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supply set of goods, every bidder subsequently responds with a set of goods

demanded at these prices, and then the auctioneer adjusts prices. We prove that

even when bidders can exercise their market power strategically, this dynamic

auction always induces them to bid truthfully as price-takers, resulting in an
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1 Introduction

Auctions are fundamental and common market mechanisms for allocating goods and ser-

vices. The current article provides an efficient and incentive compatible dynamic auction

for allocating complementary goods. The goods are traded in discrete quantities such as

houses, cars and machines, or oil measured in barrels. In the last two decades, dynamic

auctions for selling multiple items have become phenomenally popular. For example, such

auctions have been extensively used by governments to sell spectrum licenses (Klemperer

2004 and Milgrom 2004), to procure goods and services, and to privatize state companies,

and by firms to sell virtually all kinds of commodities on the Internet.

Elegant efficient auctions include those proposed by Kelso and Crawford (1982), De-

mange, Gale and Sotomayor (1986), Gul and Stacchetti (2000), Milgrom (2000), Perry and

Reny (2005), and Ausubel (2004, 2006), among others. Auctions developed so far have

been especially successful in handling substitute goods. By contrast, how to deal with

complementary goods has proved challenging.3 In a recent survey article, Maskin (2005)

presented as his first “open problem” the outstanding issue of how to handle multiple

goods with complementarities in a dynamic auction, echoing Milgrom (2000), Jehiel and

Moldovanu (2003), Noussair (2003), and Klemperer (2004), who have raised similar points.

This article aims to offer a general solution to this problem, a solution which will be shown

to have a number of desirable features.

There are several factors which make designing dynamic auctions for complementary

items difficult. First, as Milgrom (2000, 2004), Jehiel and Moldovanu (2003), and Klem-

perer (2004) point out, when there are strong complementarities among items, an exposure

problem can occur in a simultaneous ascending auction, resulting in inefficient outcomes.

Consider for example the sale of spectrum licenses to several bidding firms. The value

to the firms of a license covering one region may be increased significantly if licenses in

adjacent regions are also obtained. In this situation, at earlier stages of the auction, be-

cause of low prices and synergies among licenses, bidders are likely to bid aggressively, but

as prices rise to high levels, some or all licenses can be exposed to a risk that no bidder

wishes to demand them anymore, because complementary items have become too expen-

sive. As a result, the auction will get stuck in disequilibrium. Second, because a price

3The difficulty of dealing with complementarities has long been known to economists. After Arrow

and Hurwicz (1958) prove that the venerable Walrasian tâtonnement process formalized by Samuelson

(1941) converges globally to an equilibrium for economies with divisible goods when all goods are gross

substitutes, there was optimism that such processes could also apply to any reasonable economies with

divisible goods. But Scarf (1960) dashes such hopes by showing that such processes can never tend towards

equilibrium in a three complementary goods counter-example. Kelso and Crawford (1982) demonstrate that

complementarities in the presence of indivisibilities can even cause problems with existence of Walrasian

equilibrium, not just stability.
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system is always used in a dynamic auction and the number of bidders is typically not

large in practice, it is conceivable that bidders would strategically exercise their market

power in this environment. Then a fundamental and intriguing question arises: how to

restore such bidders’ incentives to bid sincerely as price-takers? Third, a threshold problem

also poses a hazard to efficient outcomes in a package auction; see e.g., Noussair (2003),

and Porter, Rassenti, Roopnarine and Smith (2003). For illustration, assume that John

and Peter want items A and B respectively, but David wants A and B together. In order

to win their favorite item, John and Peter must determine what price each should pay

in an implicitly coordinated way to make the sum of their bids surpass David’s bid on

his favorite package. Finally, unlike markets with substitutable indivisible goods where a

standard Walrasian equilibrium is well known to exist, it is not totally clear what notion

of Walrasian equilibrium applies in the environment with complements.

The objective of this paper is three-fold: (1) to clarify the scope of the problem con-

cerned with (indivisible) complements, (2) to explore an appropriate solution for such an

environment, and (3) to devise a dynamic auction that overcomes the potential pitfalls

described above, assigns goods efficiently, and at the same time induces bidders to act

sincerely as price-takers.

To be precise, we consider an auction market where a seller wishes to sell n comple-

mentary indivisible goods to m bidders but has a reserve price for every bundle of the

goods. Every bidder has a private valuation of every bundle of the goods and may have an

incentive to strategically employ his market power. The goods are complementary in the

sense that the value of combining any two disjoint sets of goods equals at least the sum

of individual values of the disjoint sets. Such complementarity or more formally, super-

additivity, is the most general notion in the literature, subsuming gross complements and

supermodularity; see also Samuelson (1974). We explore the notion of nonlinear pricing

Walrasian (NPW) equilibrium in this environment. This equilibrium is more general than

the standard Walrasian equilibrium and utilizes a nonlinear pricing rule which specifies a

price for every bundle of goods. Moreover, the price of every bundle is the same for all

bidders, i.e., anonymous pricing. Due to nonlinearity in prices and her own reserve price,

the seller has to contemplate how to divide her goods into different groups so as to maxi-

mize her revenues. The market is in equilibrium if every bidder receives an optimal bundle

and the seller offers an optimal supply, and the market clears. Despite the nonexistence

of standard Walrasian equilibrium, we will show that the auction market always has an

NPW equilibrium by using nonlinear pricing. We will also analyze the properties of the

equilibria and their structure. These display some unusual and interesting features that

differ markedly from the familiar lattice structure in the models with substitute goods

shown in Shapley and Shubik (1971), Gul and Stacchetti (1999), and Ausubel (2006).
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Our focus is on the design of an efficient and incentive compatible (IC) dynamic auction

for the environment just described. Our IC dynamic auction is built on a basic ascend-

ing auction, which works roughly as follows. Starting with the seller’s reserve price, the

auctioneer announces the current price for each bundle of items and a supply set of items,

then bidders report quantities demanded at these prices, and the auctioneer adjusts prices

upwards for the over-demanded bundles and so on. We show that this basic ascending

auction always converges to an efficient allocation with a Walrasian equilibrium price for

every bundle in finite time, when bidders bid sincerely. Most importantly, it is established

that even when bidders are permitted to exercise their market power strategically, our IC

dynamic auction always induces bidders to act sincerely as price-takers. And this auction

results in an efficient allocation with its supporting Walrasian equilibrium price for every

bundle of items and a generalized Vickrey-Clarke-Groves (VCG, hereafter) payment for

every bidder. In particular, sincere bidding by every bidder is shown to be an ex post per-

fect equilibrium in the auction game. This auction can tolerate some dishonest behavior,

mistakes, or inaccuracies caused by bidders and gives them chances to adjust and correct.

The current article provides a novel and practical approach for addressing the incentive

problem in market models. Traditionally, it has been essential to assume that either agents

are price-takers (Samuelson 1941, Arrow and Hurwicz 1958, and Debreu 1959), or there is

a countably infinite number of agents (Debreu and Scarf 1962) or a continuum of agents

(Aumann 1964) so that each individual agent has only a negligible effect on market prices.

Such an assumption does not fit into the current model. Another traditional approach is

the VCG mechanism. This is a sealed-bid dominant-strategy direct mechanism. Despite

its theoretical appeal, it has rarely been used in practice; see e.g., Rothkopf, Teisberg, and

Kahn (1990), Milgrom (2007) and Rothkopf (2007). There are two major criticisms of the

VCG mechanism. First, the VCG mechanism lacks a competitive price system.4 Instead

it asks every bidder directly to reveal all his private valuations over every possible bundle

of goods in order to determine an allocation and payments. Second, it may yield too low

revenues for the seller. In auctions, as in any business, buyers are in general extremely

reluctant to expose their true valuations. The current auction utilizes information from

every bidder efficiently and judiciously in that it requires him to display demands only on

a number of price vectors along the path towards equilibrium prices and nothing more.

Thus it keeps the valuations of bidders from being exposed; see also Ausubel (2006). In

the language of Hurwicz (1973), it is privacy preserving and informationally efficient. The

4A price system is extremely important in any market where there are many rational and strategic

agents and each of them possesses private information which plays a role in determining the outcome of

the market, as Hayek (1945) argues: “Fundamentally, in a system where the knowledge of the relevant

facts is dispersed among many people, prices can act to coordinate the separate actions of different people

in the same way as subjective values help the individual to coordinate the parts of his plan.”
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current auction permits the seller to have a reserve price for each bundle of goods. The

seller determines the quantity for sale based upon the bidders’ reported demands and will

not sell any bundle if the bids are below her reserve price, thus maintaining a lower bound

on the seller’s revenues; see also Ausubel and Cramton (1999).

Besides, the current dynamic auction also exhibits the following attractive features.

First, unlike the auctions proposed in Demange, Gale and Sotomayor (1986), Gul and

Stacchetti (2000), Ausubel (2006), and Sun and Yang (2008b, 2009) where every bidder

is required to report all his optimal bundles in every round of the auction process, the

current auction asks every bidder to declare just one of his optimal bundles. Hence the

current auction requests even less information from bidders; the auctions of Kelso and

Crawford (1982) and Milgrom (2000) also share this property but can give rise to only an

approximate equilibrium in finite time. Second, the current auction can tolerate bidders

bidding inaccurately or dishonestly to some extent so long as they do not openly flout the

rules or make serious or too many mistakes. In particular, this auction allows bidders to

correct their previous mistakes or manipulated bids by withdrawing some of their past bids.

Third, as pointed out by Bergemann and Morris (2007), because dynamic auctions create

more transparent trading rules and offer opportunities for bidders to learn and adjust, they

can reduce payoff uncertainty and strategic uncertainty for bidders.

We also propose a procedure for dividing revenues among several sellers whose goods

are all complementary. In this case the sellers prefer to sell their goods jointly rather than

separately, but then their revenues are inseparable, because due to synergies among goods,

some goods of one seller may be sold together with another seller’s as one package. This is

in sharp contrast to the case of substitutes in which the revenues of sellers are automatically

separable, as substitute goods can be sold at anonymous and linear equilibrium prices.

To close this introductory section, we briefly review several closely related papers.

Ausubel and Milgrom (2002) propose a family of ascending package auctions.5 Their

auctions use discriminatory and nonlinear pricing rules, offering a core allocation as the

outcome which is weaker than a nonlinear pricing Walrasian equilibrium.6 However, their

auctions were intended to deal with a more complex situation where a bundle of goods can

be complements to one bidder but substitutes to another. The current paper finds that an

anonymous price dynamic auction is well suited to complementary goods. As argued by

Milgrom (2004), discriminatory pricing fails to promote the law of one price and thus may

5A sealed-bid package auction is due to Bernheim and Whinston (1986). Levin (1997) proposes an

optimal sealed-bid auction for two complementary items, generalizing Myerson (1981). See Day and

Milgrom (2008), Erdil and Klemperer (2010) for recent developments on Ausubel and Milgrom (2002). In

Wurman and Wellman’s (2000) package auction the equilibrium is incompatible with the seller’s behavior.
6Discriminatory pricing means that the price of the same bundle of goods may differ from one bidder

to another.
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be psychologically hard for some people to accept.7 Indeed, in real life auctions, people are

more accustomed to anonymous prices. Porter, Rassenti, Roopnarine and Smith (2003)

provide laboratory tests on a package auction with anonymous prices in support of the

auction over several sets of spectrum licenses which exhibit complementarities. Ausubel

(2004) and Perry and Reny (2005) introduce efficient ascending auctions for identical goods

in an interdependent value setting. Ausubel (2006) develops an ingenious incentive com-

patible dynamic auction for selling substitute items.8 Sun and Yang (2008b, 2009) propose

an incentive compatible dynamic auction for a more general environment with two types

of goods. Items of the same type are substitutable but are complementary to items of the

other type.

This article is organized as follows. Section 2 sets up the model. Section 3 presents the

basic ascending auction. Section 4 builds the incentive compatible dynamic mechanism

associated with the basic ascending auction. Section 5 deals with several sellers who sell

complementary goods. Section 6 discusses applications. Section 7 concludes.

2 The Model

A seller wishes to sell a set of heterogeneous indivisible goods (items) N = {1, 2, · · · , n}
through auction to a group of bidders M = {1, 2, · · · ,m}. Every bidder i ∈ M attaches

a monetary value (units of money) to each bundle of items, namely, each bidder i has a

value function ui : 2N → Z with ui(∅) = 0, where 2N denotes the family of all bundles of

items and Z (Z+) is the set of all (nonnegative) integers. Every bidder is endowed with

a sufficient amount of money in the sense that he can pay up to his value. The seller

(denoted by 0) has a reserve price function u0 : 2N → Z with u0(∅) = 0. This means that

if a bundle were sold to a bidder, the bidder would have to pay at least the reserve price

of the bundle. Let M0 =M ∪ {0} represent the set of all agents (bidders and seller) in the

market. The following assumptions are imposed on the model:

(A1) Integer Private Values : Every bidder i knows his own value function ui : 2N → Z

privately and his value function is integer-valued.

7However, discriminatory and nonlinear pricing seems natural for situations where a seller is simultane-

ously and independently negotiating with several buyers for important business, such as Boeing or Airbus

selling their major products.
8Also for substitutes, the auctions of Kelso and Crawford (1982), Gul and Stacchetti (2000), and

Milgorm (2000) ensure convergence to Walrasian equilibria only if bidders are posited to bid truthfully. In

a more general setting, Ausubel and Milgrom (2002) require a similar assumption in order to generate a

core allocation.
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(A2) Quasilinear Utility : Every bidder i’s net utility or profit is given by vi(S, p) =

ui(S)− p(S), when he receives the bundle S and pays the price p(S).

(A3) Superadditivity : For every agent i ∈ M0, and for any disjoint sets S1, S2 ∈ 2N , (i.e.,

S1 ∩ S2 = ∅), agent i’s utility function ui satisfies ui(S1 ∪ S2) ≥ ui(S1) + ui(S2).

Assumptions (A1) and (A2) are standard and have been extensively used in the litera-

ture. Assumption (A3) says that both bidders and the seller view all items as complements

in the sense that they get at least as much value from combining two disjoint sets of items as

the sum of the values they get from each set individually. This condition describes the most

general form of complementarity including both gross complements based on Marshallian

demand, and supermodularity as special cases. Recall that a value function ui : 2N → IR

is said to be supermodular if we have ui(S1 ∪ S2) + ui(S1 ∩ S2) ≥ ui(S1) + ui(S2) for any

S1, S2 ∈ 2N . Superadditivity9 is more general than supermodularity, because the former

applies to only disjoints sets, while the latter applies also to intersecting sets. Supermod-

ularity requires that the value function exhibit increasing marginal returns.

The conventional approach of handling complementary items is to bundle them all to-

gether in advance and to sell them as one package. Unfortunately, this approach may yield

inefficient outcomes. In contrast, our analysis will show that we do not need to exogenously

bundle complementary items in advance, and instead items can be endogenously and effi-

ciently allocated among agents via a dynamic auction. As a result, the market realizes its

full potential. The following example illustrates this point and also shows that unlike gross

substitutes (GS), superadditivity is insufficient to guarantee the existence of a standard

Walrasian equilibrium.

Example 1: Suppose that three firms (bidders 1, 2, 3) compete for a seller’s three com-

plementary objects (A, B, C). Bidders’ values and seller’s reserve prices are given in

Table 6. Clearly, all items are viewed by every bidder and the seller as complements. Ob-

serve that u1 is superadditive but not supermodular, because u1(AB) + u1(AC) = 10 >

u1(ABC) + u1(A) = 9. Neither is u2 nor u3 supermodular. In this economy, there are

two efficient allocations: One allocation assigns the bundle AB to bidder 1 and item C

to bidder 2; another allocation assigns AB to bidder 1 and item C to bidder 3. We will

show that these allocations cannot be supported by a price vector (pA, pB, pC). Consider,

9Superadditivity is an analog in this problem to the well-known gross substitutes (GS) condition of

Kelso and Crawford (1982). The GS condition requires that every bidder regard all items as substitutes.

This condition provides a general sufficient condition for the existence of a standard Walrasian equilibrium

and has been widely used in auction design; see e.g., Gul and Stacchetti (1999, 2000), Milgrom (2000)

and Ausubel (2006). It is known that the class of utility functions satisfying the GS condition is a proper

subset of submodular functions; see Gul and Stacchetti (1999) and Fujishige and Yang (2003). A function

u is submodular if −u is supermodular.
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for instance, the first efficient allocation. Suppose that the price vector (p(A), p(B), p(C))

supports this allocation. Then for the seller, we must have p(A) ≥ 1, p(B) ≥ 1 and

p(C) ≥ 1. For bidder 1, we must have p(A) + p(B) ≤ 7. For bidder 2, we must have

p(C) ≤ 2 and p(A) ≥ 4. For bidder 3, we must have p(C) ≥ 2 and p(B) + p(C) ≥ 6. From

p(C) = 2, we have p(B) ≥ 4. Combining the inequalities p(A) ≥ 4 and p(B) ≥ 4 yields

p(A) + p(B) ≥ 8, which contradicts p(A) + p(B) ≤ 7. A similar argument applies to the

other efficient allocation. Thus, there exists no standard Walrasian equilibrium for this

economy. Nevertheless, there exists a Walrasian equilibrium if the auctioneer adopts the

following anonymous and nonlinear pricing rule p(∅) = 0, p(A) = 2, p(B) = 2, p(C) = 2,

p(AB) = 6, p(AC) = 6, p(BC) = 6, and p(ABC) = 7. For this pricing rule, the auctioneer

can assign the bundle AB to bidder 1 by asking a price of 6 and the bundle C to bidder

2 by asking a price of 2. As will be shown in Section 3, this equilibrium can be found by

a dynamic auction. As a result, the market realizes a total value of 9 and the seller gains

a revenue of 8. On the other hand, however, if the seller were to adopt the conventional

strategy of selling three complementary objects as a single bundle, she could gain a revenue

of only 7 and the market could achieve a total value of only 7.

Table 1: Bidders’ and seller’s values over items.

∅ A B C AB AC BC ABC

Bidder 1 0 2 2 0 7 3 4 7

Bidder 2 0 2 0 2 3 6 3 6

Bidder 3 0 0 2 2 4 3 6 7

Seller 0 1 1 1 2 2 2 3

This example suggests that a possible way of developing a meaningful theory for cop-

ing with complementarity is to modify the standard notion of Walrasian equilibrium by

adopting an anonymous and nonlinear pricing rule. A function p : 2N → IR is a pricing

function if p(∅) = 0. A pricing function indicates a price p(S) for each bundle S and will

be also viewed as a vector. For instance, in Example 1, a pricing function p means the

vector (p(∅), p(A), p(B), p(C), p(AB), p(AC), p(ABC)). A pricing function p is linear if for

any bundle S, we can write p(S) =
∑

k∈S p({k}). Otherwise, it is nonlinear.10 A pricing

function p is feasible if p(S) ≥ u0(S) for every S ∈ 2N . Since we consider only feasible

pricing functions, in the following a pricing function always means a feasible one. For a

10Nonlinear pricing has a long history in business practice and is widely used in many industries; see

Makowski (1979), Wilson (1993), Bikhchandani and Ostroy (2002), and Png (2002).
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pricing function p : 2N → IR, bidder i’s demand correspondence Di(p) and indirect utility

function V i(p) are defined from his net utility function vi, respectively, by

Di(p) = argmax
S⊆N

vi(S, p) and V i(p) = max
S⊆N

vi(S, p).

In nonlinear pricing settings, a seller has to consider not only which items to supply,

but also how to supply them. For example, when the seller has two items for sale, she

needs to decide whether she should supply the two items as two separate bundles or as a

single bundle. In general, when facing a feasible pricing function p, the seller will choose

those partitions of the items in N that maximize her revenues. We call γ = {A1, · · · , Ak} a

partition of the items in N for some k ≤ n if each bundle A ∈ γ is nonempty, ∪A∈γA = N ,

and A∩A′ = ∅ for any two different bundles A and A′ in γ. Let B represent the family of

all partitions of N .

The seller’s supply correspondence S(p) whose each element is called a supply set, and

her revenue function Re(p), are defined by, respectively,

S(p) = argmax
γ∈B

{∑
A∈γ

p(A)
}
and Re(p) = max

γ∈B

{∑
A∈γ

p(A)
}
.

An allocation of items in N is a redistribution π = (π(i), i ∈M0) of items among all agents

in M0 such that π(i) ∩ π(j) = ∅ for all i ̸= j and ∪i∈M0π(i) = N . An allocation π assigns

the bundle π(i) to agent i. Note that π(i) = ∅ is allowed. If π(0) ̸= ∅, then the bundle

π(0) is not sold and thus stays with the seller. Let A denote the family of all allocations.

We also view every allocation π = (π(0), π(1), · · · , π(m)) as a partition γ of N in the sense

that γ = {π(i) | π(i) ̸= ∅ and i ∈M0}. Note that π(i) disappears in γ if π(i) is empty. An

allocation π is efficient if for every allocation ρ we have
∑

i∈M0
ui(π(i)) ≥ ∑

i∈M0
ui(ρ(i)).

Given an efficient allocation π∗, let V (N) =
∑

i∈M0
ui(π∗(i)). We call V (N) the market

value. Clearly, this value is the same for any efficient allocation.

Definition 2.1 A nonlinear pricing Walrasian (NPW) equilibrium consists of a price

function p∗ : 2N → IR and an allocation π∗ such that π∗ ∈ S(p∗) for the seller and

π∗(i) ∈ Di(p∗) for every bidder i ∈M .

For a nonlinear pricing Walrasian equilibrium (p∗, π∗), we call p∗ an equilibrium pricing

function and π∗ an equilibrium allocation, and we say π∗ is supported by p∗. Clearly, a non-

linear pricing Walrasian equilibrium (p∗, π∗) becomes the standard Walrasian equilibrium

if p∗ is linear.

It is well known that the standard Walrasian equilibrium leads to the most efficient

allocation of scarce resources. The following simple lemma shows that the notion of NPW

equilibrium possesses the same property.
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Lemma 2.2 If (p∗, π∗) is a nonlinear pricing Walrasian equilibrium, π∗ is efficient; and

if ρ is an efficient allocation, (p∗, ρ) is also a nonlinear pricing Walrasian equilibrium.

Some might worry that the concept of NPW equilibrium could be too general to be

interesting. The following example is intended to dispel such concern and shows that As-

sumptions (A1) and (A2) without (A3) do not guarantee the existence of NPW equilibrium.

Example 2: Assume that there are three bidders (1, 2, 3) and three items (A, B, C) in a

market. The seller’s reserve prices are all zero. Bidders’ values over all bundles are given in

Table 2. This example is taken from Bevia, Quinzii and Silva (1999), who show that there

exists no (standard) Walrasian equilibrium in this market. We will see that this market does

not have any NPW equilibrium, either. Observe that (π(0), π(1), π(2), π(3)) = (∅, B,A,C)
is the unique efficient allocation at which every bidder gets one item. To have an NPW

equilibrium, it follows from Lemma 2.2 that π must be supported by a nonlinear pricing

function p. Assume without loss of generality that p(AB) > p(A) + p(B). Then the seller

will choose {AB,C} instead of π, i.e., π ̸∈ S(p). So there is no NPW equilibrium.

Table 2: Bidders’ values over items.

∅ A B C AB AC BC ABC

Bidder 1 0 10 8 2 13 11 9 14

Bidder 2 0 8 5 10 13 14 13 15

Bidder 3 0 1 1 8 2 9 9 10

Observe that the value functions in this example are submodular and so do not satisfy

Assumption (A3). In short, this example demonstrates a striking fact that even if every

bidder’s value function is submodular and thus exhibits decreasing marginal returns, an

NPW equilibrium may still not exist. In contrast, we will show that superadditivity en-

sures the existence of NPW equilibrium. However, unlike the auction models with gross

substitutes, the set of equilibrium pricing functions in the current model with comple-

ments fails to be a lattice.11 To see this, consider two NPW equilibria (p, π) and (q, π) in

Example 1, where π = (π(0), π(1), π(2), π(3)) = (∅, AB,C, ∅), p = (0, 2.4, 2, 2, 6.5, 6, 6, 7),

11For any functions p and q, p ∨ q means p ∨ q(S) = max{p(S), q(S)} for every S ⊆ N , and p ∧ q

means p ∧ q(S) = min{p(S), q(S)} for every S ⊆ N . A set W of pricing functions is a lower semi-lattice

if p ∧ q ∈ W for any p, q ∈ W ; W is an upper semi-lattice if p ∨ q ∈ W for any p, q ∈ W ; W is a lattice if

W is both a lower and an upper semi-lattice. We use the threshold problem to illustrate these concepts.

Assume that John’s value function is (u(A), u(B), u(AB)) = (3, 0, 3), Peter’s is (0, 3, 3), and David’s is

(0, 0, 4). Then the set of proper equilibrium pricing functions is { (p(A), p(B), p(AB)) | p(AB) = 4, p(A) ≤
3, p(B) ≤ 3, and p(A) + p(B) ≥ 4 } ⊆ R3, which is an upper semi-lattice but is not a lower semi-lattice.
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and q = (0, 2, 2, 2, 6.5, 6, 6.4, 7). It is easy to verify that (p ∨ q, π) is not an NPW equilib-

rium. The following notion of proper NPW equilibrium, however, can restore the upper

semi-lattice structure.

An equilibrium pricing function p is proper if there is no other equilibrium pricing

function q such that q ≤ p, q ̸= p and Re(p) = Re(q). In other words, a proper equilibrium

pricing function is a minimal equilibrium pricing function among all those equilibrium

pricing functions that give the seller the same revenue. An NPW equilibrium (p, π) is

proper if p is a proper equilibrium pricing function. The following theorem reveals the

structure of proper NPW equilibria.

Theorem 2.3 Suppose that the auction model satisfies Assumptions (A1)–(A3). Then the

set of proper equilibrium pricing functions is a nonempty and compact upper semi-lattice.

First, notice that the theorem holds true only for proper equilibrium pricing functions. One

can also construct an example so that (p, π) and (q, π) are (proper) NPW equilibria but

(p ∧ q, π) is not an NPW equilibrium. Second, the upper semi-lattice has a unique largest

equilibrium pricing function in the seller’s favor. Furthermore, the theorem implies that

under complete information it is possible for the seller to extract a maximum revenue from

bidders but impossible to charge every bidder at a lowest price, and that the threshold

problem (as described in the introduction) could occur due to lack of lower semi-lattice.

This shows a fundamental and inherent difference from the case of substitute goods for

which the set of equilibrium price vectors is known to be a lattice, meaning that the

threshold problem cannot happen.

3 The Basic Ascending Auction

In this section we first consider the basic case where bidders bid sincerely, and then move

to the case where bidders bid quasi-sincerely. In the next section we deal with the case

where bidders may bid strategically rather than naively as price-takers. In a dynamic

auction, we say that bidder i bids sincerely with respect to value function ui if at every

time t ∈ Z+ and any price function p(t) at time t, he reports a bid Ai(t) ∈ Di(p(t)) =

argmaxS⊆N{ui(S) − p(t, S)} with Ai(t) = ∅ when ∅ ∈ Di(p(t)). Notice that when p(t) is

a pricing function at time t ∈ Z+, then p(t, S) denotes the price of bundle S ∈ 2N .

3.1 The Sincere-Bidding Case

We now describe the main idea of our basic dynamic auction. The design of this auction

process is based on the classical tâtonnement process with several modifications and is quite
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similar to the salary-adjustment process of Kelso and Crawford (1982). The auctioneer

announces the current price function p and the current supply set. Every bidder i responds

by reporting a demand bundle Ai ∈ Di(p). The auctioneer then examines the aggregated

reported demands. If a bundle is over-demanded, the auctioneer raises its price but will not

change the price of any bundle which is balanced or over-supplied.12 This process stops

at some price vector p∗ when no bundle is over-demanded. Then according to bidders’

reported demands and some rules to be specified below, the auctioneer assigns a reported

bundle B to each bidder who is asked to pay the current corresponding price p∗(B).

Given a pricing function p : 2N → IR and a supply set γ ∈ S(p), each bidder i ∈ M

reports a demand bundle Ai ∈ Di(p). With respect to the supply set γ and reported

demand bundles Ai(i ∈ M), we say that a bundle A ∈ 2N \ {∅} is over-demanded if it is

demanded by more than one bidder (i.e., Ai = Aj = A for at least two bidders i, j) or

demanded only by one bidder i (i.e., Ai = A) but his bundle Ai is not in the seller’s supply

set γ (i.e., Ai ̸∈ γ).13 Keep in mind that an over-demanded bundle must be nonempty

and the empty set can be demanded by many bidders without any cost. Having all the

preparations, we now give a formal description of the price adjustment process.

The basic auction process

Step 1: The seller reports her reserve price function u0 and the auctioneer sets the

initial pricing function p(0) : 2N → Z with p(0, S) = u0(S) for every S ⊆ N . Set

t := 0 and go to Step 2.

Step 2: At each round t = 0, 1, 2, · · ·, the auctioneer announces the current pricing

function p(t) and a supply set γ(t) ∈ S(p(t)). Then every bidder i is asked to report a

demand bundle Ai(t) at the prices p(t). Based on the supply set and reported demand

bundles, the auctioneer adjusts prices as follows: If no bundle is over-demanded at

p(t), go to Step 3. But if there is an over-demanded bundle, the auctioneer raises

the price of each over-demanded bundle by one unit but holds the price of any other

bundle unchanged. Set t := t+ 1 and return to Step 2.

Step 3: The auctioneer assigns the bundle Ai(t) to bidder i who is asked to pay the

price p(t, Ai(t)) in return, and in addition for any nonempty bundle B ∈ γ(t) which

is not demanded by any bidder at p(t), the auctioneer assigns the bundle to the seller

if p(t, B) = u0(B), otherwise, the auctioneer assigns the bundle to some bidder14 who

12This is quite different from the classical tâtonnement process which requires the reduction of the price

of an over-supplied good.
13This definition of over-demanded sets which depends on the seller’s supply set is a crucial and novel

point for the price adjustment of the current auction.
14If there are several such bidders, the auctioneer randomly chooses one.
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previously demanded the bundle and was the last to give up. This bidder is asked to

pay p(t, B). Then the process stops.

Three remarks on the auction process are in order. First, because the sequence of

generated prices for each bundle is never decreasing even if a bundle is over-supplied, the

auction can be viewed as an ascending bid procedure, and so every p(t) is a feasible pricing

function. Second, in the final round of the process (Step 3) the auctioneer assigns the

bundle Ai(t) to bidder i and may also assign an additional bundle B to this same bidder

if he once demanded B and was the last to give up, and moreover the current price of B

is greater than its reserve price. This bidder will be asked to pay the sum of p(t, A) and

p(t, B). We call this operation the complementary activity rule, which is a novel feature of

the current process. It will be shown that p(t, A) + p(t, B) is actually equal to p(t, A∪B),

a crucial fact for this operation. Third, in the current auction process, every bidder i only

needs to report one bundle Ai(t) from his demand correspondence Di(p(t)) in each round

t, whereas in those of Demange et al. (1986), Gul and Stacchetti (2000), Ausubel (2006),

and Sun and Yang (2008b, 2009), every bidder i is required to report his entire demand

correspondence Di(p(t)). Thus the current auction demands less information from bidders.

To have a better understanding of the auction, let us illustrate it through Example 1.

Starting with the reserve price vector p(0) = (1, 1, 1, 2, 2, 2, 3) and the supply set γ(0) =

{AB,C} ∈ S(p(0)), bidder 1 bids AB, bidder 2 AC, and bidder 3 BC. At p(0), the bundles

AC and BC are over-demanded and so the auctioneer adjusts the price vector to p(1) by

increasing the price of AC and BC each by one unit and keeping the prices of all other

bundles unchanged. At p(1), the auctioneer supplies γ(1) = {AC,B}, bidder 1 demands

AB, bidder 2 AC and bidder 3 ABC. Now both AB and ABC are over-demanded so the

auctioneer adjusts the price vector to p(2) by increasing the price of the two bundles. The

auction stops with p(9) at which no bundle is over-demanded. By the auction rule, bidder

1 gets AB and pays 6, bidder 3 gets nothing and pays nothing, but bidder 2 is assigned

with C and is asked to pay 2 (note that C is one of the optimal bundles of bidder 2 at

p(9)!), since bidder 2 demanded C at round 5 and was the last to give up C. Observe that

the process ends with the efficient allocation π∗ = (π(0), π(1), π(2), π(3)) = (∅, AB,C, ∅).
Clearly, (p(9), π∗) is an NPW equilibrium. The whole process of demands and supplies

at the adjusted price vectors is shown in Table 3, where the price vector is understood

as p = (p(A), p(B), p(C), p(AB), p(AC), p(BC), p(ABC)) with p(∅) = 0, supply column

indicates the seller’s supplies γ, and each bidder’s column indicates his demands.

Observe that in each round t of the auction the price of every bundle contained in

the seller’s supply set γ(t) is at least as much as the sum of the prices of its individual

items. Take the bundle AB for instance. It holds that p(t, AB) ≥ p(t, A) + p(t, B) for

t = 0, 1, · · · , 9. This is because AB has synergies, the seller chooses supplies to maximize
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her revenues, and the auction can correctly extract price information from the market. In

each round t, p(t) shows the price of every bundle S at which some agent is willing to pay

for the bundle. Therefore it is natural and also possible for the seller to choose an optimal

supply set γ(t) against p(t). Consequently, every bundle in this supply set can sell for more

than the sum of its individual prices. Consider again AB, say, at prices p(6). Note that

bidder 1 is happy to buy AB in spite of p(A, 6) + p(B, 6) < p(AB, 6). It is impossible for

anyone else to acquire AB more cheaply by buying A and B separately.

It should be noticed, however, that in retail business, we do not see a bundle of goods

sells for more than the sum of the prices of its individual goods. This is because the retail

price mechanism differs fundamentally from the auction mechanism. The retail prices are

offered by the seller and each consumer can choose any bundle of goods and decides to

take it or leave it, and can also buy goods separately. Therefore it makes no sense if the

seller sets the price of a bundle higher than the sum of the prices of its individual items.

Our theory suggests that, to handle complements in retail, if a seller should have accurate

and enough information about the market, she could sell her complementary goods as

a partition of goods (i.e., bundling goods into several disjoint packages) to improve her

revenues.

Table 3: Demands and supplies at the adjusted price vectors for Example 1.

Price Vector Supply Bidder 1 Bidder 2 Bidder 3

p(0) = (1, 1, 1, 2, 2, 2, 3) {AB,C} AB AC BC

p(1) = (1, 1, 1, 2, 3, 3, 3) {AC,B} AB AC ABC

p(2) = (1, 1, 1, 3, 3, 3, 4) {AC,B} AB AC ABC

p(3) = (1, 1, 1, 4, 3, 3, 5) {AB,C} AB AC BC

p(4) = (1, 1, 1, 4, 4, 4, 5) {AB,C} AB AC BC

p(5) = (1, 1, 1, 4, 5, 5, 5) {AC,B} AB C ABC

p(6) = (1, 1, 2, 5, 5, 5, 6) {AB,C} AB A ABC

p(7) = (2, 1, 2, 5, 5, 5, 7) {AB,C} AB AC BC

p(8) = (2, 1, 2, 5, 6, 6, 7) {A,BC} AB ∅ B

p(9) = (2, 2, 2, 6, 6, 6, 7) {AB,C} AB ∅ ∅

Theorem 3.1 Suppose that Assumptions (A1)–(A3) hold true for the auction model. When

every bidder bids sincerely, the basic auction process yields a nonlinear pricing Walrasian

equilibrium, in a finite number of rounds.

Proof: It is easy to see that the auction process stops at some step t∗, because as soon as

the price of any (nonempty) bundle becomes higher than any bidder’s valuation for it, no

bidder will demand it. Note that the price of the empty set is always fixed at zero.
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For ease of notation, let p∗ = p(t∗) and let A∗
i = Ai(t

∗) that is demanded by bidder i,

and let γ∗ = γ(t∗) ∈ S(p∗) that is the supply set of the seller. Recall that by definition

γ∗ is a seller’s partition of all the items N . We will first construct an allocation π∗ so

that (p∗, π∗) constitutes an NPW equilibrium. Note that at p∗, no (nonempty) bundle is

over-demanded. Thus, for any bidder i ∈ M , if his demand bundle A∗
i is not empty, it

must be in the supply set γ∗. Moreover, for any two bidders i, l ∈ M , with A∗
i ̸= ∅ and

A∗
l ̸= ∅, we must have A∗

i ∩ A∗
l = ∅. If ∪i∈MA

∗
i = N , let π∗(i) = A∗

i for all i ∈ M and

π∗(0) = ∅, then clearly (p∗, π∗) is an NPW equilibrium and we are done.

Suppose otherwise that there is some bundle B in the supply set γ∗ which is not de-

manded by any bidder at the last round. Such a bundle is called a squeezed out bundle. We

first consider the case in which p∗(B) = u0(B). Let γ∗0 = {B ∈ γ∗ | p∗(B) = u0(B) and B ̸=
A∗

i for all i ∈ M} be the collection of all such bundles. Let π∗(0) = ∪B∈γ∗
0
B. We

assign π∗(0) to the seller. By superadditivity, we know that p∗(π∗(0)) ≥ u0(π∗(0)) ≥∑
B∈γ∗

0
u0(B) =

∑
B∈γ∗

0
p∗(B). But we also see that p∗(π∗(0)) ≤ ∑

B∈γ∗
0
p∗(B) because

γ∗ ∈ S(p∗). Hence, we have

p∗(π∗(0)) = u0(π∗(0)) =
∑
B∈γ∗

0

p∗(B) =
∑
B∈γ∗

0

u0(B). (3.1)

Next, we consider the case in which p∗(B) > u0(B). This implies that the bundle

B was demanded by some bidder at some round. Let t be the last round at which B is

demanded by some bidder l. By the auction rule B can be assigned to bidder l who is asked

to pay the current price p∗(B). We will show that bidder l loses nothing in having the

bundle B and paying the price. By the auction rule and Assumption (A2), we must have

V l(p(t)) = vl(B, p(t)) = ul(B) − p(t, B) ≥ 1, and p∗(B) = p(t, B) or p∗(B) = p(t, B) + 1.

For the bidder l, it holds that

vl(B, p∗) = ul(B)− p∗(B) ≥ 0. (3.2)

We need to consider the following two situations.

Case 1. When A∗
l = ∅, let π∗(l) = B. Because A∗

l ∈ Dl(p∗) and A∗
l = ∅, we have

V l(p∗) = 0 ≥ vl(B, p∗). Recall that vl(B, p∗) ≥ 0. These inequalities lead to vl(B, p∗) = 0,

which implies π∗(l) ∈ Dl(p∗).

Case 2. When A∗
l ̸= ∅, let π∗(l) = A∗

l ∪B. For the seller, we know that

p∗(A∗
l ) + p∗(B) ≥ p∗(π∗(l)). (3.3)

For the bidder l, superadditivity (A3) implies that

ul(π∗(l)) ≥ ul(A∗
l ) + ul(B). (3.4)
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It follows from (3.3) and (3.4) that

ul(π∗(l))− p∗(π∗(l)) ≥ ul(π∗(l))− (p∗(A∗
l ) + p∗(B))

≥
(
ul(A∗

l )− p∗(A∗
l )
)
+

(
ul(B)− p∗(B)

)
≥ ul(A∗

l )− p∗(A∗
l )

where the last inequality is derived from (3.2). Because A∗
l ∈ Dl(p∗), we have π∗(l) ∈ Dl(p∗)

(i.e., π∗(l) is also an optimal bundle of bidder l at p∗). Consequently, it further implies

that ul(π∗(l))− p∗(π∗(l)) = ul(π∗(l))− (p∗(A∗
l ) + p∗(B)) = ul(A∗

l )− p∗(A∗
l ), yielding

p∗(π∗(l)) = p∗(A∗
l ) + p∗(B). (3.5)

So in both cases bidder l loses nothing from having the nonessential bundle B and

paying the price p∗(B). As a result, the indirect utility of bidder l remains unchanged.

We can repeat this adjustment until every such squeezed out bundle B (i.e., p∗(B) >

u0(B)) in γ∗ is assigned to some bidder. For any bidder i who is not assigned with any

squeezed out bundle, let π∗(i) = A∗
i . So in the end each bidder i gets a bundle π∗(i) in his

demand set. Because γ∗ is a seller’s partition ofN , (π∗(0), · · · , π∗(m)) must be an allocation

of N . Furthermore, it follows from the formulas (7.13) and (3.5) that
∑

i∈M0
p∗(π∗(i)) =∑

A∈γ∗ p∗(A) = Re(p∗). That is, the allocation π∗ ∈ S(p∗). Consequently, (p∗, π∗) is a

nonlinear pricing Walrasian equilibrium and we are done. 2

As a consequence of Theorem 3.1, we have the following corollary immediately.

Corollary 3.2 The auction model under Assumptions (A1)–(A3) has a nonlinear pricing

Walrasian equilibrium.

3.2 The Quasi-Sincere Bidding Case

In practice, bidders may not always submit a precise optimal demand bundle in every

step of an auction for whatever reason. Here we investigate to what extent the current

auction can tolerate inaccurate bidding behavior of bidders. In a dynamic auction, we

say that bidder i bids quasi-sincerely with respect to utility function ui if he reports a bid

Ai(t
∗) ∈ Di(p(t∗)) = argmaxS⊆N{ui(S) − p(t∗, S)} (with Ai(t

∗) = ∅ when ∅ ∈ Di(p(t∗)))

in every possible last round t = t∗ of the auction, and always reports an empty bundle or

a nonempty bundle Ai(t) which satisfies ui(Ai(t)) − pi(t, Ai(t)) ≥ 1 for all other rounds t

before the termination of the auction. In other words, quasi-sincere bidding requires bidder

i to be accurate only in every possible last round of the auction and allows him to submit

any bid in any other rounds as long as it gives him a positive profit when the bid is for a

nonempty bundle.
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Because bidders usually do not know whether the current round is a possible last round

or not, we need to modify the basic auction process by requiring that when the auctioneer

finds there is no over-demanded bundle, she reminds every bidder that “this may be the

last round, please report your optimal demand bundle”, and so she gives the bidders a

chance to revise their bids. Both ‘quasi-sincere bidding’ and ‘the auctioneer reminding the

bidders in every possible last round’ imitate what happens in real auction houses where

bidders do not submit bids in every round of the auction and the auctioneer does remind

the bidders in the last round by e.g., hitting a hammer several times.

We can easily modify the basic auction process so that as long as every bidder bids quasi-

sincerely, the modified basic auction will find a nonlinear pricing Walrasian equilibrium in

finite time. We leave the detail in the Appendix.

4 The Incentive Compatible Dynamic Auction

We have previously shown that when bidders bid (quasi-)sincerely, the basic auction finds

an NPW equilibrium in finite time. However, because bidders’ valuations are private

information, unobservable and unverifiable, it is conceivable that bidders may not act

naively as price-takers but would bid whatever they like as long as it serves their interest

and they do not openly defy the rules. In this section, based on the basic ascending

auction, we shall design an incentive compatible (IC) dynamic auction which restores

bidders’ incentive to behave truthfully as price-takers and discovers an NPW equilibrium

and generalized VCG payments.

4.1 The IC Dynamic Auction Design and Illustration

As we mentioned earlier, the outcome of our incentive compatible auction is composed of

two efficient outcomes: the nonlinear pricing Walrasian equilibrium and the VCG outcome

to be introduced shortly. Let M denote the auction market with the set M of bidders and

the set N of items, and for every i ∈M let M−i stand for the market M without bidder i.

Furthermore, let M−i = M \ {i} for every i ∈ M and for convenience also let M−0 = M
and M−0 =M .

Definition 4.1 The VCG mechanism is the following sealed-bid procedure. Every bidder

i ∈M is asked to report his value function ui to the auctioneer. Based on bidders’ reported

value functions ui and the seller’s reserve price function u0, the auctioneer computes an

efficient allocation π of the market M and assigns bundle π(i) to bidder i and charges him

a payment of q∗i = ui(π(i)) − V (N) + V−i(N), where V (N) and V−i(N) are the market

values of the markets M and M−i, respectively.

17



For the VCG outcome, we call the payment q∗i the generalized VCG payment of bidder i

because the payment here also involves the seller’s reserve price function u0 whereas in the

standard VCG mechanism the reserve price is set to be zero. Bidder i’s VCG payoff equals

V (N)− V−i(N), i ∈M .

Recall that every bidder i’s value function ui is private information, superadditive and

integer-valued. It is natural to assume that all values are distributed in a sufficiently

large interval Z∩ [0, Ū ], where Ū is a positive integer; see e.g., Myerson (1981) and Krishna

(2002) for similar assumptions. Let U denote the family of all superadditive value functions

u : 2N → Z ∩ [0, Ū ]. Suppose that the auctioneer knows some integer value U∗ greater

than Ū . In this environment, nature according to a joint probability distribution function

F (·) draws a profile {ui}i∈M of value functions from U and reveals to every bidder i ∈ M

only the function ui. The seller’s reserve price function u0 is also drawn from U and will

be revealed to the bidders when the auction starts. Every bidder i views ui as his private

information and may act strategically. We stress that no one except nature knows the

distribution function F (·) and our auction design is independent of F (·).
Before describing our IC dynamic auction, it will be helpful to give a road map for it.

In contrast to the VCG mechanism which is static and asks directly every bidder to reveal

his utility function and then calculates an efficient allocation of every market M−i, i ∈M0

(m+ 1 markets in total) and payments for all bidders based on reported utility functions,

the current auction is dynamic and explores a competitive price system which leads to a

Walrasian equilibrium for each of m + 1 markets simultaneously, and in addition yields

the VCG outcome without requesting any bidder’s utility function. The competitive price

system consists of two time-dependent price functions called the first and second price

functions which might be seen as the generalization of the first and second prices in the

Vickrey auction for a single item. The two price functions capture essential information

of the m + 1 markets and will be used to derive a price function for each bidder i ∈ M ,

and a price function of each market M−j, j ∈ M0. As a result, even though every bidder

participates in m markets, he will bid as if he faced only a single market, because he only

needs to bid according to the price function he faces.

Now we discuss the price functions. Let p−0(t) denote the first price function in each

round (or time) t ∈ Z+ of the auction, which is also the price function of the original market

M−0(= M). The 1st-price p−0(t, S) of each bundle S equals the highest price that bidders

in the market M−0 are willing to pay at time t. However, to compute the price function

p−j(t) of every sub-market M−j, j ∈ M , we also need the second price function which is

denoted by p0(t). For each bundle S, the 2nd-price p0(t, S) equals the highest price that

bidders in the market M−0 but one bidder making the highest offer p−0(t, S) are willing

to pay at time t. For every sub-market M−j, j ∈M , where bidder j is excluded, the price
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p−j(t, S) of this sub-market for every bundle S at time t equals the 2nd-price p0(t, S) if

bidder j is the only bidder making the highest offer p−0(t, S), and p−j(t, S) equals the 1st-

price p−0(t, S) otherwise. Let pi(t) denote the price function for every bidder i ∈ M . The

price pi(t, S) of each bundle S that bidder i faces at time t equals the 1st-price p−0(t, S)

if bidder i makes the highest offer, and pi(t, S) equals the 2nd-price p0(t, S) otherwise.15

At time t ∈ Z+, the auctioneer chooses a supply set γ−j(t) ∈ S(p−j(t)) for every market

M−j, j ∈ M0. If a bidder i submits a demand bundle Ai(t) against price p
i(t, Ai(t)), we

use bi(t) = (Ai(t), p
i(t, Ai(t))) to denote this bid. As it will soon become apparent, when

prices are adjusted from the current round to the next, the auctioneer will have to take all

m+ 1 markets into account.

In our auction design, an important consideration is that the auction must not only

induce bidders to bid truthfully, should be easy for them to bid, and should use their

information efficiently and judiciously, but also can tolerate certain mistakes, or inaccu-

racies caused by bidders and gives them opportunities to adjust and correct. The first

and second price functions intend to serve the first purpose, while for the second purpose

bidders will be allowed to withdraw some of their past bids. Let Ψi(t) denote the set of

bids that are withdrawn by bidder i at round t. Ψi(t) can be empty. Let Ωi(t) stand for

the set of bidder i’s bids in force at round t.16 At round t, bidder i submits his withdrawal

Ψi(t) according to the following rules: (i) only bids that contain nonempty bundles and

are active up to time t can be withdrawn, i.e., Ψi(t) ⊆ Ωi(t − 1) and (∅, 0) ̸∈ Ψi(t); (ii)
17

the price of each withdrawn bid must equal its current price of the underlying bundle or

the price minus 1, i.e., bi = (S, p(S)) ∈ Ψi(t) implies p(S) = pi(t, S)− 1, or = pi(t, S); (iii)

if a bundle with a price (i.e., a bid) is withdrawn, the same bundle with a higher price

that is contained in Ωi(t−1) must be withdrawn together, i.e., (S, pi(t, S)−1) ∈ Ψi(t) and

(S, pi(t, S)) ∈ Ωi(t − 1) imply (S, pi(t, S)) ∈ Ψi(t). In Sun and Yang (2008a), we discuss

a simpler auction without allowing bidders to withdraw their past bids. In this case, the

equilibrium notion for the underlying auction game is weaker.

15It is clear that for every nonempty bundle S ⊆ N , the set {pi(t, S) | i ∈ M} contains only p−0(t, S)

and p0(t, S). If p−0(t, S) > p0(t, S), only one pi(t, S) equals p−0(t, S).
16Ωi(t) contains both bids that have been submitted and not been withdrawn by bidder i before time

t + 1, and bids that are possibly beneficial to bidder i, i.e., (S, p(S)) ∈ Ωi(t) implies (S, p′(S)) ∈ Ωi(t)

for all p′(S) ∈ {u0(S), u0(S) + 1, · · · , p(S) − 1, p(S)}. Ωi(t) can be also recursively defined as follows. If

bidder i submits a nonempty bundle Ai(t) at round t, let Φi(t) = {(S, p(S)) | S = Ai(t) and p(S) =

u0(Ai(t)), · · · , pi(t, Ai(t))} denote the set of all his actual bids bi(t) and all possibly beneficial bids at

round t; otherwise, let Φi(t) = ∅. Then we have Ωi(0) = Φi(0), Ωi(1) = [Ωi(0)\Ψi(1)]∪Φi(1), · · · ,Ωi(t) =

[Ωi(t− 1) \Ψi(t)] ∪ Φi(t).
17This rule makes it possible in the auction to decrease the price of a bundle by one unit each time

opposite the case of increasing the price of a bundle by one unit.
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We are now ready to describe the basic idea of how our IC dynamic auction operates.

The seller initially announces her reserve price function u0 and the auctioneer sets the

1st-price and 2nd-price functions p−0(0) and p0(0) equal to u0. In each round t ∈ Z+,

based on the price functions p−0(t) and p0(t), each bidder i reports a demand bundle

against prices pi(t) and the auctioneer announces a supply set of each market M−j at its

prices p−j(t). Then the auctioneer must take all m+1 markets into account and examines

the aggregated reported demands for every bundle S. For instance, if a bundle S was

previously demanded by two or more bidders but is now demanded by only one bidder,

say bidder i∗, and moreover a market containing bidder i∗ does not provide the bundle S

in its supply set, then we call this bundle S 1st-price over-demanded. The current price

of this bundle S becomes the 1st-price of bundle S and its previous price is the 2nd-

price. We see p−0(t, S) > p0(t, S). If a bundle is demanded by two or more bidders, this

bundle will be called 2nd-price over-demanded. In the opposite case, a bundle may become

1st-price or 2nd-price over-supplied. In general, the auctioneer increases the price of any

over-demanded bundle but decreases the price of any over-supplied bundle. This process is

repeated until no bundle is over-demanded or over-supplied. Next we will discuss 1st and

2nd-price over-demanded (or supplied) bundles in detail.

At round t ∈ Z+, we say a bidder i is an active demander of a bundle S at a price

p(S) if his bid (S, p(S)) is in force, i.e., (S, p(S)) ∈ Ωi(t). A bidder i is a crucial demander

of a bundle S if he is an active demander of S at some price p(S) but there is no other

active demander of S at a higher price p′(S) > p(S). A bundle S is said to be 1st-price-

over-demanded if there are at least two active demanders of S at its 1st-price p−0(t, S),

or if there is only one active demander i of S at its 1st-price pi(t, S) = p−0(t, S) but S is

not supplied in some market M−l containing bidder i, i.e., l ∈ M0 \ {i}, S /∈ γ−l(t). A

bundle S is 2nd-price-over-demanded if there exist at least two different active demanders

of S at its 2nd-price p0(t, S). Conversely, we say that a bundle S is 1st-price-over-supplied

if its 1st-price p−0(t, S) > u0(S) and there exists no active demander of S at the price

p−0(t, S) − 1. A bundle S is 2nd-price-over-supplied if its 2nd-price p0(t, S) > u0(S) and

there is at most one active demander of S at the price p0(t, S) − 1. In general, we say

a bundle S is over-demanded if it is 1st- or 2nd-price-over demanded, and a bundle S is

over-supplied if it is 1st- or 2nd-price-over supplied.
At round t ∈ Z+, the auctioneer adjusts the prices for round t+1 as follows: For every

bidder i and every bundle S, set

p−0(t+ 1, S) =

{
p−0(t, S) + 1, if S is 1st-price-over-demanded at round t,

p−0(t, S)− 1, if S is 1st-price-over-supplied at round t,

p−0(t, S), otherwise;

(4.6)

p0(t+ 1, S) =

{
p0(t, S) + 1, if S is 2nd-price-over-demanded at round t,

p0(t, S)− 1, if S is 2nd-price-over-supplied at round t,

p0(t, S), otherwise;

(4.7)
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pi(t+ 1, S) =

{
p−0(t+ 1, S), if bidder i is a crucial demander at round t,

p0(t+ 1, S), otherwise;
(4.8)

p−j(t+ 1) =
∨

i∈M−j

pi(t+ 1), for every j ∈ M. (4.9)

Note that formula (4.8) uses formulas (4.6) and (4.7). The auction works roughly as follows.

In each round t, the auctioneer informs every bidder i of his price function pi(t). Then,

every bidder i withdraws some of his past bids (if necessary) and reports a demand bundle

Ai(t) ∈ 2N . The auctioneer adjusts all price functions through the formulas (4.6)–(4.9).

If the auction never terminates, we can punish those bidders who have nullified their bids

more than (a prior given large number) L∗ times. Formally, we have

The incentive-compatible (IC) dynamic auction mechanism

Step 1: The seller reports her reserve price function u0(·). Then the auctioneer sets

the initial pricing functions pi(0) = p−i(0) = u0(·) for every i ∈ M0. Set t := 0 and

go to Step 2.

Step 2: At each round t = 0, 1, 2, · · ·, the auctioneer informs every bidder i ∈M of his

price function pi(t). Then, every bidder i submits his withdrawal Ψi(t) (if any) and

reports a bundle Ai(t) ∈ 2N . The auctioneer chooses a supply set γ−j(t) ∈ S(p−j(t))

for every j ∈ M0 and adjusts prices as follows: If there is neither an over-demanded

bundle nor an over-supplied bundle, go to Step 3. Otherwise, if there is any over-

demanded bundle or over-supplied bundle, the auctioneer obtains the price functions

p−0(t + 1), p0(t + 1), pi(t + 1) and p−i(t + 1) for all i ∈ M by formulas (4.6), (4.7),

(4.8), and (4.9). If pi(t + 1, S∗) > U∗ for some bidder i and some bundle S∗, go to

Step 4. Otherwise, set t := t+ 1 and return to Step 2.

Step 3: At the last round t = t∗, for every j ∈M0 the auctioneer chooses an allocation

π−j for the market M−j as in the basic ascending auction. By the allocation π−0 of

the original market M, the auctioneer assigns the bundle π−0(0) to the seller and

the bundle π−0(i) to bidder i ∈M who is asked to pay the price

qi = Re(p−i(t∗))−
(
Re(p−0(t∗))−

∑
S∈γ−0

i

p−0(t∗, S)
)
, (4.10)

where γ−0
i = {S | S ∈ γ−0(t∗) andS ⊆ π−0(i)} stands for the family of bundles that

are in the seller’s supply set γ−0(t∗) of the market M and are assigned to bidder i at

round t∗. Then the auction stops.
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Step 4: The auctioneer assigns the bundle S∗ to a bidder18 i with pi(t+ 1, S∗) > U∗

and asks him to pay the price U∗. And all other bidders get nothing and pay nothing.

The auction stops.

Step 5: If the auction never terminates, then any bidder who has withdrawn his bids

more than L∗ times has to pay a penalty of U∗, and any other bidder gets nothing

and pays nothing.

Note 1: If Step 4 or Step 5 happens, then this is the case in which some bidder has

openly defied the rules or made serious or too many mistakes, and thus is punished.

Note 2: Observe that in particular p0(0) = pi(0) = p−i(0), in general p0(t) ≤ pi(t) ≤
p−j(t) ≤ p−0(t) for all i, j ∈ M (i ̸= j), t > 0, and pi(t) − p0(t) = p−0(t) − p−i(t),

i ∈ M . Moreover, if p−0(t, S) > p0(t, S) for some bundle S, then there exists a unique

bidder i∗ such that pi
∗
(t, S) = p−0(t, S) and pj(t, S) = p0(t, S) for any bidder j ̸= i∗, and

p−i∗(t, S) = p0(t, S) and p−j(t, S) = p−0(t, S) for any market M−j with j ̸= i∗.

Note 3: It is important to point out that although every bidder i ∈ M apparently

confronts m markets M−j, (j ∈ M0, j ̸= i), he actually only needs to submit one bundle

Ai(t) (the same bundle for all m markets he faces) in each round t of the auction. This is

very simple, useful and practical from the viewpoint of bidders, and differs crucially from

Ausubel’s (2006) auction (also Sun and Yang 2008b) where every bidder i ∈ M faces also

m markets M−j, (j ∈M0, j ̸= i), but needs to submit a bid Aj
i (t) for every market M−j,

j ∈ M0, j ̸= i, and thus in total has to report m possibly different bids for m markets

in the auction. This means that the current auction requires far less communication and

information from bidders.

Note 4: Observe that bidder i’s payment qi given by (4.10) involves only the prices

and allocations of the last round t∗ of the auction. This payment is simple and easy to

compute19 and moreover has an intuitive interpretation: it equals the seller’s total revenue

Re(p−i(t∗)) in the market M−i minus her total revenue Re(p−0(t∗)) in the original market

M plus the prices
∑

S∈γ−0
i
p−0(t∗, S) of all bundles assigned to bidder i in the original market

M at round t∗. It will be shown when all bidders bid truthfully, the pair (p−j(t∗), π−j) is

an NPW equilibrium in every market M−j, and qi equals the difference between the total

equilibrium payments of bidder i’s opponents (including the seller) in M−i and the total

equilibrium payments of bidder i’s opponents in M.

Before studying the strategic aspect of the auction, we demonstrate how the auction

actually works via Example 1. To save space, we assume that the seller’s reserve price

18If there are several such bidders, the auctioneer randomly chooses one.
19This also contrasts with that of Ausubel (2006) which is calculated along the entire path generated by

his auction.
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function is u0(·) = (0, 1, 2, 1, 3, 3, 4, 5). The demands, supplies and withdrawals gener-

ated in the auction are shown in Table 4, where the price vectors are understood as

p = (p(A), p(B), p(C), p(AB), p(AC), p(BC), p(ABC)) with p(∅) = 0, the bidder’s column

indicates each bidder’s withdrawals and demands, the last column indicates the seller’s

supplies γ, and the last row gives the final outcome. Note that in the entire process every

bidder i reports only Ai(t) against prices p
i(t) (and a withdrawal Ψi(t) if any).

The auctioneer starts with the reserve prices p0(0) = (1, 2, 1, 3, 3, 4, 5). In each round

t(= 0, 1, · · · , 7), every bidder i(= 1, 2, 3) faces his price function pi(t) and reports a bid Ai(t)

(and a withdrawal Ψi(t) if any). We see that at every round t every bidder i reports an

optimal bundle Ai(t) ∈ Di(pi(t)), except that bidder 3 reports the bundle AB /∈ D3(p3(0))

at round 0, reports the bundle B /∈ D3(p3(4)) at round 4, and bidder 2 reports the bundle

AB /∈ D2(p2(5)) at round 5. In addition, at round t = 5 bidder 3 withdraws his bid b3(4)

which yields a non-positive profit for him but bidder 3 does not withdraw his bid b3(0)

giving him positive profit, and at round t = 6 bidder 2 withdraws his bid b2(5) which yields

a non-positive profit for him. However, all bidders bid sincerely from round t = 6 on.

Table 4: The illustration of the IC dynamic auction for Example 1.

23



p0(0) = (1, 2, 1, 3, 3, 4, 5) p−0(0) = (1, 2, 1, 3, 3, 4, 5) γ−0(0) = {ABC}
t = 0 p1(0) = (1, 2, 1, 3, 3, 4, 5) A1(0) = AB p−1(0) = (1, 2, 1, 3, 3, 4, 5) γ−1(0) = {ABC}

p2(0) = (1, 2, 1, 3, 3, 4, 5) A2(0) = AC p−2(0) = (1, 2, 1, 3, 3, 4, 5) γ−2(0) = {ABC}
p3(0) = (1, 2, 1, 3, 3, 4, 5) A3(0) = AB p−3(0) = (1, 2, 1, 3, 3, 4, 5) γ−3(0) = {ABC}
p0(1) = (1, 2, 1, 4, 3, 4, 5) p−0(1) = (1, 2, 1, 4, 4, 4, 5) γ−0(1) = {AC,B}

t = 1 p1(1) = (1, 2, 1, 4, 3, 4, 5) A1(1) = AB p−1(1) = (1, 2, 1, 4, 4, 4, 5) γ−1(1) = {AC,B}
p2(1) = (1, 2, 1, 4, 4, 4, 5) A2(1) = AC p−2(1) = (1, 2, 1, 4, 3, 4, 5) γ−2(1) = {AC,B}
p3(1) = (1, 2, 1, 4, 3, 4, 5) A3(1) = ABC p−3(1) = (1, 2, 1, 4, 4, 4, 5) γ−3(1) = {AC,B}
p0(2) = (1, 2, 1, 4, 3, 4, 5) p−0(2) = (1, 2, 1, 5, 4, 4, 6) γ−0(2) = {AB,C}

t = 2 p1(2) = (1, 2, 1, 5, 3, 4, 5) A1(2) = AB p−1(2) = (1, 2, 1, 4, 4, 4, 6) γ−1(2) = {AC,B}
p2(2) = (1, 2, 1, 4, 4, 4, 5) A2(2) = AC p−2(2) = (1, 2, 1, 5, 3, 4, 6) γ−2(2) = {AB,C}
p3(2) = (1, 2, 1, 4, 3, 4, 6) A3(2) = BC p−3(2) = (1, 2, 1, 5, 4, 4, 5) γ−3(2) = {AB,C}
p0(3) = (1, 2, 1, 4, 3, 4, 5) p−0(3) = (1, 2, 1, 5, 5, 5, 6) γ−0(3) = {AC,B}

t = 3 p1(3) = (1, 2, 1, 5, 3, 4, 5) A1(3) = AB p−1(3) = (1, 2, 1, 4, 5, 5, 6) γ−1(3) = {AC,B}
p2(3) = (1, 2, 1, 4, 5, 4, 5) A2(3) = C p−2(3) = (1, 2, 1, 5, 3, 5, 6) γ−2(3) = {AB,C}
p3(3) = (1, 2, 1, 4, 3, 5, 6) A3(3) = C p−3(3) = (1, 2, 1, 5, 5, 4, 5) γ−3(3) = {AC,B}
p0(4) = (1, 2, 2, 4, 3, 4, 5) p−0(4) = (1, 2, 2, 6, 5, 5, 6) γ−0(4) = {AB,C}

t = 4 p1(4) = (1, 2, 2, 6, 3, 4, 5) A1(4) = ABC p−1(4) = (1, 2, 2, 4, 5, 5, 6) γ−1(4) = {AC,B}
p2(4) = (1, 2, 2, 4, 5, 4, 5) A2(4) = AC p−2(4) = (1, 2, 2, 6, 3, 5, 6) γ−2(4) = {AB,C}
p3(4) = (1, 2, 2, 4, 3, 5, 6) A3(4) = B p−3(4) = (1, 2, 2, 6, 5, 4, 5) γ−3(4) = {AB,C}
p0(5) = (1, 2, 2, 4, 3, 4, 6) A1(4) = A p−0(5) = (1, 3, 2, 6, 6, 5, 6) γ−0(5) = {AC,B}

t = 5 p1(5) = (1, 2, 2, 6, 3, 4, 6) A2(5) = AB p−1(5) = (1, 3, 2, 4, 6, 5, 6) γ−1(5) = {AC,B}
p2(5) = (1, 2, 2, 4, 6, 4, 6) Ψ3(5) = {b3(4)} p−2(5) = (1, 3, 2, 6, 3, 5, 6) γ−2(5) = {AB,C}
p3(5) = (1, 3, 2, 4, 3, 5, 6) A3(5) = ABC p−3(5) = (1, 2, 2, 6, 6, 4, 6) γ−3(5) = {AC,B}
p0(6) = (1, 2, 2, 5, 3, 4, 6) A1(6) = AB p−0(6) = (2, 2, 2, 6, 6, 5, 7) γ−0(6) = {AB,C}

t = 6 p1(6) = (2, 2, 2, 6, 3, 4, 6) Ψ2(6) = {b2(5)} p−1(6) = (1, 2, 2, 5, 6, 5, 7) γ−1(6) = {AC,B}
p2(6) = (1, 2, 2, 5, 6, 4, 6) A2(6) = A p−2(6) = (2, 2, 2, 6, 3, 5, 7) γ−2(6) = {AB,C}
p3(6) = (1, 2, 2, 5, 3, 5, 7) A3(6) = BC p−3(6) = (2, 2, 2, 6, 6, 4, 6) γ−3(6) = {AB,C}
p0(7) = (2, 2, 2, 4, 3, 4, 6) p−0(7) = (2, 2, 2, 6, 6, 6, 7) γ−0(7) = {AB,C}

t = 7 p1(7) = (2, 2, 2, 6, 3, 4, 6) A1(7) = AB p−1(7) = (2, 2, 2, 4, 6, 6, 7) γ−1(7) = {AC,B}
p2(7) = (2, 2, 2, 4, 6, 4, 6) A2(7) = ∅ p−2(7) = (2, 2, 2, 6, 3, 6, 7) γ−2(7) = {AB,C}
p3(7) = (2, 2, 2, 4, 3, 6, 7) A3(7) = ∅ p−3(7) = (2, 2, 2, 6, 6, 4, 6) γ−3(7) = {AB,C}

π(0) = ∅ Re(p−0(7)) = 8 π−0 = (∅, AB,C, ∅)
q1 = 6 π(1) = AB Re(p−1(7)) = 8 π−1 = (B,AC, ∅)
q2 = 2 π(2) = C Re(p−2(7)) = 8 π−2 = (∅, AB,C)

q3 = 0 π(3) = ∅ Re(p−3(7)) = 8 π−3 = (∅, AB,C)

At round 7 there is neither an over-demanded set nor an over-supplied set. The auction

terminates with the allocations π−0 = (∅, AB,C, ∅), π−1 = (B,AC, ∅), π−2 = (∅, AB,C),
π−3 = (∅, AB,C). In the last row of the table, π = π−0. By the auction rule, bidder 1 gets

π(1) = AB and pays q1 = Re(p−1(7))−(Re(p−0(7))−p−0(7, AB)) = 8−(8−6) = 6, bidders

2 gets π(2) = C and pays q2 = Re(p−2(7))−(Re(p−0(7))−p−0(7, C)) = 8−(8−2) = 2, but

bidder 3 gets (π(3) = ∅) nothing and pays nothing. The pairs (p−0(7), π−0), (p−1(7), π−1),

(p−2(7), π−2), and (p−3(7), π−3) are NPW equilibria for the markets M, M−1, M−2 and

M−3, respectively. Finally, notice that in equilibrium (i.e., the last round), every bidder

i’s optimal bundle π(i) ∈ Di(pi(7)) with respect to his own prices pi(7) is also optimal

π(i) ∈ Di(p−j(7)) to him with respect to the prices p−j(7) of every market M−j containing

him.
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4.2 The Auction Game and Its Properties

To investigate the incentive properties of this dynamic auction mechanism, we need to

study the extensive-form dynamic game of incomplete information induced by the IC dy-

namic auction. We simply call this game the auction game. In the game, bidders are the

players. Prior to the start of the auction, nature according to a joint probability distri-

bution function F (·) draws a profile {ui}i∈M with ui ∈ U for all i ∈ M , and reveals to

every player i ∈M only his own value function ui of private information. Let Hi(t) be the

part of the information (or history) of play that player i has observed just before he takes

action at time t ∈ Z+. According to the auction rules, a natural and sensible specification

can be that Hi(t) comprises all observable price functions and his own past actions, i.e.,

Hi(t) = {pi(t), pi(s), bi(s),Ψi(s) | 0 ≤ s < t}, Hi(s) ⊆ Hi(t), for 0 ≤ s ≤ t.

Following any history Hi(t), t ∈ Z+, every player i updates his posterior beliefs µi(· |
t,Hi(t), u

i) over opponents’ value functions. We stress that even after the auction is fin-

ished, player i may not know his opponents’ value functions precisely.

A (dynamic) strategy σi of player i is a function {(t,Hi(t), u
i) | t ∈ Z+, u

i ∈ U} →
2Ωi(t−1)×2N , which tells him to submit a withdrawal and a bid σi(t,Hi(t), u

i) = (Ψi(t), Ai(t))

∈ 2Ωi(t−1) × 2N at each time t ∈ Z+ when he observes Hi(t). Note that when bidder i ob-

serves the history Hi(t), he knows the set Ωi(t − 1). Let Σi denote player i′s strategy

space of all such strategies σi. Given time t ∈ Z+, we say that bidder i bids sincerely

at time t relative to utility function ui if, for any history Hi(t), he withdraws Ψi(t) (if

any) according to the withdrawing rules those of his past bids that give him non-positive

profits, i.e., ui(S) − p(S) ≤ 0 for all (S, p(S)) ∈ Ψi(t), and reports a demand bundle

Ai(t) ∈ Di(pi(t)) = argmaxS⊆N{ui(S) − pi(t, S)} with Ai(t) = ∅ when ∅ ∈ Di(pi(t)). A

strategy σi of bidder i is sincere if he always bids sincerely. Observe that a sincere bidding

strategy may not be unique, and the strategy space Σi of player i contains sincere bidding

strategies and also various other strategies.

Given the auction rules, the outcome of this auction game depends entirely upon the

realization {ui}i∈M of value functions and the strategies {σi}i∈M , the bidders take. Let

Wi

(
{σl}l∈M , {ul}l∈M

)
denote the payoff of player i ∈ M . Then this payoff is determined

as follows: (i) If the IC dynamic auction terminates in Step 3, then each bidder i receives

bundle π−0(i) and pays qi in formula (4.10) and his payoff is given by

Wi

(
{σl}l∈M , {ul}l∈M

)
= ui(π−0(i))− qi. (4.11)

(ii) If the dynamic auction stops in Step 4, the player i∗ who receives the bundle S∗ is

punished and receives a strictly negative payoff, while the payoff of all other players is

zero. (iii) If the dynamic auction does not terminate (i.e., in Step 5), then every bidder i
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who has withdrawn his bids more than L∗ times is punished with a penalty of U∗, but the

payoff of any other player is zero.

For auction games of incomplete information, the ex post equilibrium has been used by

Crémer and McLean (1985) for a sealed-bid auction (see also Krishna 2002) and the ex post

perfect equilibrium by Ausubel (2004, 2006) for dynamic auctions. Stronger than ex post

equilibrium, Bayesian equilibrium, and perfect Bayesian equilibrium, the notion of ex post

perfect equilibrium has a number of additional desirable properties, i.e., it is not only robust

against any regret but also independent of any probability distribution, and furthermore

it requires that the equilibrium strategy for every player should remain optimal at every

node of the auction game even if the player were to learn his opponents’ private values.

Following Ausubel (2006), the m-tuple {σi}i∈M is an ex post perfect equilibrium if for any

time t ∈ Z+, following any history profile {Hi(t)}i∈M , and for any realization {ui}i∈M of

profile of value functions of private information, the continuation strategy σi(· | t,Hi(t), u
i)

of every player i ∈M (i.e., σi(s,Hi(s) | t,Hi(t), u
i) ⊆ 2Ωi(s−1)×2N for all s ≥ t) constitutes

his best response against the continuation strategies {σl(· | t,Hl(t), u
l)}l∈M−i

of player i’s

opponents of the game even if the realization {ui}i∈M becomes common knowledge. In

addition, we say that an auction mechanism is ex post individually rational, if, for every

bidder, no matter how his opponents bid, as long as he always bids sincerely he will never

end up with a negative payoff.

The next result shows a useful and interesting property of the IC dynamic auction that

although each bidder i submits the same bid for all markets according to his price function

pi(t) rather than every market price function p−j(t), after any history, as long as all bidders

bid sincerely, the auction simultaneously finds an NPW equilibrium in every market.

Lemma 4.2 Suppose that Assumptions (A1)–(A3) hold for the auction model. For any

time t0 ∈ Z+ when the IC dynamic auction has not stopped, following any history profile

{Hi(t0)}i∈M , if every bidder bids sincerely from t0 on, the IC dynamic auction must stop

in Step 3 at some round t∗ and for every j ∈ M0, the pair (p−j(t∗), π−j) is a nonlinear

pricing Walrasian equilibrium for the market M−j.

The following theorem establishes that sincere bidding is an ex post perfect equilibrium

in the auction game.20 That is, at any time t0 and following any history up to t0, bidding

truthfully is a best response for every bidder from t0 on, no matter whether he is now at

time t0 on the equilibrium path or off the equilibrium path, as long as all his opponents

bid sincerely from time t0 on. The auction also guarantees that a bidder will never get a

negative payoff as long as he always bids sincerely no matter how others do, and moreover

no bundle of goods would be sold below the seller’s reserve price.

20To our best knowledge, the ex post perfect equilibrium is the most desirable property that a dynamic

auction could possibly achieve. See also Ausubel (2004, 2006), and Sun and Yang (2008b).
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Theorem 4.3 Suppose that the market M satisfies Assumptions (A1)–(A3).

(i) Sincere bidding by every bidder is an ex post perfect equilibrium in the auction game.

(ii) When bidders bid sincerely, the IC dynamic auction yields an efficient allocation π−0

with its Walrasian equilibrium price for every bundle of goods and a generalized VCG

payment qi ≥ u0(π−0(i)) for every bidder i ∈M in finite time.

(iii) The IC dynamic auction is ex post individually rational.

5 The Model of Multiple Sellers

In this section we extend our approach to deal with multiple sellers. Suppose that there

are K sellers and m buyers, denoted by S = {1, · · · , K} and M = {K + 1, · · · , K +m},
respectively. Each seller i ∈ S owns a set Wi of indivisible goods. The sellers wish to sell

their goods to the buyers through auction. Let N = {1, 2, · · · , n} denote the collection

of all goods, i.e., N = ∪K
i=1Wi, where Wh ∩Wi = ∅ for h ̸= i. Every bidder j ∈ M has

a utility function uj : 2N → Z with uj(∅) = 0, and is endowed with a sufficient amount

of money in the sense that he can pay up to his value. Each seller i has a reserve price

function ui : 2Wi → Z with ui(∅) = 0 and is interested only in her own goods.

The same Assumptions (A1), (A2), and (A3) in Section 2 are used for this extended

model, i.e., all buyers and sellers regard all goods as complements. Two basic questions

arise immediately in the study of this model. Should the sellers sell their goods separately

or jointly? If they sell their goods jointly, how should they divide their joint revenues?

because the goods are complementary, some goods of one seller may be sold with another

seller’s goods as one package and thus the revenues of the sellers are not separable in general.

This is in sharp contrast with models of Kelso and Crawford (1982), Gul and Stacchetti

(1999, 2000), Milgrom (2000), and Ausubel (2006) in which goods are substitutes and can

be sold through competitive anonymous and linear prices. As a result, the revenues of

the sellers in these models are automatically separable. We use the following example to

illustrate the two issues and indicate how they may be resolved.

Example 3: Suppose that there are two sellers (1 and 2) and three bidders (3, 4, 5). Seller

1 owns item A and seller 2 owns items B and C. Bidders’ values and sellers’ reserve prices

are given in Table 5. Clearly, all items are complementary. We consider and compare two

scenarios in which items will be allocated.

First, if the sellers decide to sell their goods separately, item A will go to buyer 5 and

seller 1’s revenue is between 1 and 2, while items B and C will go to buyer 4 and seller 2’s

revenue is between 5 and 6. The allocation of the items achieves a value of 8.

Second, if the sellers were to sell their goods jointly, then item C would go to buyer

3, and items A and B to buyer 5 with (superadditive) competitive equilibrium prices,
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e.g., p∗ = (0, 2, 1, 3, 13, 5, 6, 16). Let π∗ = (C, ∅, AB) denote the allocation of items to the

buyers. This is the unique efficient allocation and gives the total market value of 22, much

higher than 8 in the first case! The total joint revenues of the sellers are 16 and inseparable

because items A and B are sold as a bundle at the price of 13. How should the sellers

divide their joint revenues?

We may view the problem as a cooperative game for the sellers and adopt the Shapley

value (see Shapley 1953 and Myerson 1991) as a fair division rule. To do this, the equilib-

rium price of A can be seen as the value of seller 1, the equilibrium price of BC as the value

of seller 2, and the equilibrium price of A, B and C as the value of the coalition of sellers

1 and 2. Let v({1}) = 2, v({2}) = 6 and v({1, 2}) = 16 be the value of the coalitions {1},
{2}, and {1, 2}, respectively. For the ordering (1, 2), the marginal contributions of sellers

1 and 2 are 2 and 14, respectively, while for the ordering (2, 1), the marginal contributions

of sellers 1 and 2 are 10 and 6, respectively. The average of the two possibilities gives the

Shapley value ϕ(v) = (ϕ1(v), ϕ2(v)) = (6, 10) by which seller 1 receives the revenue of 6

and seller 2 the revenue of 10. This shows that if the sellers sell their goods jointly, the

equilibrium allocation π∗ achieves the maximal market efficiency, far better than they sell

separately, and also the sellers gain higher revenues than if they act independently.

Table 5: Bidders’ and seller’s values over items.

∅ A B C AB AC BC ABC

Seller 1 0 1 0 0 1 1 0 1

Seller 2 0 0 1 1 1 1 3 3

Bidder 3 0 0 1 4 6 5 5 12

Bidder 4 0 1 0 1 12 3 6 14

Bidder 5 0 2 1 1 18 4 3 20

Let 0 represent the auctioneer (agent 0) who acts in the interests of sellers. Then the

auctioneer’s reserve price function u0 : 2N → IR is given by

u0(L) =
∑
i∈S

ui(L ∩Wi), for any L ⊆ N = ∪h∈SWh.

It is easy to see that u0 is superadditive if ui is superadditive for every i ∈ S. As in Section

2, let M0 = M ∪ {0}. We can analogously work on M0 and define the corresponding con-

cepts such as allocation, efficient allocation, market value, and nonlinear pricing Walrasian

equilibrium for the extended model. Recall that allocation π = (π(i), i ∈ M0) assigns the

bundle π(i) to agent i. If π(0) ̸= ∅, the bundle π(0) is not sold and thus stays with the

auctioneer who actually returns the bundle π(0) ∩Wi ̸= ∅ to seller i ∈ S.
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We say that two sellers are symmetric if they have the same heterogeneous goods and

the same reserve price function. A seller is dummy if the value of any bundle of her goods

to every bidder is worth no more than her own reservation value of the bundle. More

precisely, a seller i ∈ S is dummy if one has uj(A ∪ B) − uj(A) < ui(B) for every bidder

j ∈M , every nonempty bundle A ⊆ ∪h∈S\{i}Wh and every nonempty bundle B ⊆ Wi.

An allocation rule specifies a price function p, an allocation π of goods and a payoff

vector ψ ∈ IRK at which buyer j receives bundle π(j) and pays p(π(j)), while seller i

obtains a total payoff of ψi. So at (p, π, ψ), buyer j achieves a profit of uj(π(j))− p(π(j)),

and seller i gains a total payoff of ψi (Note that if seller i retains a bundle π(0) ∩Wi ̸= ∅
of unsold goods, she receives a revenue of ψi − p(π(0) ∩Wi)).

An allocation rule is Pareto efficient if there does not exist another allocation rule

which makes no agent worse off but at least one strictly better off. An allocation rule

is individually rational if it makes every agent better off than she/he stands alone. An

allocation rule is symmetric if it gives any two symmetric agents the same payoff. An

allocation rule has the dummy property if it gives a dummy agent its own value.

The Shapley value has many interesting properties including the above four and is the

most widely used single value solution for cooperative games. Unlike the core that can

be quite large or empty, the Shapley value always exists and prescribes a unique payoff

allocation for every transferable utility (TU) game and is easy to apply as a predictive

theory. We will show how this solution can be implemented by using our auction.

By Corollary 3.2, the extended model has a nonlinear pricing Walrasian equilibrium

(p∗, π∗). From (p∗, π∗) we can construct a new nonlinear pricing Walrasian equilibrium

(q∗, π∗) such that q∗ is superadditive. We define

q∗(L) = max
γ∈B(L)

{∑
A∈γ

p∗(A)
}
, for everyL ∈ 2N , (5.12)

where B(L) denotes the family of all partitions of the elements in L. Then we have the

following useful observation.

Lemma 5.1 If (p∗, π∗) is a nonlinear pricing Walrasian equilibrium, then (q∗, π∗) is

also a nonlinear pricing Walrasian equilibrium.

From (q∗, π∗), we determine the value of each coalition of sellers. For any T ⊆ S, let
v(T ) = q∗(∪i∈TWi), i.e., the equilibrium price of the bundle ∪i∈TWi owned by the sellers in

T . Clearly, v(∅) = 0, v({i}) ≥ ui(Wi) for every i ∈ S, and v is superadditive. This defines

a superadditive TU game (S, v). Let β = (β(1), · · · , β(K)) be a sequence of the K sellers

by which the grand coalition S could be built up from nothing by adding one member each

time, and let Ω be the family of all such sequences β. In each sequence β, the marginal

contribution of seller i equals v(Pβ(i)∪{i})−v(Pβ(i)) where Pβ(i) is the set of players that
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precede i in β. According to Shapley (1953), every agent i ∈ S should receive the average

of all her marginal contributions

ϕi(v) =
∑
β∈Ω

v(Pβ(i) ∪ {i})− v(Pβ(i))

K!

We denote this rule together with (q∗, π∗) by (q∗, π∗, ϕ) and call it the equilibrium Shapley

value allocation rule.

Theorem 5.2 For the extended model, the equilibrium Shapley value allocation rule

satisfies Pareto efficiency, individual rationality, dummy, and symmetry properties.

6 Applications

Situations involving complementarities abound. Economies of scale and scope generate

complementarities. Different segments of a railroad network are typically complements,

and so are different parts of a machine, players of a soccer team and books in several

volumes. In this section we discuss two major practical applications. For related models,

we refer to Rassenti et al. (1982), Brewer and Plott (1996), Sun and Yang (2006), and

Ostrovsky (2008).

As the first application, we examine a multi-sided matching equilibrium model. Suppose

that a seller wishes to sell three complementary sets A, B and C of indivisible goods

to a number of buyers M = {1, 2, · · · ,m}. (The analysis also applies to four or more

complementary sets of goods). For instance, one may think of A as main processors (CPUs),

of B as displays, and of C as keyboards. Let A = {a1, a2, · · · , ar}, B = {b1, b2, · · · , bs},
and C = {c1, c2, · · · , ct}. Without loss of generality, we assume that the seller values every

bundle of goods at zero. Each buyer has a sufficient amount of money and can buy as many

goods as he wishes. The value of buyer i ∈M depends on the combination of a CPU a ∈ A,

a display b ∈ B and a keyboard c ∈ C and is denoted by vi(a, b, c), which is assumed to be

a nonnegative integer value. If buyer i ∈M uses a set S of CPUs, displays and keyboards,

the value ui(S) of these CPUs, displays and keyboards to the buyer totally depends on the

combination of CPU, display and keyboard that the goods in S can generate, and can be

explicitly formulated as

ui(S) = max{0, vi(ai1 , bj1 , ck1) + vi(ai2 , bj2 , ck2) + · · ·+ vi(ail , bjl , ckl)}

with the maximum to be taken over all sets {(ai1 , bj1 , ck1), (ai2 , bj2 , ck2), · · · , (ail , bjl , ckl)} of

distinct CPU-display-keyboard matchings in S. The valuation formula ui for every buyer

i ∈ M can be seen as an extension of the worker-machine assignment valuations derived
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by Shapley (1962). Hatfield and Milgrom (2005) give a different extension of Shapley’s

assignment model.

So in this model, every buyer faces internally an optimal three-sided (CPU-display-

keyboard) assignment problem and the whole economy faces a more complex optimal four-

sided (buyer-CPUs-displays-keyboards) assignment problem. The following theorem shows

that for this model there is a nonlinear system of competitive prices through which all

CPUs, displays and keyboards can be efficiently allocated to the buyers. But the model

may not have a standard Walrasian equilibrium.

Theorem 6.1 The value function ui of every buyer i ∈ M satisfies Assumptions (A1)–

(A3) and thus the model has a nonlinear pricing Walrasian equilibrium. But the model

may not have a standard Walrasian equilibrium.

Our second application concerns several firms competing for various parts of a trans-

portation or telecommunication network. A government owns the network that it wishes

to sell or rent out to the firms.21 The fundamental issue here is which part of the network

should be allocated to which firm at what price. We will show that this problem fits well

into the general model presented in Section 2 and can be therefore solved by our dynamic

auction. To see this, it is sufficient to observe that a general value (or utility) function of

every firm or the government over the network is actually superadditive. In the sequel, we

explain how such value functions can be constructed.

Let G = (N,E) denote the network or graph, where N is called the vertex set represent-

ing the collection of all stations and E is the edge set standing for the collection of roads

linking stations. We use {i, j} to represent a road that connects two distinct stations i and

j directly not via any other station. The edge set is a family of such roads. A subnetwork

G′ = (N ′, E ′) of the network G = (N,E) is a network whose vertex set N ′ is a subset of

N , and whose edge set E ′ is a subset of E restricted to the subset N ′, i.e., E ′ is a subset of

the set {{i, j} ∈ E | i, j ∈ N ′}. Clearly, when N ′ equals N with E ′ = E, the subnetwork

G′ will become the original network G. A sequence of stations (i1, . . . , ik′) yields a path

between i1 and ik′ in the network (N,E) if all roads {ik, ik+1} ∈ E, k = 1, · · · , k′ − 1, are

different, and if one can walk from station i1 to station ik′ following each road {ik, ik+1}
and passing every station ik for k = 1, . . . , k′−1. A path forms a cycle or loop if one starts

with a station on the path and follows along the path, one will return to the station.

A subnetwork G′ = (N ′, E ′) of the network G is connected if for any two stations

i, j ∈ N ′, i ̸= j, there is a path in the subnetwork G′ between i and j; G′ is a tree if

it contains no cycle and is connected; G′ is a spanning tree of the network G if G′ is a

tree and its vertex set N ′ equals the vertex set N of the original network; G′ is called a

21How to sell public utilities is an important issue in privatization (Maskin 1992 and Janssen 2004).
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component of the network G if G′ is a maximally connected subnetwork in the network

G. Analogously one can define spanning trees or components of any subnetwork of the

network. It is well-known that every (sub)network is the union of disjoint components. We

refer to Schrijver (2004) on graphs and networks in detail.

When a firm l intends to use the network G = (N,E), it has its own estimated cost

cl(e) ∈ Z+ for each road e = {i, j} ∈ E. For any subnetwork G′ = (N ′, E ′) of the network

G, firm l’s cost of operating it equals the sum of the minimum cost among all spanning

trees in each component of G′, denoted by C l(G′). Formally, we can write G′ = (N ′, E ′) as

the union of disjoint components Gi = (Ni, Ei), i = 1, · · · , k, in G′ = (N ′, E ′). Notice that

each component Gi is a subnetwork of G′, of course, of G as well. Each component Gi,

i = 1, · · · , k, has at least one spanning tree because every component is connected. Firm

l’s cost of operating component Gi is the minimum cost among all spanning trees in Gi

and is denoted by C l(Gi). Let Ti = (Ni, E
m
i ) stand for a minimum cost spanning tree of

the component Gi = (Ni, Ei). Observe that Ti is a subnetwork of Gi and E
m
i is a subset of

Ei. Then firm l’s total cost C l(G′) of operating G′ is the sum of operating all components

of G′ separately, i.e., C l(G′) =
∑k

i=1C
l(Gi) where C l(Gi) =

∑
e∈Em

i
cl(e) for i = 1, · · · , k.

Minimum cost spanning trees are frequently used in projects concerning transportation or

telecommunication networks, electrical power lines, and pipe lines, etc, and have at least

two important properties: their cost is minimum, and they connect all stations in the

underlying component so that all stations can be served. The utility function of firm l

using the network can be the cost-saving function induced by the firm’s cost function and

is given by ul(G′) =
∑

e∈E′ cl(e)−C l(G′) for every subnetwork G′ = (N ′, E ′) of the network

G. Similarly, the government (i.e., the seller) also has an estimated cost c0(e) ∈ Z+ for each

road e ∈ E and the corresponding cost function C0 and the corresponding reserve price

function u0 defined by u0(G′) =
∑

e∈E′ c0(e) − C0(G′) for every subnetwork G′ = (N ′, E ′)

of the network G.

The following theorem shows that it is possible for the government to sell the network

to the firms through a competitive and nonlinear pricing system.

Theorem 6.2 Both the value function ul of every firm l and the reserve price function u0

of the government are superadditive. Thus, the model has a nonlinear pricing Walrasian

equilibrium.

7 Conclusion

We have presented a general auction model with heterogenous items. The items are sold

in discrete quantities. Both bidders and the seller view all items as complements. Every

bidder has a private valuation over each bundle of goods that the seller does not know. The
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essential features of this model are asymmetric information, complementarity, indivisibility,

heterogeneity and multiplicity. These factors have been identified in the literature as major

obstacles to the design of dynamic auctions, because complementarity induces both the

exposure problem and the threshold problem, asymmetric information creates incentive

issues, and complementarity, indivisibility, heterogeneity and multiplicity aggravate the

design issue even further by causing problems with existence of Walrasian equilibrium.

Since we have only alluded to indivisibility, it is appropriate and necessary to elaborate

on this here. Indivisibility is an extreme form of non-convexity and is hard to tackle. It is

well-known that the assumption of convexity and perfect divisibility has played a central

role in most economic analyses. However, this stringent assumption does not always fit well

into reality where indivisible commodities are pervasive and significant, such as houses,

cars, computers, machines, networks, and airplanes, to name but a few. In practice,

virtually all divisible goods are also traded in discrete quantities, such as oil sold in barrels.

Obviously, modeling economies with indivisibility is more meaningful and more realistic.

The importance and difficulty of studying such economies have long been recognized in

the literature (Koopmans and Beckmann 1957, Debreu 1959, Arrow and Hahn 1971, and

Kelso and Crawford 1982).

The existing auction design literature has succeeded in dealing with substitute goods

but cannot be equally applied to the current environment where goods exhibit comple-

mentarities. The current article goes towards filling this outstanding theoretical gap and

has proposed a new dynamic auction which successfully resolves all the potential problems

described above. Besides its theoretical significance, the current approach may also have

far-reaching implications for practical auction design, because firstly it deals with a general

and practical market model in which each bidder possesses payoff-relevant critical private

information and may have an incentive to economize on such information; secondly it has

taken the complex nature of rational and strategic economic agents into account in the

design of the auction. For instance, economic agents are reluctant to reveal their private

value or cost, prefer simple, detail-free, error-tolerant, robust and transparent trading rules,

and are accustomed to a competitive price system rather than a non-price system. The

current auction mechanism is capable of handling such agents. Another attractive feature

of this mechanism is that it is robust against bidders’ regret and also independent of the

probability distribution of their values.

The conventional practice for handling complementary items is to bundle all those items

together in advance and sell them as a single package, often resulting in inefficient out-

comes. The current auction design offers an efficient and incentive compatible alternative

approach in tackling this challenging problem. Because the auction rules are quite intu-

itive, detail-free and transparent, and the sufficient conditions are extremely general and
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simple, we believe that it will not be difficult to put the auction on test in the laboratory,

and ultimately we hope that this auction may someday find its way into practical use.

As in most of the auction literature we have concentrated on a private value model.

While the private value assumption may not be satisfied in some auction markets, we

believe that the analysis developed here for this basic model provides a useful and necessary

basis for the study of efficient auction design in more complex environments. Our model

is very general in almost all respects but its private value assumption. How to relax this

assumption remains widely open. For instance, a natural and important question is whether

and how it can be extended to an interdependent value setting. This is the situation where

each bidder has only partial information about the value of every bundle of items for sale

and his valuation may be affected by information possessed by other bidders. For readers

interested in pursuing this direction, we recommend starting with Milgrom and Weber

(1982), Cremér and McLean (1985), and Maskin (1992) on auctions for a single item,

Ausubel (2004), and Perry and Reny (2002, 2005) for homogeneous goods.

We hope that the current study will prove to be useful in coping with practical and

complex resource allocation problems.

APPENDIX

This appendix contains all omitted proofs and details in the main body of the paper.

Proof of Lemma 2.2 The proof of this lemma is analogous to the proof of a similar

but simpler lemma in Bevia, Quinzii and Silva (1999), Gul and Stacchetti (1999). Be-

cause (p∗, π∗) is a nonlinear pricing Walrasian equilibrium, for any bidder i ∈ M and any

allocation ρ ∈ A, it holds

ui(π∗(i))− p∗(π∗(i)) ≥ ui(ρ(i))− p∗(ρ(i)).

It follows that∑
i∈M0

ui(π∗(i))−∑
i∈M0

ui(ρ(i)))

≥ u0(π∗(0)) +
∑

i∈M p∗(π∗(i))−
(
u0(ρ(0)) +

∑
i∈M p∗(ρ(i))

)
.

It follows from π∗ ∈ S(p∗) that p∗(π∗(0)) = u0(π∗(0)) when π∗(0) ̸= ∅. Thus we have

u0(π∗(0)) +
∑

i∈M p∗(π∗(i)) =
∑

i∈M0
p∗(π∗(i)) = Re(p∗)

≥ ∑
i∈M0

p∗(ρ(i))) ≥ u0(ρ∗(0)) +
∑

i∈M0
p∗(ρ(i))).

Consequently, we have∑
i∈M0

ui(π∗(i)) ≥
∑
i∈M0

ui(ρ(i)),

for all ρ ∈ A. This implies that π∗ is efficient.
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Suppose that ρ is an efficient allocation. Then we have V (N) =
∑

i∈M0
ui(ρ(i)). Be-

cause (p∗, π∗) is an NPW equilibrium, π∗ is an efficient allocation and thus V (N) =∑
i∈M0

ui(π∗(i)). Furthermore it holds

V i(p∗) ≥ ui(ρ(i))− p∗(ρ(i)), for all i ∈M

u0(π∗(0)) +
∑

i∈M p∗(π∗(i)) =
∑

i∈M0
p∗(π∗(i)) = Re(p∗)

≥ ∑
i∈M0

p∗(ρ(i))) ≥ u0(ρ∗(0)) +
∑

i∈M0
p∗(ρ(i))).

If one of the above inequalities were strict, we would have

V (N) =
∑

i∈M0
ui(π∗(i))

= u0(π∗(0)) +
∑

i∈M

(
ui(π∗(i))− p∗(π∗(i))

)
+

∑
i∈M p∗(π∗(i))

=
∑

i∈M V i(p∗) +Re(p∗)

>
∑

i∈M

(
ui(ρ(i))− p∗(ρ(i))

)
+ u0(ρ(0)) +

∑
i∈M p∗(ρ(i))

=
∑

i∈M0
ui(ρ(i))

= V (N),

yielding a contradiction. We therefore have

V i(p∗) = ui(ρ(i))− p∗(ρ(i)), for all i ∈M,

u0(ρ(0)) +
∑

i∈M p∗(ρ(i)) = Re(p∗), i.e., ρ ∈ S(p∗).

This shows that (p∗, ρ) is also an NPW equilibrium. 2

The following lemma establishes the important properties of proper NPW equilibria

and their structure. It implies that several NPW equilibria may just correspond to one

proper NPW equilibrium. The proper NPW equilibrium captures the essential property of

all its corresponding NPW equilibria. As a result the set of proper NPW equilibria reveals

the inner structure of all NPW equilibria.

Lemma A (i) An equilibrium pricing function p is proper if and only if, for every

nonempty bundle A with p(A) > u0(A), there is a bidder i ∈M such that A ∈ Di(p), i.e.,

ui(A) − p(A) = V i(p). (ii) For each equilibrium pricing function p there exists a proper

equilibrium pricing function q such that V i(p) = V i(q) for all i ∈M and Re(p) = Re(q).

Proof: (i) Suppose that p is a proper equilibrium pricing function, but there is a bundle

A with p(A) > u0(A) satisfying ui(A)− p(A) < V i(p) for all i ∈ M . Let π be an efficient

allocation. Then, we see A ̸= π(i) for all i ∈ M because V i(p) = ui(π(i))− p(π(i)) for all

i ∈M . Let δ = min
{

1
2
(p(A)− u0(A)), 1

2
min{V i(p)− ui(A) + p(A) | i ∈M}

}
, and define

a different feasible pricing function q(≤ p) by

q(S) =

{
p(S)− δ if S = A

p(S) if S ̸= A.

Then, by the definition of δ, for every i ∈ M we have ui(π(i)) − q(π(i)) ≥ ui(S) − q(S)

for all S ∈ 2N . On the other hand, since A ̸= π(i) for all i ∈ M , we have Re(q) =
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u0(π(0)) +
∑

i∈M p(π(i)) = Re(p). This shows that (q, π) is also an NPW equilibrium,

contradicting the assumption that p is a proper equilibrium pricing function.

Assume that p is an equilibrium pricing function, and for every bundle A with p(A) >

u0(A) there is a bidder i ∈ M such that ui(A) − p(A) = V i(p), but p is not a proper

equilibrium pricing function. Namely, there is a different equilibrium pricing function

q ≤ p satisfying Re(q) = Re(p). Let π be an efficient allocation. Then, we see (p, π) and

(q, π) are both NPW equilibria, and so
∑

i∈M0
q(π(i)) = Re(q) = Re(p) =

∑
i∈M0

p(π(i)).

This implies that q(π(i)) = p(π(i)) for all i ∈ M . But, since p ≥ q ≥ u0(·) and p ̸= q,

there must be a nonempty bundle Ā ⊆ N such that p(Ā) > q(Ā) ≥ u0(Ā). It is clear

that Ā ̸= π(i) for all i ∈ M . However, by hypothesis, for the bundle Ā there is a bidder

i such that ui(Ā) − p(Ā) = V i(p) = ui(π(i)) − p(π(i)). It follows that ui(A) − q(A) >

ui(A)− p(A) = ui(π(i))− p(π(i)) = ui(π(i))− q(π(i)), contradicting the fact that (q, π) is

an NPW equilibrium.

(ii) Let (p, π) be an NPW equilibrium. We shall construct a corresponding proper

equilibrium (p∗, π) as follows: Let p∗(π(i)) = p(π(i)) for every i ∈ M . For any other

nonempty bundle A, if there is a bidder i with A ∈ Di(p), then let p∗(A) = p(A); otherwise

we decrease continuously the price of A until there is a bidder i whose demand set contains

A or until it becomes u0(A), and we set p∗(A) equal to the current price of A. We repeat

this process sequentially for every such bundle. Then we obtain a proper equilibrium

pricing function p∗ from p. 2

The following example shows that the set of NPW equilibrium pricing functions is not

a lattice.

Example 4: Suppose that there are two bidders (1, 2) and three items (A, B, C) in

a market. Bidders’ values and seller’s reserve prices are given in Table 6. All items are

viewed by every bidder and the seller as complements. In the table, both p and q are

(proper) pricing equilibrium functions. It is easy to see that p ∧ q is not an equilibrium

pricing function!

Proof of Theorem 2.3: It follows immediately from Corollary 3.2 that there is an equi-

librium pricing function. Then Lemma A given above implies that there is a proper equi-

librium pricing function associated with the equilibrium pricing function. We now prove

the second statement. Suppose that π is an efficient allocation and p, q are two proper

equilibrium pricing functions. Then by Lemma 2.2, (p, π) and (q, π) are NPW equilibria.

We need to prove that (p∗, π) is also an NPW equilibrium, where p∗(S) = max{p(S), q(S)}
for every S ∈ 2N . For every bidder i ∈M , we have π(i) ∈ Di(p) ∩Di(q). Thus,

ui(π(i))− p(π(i)) ≥ ui(S)− p(S), ∀ S ∈ 2N
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Table 6: Bidders’ and seller’s values over items.

∅ A B C AB AC BC ABC

Bidder 1 0 0 2 0 6 3 4 7.5

Bidder 2 0 0 0 2 3 6 3 7.5

Seller 0 0 0 0 0 0 0 0

Prices p 0 0 0 2 6 6 4 7.5

Prices q 0 0 2 0 6 6 4 7.5

p ∧ q 0 0 0 0 6 6 4 7.5

ui(π(i))− q(π(i)) ≥ ui(S)− q(S), ∀ S ∈ 2N

For simplicity, we assume that p∗(π(i)) = max{p(π(i)), q(π(i))} = p(π(i)). Then we have

ui(π(i))− p∗(π(i)) = ui(π(i))− p(π(i))

≥ ui(S)− p(S)

≥ ui(S)−max{p(S), q(S)}
= ui(S)− p∗(S), ∀ S ∈ 2N

This proves π(i) ∈ Di(p∗) for every bidder i ∈M .

Next we show that π ∈ S(p∗). For p and q, define ∆p by ∆p(S) = max{q(S)− p(S), 0}
for all S ∈ 2N . Then, p∗ = p+∆p. By Lemma A at the proper equilibrium pricing function

q for every nonempty bundle S ∈ 2N with q(S) > u0(S), there is a bidder i ∈ M such

that ui(π(i))− q(π(i)) = ui(S)− q(S). Moreover, ui(π(i))− p(π(i)) ≥ ui(S)− p(S) for the

bundle S, because (p, π) is an NPW equilibrium. Therefore for every nonempty S ∈ 2N

with ∆p(S) > 0 (and so q(S) > u0(S)), there is a bidder i ∈M satisfying

∆p(π(i)) = q(π(i))− p(π(i)) ≥ q(S)− p(S) = ∆p(S) > 0.

Now consider an arbitrary supply set γ ∈ S(p∗) that satisfies p∗(A∪B) < p∗(A)+p∗(B)

for (if any) every pair of different (i.e., disjoint and nonempty) bundles A and B in γ. Then

for every pair of different sets A and B in γ with ∆p(A) > 0 and ∆p(B) > 0, we have

p∗(A) = q(A) > p(A) and p∗(B) = q(B) > p(B). From the above discussion we know

there are bidders k and l such that uk(π(k))− q(π(k)) = uk(A)− q(A), p∗(π(k)) = q(π(k)),

and ul(π(l))− q(π(l)) = ul(B)− q(B), p∗(π(l)) = q(π(l)). We will show that k and l must

be two different bidders. Suppose to the contrary that k = l. Then uk(π(k))− q(π(k)) =

uk(A)− q(A) = uk(B)− q(B). By Assumption (A3) we have

uk(A ∪B)− p∗(A ∪B) ≥ uk(A) + uk(B)− p∗(A ∪B)

> uk(A) + uk(B)− p∗(A)− p∗(B) =
(
uk(A)− q(A)

)
+

(
uk(B)− q(B)

)
= 2

(
uk(π(k))− q(π(k))

)
≥ uk(π(k))− p∗(π(k)) = V k(p∗),
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yielding a contradiction. Now let γ̂ = {A ∈ γ | ∆p(A) > 0}. Then the above discussion

shows that for every A ∈ γ̂, there is a bidder iA with ∆p(π(iA)) ≥ ∆p(A) > 0 and that

A ̸= B ∈ γ̂ implies iA ̸= iB. This implies∑
i∈M0

∆p(π(i)) ≥
∑
i∈M

∆p(π(i)) ≥
∑
A∈γ̂

∆p(A) =
∑
A∈γ

∆p(A).

Because (p, π) is an NPW equilibrium, for the seller we have∑
i∈M0

p(π(i)) ≥
∑
A∈γ

p(A).

Using the two inequalities leads to∑
i∈M0

p∗(π(i)) =
∑

i∈M0

(
p(π(i)) + ∆p(π(i))

)
=

∑
i∈M0

p(π(i)) +
∑

i∈M0
∆p(π(i))

≥ ∑
A∈γ p(A) +

∑
A∈γ ∆p(A)

=
∑

A∈γ

(
p(A) + ∆p(A)

)
=

∑
A∈γ p

∗(A) = Re(p∗).

This shows π ∈ S(p∗). In summary (p∗, π) is an NPW equilibrium.

It remains to show that p∗ is proper. Choose any nonempty bundle S ∈ 2N with

p∗(S) > u0(S). Without loss of generality, suppose p∗(S) = q(S) ≥ p(S). That is,

∆p(S) = q(S) − p(S). And so q(S) > u0(S). Then, by the properness of equilibrium

pricing function q, there is a bidder i ∈M satisfying ui(π(i))− q(π(i)) = ui(S)− q(S) and

q(π(i)) − p(π(i)) ≥ q(S) − p(S) = ∆p(S) ≥ 0. This implies that p∗(π(i)) = q(π(i)) and

ui(π(i))− p∗(π(i)) = ui(S)− p∗(S). Then by Lemma A, p∗ is a proper equilibrium pricing

function. 2

We now modify the basic ascending auction in Section 3.1 so that bidders can bid

quasi-sincerely as discussed in Section 3.2.

The modified basic auction

Step 1: The seller reports her reserve price function u0 and the auctioneer sets the

initial pricing function p(0) : 2N → Z with p(0, S) = u0(S) for every bundle S ⊆ N .

Set t := 0 and go to Step 2.

Step 2: At each round t = 0, 1, 2, · · ·, the auctioneer announces the current pricing

function p(t) and a supply set γ(t) ∈ S(p(t)). Then every bidder i reports a bid Ai(t)

at the announced prices p(t). Based on the supply set and demands, the auctioneer

checks if there is any over-demanded bundle at p(t). If no bundle is over-demanded,

go to Step 3. But if there is an over-demanded bundle, the auctioneer raises the price

of each over-demanded bundle by one unit but holds the price of any other bundle

unchanged, and obtains a new price p(t+ 1). Set t := t+ 1 and return to Step 2.
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Step 3: The auctioneer reminds all bidders that “this may be the last round, please

report your optimal demand bundle”. Then, every bidder i resubmits a new bid

Ai(t) ∈ Di(p(t)) when his former bid Ai(t) is not an optimal bid. If no bidder revises

his bid, go to Step 4. Otherwise, if some bidder revises his bid, the auctioneer checks

again if there is any over-demanded bundle at p(t). If no bundle is over-demanded,

go to Step 4. But if there is an over-demanded bundle, the auctioneer raises the price

of each over-demanded bundle by one unit but holds the price of any other bundle

unchanged, and obtains a new price vector p(t+1). Set t := t+1 and return to Step

2.

Step 4: The auctioneer assigns the bundle Ai(t) to bidder i who is asked to pay the

price p(t, Ai(t)) in return, and in addition for any nonempty bundle B ∈ γ(t) which

is not demanded by any bidder at p(t), the auctioneer assigns the bundle to the seller

if p(t, B) = u0(B), otherwise, the auctioneer assigns the bundle to some bidder22 who

previously demanded the bundle but was the last to give up, and who is asked to pay

p(t, B). Then the process stops.

We have the following convergence theorem for the modified basic auction.

Theorem A Suppose that Assumptions (A1)–(A3) hold for the auction model. When

every bidder bids quasi-sincerely, the modified basic auction yields a nonlinear pricing

Walrasian equilibrium, in a finite number of rounds.

Proof: It is similar to the proof of Theorem 3.1. Suppose the modified auction stops at

some step t∗. Let p∗ = p(t∗), A∗
i = Ai(t

∗), and γ∗ = γ(t∗) ∈ S(p∗). Then, A∗
i ∈ Di(p∗) for

every i ∈M and γ∗ ∈ S(p∗). We will construct an allocation π∗ so that (p∗, π∗) constitutes

an NPW equilibrium. Note that for every bidder i ∈ M , if his demand bundle A∗
i is not

empty, it must be in the supply set γ∗. Moreover, for any two bidders i, l ∈M , with A∗
i ̸= ∅

and A∗
l ̸= ∅, we must have A∗

i ∩ A∗
l = ∅. If ∪i∈MA

∗
i = N , let π∗(i) = A∗

i , then clearly

(p∗, π∗) is an NPW equilibrium and we are done.

Suppose otherwise that there is some nonempty bundle B in the supply set γ∗ which

is not demanded by any bidder in the last step. Such a bundle is called a squeezed out

bundle. We first consider the case in which p∗(B) = u0(B). Let γ∗0 = {B ∈ γ∗ | p∗(B) =

u0(B) and B ̸= A∗
i for all i ∈ M} be the collection of all such bundles. Let π∗(0) =

∪B∈γ∗
0
B. We assign π∗(0) to the seller. By superadditivity, we know that p∗(π∗(0)) ≥

u0(π∗(0)) ≥ ∑
B∈γ∗

0
u0(B) =

∑
B∈γ∗

0
p∗(B). But we also see that p∗(π∗(0)) ≤ ∑

B∈γ∗
0
p∗(B)

because γ∗ ∈ S(p∗). Hence, we have

p∗(π∗(0)) = u0(π∗(0)) =
∑
B∈γ∗

0

p∗(B) =
∑
B∈γ∗

0

u0(B). (7.13)

22If there are several such bidders, the auctioneer randomly chooses one.
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Next, we consider the case in which p∗(B) > u0(B). This implies that the bundle B

was demanded by some bidder at some step. Let t be the last step at which B is demanded

at price p(t) = p∗(B) or p∗(B)−1 by some bidder l. By the auction rule B can be assigned

to bidder l who is asked to pay the current price p∗(B). We will show that bidder l loses

nothing in having the bundle B and paying the price. Since bidder i bids quasi-sincerely, we

have vl(B, p(t)) = ul(B)− p(t, B) ≥ 1. Notice that p∗(B) = p(t, B) or p∗(B) = p(t, B)+ 1.

Hence, for the bidder l, it holds that

vl(B, p∗) = ul(B)− p∗(B) ≥ 0. (7.14)

We need to consider the following two situations.

Case 1. When A∗
l = ∅, let π∗(l) = B. Because A∗

l ∈ Dl(p∗) and A∗
l = ∅, we have

V l(p∗) = 0 ≥ vl(B, p∗). Recall that vl(B, p∗) ≥ 0. These inequalities lead to vl(B, p∗) = 0,

which implies π∗(l) ∈ Dl(p∗).

Case 2. When A∗
l ̸= ∅, let π∗(l) = A∗

l ∪B. For the seller, we know that

p∗(A∗
l ) + p∗(B) ≥ p∗(π∗(l)). (7.15)

For the bidder l, the Superadditivity Assumption (A3) implies that

ul(π∗(l)) ≥ ul(A∗
l ) + ul(B). (7.16)

It follows from (7.15) and (7.16) that

ul(π∗(l))− p∗(π∗(l)) ≥ ul(π∗(l))− (p∗(A∗
l ) + p∗(B))

≥
(
ul(A∗

l )− p∗(A∗
l )
)
+

(
ul(B)− p∗(B)

)
≥ ul(A∗

l )− p∗(A∗
l )

where the last inequality is derived from (7.14). Because A∗
l ∈ Dl(p∗), we have π∗(l) ∈

Dl(p∗) (i.e., π∗(l) is also an optimal bundle of bidder l at p∗). Consequently, it further

implies that

ul(π∗(l))− p∗(π∗(l)) = ul(π∗(l))− (p∗(A∗
l ) + p∗(B)) = ul(A∗

l )− p∗(A∗
l )

which leads to

p∗(π∗(l)) = p∗(A∗
l ) + p∗(B). (7.17)

So in both cases bidder l loses nothing from having the nonessential bundle B and

paying the price p∗(B). As a result, the indirect utility of bidder l remains unchanged.

We can repeat this adjustment until every such squeezed out bundle B (i.e., p∗(B) >

u0(B)) in γ∗ is assigned to some bidder. For any bidder i who is not assigned with any

squeezed out bundle, let π∗(i) = A∗
i . So in the end each bidder i gets a bundle π∗(i) in his
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demand set. Because γ∗ is a seller’s partition ofN , (π∗(0), · · · , π∗(m)) must be an allocation

of N . Furthermore, it follows from the formulas (7.13) and (7.17) that
∑

i∈M0
p∗(π∗(i)) =∑

A∈γ∗ p∗(A) = Re(p∗). That is, the allocation π∗ ∈ S(p∗). Consequently, (p∗, π∗) is a

nonlinear pricing Walrasian equilibrium and we are done. 2

The following result establishes a relation between the number of different active de-

manders at the current round and the first and the second prices of the next round in the

IC dynamic auction described in Section 4. In particular, R3 concerns the existence of a

unique crucial demander stated in Note 2 of Section 4.1.

Proposition A: At every round t of the IC dynamic auction, for each nonempty bundle

S ⊆ N we have:

(R1) there exists no active demander at prices p(S) > p−0(t+ 1, S);

(R2) there exists at most one active demander at price p−0(t+ 1, S);

(R3) there exists one and only one active demander at every price p(S) ∈ {p0(t+1, S), · · · ,
p−0(t+ 1, S)− 1} in the case of p−0(t+ 1, S) > p0(t+ 1, S). In particular, if p−0(t+

1, S) > p0(t + 1, S), then at round t there is a unique crucial demander of S at

p−0(t+ 1, S)− 1 or p−0(t+ 1, S).

(R4) there exist at least two active demanders at price p0(t + 1, S) − 1 in the case of

p0(t+ 1, S) > u0(S).

Proof: At first, by the definition of active demander, we see that if at round t bidder

i is an active demander of a bundle S at price p(S), he must also be an active demander

of S at any price q(S), u0(S) ≤ q(S) < p(S) at that round, due to possibly beneficial bids

in Ωi(t). And so, if there are k active demanders of S at price p(S), then there are no less

than k active demanders of S at every price q(S), u0(S) ≤ q(S) < p(S). Observe that

for every bidder i, his possibly beneficial bids in Ωi(t) play no role when the auction is

ascending, but can be used when the auction is descending due to bidders’ withdrawing

their bids. In other words, possibly beneficial bids enable the IC auction to decrease the

price of any over-supplied bundle in each round one unit by one unit without big jump.

In the following, we will show this lemma by induction in each round t. If t = 0, these

results are trivial. So let t > 0 and suppose that these results (R1)-(R4) hold up to t− 1.

We will fix a non-empty bundle S ⊆ N .

We first show that for S the results (R1) and (R2) are true at round t. From the

assumption that (R1) and (R2) are true at t−1, we see that at round t−1 there is no active

demander of S at a higher price p(S) > p−0(t, S), and there is at most one active demander

of S at price p−0(t, S). On the other hand, from the bidding rule, we see that at round t
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bidders can only bid S at prices p(S) ≤ p−0(t, S). Thus, if p−0(t + 1, S) = p−0(t, S) + 1,

then there exists no active demander at any price p(S) ≥ p−0(t, S)+ 1 = p−0(t+1, S) at t.

If p−0(t + 1, S) = p−0(t, S), then there exists at most one active demander at p−0(t, S) =

p−0(t+1, S), and no active demander at any higher price p(S) > p−0(t, S) = p−0(t+1, S).

Otherwise, i.e., in the case of p−0(t+1, S) = p−0(t, S)−1, by the definition of 1st-price-over-

supplied and Formula (4.6), there exists no active demander at prices p(S) ≥ p−0(t, S)−1 =

p−0(t+ 1, S). In summary, the results (R1) and (R2) hold at round t.

We now show that the result (R4) is true at round t. From the assumption that (R4)

is true at round t−1, we see that at round t−1 there are at least two active demanders at

price p0(t, S)−1. Next, by the definition of 2nd-price-over-demanded and -supplied, we see

that at round t there are at least two active demanders at price p0(t, S) = p0(t+ 1, S)− 1

in the case of p0(t + 1, S) = p0(t, S) + 1, and there are at least two active demanders

at p0(t, S) − 1 = p0(t + 1, S) − 1 in the case of p0(t + 1, S) = p0(t, S). In addition, by

the rule of withdrawal, at round t bidders can only withdraw some bids of S at prices

p(S) ≥ p0(t, S)−1. Thus, at round t there are at least two active demanders at p0(t, S)−2

(if ≥ u0(S)). Therefore, in the case of p0(t+ 1, S) = p0(t, S)− 1 > u0(S) there are also at

least two active demanders at price p0(t, S)− 2 = p0(t+1, S)− 1. Consequently, the result

(R4) is true at round t.

Finally, we show that the result (R3) is true at round t, and so we assume that p−0(t+

1, S) > p0(t + 1, S). From the assumption that (R3) is true at round t − 1, we see

that at round t − 1 there exists one and only one active demander at each price p(S) ∈
{p0(t, S), · · · , p−0(t, S)−1)} in the case of p−0(t, S) > p0(t, S). Thus, by the rules of bidding

and withdrawal and the definition of 2nd-price-over-demanded and -supplied, we see that

at round t there is at most one active demander at price p0(t+1, S) (including three cases:

(i) p0(t + 1, S) = p0(t, S) + 1; (ii) p0(t + 1, S) = p0(t, S), (iii) p0(t + 1, S) = p0(t, S)− 1.).

In addition, by the rules of bidding and withdrawal and the definition of 1st-price-over-

demanded and -supplied, we see that at round t there is at least one active demander

at price p−0(t + 1, S) − 1 (including three cases: (i) p−0(t + 1, S) = p−0(t, S) + 1; (ii)

p−0(t+1, S) = p−0(t, S), (iii) p−0(t+1, S) = p−0(t, S)− 1.). In summary, at round t there

exists one and only one active demander of S at each price p(S) ∈ {p0(t+1, S), · · · , p−0(t+

1, S)− 1)}. Consequently, we see that there exists a unique crucial demander of S at price

p−0(t+ 1, S)− 1 or at p−0(t+ 1, S) in every round t with p−0(t+ 1, S) > p0(t+ 1, S). 2

Proof of Lemma 4.2: By definition of sincere bidding, we know that from any given

history profile {Hi(t0)}i∈M , there are only finitely many bids for bidders to withdraw, i.e.,

all non-profitable bids will be eliminated in finitely many rounds. Thus, the IC dynamic

auction for every market M−j, j ∈ M0, becomes the basic auction process of Section 3

after some rounds and must therefore terminate in Step 3 at some time t∗.
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Consider an arbitrary market M−j, j ∈ M0. Let p−j(t∗) be the price function of the

auctioneer for the market M−j and let π−j be the allocation chosen by the auctioneer

for the market M−j in the last round t∗. For every agent i ∈ M−j ∪ {0}, let γ−j
i =

{S | S ∈ γ−j(t∗) andS ⊆ π−j(i)} denote the set of bundles in the supply set γ−j(t∗) that

are assigned to agent i by the auctioneer at step 3. Then, we have π−j(i) = ∪S∈γ−j
i
S.

Notice that, by the assignment rule of the basic ascending auction, the auctioneer always

assigns each bundle S ∈ γ−j(t∗) with p−j(t∗, S) > u0(S) to a bidder i ∈M−j, who faces the

price p−j(t∗, S) and retains the bid (S, p−j(t∗, S)− 1) ∈ Ωi(t
∗ − 1). We see that for every

S ∈ γ−j
i , it holds pi(t∗, S) = p−j(t∗, S) and (S, pi(t∗, S)− 1) ∈ Ωi(t

∗ − 1). This also means

that according to the withdrawing rule bidder i can withdraw this bid (S, pi(t∗, S)− 1) at

the last round. However, because he bids sincerely after round t0, and does not withdraw

this bid at time t∗, we must have ui(S)− (pi(t∗, S)−1) ≥ 1. Thus we proved that for every

i ∈M−j, u
i(S)−pi(t∗, S) ≥ 0 for all S ∈ γ−j

i . In addition, since at time t∗ there is no over-

demanded bundle in M−j, we must have Ai(t
∗) ∈ γ−j

i and pi(t∗, Ai(t
∗)) = p−j(t∗, Ai(t

∗))

when bidder i reports Ai(t
∗) at round t∗. Furthermore, we know that Ai(t

∗) ̸= ∅ when

V i(pi(t∗)) > 0, because bidder i bids sincerely at time t∗.

We will show that if a bidder i ∈ M−j bids sincerely at time t∗, then p−j(t∗, π−j(i)) =

pi(t∗, π−j(i)) =
∑

S∈γ−j
i
p−j(t∗, S), and π−j(i) ∈ Di(p−j(t∗)). First, it is clear that p−j(t∗, π−j(i))

≥ pi(t∗, π−j(i)). Next, p−j(t∗, π−j(i)) ≤ ∑
S∈γ−j

i
p−j(t∗, S) because γ−j(t∗) ∈ S(p−j(t∗)) is

a supply set of the market M−j against the price function p−j(t∗). Finally, to show

pi(t∗, π−j(i)) ≥ ∑
S∈γ−j

i
p−j(t∗, S), assume by way of contradiction that pi(t∗, π−j(i)) <∑

S∈γ−j
i
p−j(t∗, S). Then, it follows from Assumption (A3) that

ui(π−j(i))− pi(t∗, π−j(i))

> ui(π−j(i))−∑
S∈γ−j

i
p−j(t∗, S)

≥ ∑
S∈γ−j

i
ui(S)−∑

S∈γ−j
i
p−j(t∗, S)

=
∑

S∈γ−j
i

(
ui(S)− pi(t∗, S)

)
≥

{
ui(Ai(t

∗))− pi(t∗, Ai(t
∗)), if V i(pi(t∗)) > 0

0, if V i(pi(t∗)) = 0

= V i(pi(t∗)).

(7.18)

This implies that at time t∗, bidder i prefers π−j(i) to Ai(t
∗) or the empty bundle. This

contradicts the fact that bidder i bids sincerely at t∗. Thus, we obtain p−j(t∗, π−j(i)) =

pi(t∗, π−j(i)) =
∑

S∈γ−j
i
p−j(t∗, S) for all bidder i ∈ M−j. Moreover, using this equality

yields

ui(π−j(i))− p−j(t∗, π−j(i)) = ui(π−j(i))− pi(t∗, π−j(i))

= ui(π−j(i))−∑
S∈γ−j

i
p−j(t∗, S) ≥ ∑

S∈γ−j
i

(
ui(S)− pi(t∗, S)

)
≥ V i(pi(t∗)) ≥ V i(p−j(t∗)).

(7.19)
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The last inequality is due to pi(t∗) ≤ p−j(t∗). This implies

ui(π−j(i))− p−j(t∗, π−j(i)) = ui(π−j(i))−∑
S∈γ−j

i
p−j(t∗, S)

= V i(pi(t∗)) = V i(p−j(t∗)).
(7.20)

Consequently, we have π−j(i) ∈ Di(p−j(t∗)) for all i ∈M−j.

Finally, note that p−j(t∗, π−j(0)) ≥ u0(π−j(0)) ≥ ∑
S∈γ−j

0
u0(S) =

∑
S∈γ−j

0
p−j(t∗, S)

because p−j(t∗, S) = u0(S) for all S ∈ γ−j
0 . Using these equalities and inequalities, we

obtain that∑
i∈M−j∪{0} p

−j(t∗, π−j(i)) ≥ ∑
i∈M−j∪{0}

∑
S∈γ−j

i
p−j(t∗, S)

=
∑

S∈γ−j p−j(t∗, S) = Re(p−j(t∗)).

This implies
∑

i∈M−j∪{0} p
−j(t∗, π−j(i)) = Re(p−j(t∗)), i.e., π−j ∈ S(p−j(t∗)).

So far we have proved π−j(i) ∈ Di(p−j(t∗)) for all i ∈ M−j, and π
−j ∈ S(p−j(t∗)). In

other words, (p−j(t∗), π−j) is an NPW equilibrium of the market M−j. 2

Proof of Theorem 4.3: To save space, we prove (iii), (ii) and (i) in the reverse order.

First note that if the auction stops at Step 5, then some bidder must have withdrawn his

bids more than L∗ times. To see this, because there are only finitely many bidders, if

bidders have withdrawn only finitely many times, the auction is ascending and then must

have stopped either at Step 3 or at Step 4 which is not the case. Hence some bidder must

have withdrawn infinitely many times, certainly larger than L∗ times.

To prove (iii), suppose that bidder i bids sincerely, but his opponents use some other

strategies {σ̂l}l∈M−i
which may not be sincere. If the auction stops in Step 4 or in Step 5, it

is obvious that bidder i gets nothing and pays nothing, and soWi

(
σi, {σ̂l}l∈M−i

, {ul}l∈M
)
=

0. Now assume that the auction stops in Step 3 at round t̂, and finds an allocation π̂−j in

each market M−j respectively. Let p̂
j(t̂), p̂−j(t̂), γ̂−j(t̂), and π̂−j be the price functions, the

supply sets, and the allocations generated by the auction. First, note that p̂−0(t̂) ≥ p̂−i(t̂).

Hence, the seller’s revenue function satisfies

Re(p̂−0(t̂)) ≥ Re(p̂−i(t̂)).

Let γ̂−0
i = {S | S ∈ γ̂−0(t̂) andS ⊆ π̂−0(i)} denote the set of bundles in the supply set

γ̂−0(t̂) that are assigned to agent i in Step 3. Then, exactly as in the proof of Lemma 4.2,

we see that π̂−0(i) = ∪S∈γ̂−0
i
S, and p̂i(t̂, S) = p̂−0(t̂, S) for all S ∈ γ̂−0

i . Moreover, because

bidder i bids sincerely, we also have ui(S)− p̂i(t̂, S) ≥ 0 for all S ∈ γ̂−0
i .
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Consequently, by Assumption (A3), we see that for every realization {ul}l∈M

Wi

(
σi, {σ̂l}l∈M−i

, {ul}l∈M
)

= ui(π̂−0(i))−Re(p̂−i(t̂)) +Re(p̂−0(t̂))−
∑

S∈γ̂−0
i

p̂−0(t̂, S)

≥ ui(π̂−0(i))−
∑

S∈γ̂−0
i

p̂−0(t̂, S)

≥
∑

S∈γ̂−0
i

ui(S)−
∑

S∈γ̂−0
i

p̂i(t̂, S)

≥
∑

S∈γ̂−0
i

(
ui(S)− p̂i(t̂, S)

)
≥ 0.

Next we prove (ii). From Lemma 4.2 we know that when all bidders bid sincerely

from an open round t0, the auction must terminate at some round t = t∗ in Step 3. Let

pj(t∗), p−j(t∗), γ−j(t∗), γ−j
i , and π−j denote the generated results by the auction. Now it is

sufficient to prove that qi coincides with the generalized VCG payment q∗i = ui(π−0(i)) −
V (N) + V−i(N). Notice that because all bidders bid sincerely, from the result and the

proof of Lemma 4.2, for every j ∈M0 and every i ∈M−j ∪ {0}, we have: (i) p−j(t∗, π−j(i))

=
∑

S∈γ−j
i
p−j(t∗, S); (ii) p−j(t∗, π−j(0)) = u0(π−j(0)); (iii)

∑
i∈M−j∪{0} p

−j(t∗, π−j(i)) =

Re(p−j(t∗)); (iv) ui(π−j(i)) = V i(p−j(t∗)) + p−j(t∗, π−j(i)) = V i(pi(t∗)) + p−j(t∗, π−j(i)).

Using these results we have:

q∗i = ui(π−0(i))− V (N) + V−i(N)

= ui(π−0(i))−
∑

l∈M0
ul(π−0(l)) +

∑
l∈M−i∪{0} u

l(π−i(l))

=
∑

l∈M−i∪{0} u
l(π−i(l))−

∑
l∈M−i∪{0} u

l(π−0(l))

=
(
u0(π−i(0)) +

∑
l∈M−i

[V l(pl(t∗)) + p−i(t∗, π−i(l))]
)

−
(
u0(π−0(0)) +

∑
l∈M−i

[V l(pl(t∗)) + p−0(t∗, π−0(l))]
)

=
∑

l∈M−i∪{0} p
−i(t∗, π−i(l))−

∑
l∈M−i∪{0} p

−0(t∗, π−0(l))

= Re(p−i(t∗))−
(
Re(p−0(t∗))−

∑
S∈γ−0

i
p−0(t∗, S)

)
= qi.

Thus, the payoff Wi of every bidder i is equal to his VCG payoff, i.e.,

Wi

(
σi, {σl}l∈M−i

, {ul}l∈M
)
= ui(π−0(i))− q∗i = V (N)− V−i(N) ≥ 0.

Next, note that V−i(N) ≥ u0(π−0(0) ∪ π−0(i)) +
∑

l∈M−i
ul(π−0(l)), since V−i(N) is the

market value of the market M−i. Also by Assumption (A3), we have u0
(
π−0(0)∪π−0(i)

)
≥

u0(π−0(0)) + u0(π−0(i)). Therefore, it follows from qi = q∗i = ui(π−0(i))− V (N) + V−i(N)

that

qi = ui(π−0(i))−
(
u0(π−0(0)) +

∑
l∈M ul(π−0(l))

)
+ V−i(N)

= V−i(N)−
(
u0(π−0(0)) +

∑
l∈M−i

ul(π−0(l))
)

= u0(π−0(i)) + V−i(N)−
(
u0(π−0(0)) + u0(π−0(i)) +

∑
l∈M−i

ul(π−0(l))
)

≥ u0(π−0(i)) + V−i(N)−
(
u0

(
π−0(0) ∪ π−0(i)

)
+

∑
l∈M−i

ul(π−0(l))
)

≥ u0(π−0(i)) + V−i(N)− V−i(N)

= u0(π−0(i)).
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Finally we prove (i). Consider any time t0 ∈ Z+, any history profile {Hi(t0)}i∈M
(which may be on or off the equilibrium path), and any realization {ui}i∈M of profile

of value functions in U of private information. In this case, the outcome of the auction

game depends on the histories Hi(t0) and the strategies that all bidders will take in the

continuation game starting from time t0. Bidders cannot change histories but can influence

the path of the future from t0 on. Take any bidder i ∈M . Suppose that in the continuation

game from time t0 on, bidder i exploits a strategy σ̄i which may deviate from his sincere

bidding strategy σi, but all his opponents follow their sincere bidding strategies {σl}l∈M−i
.

If this strategic behavior of bidder i makes the auction stop in Step 4 or in Step 5, then it

is obvious that

Wi

(
σ̄i, {σl}l∈M−i

, {ul}l∈M
)
≤ 0 ≤ Wi

(
σi, {σl}l∈M−i

, {ul}l∈M
)
,

where the second inequality follows from the proof of (ii). In this case, bidder i gains

nothing from using the strategy σ̄i. It remains to consider the major case in which the

auction stops in Step 3. Assume that the auction terminates at time t = t̄. Let p̄j(t̄), p̄−j(t̄),

γ̄−j(t̄), γ̄−j
i , and π̄−j denote the results yielded by the auction. By Lemma 4.2, we see that

when every bidder l ∈ M−i bids sincerely from round t0, the pair (p̄−i(t̄), π̄−i) is an NPW

equilibrium for the market M−i. And by Lemma 2.2 the allocation π̄−i is efficient for M−i.

Thus for every realization {ul}l∈M , we have∑
l∈M−i∪{0}

ul(π̄−i(l)) = V−i(N) and
∑
l∈M0

ul(π̄−0(l)) ≤ V (N),

because π̄−i is efficient for M−i but π̄
−0 need not be efficient for M−0. Recall that because

every opponent of bidder i bids sincerely from t0 on, for j = i, 0 and l ∈ M−j ∪ {0}
we have : (i) p̄−j(t̄, π−j(l)) =

∑
S∈γ̄−j

l
p̄−j(t̄, S); (ii) p̄−j(t̄, π−j(0)) = u0(π−j(0)); (iii)∑

l∈M−i∪{0} p̄
−j(t̄, π̄−j(l)) = Re(p̄−j(t̄)); (iv) ul(π̄−j(l)) = V l(p̄l(t̄)) + p̄−j(t̄, π−j(l)). It fol-

lows that

Wi

(
σ̄i, {σl}l∈M−i

, {ul}l∈M
)

= ui(π̄−0(i))−Re(p̄−i(t̄)) +
(
Re(p̄−0(t̄))−

∑
S∈γ̄−0

i
p̄−0(t̄, S)

)
= ui(π̄−0(i))−

∑
l∈M−i∪{0} p̄

−i(t̄, π̄−i(l)) +
∑

l∈M−i∪{0} p̄
−0(t̄, π̄−0(l))

= ui(π̄−0(i))−
(
u0(π̄−i(0)) +

∑
l∈M−i

[ul(π̄−i(l))− V l(p̄l(t̄))]
)

+
(
u0(π̄−0(0)) +

∑
l∈M−i

[ul(π̄−0(l))− V l(p̄l(t̄))]
)

=
∑

l∈M0
ul(π̄−0(l))−

∑
l∈M−i∪{0} u

l(π̄−i(l))

=
∑

l∈M0
ul(π̄−0(l))− V−i(N)

≤ V (N)− V−i(N)

= Wi

(
σi, {σj}j∈M−i , {ul}l∈M

)
.

This shows that sincere bidding is indeed an ex post perfect equilibrium in the auction

game. 2
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Proof of Lemma 5.1: Since π ∈ S(p∗), by the definition of supply set, we have

p∗(π(i)) = max
γ∈B(π(i))

{∑
A∈γ

p∗(A)
}

for every i ∈ M0, i.e., q∗(π(i)) = p∗(π(i)) for all i ∈ M0. Similarly, it can be shown

that π ∈ S(q∗). Moreover, observe that q∗(L) ≥ p∗(L) for any bundle L ⊆ N , we see

π(i) ∈ Di(q∗) for every i ∈ M . This shows that (q∗, π∗) is indeed a nonlinear pricing

Walrasian equilibrium. 2

Proof of Theorem 5.2: Pareto efficiency follows easily from the Shapley value. Super-

addivity of the coalition value v leads to individual rationality. Symmetry is readily seen

from the fact that the Shapley value is constructed from an equilibrium. We need to show

the dummy property. Suppose that i ∈ S is a dummy seller. Then for the given equi-

librium (q∗, π∗), we must have q∗(L) ≥ ui(L) for any bundle L ⊆ Wi from the viewpoint

of seller i. Since agent i is a dummy seller, then we must also have q∗(L) ≤ ui(L) from

the viewpoint of bidders. Thus q∗(L) = ui(L) for every L ⊆ Wi. By superadditivity of

ui, the auction rule implies that the whole bundle Wi will not be sold and thus be kept

by seller i. This means that adding the dummy seller i to any coalition of sellers does not

yield any extra value except seller i’s own value. Therefore the coalition value v satisfies

the equality: v(T ∪ {i})− v(T ) = ui(Wi) for any T ⊆ S \ {i}. Then the dummy property

follows immediately from the definition of the Shapley value. 2

Proof of Theorem 6.1: It is obvious that the value function ui of every buyer i ∈M sat-

isfies Assumptions (A1) and (A2). Now let us show that ui satisfies Assumption (A3). Let

N = A∪B∪C. For any S, S ′ ∈ 2N with S∩S ′ = ∅, by the definition of bidder i’s value func-

tion, we have distinct CPU-display-keyboard matchings {(ai1 , bj1 , ck1), · · · , (ail , bjl , ckl)} in

S satisfying ui(S) = vi(ai1 , bj1 , ck1)+· · ·+vi(ail , bjl , ckl), and distinct CPU-display-keyboard

matchings {(ai′1 , bj′1 , ck′1), · · · , (ai′l′ , bj′l′ , ck′l′ )} in S ′ satisfying ui(S ′) = vi(ai′1 , bj′1 , ck′1) + · · ·+
vi(ai′

l′
, bj′

l′
, ck′

l′
).Observe that {(ai1 , bj1 , ck1), · · · , (ail , bjl , ckl), (ai′1 , bj′1 , ck′1), · · · , (ai′l′ , bj′l′ , ck′l′ )}

are also distinct CPU-display-keyboard matchings in S ∪ S ′. Thus, by definition of ui, we

have

ui(S ∪ S ′) ≥ vi(ai1 , bj1 , ck1) + · · ·+ vi(ail , bjl , ckl)+

+vi(ai′1 , bj′1 , ck′1) + · · ·+ vi(ai′
l′
, bj′

l′
, ck′

l′
) = ui(S) + ui(S ′).

This shows that ui satisfies Assumption (A3). Then it follows from Theorem 2.3 that the

model has a nonlinear pricing Walrasian equilibrium.

We will show the last statement by an example. Consider an economy in which a

seller wants to sell two CPUs {a1, a2}, two displays {b1, b2} and two keyboards {c1, c2}
to two buyers {1, 2}. The values of the buyers on CPU-display-keyboard matchings are
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given by v1(a2, b, c) = v2(a1, b, c) = 1 for any b ∈ {b1, b2} and c ∈ {c1, c2} and the rest are

given in Table 7. In this economy there is only one efficient allocation, namely, buyer 1 is

assigned the bundle {a1, b1, c1} and buyer 2 the bundle {a2, b2, c2}. We will prove that this

allocation cannot be supported by a price vector (pa1 , pa2 , pb1 , pb2 , pc1 , pc2). Suppose to the

contrary that such a price vector does exist. Then, we must have the following system of

inequalities:

12− pa1 − pb1 − pc1 ≥ 20− pa1 − pb2 − pc2
12− pa2 − pb2 − pc2 ≥ 11− pa2 − pb2 − pc1
12− pa2 − pb2 − pc2 ≥ 11− pa2 − pb1 − pc2

where the 1st inequality holds for buyer 1 and other two hold for buyer 2. It follows that

pb2 − pb1 ≥ 8 + pc1 − pc2 , pc1 − pc2 ≥ −1, and 1 ≥ pb2 − pb1 . These inequalities imply

1 ≥ pb2 − pb1 ≥ 8 + pc1 − pc2 ≥ 7, which is impossible. Thus the economy has no standard

Walrasian equilibrium. 2

Table 7: The values of the buyer on matchings.

v1(a1, b, c) c1 c2 v2(a2, b, c) c1 c2

b1 12 11 b1 2 11

b2 11 20 b2 11 12

Proof of Theorem 6.2: It suffices to show that for any disjoint subnetworks G1 =

(N1, E1) and G2 = (N2, E2) of the network G = (N,E), i.e., E1 ∩ E2 = ∅, C l(G1) +

C l(G2) ≥ C l(G1 ∪ G2), i.e., C l is subadditive. Here G1 ∪ G2 = (N1 ∪ N2, E1 ∪ E2). Let

G1
1, G

1
2, · · · , G1

k be the disjoint components of G1, and G2
1, G

2
2, · · · , G2

l the disjoint compo-

nents of G2. When G1 and G2 merge, we have the following two cases to consider. Case 1:

G1
1, G

2
2, · · · , G1

k, G
2
1, G

2
2, · · · , G2

l continue to be components of G1 ∪G2. Case 2: Some com-

ponent G1
i and some component G2

j connect and become one component of G1 ∪ G2, and

other components of G1 and of G2 continue to be components of G1 ∪G2. Then in Case 1,

we have C l(G1∪G2) = C l(G1)+C l(G2). In Case 2, we have C l(G1∪G2) ≤ C l(G1)+C l(G2).

Notice that in ul(G′) =
∑

e∈E′ cl(e) − C l(G′) for any subnetwork G′ = (N ′, E ′), the first

term is linear and thus superadditive, and the second term −C l is also superadditive. Their

sum is clearly superadditive. Then by Theorem 2.3, the model has a nonlinear pricing Wal-

rasian equilibrium. 2
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