for player i′ with vi′ ≥ v̂ + 2d.

Note that the right-hand side expression in the condition is at least 1
2
. The result is

visualized in Figure 2.

We already know that for vi ∈ {0, d}, bi = 0 is the unique weakly dominant bid.

With the assumption that ui is weakly concave, we can also show that for any vi ≥ 2d,

bi = 0 is eliminated. Consider vi ≥ 3d and compare bi = d and bi = 2d:
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1. bi = 2d may win even if bi = d does not win (but not vice versa). In particular,

if the opponents’ highest bid is 2d, the expected utility from bi = 2d is strictly

positive while it is zero for bi = d.

2. If bi = d wins, the opponents’ highest bid is either d or 0. This is the only case

where the expected utility from bi = 2d may be lower than that of bi = d. In

this particular scenario, given the argument above,

• bj = d for every j ∈ N with vj ≥ 2d, and

• bj = 0 (only surviving bid) for every j ∈ N with vj ≤ d.

The corresponding utility is ui(vi − d). The left-hand side expression in the

condition corresponds to the probability that bi = d wins. Note that bi = 2d

wins in this case and the corresponding utility is ui(vi − 2d).

The condition in Proposition 3 rather states that the expected return from bi = 2d is

higher than that of bi = d if the opponents’ highest bid is either d or 0. This condition

is sufficient as long as ui is weakly concave (Jensen’s inequality). The same argument

is applied repeatedly to obtain the result.

4.2 Large Auctions

Consider again the case of large auctions with independent distributions from the

previous section. Remember the definition of v̂ in the precious subsection: the second

highest upper bound. Given n, let

• N̂ = {i ∈ N | v̂ ∈ Vi} and n̂ = |N̂ |,

• rvi,n(ñ) be the probability from the view point of player i with vi ∈ Vi that

n̂ = ñ where ñ ∈ {0, . . . , n̂− 1} if i ∈ N̂ or ñ ∈ {0, . . . , n̂} if i 6∈ N̂ , and

• τi(vi ≥ ṽ) be the probability that player i’s value vi ∈ Vi is weakly higher than

ṽ.

Instead of Assumption 2, we require the following:

Assumption 4 There exists τ ∈ (0, 1) such that τi(vi ≥ v̂) ≥ τ for each i ∈ N̂ .

We then have the following result.
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Proposition 4 Given Assumptions 1, 3 and 4, if

lim
n→∞

{
n−1∑
n̂=1

rvi,n(n̂)
1− (1− τ)n̂

n̂τ

}
≤ 1

2
,

for each i ∈ N with vi ≥ 3d, the result of Proposition 3 holds for sufficiently large n.

For example, the condition holds if rvi,n(n̂) is lower for smaller n̂’s. Again, if v̄i = v̄

for each i ∈ N (i.e., rvi,n(n− 1) = 1), the result immediately holds.

Corollary 3 Given Assumptions 1, 3 and 4, if v̄i = v̄ for each i ∈ N , Proposition 3

holds for sufficiently large n.

As an example, consider again the case where Vi = {0, . . . ,md} for each i ∈ N and

the values are independently and uniformly distributed. Given α ∈ {2, . . . ,m − 1},
the left-hand side expression in Proposition 3 becomes

n−1∑
k=0

(
n− 1

k

)(
m+ 1− α
m+ 1

)k (
α

m+ 1

)(n−1)−k (
1

k + 1

)
=

m+ 1

(m+ 1− α)n

[
1−

(
α

m+ 1

)n]
.

Remember that the right-hand side expression in Proposition 3 is at least 1
2
. Thus,

for any α ∈ {2, . . . ,m− 1}, n ≥ m+ 1 suffices.

Given Corollaries 2 and 3 above, we have the following result.10

Proposition 5 Given Assumptions 1, 2, 3 and 4, if v̄i = v̄ for each i ∈ N , the

difference of the expected revenues from FPA and SPA via iterative weak dominance

converges to d as n→∞.

This can be seen as the virtual revenue equivalence result for small d in large auctions.

5 Discussion

In this section, we discuss (i) the order dependence of weak dominance, (ii) the upper

bound identified in Lemma 1 and (iii) the comparison of our result to Kirkegaard

(2012).

10Proposition 4 itself does not state that the expected revenue from FPA converges to v̄ − d. In
addition, since v̄i = v̄ for each i ∈ N , Assumptions 2 and 4 essentially have the same implication.
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5.1 Order Dependence

The emphasis on “maximal” elimination is due to the possibility of the order depen-

dence of weak dominance.11 That is, different orders of elimination could lead to

different predictions. As an example, consider the two-player SPA where the sup-

ports of their values, Vi = {vi, . . . , v̄i} for each i ∈ {1, 2}, is such that v̄2 < v1. First,

eliminate all bids except b1 = v1 for player 1 with v1 ∈ V1 at the first step. Then, for

player 2, eliminate every b2 ≥ v1 at the second step. No further elimination occurs.

In this case, the second highest bid can be higher or lower than v2, and the price the

winner (player 1) pays cannot be uniquely identified for any v2 ∈ V2. Note that this

applies not only to our result, but also to previous studies which use weak dominance

for SPA.

5.2 Upper Bound in FPA

Lemma 1 identifies an upper bound of bid for each value in FPA. This becomes tight

once we use the iterative maximal elimination of weakly dominated bids under the

condition in Proposition 3. In this subsection, we show a simple example where the

bound can even be lower in FPA. This observation is due to Battigalli and Siniscalchi

(2003) which use rationalizability and the continuous bid and value spaces.

Consider two-player independent private-value FPA with d = 1. The set of values

for player i = 1, 2 is Vi = {0, 1, 2, 3} and let Bi = Vi. The chance of each vi is

ρ(0) = α, ρ(1) = β, ρ(2) = γ, and ρ(3) = 1 − α − β − γ where for each vi ∈ Vi,

ρ(vi) ∈ (0, 1). Lemma 1 says that the set of weakly undominated bids for each vi ∈ Vi
at the first step is (i) {0} for vi ∈ {0, 1}, (ii) {0, 1} for vi = 2 and (iii) {0, 1, 2} for

vi = 3. Furthermore, assuming that ui is weakly concave for each i ∈ N , bi = 0

is also weakly dominated for each i ∈ {1, 2} and vi ∈ {2, 3} at the first step: For

vi ∈ {2, 3}, the expected utility from bi = 0 is either (i) 1
2
(ui(vi) + ui(0)) if bj = 0 or

(ii) ui(0) otherwise. The expected utility from bi = 1 is (i) ui(vi − 1) if bj = 0, (ii)
1
2
(ui(vi − 1) + ui(0)) if bj = 1 or (iii) ui(0) otherwise. Since

ui(vi − 1) ≥ ui(
vi
2

) ≥ 1
2
(ui(vi) + ui(0))

where the second inequality comes from Jensen’s inequality, bi = 1 weakly dominates

11See for example Marx and Swinkels (1997).
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bi = 0 for each i ∈ {1, 2} and vi ∈ {2, 3}. For each i ∈ {1, 2}, at the first step

of the iterative maximal elimination of weakly dominated bids, we have (i) {0} for

vi ∈ {0, 1}, (ii) {1} for vi = 2, and (iii) {1, 2} for vi = 3.

Given the result from the first step, we consider vi = 3 at the second step. The

expected utility from bi = 1 is

(α + β)ui(2) + γ

[
1

2
(ui(2) + ui(0))

]
+(1− α− β − γ)

[{
1
2
(ui(2) + ui(0))

ui(0)

}
if bj(3) =

{
1

2

}]
(2)

while the expected utility from bi = 2 is

(α + β + γ)ui(1) + (1− α− β − γ)

[{
ui(1)

1
2
(ui(1) + ui(0))

}
if bj(3) =

{
1

2

}]
. (3)

Then,

(2)− (3)

= (α + β)(ui(2)− ui(1)) + γ

{
1

2
(ui(2) + ui(0))− ui(1)

}
(1− α− β − γ)

[{
1
2
(ui(2) + ui(0))− ui(1)

ui(0)− 1
2
(ui(1) + ui(0))

}
if bj(3) =

{
1

2

}]
.

Note that if α+β is close to one, the expression above is strictly positive independent

of bj(3). In this case, bi = 1 strictly dominates bi = 2 for vi = 3.

5.3 On Kirkegaard (2012)

Kirkegaard (2012) identifies two conditions under which FPA leads to a higher ex-

pected revenue than SPA. There are several reasons why our result is different from

that of Kirkegaard (2012). One reason is that values and bids are discrete in our

setting while they are continuous in Kirkegaard (2012) – a tie is not possible in

Kirkegaard (2012). Another reason is that while our focus is on weak dominance,

Kirkegaard (2012) uses Bayesian Nash Equilibrium for FPA. We now demonstrate

that even if (a discretized version of) a condition in Kirkegaard (2012) is satisfied in
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our discrete setting, it is possible that our condition still hold.12

Kirkegaard (2012) considers the case of (i) two players and (ii) the bid and value

spaces are continuous. Take V ′i as a closed interval for i ∈ {1, 2}, i.e,. V ′i = [vi, v̄i].

Kirkegaard (2012) assumes that the supports for values are such that 0 ≤ v2 ≤ v1

and v̄2 < v̄1 (player 1 is strong and player 2 is weak). Let Fi(v) be the pdf for player

i’s value. Kirkegaard (2012) assumes

f1(v)

F1(v)
≥ f2(v)

F2(v)
and

f1(v)

1− F1(v)
≤ f2(v)

1− F2(v)
for any v ∈ V ′1 ∩ V ′2 . (4)

That is, F1 dominates F2 in terms of not only the reverse hazard rate but also the

hazard rate. Given v2, let r(v2) = F−1
1 (F2(v2)) (or F1(r(v2)) = F2(v2)). The sufficient

condition in Kirkegaard (2012, Expression (9)) is

f2(v2) ≥ f1(v1) for all v2 ∈ V ′2 and v1 ∈ [v2, r(v2)]. (5)

Note that in the discrete setting, there does not exist the corresponding r(v2) for each

v2 ∈ V2 generically. Thus, we instead require (5) to hold for every v1 ∈ {v2, . . . , v̄1}.
We also look at the discretized version of (4).

We now turn to an example in the discrete setting. Consider the following example:

V1 = {v2, v2 + d, . . . , v̄2︸ ︷︷ ︸
κ

, v̄2 + d} and

V2 = {v2, v2 + d, . . . , v̄2︸ ︷︷ ︸
κ

}

where (i) v2 > 0 and (ii) κ is a positive integer. Note that v̄1 = v̄2 + d and hence

V2 ⊂ V1. The players’ values are independently distributed. Let

• ρ1(v1) = ε for each v1 ∈ V1\{v2} and ρ2(v2) = ε for each v ∈ V2\{v2}, and

• ρ1(v2) = 1− (κ+ 1)ε and ρ2(v2) = 1− κε.

We also assume that ε is sufficiently small.

The first inequality in (4) holds with the equality for v2 and with the strict inequal-

ity for every v ∈ V2\{v2}. The second inequality in (4) holds with strict inequality

for every v ∈ V2. The inequality in (5) holds with the strict inequality for v2 and

12Kirkegaard (2012) has two sufficient conditions. We only focus on one of them.
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with the equality for every v1 ∈ V1\{v2} and v2 ∈ V2\{v2}. Consider the expression

in Proposition 1. For sufficiently small ε, the sum of probabilities on the left-hand

side is close to one, implying that the inequality is satisfied.13
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A Proof of Proposition 1

The highest possible revenue in FPA is max{maxi∈N{vi−d}, 0}. The revenue in SPA

is the second highest value. Note that if there are multiple highest values which are

strictly higher than 0, the revenue from SPA is strictly higher than that of FPA.

Let v′ be the highest value and v′′ be the second highest value. The expected

revenue from SPA (left-hand side) is strictly higher than that of FPA (right-hand

side) if

∑
v′∈{max{v,d},...,v̄}

∑
v′′∈{0,...,v′}

v′′P

(
∃i, j ∈ N such that

v′ = vi ≥ v′′ = vj ≥ vk ∀k ∈ N\{i, j}

)

>
∑

v′∈{max{v,d},...,v̄}

(v′ − d)P

(
∃i ∈ N such that

vi = v′ ≥ vj ∀j ∈ N\{i}

)

⇔
∑

v′∈{max{v,d},...,v̄}

v′P

(
∃i, j ∈ N such that vi = vj = v′

v′ ≥ vk ∀k ∈ N\{i, j}

)

+
∑

v′∈{max{v,d},...,v̄}

(v′ − d)P

(
∃i, j ∈ N such that vi = v′

vj = v′ − d ≥ vk ∀k ∈ N\{i, j}

)

+
∑

v′∈{max{v,2d},...,v̄}

∑
v′′∈{0,...,v′−2d}

v′′P

(
∃i, j ∈ N such that vi = v′

v′ − 2d ≥ vj = v′′ ≥ vk ∀k ∈ N\{i, j}

)

>
∑

v′∈{max{v,d},...,v̄}

(v′ − d)P

(
∃i, j ∈ N such that vi = vj = v′

v′ ≥ vk ∀k ∈ N\{i, j}

)

+
∑

v′∈{max{v,d},...,v̄}

(v′ − d)P

(
∃i, j ∈ N such that vi = v′

vj = v′ − d ≥ vk ∀k ∈ N\{i, j}

)

+
∑

v′∈{max{v,2d},...,v̄}

(v′ − d)
∑

v′′∈{0,...,v′−2d}

P

(
∃i, j ∈ N such that vi = v′

v′ − 2d ≥ vj = v′′ ≥ vk ∀k ∈ N\{i, j}

)

⇔ d
∑

v′∈{max{v,d},...,v̄}

P

(
∃i, j ∈ N such that vi = vj = v′

v′ ≥ vk ∀k ∈ N\{i, j}

)

>
∑

v′∈{max{v,2d},...,v̄}

∑
v′′∈{0,...,v′−2d}

[(v′ − d)− v′′]P

(
∃i, j ∈ N such that vi = v′

v′ − 2d ≥ vj = v′′ ≥ vk ∀k ∈ N\{i, j}

)
.
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B Proof for Proposition 2

Given n and n̄ where 2 ≤ n̄ ≤ n, take the probability that the second highest value

is v̄:

n̄∑
η=2

∑
i1∈N̄

∑
i2>i1

· · ·
∑

iη>iη−1

ρi1(v̄)ρi2(v̄) · · · ρiη(v̄)
∏

k 6=i1,...,iη

(1− ρk(v̄))

 (6)

where {i1, . . . , iη} ⊆ N̄ . The lower bound of the expression above is

n̄∑
η=2

(
n̄

η

)
ρη(1− ρ)n̄−η

=
n̄∑
η=0

(
n̄

η

)
ρη(1− ρ)n̄−η − n̄ρ(1− ρ)n̄−1 − (1− ρ)n̄

= 1− n̄ρ(1− ρ)n̄−1 − (1− ρ)n̄.

Note that the last two expression converge to zero as n̄→∞ (Corollary 2).

The lower bound for the left-hand expression in Proposition 1 (without d) is hence

n∑
n̄=2

qn(n̄)
[
1− n̄ρ(1− ρ)n̄−1 − (1− ρ)n̄

]
.

Hence, if

lim
n→∞

{
n∑
n̄=2

qn(n̄)
[
1− n̄ρ(1− ρ)n̄−1 − (1− ρ)n̄

]}
= 1,

the expression on the left-hand side of Proposition 1 converges to d while the one on

the right-hand side converges to zero.

C Revenue Comparison: Uniform Example

Consider again (1):

m+1∑
i=2

in−2 − 2
m+1∑
i=3

i−2∑
j=1

(i− j − 1)jn−2 > 0,
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or

2n−2 +
m+1∑
i=3

[
in−2 − 2

i−2∑
j=1

(i− j − 1)jn−2

]
> 0.

We compare the terms in the parentheses for each i ∈ {3, . . . ,m+ 1}.
Let

A(i, n) = in−2 − 2
i−2∑
j=1

(i− j − 1)jn−2

= in−2 − 2
i−2∑
j=1

jn−2 − 2
i−2∑
j=1

((i− 1)− j − 1)jn−2

= in−2 − 2
i−2∑
j=1

jn−2 − 2
i−3∑
j=1

((i− 1)− j − 1)jn−2

= in−2 − 2
i−2∑
j=1

jn−2 − (i− 1)n−2 +

[
(i− 1)n−2 − 2

i−3∑
j=1

((i− 1)− j − 1)jn−2

]

= in−2 − 2
i−2∑
j=1

jn−2 − (i− 1)n−2 + A(i− 1, n), (7)

and

D(i, n) = A(i, n)− A(i− 1, n)

= in−2 − 2
i−2∑
j=1

jn−2 − (i− 1)n−2

= in−2 − 2
i−2∑
j=1

jn−2 − (i− 1)n−2 −

[
(i− 1)n−2 − 2

i−3∑
j=1

jn−2 − (i− 2)n−2

]

+

[
(i− 1)n−2 − 2

i−3∑
j=1

jn−2 − (i− 2)n−2

]
= in−2 − (i− 2)n−2 − 2(i− 1)n−2 +D(i− 1, n). (8)

For every i ≥ 3, (i) A(i, n) is strictly increasing in n if A(i, n) ≥ 0 and (ii) D(i, n)
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is strictly increasing in n if D(i, n) ≥ 0:

∂A(i, n)

∂n
= in−2 ln(i)− 2

i−2∑
j=1

(i− j − 1)jn−2 ln(j) > ln(i)A(i, n)

∂D(i, n)

∂n
= in−2 ln(i)− 2

i−2∑
j=1

jn−2 ln(j)− (i− 1)n−2 ln(i− 1) > ln(i)D(i, n).

Hence, for every i ≥ 3, if A(i, n′) ≥ 0 for some n′, A(i, n) > 0 for any n > n′.

Likewise, if D(i, n′′) ≥ 0 for some n′′, D(i, n) > 0 for any n > n′′.

We use induction to show that our claim holds. For the initial step, note that

A(3, n) = 3n−2 − (2× 1n−2) > 0

D(3, n) = 3n−2 − (2× 1n−2)− 2n−2 > 0

for any n ≥ 4.

Suppose now that there exist ĩ ≥ 3 and ñ ≥ 4 such that for each i ∈ {3, . . . , ĩ},
A(i, ñ) > 0 and D(i, ñ) > 0 (this is the case for ĩ = 3 and ñ = 4). If A(̃i+ 1, ñ) > 0,

choosing n = ñ suffices. Suppose instead A(̃i+ 1, ñ) ≤ 0. Given that A(̃i, ñ) > 0 and

D(̃i, ñ) > 0, it suffices to find n∗ > ñ such that,

(̃i+ 1)n
∗−2 − (̃i− 1)n

∗−2 − 2̃in
∗−2 ≥ 0.

This is because A(̃i, n∗) > 0 and D(̃i, n∗) > 0. The inequality above implies D(̃i +

1, n∗) > 0 and hence A(̃i+ 1.n∗) > 0.

Note that

in−2 − (i− 2)n−2 − 2(i− 1)n−2

= (i− 1)n−2

{(
i

i− 1

)n−2

−
(
i− 2

i− 1

)n−2

− 2

}

= (i− 1)n−2


[(

1 +
1

i− 1

)i−1
]n−2
i−1

−

[(
1− 1

i− 1

)i−1
]n−2
i−1

− 2


where (i) the expression in the parentheses is strictly increasing with respect to the

power (i.e., n−2
i−1

) and (ii) we have limi→∞(1+ 1
i−1

)i−1 = e and limi→∞(1− 1
i−1

)i−1 = e−1.
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Let ln(y) = n−2
i−1

and we have

eln(y) − 1

eln(y)
≥ 2 ⇔ y2 − 2y − 1 ≥ 0

where (i) y = 1 +
√

2 if the expression is zero and (ii) the expression is strictly

increasing if y > 1. Note that ln (1 +
√

2) ≈ 0.8813.14

D Proof for Proposition 3

First Step:

• For each i ∈ N and vi ∈ Vi\{0}, every bi ≥ vi is weakly dominated. None of

them leads to a utility strictly higher than ui(0) while bi < vi secures ui(0) or

higher (e.g., the opponents’ highest bid is equal to bi).

• For each i ∈ N with vi = 0, every bi ≥ d is weakly dominated. Every bi ≥ d

leads to a utility of ui(0) or less (e.g., every opponent bids zero) and bi = 0

guarantees ui(0).

• For each i ∈ N with vi ≥ 2d, bi = d weakly dominates bi = 0. The only way

bi = 0 wins is that every opponent bids zero as well. In this case, the expected

utility with bi = 0 is 1
n
ui(vi) + n−1

n
ui(0) while it is ui(vi − d) with bi = d. Since

n ≥ 2, we have

ui(vi − d) = ui

(
vi−d
vi
vi

)
≥
(
vi−d
vi

)
ui(vi) +

(
d
vi

)
ui(0) ≥

(
1
n

)
ui(vi) +

(
n−1
n

)
ui(0)

for any weakly concave ui.
15 For the other possibilities, bi = d leads to a utility

weakly higher than that of bi = 0 (i.e., ui(0)). In particular, if the opponents’

highest bid is d, the inequality is strict.

The sets of bids surviving the maximal elimination of weakly dominated bids are (i)

{max{vi−d, 0}} for vi ∈ {0, d, 2d} – note that they are unique – and (ii) {d, . . . , vi−d}
14Remember that our result ignores the term 2n−2 in the first expression. The actual ratio hence

can be lower.
15Note that this does not necessarily hold without the concavity of ui. The first inequality uses

Jensen’s inequality. The second inequality holds since vi−d
vi
≥ 1

2 ≥
1
n .
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for vi > 2d. We need to check that for every vi > 2d, no other bid is eliminated. For

each vi > 2d, take any bi, b̌i ∈ {d, . . . , vi − d} where b̌i < bi.

1. b̌i does not weakly dominate bi; if the opponents’ highest bid is bi, the expected

utility from bi is strictly higher than ui(0) while b̌i only leads to ui(0).

2. bi does not weakly dominate b̌i; if the opponents bid zero, the utility from b̌i is

strictly higher than that of bi.

This completes the first step.

As in the main text, let i′ ∈ N be such that v̄i′ = v̄ and v̂ = maxj 6=i′{v̄j}. The next

part is included if v̄ − v̂ ≥ 2d.

Second Step: For player i′ ∈ N with vi′ ≥ v̂ + 2d, every bi′ ≥ v̂ + d is weakly

dominated since the highest possible bid of the opponents is v̂ − d.

In effect, we treat player i′ with vi′ ≥ v̂ + 2d as v̂ + d from the third step. The

repetition of the next step leads to the result.

α-th Step (α ≥ 2): Suppose that there exists α ≥ 2 such that for each i ∈ N , the

set of remaining bids are

• {max{vi − d, 0}} for vi ≤ αd, and

• {(α− 1)d, . . . , vi − d} for vi ≥ (α + 1)d.16

Take player i ∈ N with vi ≥ (α + 1)d. We compare bi = (α − 1)d and bi = αd.

Note that bi = (α − 1)d wins only if bj ≤ (α − 1)d for each j ∈ N . In this scenario,

the expected utility from bi = (α− 1)d is

n−1∑
k=0

pvi(|# of j’s such that vj ≥ αd| = k)

[(
1

k + 1

)
ui(vi − (α− 1)d) +

(
k

k + 1

)
ui(0)

]
(9)

16Note that the statement holds for α = 2. In addition, note that the latter becomes {(α −
1)d, . . . ,min{vi − d, v̂}} from the third step.

22



while the utility from bi = αd is ui(vi − αd).17 Jensen’s inequality implies

(9)

≤
n−1∑
k=0

pvi(|# of j’s such that vj ≥ αd| = k)ui

(
vi − (α− 1)d

k + 1

)

≤ ui

(
n−1∑
k=0

pvi(|# of j’s such that vj ≥ αd| = k)
vi − (α− 1)d

k + 1

)
.

Since ui is strictly increasing, the inequality below is equivalent to ui(vi − αd) ≥ (9):

vi − αd ≥
n−1∑
k=0

pvi(|# of j’s such that vj ≥ αd| = k)
vi − (α− 1)d

k + 1

or

vi − αd
vi − (α− 1)d

≥
n−1∑
k=0

pvi(|# of j’s such that vj ≥ αd| = k)
1

k + 1
.

For the other profiles of the opponents’ bids, bi = αd leads to a utility weakly

higher than that of bi = (α − 1)d. In particular, if the opponents’ highest bid is αd,

the inequality is strict. Hence, under the condition above, bi = αd weakly dominates

bi = (α− 1)d for each i ∈ N with vi ≥ (α + 1)d.

Then, the remanning bids are

• {max{vi − d, 0}} for vi ≤ (α + 1)d, and

• {αd, . . . ,min{vi − d, v̂}} for vi ≥ (α + 2)d.

We need to check that for each i ∈ N with vi ≥ (α+ 2)d, no other bid is eliminated.

For each vi ≥ (α + 2)d, take any bi, b̌i ∈ {αd, . . . ,min{vi − d, v̂}} where b̌i < bi.

1. b̌i does not weakly dominate bi; if the opponents’ highest bid is bi, the expected

utility from bi is strictly higher than ui(0) while b̌i only leads to ui(0).

2. bi does not weakly dominate b̌i; if the opponent’s highest bid is (α− 1)d or less,

the utility from b̌i is strictly higher than that of bi.

This completes the α-th step. The repetition of the same argument leads to our claim.

17Note that any player j ∈ N\{i} with vj ≤ (α− 1)d never wins in this scenario.
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E Proof of Proposition 4

Given N̂ , when players’ values are independently distributed, the upper bound for

the left-hand side of the condition in Proposition 3 (i.e., the chance that bi = (α−1)d

wins) is

n̂−1∑
k=0

(
n̂− 1

k

)
τ k(1− τ)(n̂−1)−k

(
1

k + 1

)

=
n̂−1∑
k=0

(n̂− 1)!

(k + 1)!((n̂− 1)− k)!
τ k(1− τ)(n̂−1)−k

=
1

n̂τ

n̂−1∑
k=0

n̂!

(k + 1)!(n̂− (k + 1))!
τ k+1(1− τ)n̂−(k+1)

=
1

n̂τ

n̂∑
l=1

n̂!

l!(n̂− l)!
τ l(1− τ)n̂−l

=
1− (1− τ)n̂

n̂τ
.

Note that there are at least two players who can have the values weakly higher than

v̂. Hence, given the definition of v̂, n̂ ≥ 1.18 Therefore, if

lim
n→∞

{
n−1∑
n̂=1

rvi,n(n̂)
1− (1− τ)n̂

n̂τ

}
≤ 1

2

for each i ∈ N with vi ≥ 3d, the condition in Proposition 3 holds. Remember that the

expression on the right-hand expression in the condition of Proposition 3 is weakly

higher than 1
2
.

18This takes into account the possibility that player i can be one of them.
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F Virtual Revenue Equivalence: Uniform Exam-

ple

Given α, we have

n−1∑
k=0

(
n− 1

k

)(
m+ 1− α
m+ 1

)k (
α

m+ 1

)(n−1)−k (
1

k + 1

)

=

(
1

m+ 1

)n−1 n−1∑
k=0

(n− 1)!

k![(n− 1)− k]!
(m+ 1− α)kα(n−1)−k

(
1

k + 1

)

=

(
1

m+ 1

)n−1 n−1∑
k=0

(n− 1)!

(k + 1)!(n− (k + 1))!
(m+ 1− α)kα(n−1)−k

=
1

(m+ 1− α)n

(
1

m+ 1

)n−1 n−1∑
k=0

n!

(k + 1)!(n− (k + 1))!
(m+ 1− α)k+1α(n−1)−k

=
1

(m+ 1− α)n

(
1

m+ 1

)n−1 n−1∑
k=0

(
n

k + 1

)
(m+ 1− α)k+1α(n−1)−k

=
1

(m+ 1− α)n

(
1

m+ 1

)n−1 n∑
l=1

(
n

l

)
(m+ 1− α)lαn−l

=
1

(m+ 1− α)n

(
1

m+ 1

)n−1
[

n∑
l=0

(
n

l

)
(m+ 1− α)lαn−l − αn

]

=
1

(m+ 1− α)n

(
1

m+ 1

)n−1

[(m+ 1)n − αn]

=
m+ 1

(m+ 1− α)n

[
1−

(
α

m+ 1

)n]
.
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