
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion Papers in Economics 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Department of Economics and Related Studies 

University of York 

Heslington 

York, YO10 5DD 

No. 14/04 

 

Don’t Stop ’Til You Get Enough: a quickest 

detection approach to HTA 

 

 

Daniele Bregantini 

 



 

 

 



Don’t Stop ’Til You Get Enough: a quickest

detection approach to HTA

Daniele Bregantini∗ ,

March 5, 2014

Abstract. Within the context of the value of information approach we com-
pare static versus quickest detection rules for research design in health care
technology assessment (HTA). We show for a research design that the optimal
decision rule cannot be correctly predicted at the start of the trial. We make use
of the sequential value of information (S-VoI) decision making model for HTA
under uncertainty to show that the static value of information approach leads to
lower expected benefit and poses costs, both in terms of resources and forgone
health gains, on the health care system.
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1. Introduction

Regarding health care technology assessment, health care systems are faced with
the following questions: (i) should a health care technology be reimbursed in light
of current evidence (ii) is additional evidence required to support the use of the
technology, and if this is the case, what type and how much research is required ?
In England and Wales, the National Institute for Clinical Excellence (NICE) issues
guidance to the National Health Service (NHS) for the need of further research and
gives recommendation on adoption. It has made adoption conditional on further
research and the production of further evidence (Conti and Claxton, 2009).

When uncertainty about the net benefits is present there is a positive probability
of making an incorrect decision. The expected value of information developed by
Raiffa and Schlaifer (See Pratt et al. (1995)) and later applied to the case of health
technology assessment (HTA) and clinical research design by Claxton and Posnett
(1996) and Claxton (1999) can be used to quantify the expected opportunity loss
associated with this uncertainty. When the expected opportunity loss is less than
the cost of a new study the information is deemed to be sufficient and a decision
can be made. When this static decision making approach is implemented to clinical
research design it suggests to compute an ex-ante optimal (fixed) sample size
deemed to be sufficient for the purposes of decision making. Claxton (1999) put
forward the idea that inference is irrelevant to decision making and suggested that
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the question of whether more evidence is needed should be determined by the
value of information framework developed by Raiffa and Schaifer (See Pratt et al.
(1995) ).

Recently, William and M.Pinto (2005) suggested a method for computing the
ex-ante sample size n∗ for a clinical trial that maximises the difference between the
cost of a trial and the expected value of the results using the incremental net benefit
as the main outcome for the trial. Willan and Kowgier (2008) developed the model
of William and M.Pinto (2005) to a multistage adaptive-design involving an early
termination rule based on the expected net gain from the trial computed for each
stage j. If the EVSI in the next stage j+1 is less than the total cost at j+1 then
the trial terminates at the end of the jth stage and the decision rule can be applied.
Although it is theoretically possible to construct a purely multistage model that
jointly determines the value of n∗

j for all j maximizing the expected net gain,
due to its complexity Willan and Kowgier (2008) suggest to proceed in two-stages
steps where at each stage j the (ex-ante) two stage calculation is repeated and the
maximisation process is repeated at each j. Another early termination approach
is found in Berry and Ho (2003) who take the point of view of a pharmaceutical
company that wishes to maximise profits and uses a one-sided decision-theoretic
approach in order to determine if experimentation of a newly developed drug
should be stopped early in case of negative evidence.

In recent years the literature has seen the application of the real option approach
to investment decisions in health technology assessment (Palmer and Smith, 2000).
This literature aimed at incorporating the dynamic nature of the decision process
and considers the role of flexibility and irreversibility of investment. More recently
Pertile et al. (2013) solved the dynamic problem of the economic valuation of a new
health technology in the content of the optimal stopping under sequential sampling
literature developed by Chernoff (1961). In their paper, in the situation where the
decision maker can defer decisions and there is a certain degree of irreversibility
of investment, optimal rules for technology adoption, research abandonment and
continuation, are developed as functions of sample size. In this framework the de-
cision maker sequentially observes (for example during a trial) the net incremental
monetary benefit of the technology for a certain number of patients. Each observa-
tion carries a sampling cost and the DM after observing each observation updates
its beliefs according to Bayes’ theorem and takes a decision: either invest/abandon
the project or continue monitoring the results. After each observation the poste-
rior estimate gains precision and at the optimal stopping time the value for the
net incremental monetary benefit can be inferred with enough confidence allowing
for a decision of either investment or abandonment.

Forster and Pertile (2012) discuss the use of real options analysis as a way to
view adoption, treatment and research decisions as a single economic project and
argue that the dynamic approach to HTA can provide efficiency gains in resource
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allocation. However, presently the real option approach has not been implemented
in any systematic way (Meltzer and Smith, 2012).

In this paper we present a comparison between the traditional value of infor-
mation framework as found in Claxton (1999) and a dynamic decision theoretic
approach. We adopt a sequential value of information (S-VoI) rule (see Bregan-
tini and Thjissen (2014)) as this helps the user to reach a decision between two
hypotheses after a minimal number of experiments. This method, in contrast to
Pertile et al. (2013), does not involve an estimation problem for the unknown net
incremental mean benefit but specifies some bounds at which a decision can be
taken. When the cumulative net incremental mean benefit hits one of the bounds
the observed sample size is sufficient and the decision, either for investment or
for abandonment, can be undertaken with minimal error. Additionally, Pertile
et al. (2013) require a sample size specified at priori to the start of the trial, a
requirement that is avoided in the S-VoI model.

In contrast to the static approach, the S-VoI model does not force a decision
after observing n observations no matter the information contained in the observed
sample. In particular, in the case of a fixed sample, the size can be dangerously
small or redundantly large for making a reasonably good inference on which of the
two hypotheses is true.

With sequential testing on the other hand, no observations are wasted. In fact,
as soon as we can declare that one of the two hypotheses is true with reasonable
certainty, we stop taking observations. For this reason, in the presence of sampling
costs, it is clear that sequential testing is a method of testing that is less costly on
average than its competitor fixed sample size testing (Poor and Hadjiliadis, 2009)).

Consistent with Claxton (1999), and in contrast to traditional sample size cal-
culations for randomised clinical trials based on type I and type II probabilities
rules that do not account for the monetary cost or making the wrong decisions,
the S-VoI focuses on expected payoff and aims at maximising health benefits with
minimum error probability. In the sequential setting the implication for the ir-
relevance of inference suggested in Claxton (1999) is that fixing the sample size
ex-ante is not optimal and, as with rules based on type I and type II error min-
imisation, can lead to choices that do not maximise health benefits with minimum
error probability.

The paper begins by outlining the static value of information approach and
the sequential value of information. These are then followed by an illustrative
example of research design based on simulations for the two models. Finally we
report and contrast, in terms of monetary value of gained health benefit, the
expected research design outcome for the Value of Information (VoI) approach to
HTA found in Claxton (1999) and Claxton and Posnett (1996) and the S-VoI.
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2. Static decision rules

We begin by introducing the main tools of the Value of Information approach
as found in Raiffa and Shlaifer (see Pratt et al. (1995)) and adapted to the case of
health technology assessment by Claxton and Posnett (1996) and Claxton (1999).

2.1. Expected Value of Perfect Information. Claxton (1999) propose to use
the EVPI as a way to address how decision makers (DM) should interpret the
results of probabilistic modelling and to address the question of whether enough
evidence has been gathered. This approach mirrors the sequential nature of de-
cision making: making an initial decision; deciding to gather evidence; revising
decisions in the light of this new information; and again considering whether more
information is required. It also ensures that the type of information acquired
through research is driven by the objectives of the health care system and is val-
ued in a way which is consistent with the budget constraint on service provision.
In this framework, the expected cost of uncertainty is determined jointly by the
probability that a decision based on current evidence will be wrong and the con-
sequences of a wrong decision.

We take λ to be the cost-effectiveness threshold2 and ν0 to be the prior mean
incremental net benefits of the technology. The prior standard deviation of the
incremental net benefit is σ0 and, in order to understand the possible loss that can
occur when making the wrong decision, the break-even point νb (the value at witch
the new technology would be cost-effective) is set to zero and the standardised
distance is given by

D0 =
| ν0 − νb |

σ0
.

The value of D0 gives the standardised distance between the prior mean and the
break-even point. The EVPI can be written as

(1) EVPI = λσ0L(D0)

The term L(D0) indicate the normal loss integral3 for D0. The unit normal loss
integral L(D0) represents the probability of the decision error when the incremental
net benefit has a mean D0 and σ0 = 1. The slope of the loss function is the cost-
effectiveness threshold λ and gives the monetary value placed on opportunity losses
when they incurred. The probability of the decision error is determined by the
distance of the prior mean incremental net benefit.

2This is the threshold defined by the health care system: below the threshold λ a health-care
technology is deemed cost-effective, above λ the health care technology is not cost-effective and
not eligible for reimbursement by the health care system.

3See Appendix A.
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The analytic solution for the EVPI in (1) relies on the assumption that the net
benefit is normally distributed. It often the case, however, for cost- effectiveness
model to synthesise parameters that not only have different distributions (i.e beta
distributions, logistic functions, etc) but that also come from different sources.
In such cases the non-normality found in the data is a problem as highlighted
in Thompson and Nixon (2005) who report that distributional assumption about
data influenced the determination of cost-effectiveness. When the assumption of
normality does not hold the EVPI is computed using simulation methods (See
Ades et al. (2004)).

2.1.1. Expected Value of Sample Information. The value of information analysis
can be extended in order to find the expected value of sample information for
particular research design (Ades et al., 2004). In order to establish if the conditions
for further research are present and to identify efficient research design there is the
need to also consider the expected costs of sample information. The expected value
of sample information was introduced as a decision tool for clinical trial design by
Claxton and Posnett (1996) and Ades et al. (2004).

The EVPI places an upper bound on returns to further research and provides a
necessary but not sufficient condition for conducting further research. If the value
of EVPI exceeds the cost of further research it might be worthwhile to gather more
information about the problem as a whole or on selected parameters. However,
in order to establish if further research will be worthwhile (i.e. net benefits of
research are positive) and to identify efficient research design there is the need to
consider the marginal benefits and marginal costs of sample information.

2.1.2. Technically efficient research design. The EVSI can be calculated for a par-
ticular sample size from the prior information and the estimate of the sample
variance (σ2/n). The EVSI is then

(2) EVSI(n) = λ
√

V (n)σ0L(D0(n))

where λ is the cost effectiveness threshold, D0(n) is the standardised distance as
a function of the sample variance, V is a function of the sample size and the prior
variance σ0 (See Claxton and Posnett (1996)).

It should be noted4 that in equation (2) as n → ∞, V (n) goes to 1 and the
EVSI approaches the EVPI. The EVPI provides an upper bound to the value of
additional research as it identifies the maximum benefit that could be provided by
additional information. The fact that the EVSI and the EVPI coincide when the
sample n is infinite precisely indicates that the EVPI is the maximum benefit that
we can get by observing an infinite trial.

4For details see Appendix A.
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The expected net benefit of sampling is the difference between the total benefit
and the total variable cost for a particular sample size:

(3) ENBS(n) = EVSI(n) − Cs(n)

The subscript n indicates the step in the trial and the cost Cs(n) is the total trial
cost at step n. The optimal sample size n∗ maximises ENBS(n). The optimal value
of n is given by the following condition

(4)
∂EVSI

∂n
= Cn

As for the EVPI, simulation methods have been proposed in order to deal with
the non-linearities and non-normal distribution of the net benefit (See Ades et al.
(2004). However, the solution to the decision problem in the value of information
approach, as noted in equation (4), remains a static one: the maximisation of the
EVSI is computed ex-ante, it computes a single value for the optimal sample size
n and does not take into account any information that arises during the trial, in
effect making the choice of n reasonable before the trail actually starts, but as we
show in section 5.1, suboptimal at any point n > 0.

2.1.3. Cost. The EVSI does not account for cost different than those directly as-
sociated to running the trial. There are no health losses connected to delaying the
decision and not treating patients with a more effective technology. The issue of
forgone value of information has been introduced by Griffin et al. (2011), however,
the value of information remained a static decision framework. A dynamic ap-
proach to research design has been undertaken by Claxton and Thompson (2001)
where the approach found in Claxton and Posnett (1996) and Claxton (1999) are
generalised to the analysis of a sequential clinical decision problem.

Claxton (1999) advocates that deciding which alternatives should be chosen,
given existing information, and deciding whether more information should be re-
quired are two simultaneous but conceptually separate steps. The VoI provides a
way to distinguish between these two concepts.

3. Sequential Value of Information (S-VoI)

In a sequential value of information (S-VoI) decision making model developed in
Bregantini and Thjissen (2014), the DM is faced with a two-sided decision: either
invest in the health care technology or abandon the health care project. The S-
VoI is a quickest detection model that allows to test for the hypothesis with the
minimum number of observation required, maximising payoff with minimum error
probability.

In contrast to models that propose simulation based solutions, the S-VoI model
uses continuous time mathematics that allows to fully understand the modelling
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results. The use of continuous over discrete time modelling enables to access a
mathematical toolbox that provides analytical solutions. In continuous time it is
possible to apply the central limit theorem even if the sample size is not infinite.
During the trial, the decision maker observes the net benefit for each patient as
a sequence of outcomes. The net benefit over a small time interval is given by
µdt. The decision maker however, cannot clearly observe the net benefit due to
a noise element

√
σ. The evolution of the sequence is described by the following

tree diagram

X0 X1 X2 X3

p X0 + 3u
ր

p X0 + 2u
ր ց

p X0 + u 1−p
p X0 + 2u− d

ր ց ր
X0

1−p
p X0 + u− d

ց ր ց
1−p X0 − d 1−p

p X0 + u− 2d
ց ր
1−p X0 − 2d

ց
1−p X0 − 3d

In the above tree the initial value X0 can increase by a factor u = θµdt+ σ
√
dt

or decrease by a factor d = θµdt−σ
√
dt. with probability p = 0.5. The term θ can

be equal to 1 or 0 and will be used below for hypotheses testing. The sequence of
random variable is

Xi =

{

θµdt+
√
dt with pr = 1/2

θµdt−
√
dt with pr = 1/2

At each point in the sequence the value of X(n) is given by X(n) =
∑n

0 Xi and
as the time interval between steps decreases we denote Xt = lim

n→∞

Xn(t) where the

limit is understood to be in distribution and n → ∞ implies dt ↓ 0. According to
the CLT, the limit Xt exists in distribution and is given by

Xt ∼ N(θµt, σ2t)

implying that in the continuous time limit the process Xt follows the arithmetic
Brownian motion

7



(5) Xt = θµt+ σWt.

Equation (5) describes the net benefit as a continuous time sequence of random
variables. In the equation, θ represents the hypothesis that the health care tech-
nology is effective and provides the claimed net benefit µ > 0. With θ = 1 the
technology is effective and when θ = 0 the technology is no better than standard
care (in which case θµt = 0).

We consider the case where the decision maker is interested in testing the claim
from a manufacturer that seeks reimbursement for a newly developed health care
technology that should provide excessive benefit µ. The claim could also be related
to the minimum effectiveness required for cost-effectiveness (i.e. µ such that net
incremental mean benefit (NIMB) is positive) as part a cost-effectiveness trial by
a health care manufacturer. Such test will allow the manufacturer to provide
stronger evidence in support for government reimbursement.

We consider research design for a project that has an irreversible fixed cost I
and net present value of adoption given as function of the posterior probability π.
The investment payoff is FI(π) and the abandonment payoff FA(π). At each point
in the sequence, Bayes rule allow to compute a posteriori probability process πt as
a function of (i) the prior probability assigned to the likelihood of the technology
being more effective than standard care and (ii) a likelihood process Λt(Xt) as a
function of the trial sequence Xt (For details see Bregantini and Thjissen (2014)).

In this way the posterior probability πt that the new technology is more effective
than standard care in continuously updated via Bayes rule. In order to reflect the
possibility of investment when the technology is not effective (i.e. a type I error)
and the possibility of abandoning the project when the technology is better than
standard care (i.e. type II error) the payoffs are specified as follows:

(6) FI(π) = πP1 − (1− π)P0 − I P1 > 0, P0 > 0

(7) FA(π) = −πP1 P1 > 0

The term P1 represents the monetary benefit to the healthcare system of invest-
ment in the new healthcare technology conditional on θ = 1 and −P0 represents
the monetary loss of new healthcare technology conditional on θ = 0.

Subject to sampling costs c and discount rate r, the problem is to find an
optimal stopping time τ ∗ at which a decision can be taken, payoffs maximised and
the value of waiting for an additional sample is zero. At the optimal stopping
time τ ∗ the likelihood process Λt(Xt) hits either the upper investment bound ΛI

or the lower abandonment bound ΛA. The likelihood process provides evidence for
hypothesis H1 : θ = 1 or H0 : θ = 0. At τ ∗ the DM stops sampling and an optimal
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Table 1. Simulation

Simulation σ modeτ∗ µτ∗ στ∗ minτ∗ maxτ∗
1 σ = 0.1 192 314 197.7 10 2619
2 σ = 0.15 195 435 321 34 3925
3 σ = 2 175 548 478 36 6803
4 σ = 2.5 179 667 660 25 8181

decision can be taken, either for investment with payoff FI (i.e. supporting H1) or
abandonment with negative payoff FA (i.e. supporting H0).

In the optimal stopping model, the decision to invest/abandon or continue re-
search, in contrast to the VoI approach, is subject to the information generated by
the random variable Xt. As the trial continues, information about the net benefit
X increases, and consequently uncertainty about the true net benefit decreases.
The optimal decision is taken at the time τ ∗, when the value of waiting for a
further sample is zero.

4. Quickest detection decision rules

The S-VoI model specifies investment and abandonment bounds that aim at
maximising payoff. The following simulation study shows hitting times τ ∗ (times
at which it is optimal to make a decision) for 100, 000 simulated sample path
for some hypothetical statistical values to be tested. The table 1 below reports
statistics for a simulation study based on the following values: P1 = 130, P0 = 60,
r = 15%, I = 40, µ = 0.15. The value for σ is increased in small steps for each
simulation in order to show the consequence of different degrees of uncertainty on
the distribution of hitting times τ ∗.

Figure (1) below shows the distribution of τ ∗ for different values of µ. As it can
be noted in Figure (1a) the distribution of τ ∗ is centred around the mode value of
τ ∗ = 192 with few events that occur after the τ ∗ = 1250 region. Figure (1c) τ ∗

has a much thicker tail after τ ∗ = 1250, indicating that there is a greater number
of τ ∗ events after this value than in the previous model. For σ = 0.15 the mean
µτ∗ = 435 and στ∗ = 321 with a minimum hitting time of 36 and a maximum
hitting time of 3803. A substantial increase from the simulation 1.

In simulation 3, as σ increases, the statistical values for µτ∗ , στ∗ ,minτ∗ ,maxτ∗
increase. It can be noted in Figure 1b that the number of events occurring after
τ ∗ = 1200 is much greater than in simulation 1 and 2 with some extreme events
occurring well inside the far right tail of the distribution with a maximum of
τ ∗ = 6803. Figure 1d shows the distribution hitting time τ ∗ for simulation 4. Of
the simulated models, this is the most extreme case with σ = 0.25. The mean is
µτ∗ = 667 with στ∗ = 660 with a the maximum τ ∗ = 8181 with most of the events
occurring before τ = 4000.
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(c) σ = 0.15
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(d) σ = 0.25

Figure 1. Simulated τ ∗ for different values of σ

The above results suggests that while the mode for the hitting times do not
vary much, distribution varies considerably and the dispersion for hitting times
(or decision times) varies considerably given different levels of uncertainty. A
consequence of this, for models that use the total cost of new research (or stage of
a trial) as a rule to determined if a new study should be undertaken (e.g. EVPI),
is that when uncertainty is high it is difficult to correctly asses the cost of a new
trial due to the uncertainty surrounding the optimal stopping time τ ∗. For these
ex-ante models, the comparison between the net benefit of new research and its
costs should account for uncertainty surrounding τ ∗.

Additionally, another important consequence of uncertainty is that by having a
rule that specifies ex-ante a fixed sample size for a trial, decisions might be taken at
points where information is not sufficient or alternatively decision might be taken
later than necessary with corresponding costs for the health care system. The cost
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Table 2. Cost-effectivness of standard vs robot-assisted laparo-
scopi prostaectomy

Parameter Description Source Value

E1 −E0 Incremental QALY gain Close et al 0.08 QALY
C1 − C0 Incremental cost Close et al £1412

σ Std. deviation Close et al £1071
µ Incremental QALY gain Set as NIMB > 0 £1413
p Prior Assumed 0.5
r Discount rate Close et al 3.5%
c Cost of sampling Assumed £50
I Investment Close et al 0
λ QALY value Close et al £30000
n Number of patients Close et al 10000

of employing such ex-ante rules, for the specific case of EVSI, is discussed in the
next section.

5. EVSI vs quickest detection rules

In this section we aim at showing, with a simple illustrative example, the differ-
ence in a research design application between the two approaches. We simulate for
a number of cases the stopping time produced by the dynamic bayesian model and
compare this to the optimal sample size given by the static value of information
approach. For illustration purposes data is taken from Close et al. (2013)’s study
of cost-effectiveness of standard vs robot-assisted laparoscopi prostaectomy. Data
is shown in Table 2.

The EVSI predicts that the optimal sample size is n∗ = 91. Figure (2) shows
the relative frequency of hitting time τ ∗ for 10,000 simulated sample paths with
sampling fixed at one new patient added per day (i.e. we assume 365 patients per
year). When comparing the simulated hitting times with a static approach it can
be noted that this last is likely to overestimate the sample size, nonetheless it can
also underestimate the sample size for a good number of cases. In the analysis
that follows τ and n represent the same values5. In the case of the S-VoI the mean
hitting time τ ∗ is τ ∗ = 216 with a mode of τ ∗ = 60.

The EVPI describes the advantage of full information over partial information.
The EVSI involves computing the opportunity loss of making a decision based on

5Since the same sampling scale is used we use τ to denote the dynamic optimal stopping model
and retain n for the traditional EVSI approach. However, τ and n are equivalent and represent
the same values.
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Figure 2. EVSI optimal sample size n∗ and simulated τ ∗12



Table 3. Expected payoffs

Decision model Optimal sample size Expected payoff £

EVSI Fixed (n∗) 207.7
S-VoI Flexible (τ ∗) 564.3

Health gain from S-VoI 356.6

prior information solely. In sharp contrast, in the S-VoI each decision is based on
the appropriate information set generated by the random variable Xt.

The S-VoI approach provides a way to undertake the quickest decision that
minimises expected opportunity loss both in terms of forgone health benefits to
patients or resources allocated to the trial.

5.1. Cost of non optimal decisions.

For the case study above, we compare the sequential-VoI and the EVSI payoffs.
This gives an estimate of the costs involved in taking decisions based on a fixed,
deterministic rule versus a sequential flexible rule.

Table (3) shows the expected value obtained from 100,000 simulated paths for
a trial sequence Xt based on the Close et al. (2013) prostaectomy study reported
above. The expected payoff is obtained by taking the maximum payoff value at
the optimal decision point in the sequence Xt. This point is given by the optimal
sample size (n∗) for the EVSI and at the optimal stopping time (τ ∗) for the S-VoI.
The expected payoff at the optimal sample size predicted by the EVSI provides a
low value, indicating that (n∗) is suboptimal when compared to the S-VoI approach
that instead selects the trial size (i.e. optimal stopping time τ ∗) that maximises
expected payoff. The S-VoI total expected gain for the health care system when
compared to the EVSI approach is £356,600 per 1000 patients.

6. conclusion

Within the context of the value of information approach we compare determin-
istic versus dynamic rules for research design in HTA. The value of information
approach selects the optimal trial length based on the prior information available
and it produces a decision rule that proves to be inefficient for a great majority of
cases. The reason is to be found in that under uncertainty evidence is accumulated
over time and the point at which sufficient information is reached is not known at
the start of the trial.

We show that this optimal decision point is reached at a random time that is
optimal under some payoff based rules. As this optimal stopping time cannot be
predicted at the start of the trial the research design advocated by the EVSI is
inefficient brings losses to the health care system.
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7. Appendix A

The EV SI(n) = λ
√

V (n)σ0L (Dn) depends on the following factors :

D0(n) =| ν0 − νb | /
(

σ0

√

V (n)
)

L
(

D0(n)

)

= unit normal loss integral for standardised distance D0(n). The unit
loss integral is computed as

L
(

D0(n)

)

= f
(

D0(n)

)

−D0(n)

(

1− φ
(

D0(n)

))

where f(·) is the density function of a standard normal distribution and φ(·) is the
distribution function of the standard normal distribution.

The variance is given by:

V (n) = σ2
0/(σ

2
0 + σ/n)

σ2 = population variance of v

σ2/n = sample variance of v
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