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Abstract

This paper studies a class of optimal stopping problems thathas become popular in the area of invest-

ment under uncertainty (“real options”). Necessary conditions for solutions to these problems are that

the solution dominates the payoff function and is superharmonic. Neither property is typically verified

in the literature. Here, easy-to-check conditions that establish solutions to many optimal stopping prob-

lems are provided. Attention is focussed on problems with payoff functions that are monotonic in the

state variable (either increasing or decreasing) or payofffunctions that are decreasing, then increasing.

The state variable can be driven by any one-dimensional time-homogenous diffusion. An application to

Bayesian sequential hypothesis testing illustrates the applicability of the approach.
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1 Introduction

In recent decades, applications of optimal stopping theoryhave been used with great success in the areas

of economics and finance. In particular in the theory of investment under uncertainty (“real options”) great

progress has been made in our understanding of timing decisions under conditions of uncertainty.1 In most

of the literature the resulting optimal stopping problems are solved heuristically and based on economic ar-

guments. In particular, a solution to optimal stopping problems is typically obtained by solving the Bellman

equation and the so-called value-matching and smooth-pasting conditions.

This approach implicitly assumes that the solution takes the form of atrigger policy: stop as soon as the

underlying process reaches a certain, endogenously determined, threshold. This is, however, hardly ever

established explicitly. Similarly, following this approach does not establish two necessary conditions for

optimal stopping (Peskir and Shiryaev, 2006): (1) the valuefunction must dominate the payoff function,

and (2) the value function must be superharmonic.

In this paper I consider optimal stopping problems of the form

F ∗(y) = sup
τ∈M

Ey

[

e−rτF (Yτ )
]

.

Here(Yt)t≥0 follows a time-homogeneous diffusion taking values on someopen set(a, b):

dYt = µ(Yt)dt+ σ(Yt)dBt, Y0 = y,

(Bt)t≥0 is a Wiener process,M is the set of stopping times, andF is thepayoff function. The solutionF ∗

is called thevalue function. F ∗ dominatesF if F ∗ ≥ F andF ∗ is superharmonic if

F ∗(y) ≥ Ey

[

e−rτF ∗(Yτ )
]

,

for all τ ∈ M.

These problems are solved using thegenerator, LY , which onC2 coincides with the differential operator

LY g(y) =
1

2
σ2(y)g′′(y) + µ(y)g′(y).

The kind of payoff functionsF ∈ C2 that I admit are: (1) monotonically non-decreasing, (2) monoton-

ically non-increasing, or (3) monotonically non-increasing on(a, ȳ] and monotonically non-decreasing on

[ȳ, b), for someȳ. I call the first two casesone-sidedproblems, because they involve stopping either ifY

gets large (case 1) or ifY gets small (case 2). The third case is referred to as atwo-sidedproblem, because

a decision is taken whenY gets large or small, whichever occurs first.

1See, for example, Dixit and Pindyck (1994) for an overview ofthe early literature.
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To describe the contribution of the paper, consider the firstcase, i.e.F ′ ≥ 0. Letϕ ∈ C2 be an increasing

convex function withϕ(a) = 0.2 If a solution exists I show that (i) the optimal stopping ruleis a trigger

policy and (ii) that the trigger is given by the solutiony∗ to the equation

ϕ(y∗)F ′(y∗) = ϕ′(y∗)F (y∗). (1)

Provided that

F ′′/ϕ′′ < F ′/ϕ′, (2)

such a solution is unique and, in fact, maximizes the function F/ϕ. The solution to the optimal stopping

problem is then given by

F ∗(y) =











ϕ(y)
ϕ(y∗)F (y∗) if y < y∗

F (y) if y ≥ y∗,

and the optimal stopping time is the first hitting time from below of y∗.

Condition (1) encompasses the traditional “value-matching” and “smooth-pasting” conditions (see Dixit

and Pindyck, 1994), whereas (2) ensures thatF ∗ dominatesF and is superharmonic. Intuitively, condi-

tion (2) ensures thatϕ is “more convex” than the payoff function. In fact, I show that (1) and (2) are the first

and second order conditions, respectively, of an appropriately chosen optimization problem. So, at some

level one can say that the traditional real options literature solves the first order condition, but neglects to

check the second order condition. An example is provided to show that this can lead to erroneous conclu-

sions. Note, in addition, that rather than solving two equations (value-matching and smooth-pasting) the

approach advocated here only requires solving one equation. Similarly, in two-sided problems, the burden

is reduced from solving four equations (two value-matchingand two smooth-pasting conditions) to two

equations.

The paper, therefore, provides easy-to-check conditions that establish a solution to a large class of optimal

stopping problems under a wide variety of diffusions. The work is related to recent work by Boyarshenko

and Levendorskiǐ (2007). Their approach, however, uses the Wiener-Hopf decomposition of Lévy pro-

cesses, whereas the approach used here mainly uses Dynkin’sformula. In addition, this paper does not aim

for full generality. For example, while Boyarshenko and Levendorskǐi (2011) focus on optimal stopping

problems with non-monotonic and discontinuous payoff functions, the approach taken here emphasizes the

link between optimal stopping problems and “standard” maximization problems. This implies that we make

smoothness assumptions throughout. The reward reaped frompaying the price of these stronger assump-

2An increasing solution exists for all diffusions, it is convex under certain conditions.
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tions is that the resulting sufficient conditions for solutions to optimal stopping problems are easily checked

and applicable.

The paper is organized as follows. Section 2 provides some motivating examples to illustrate the kind of

problems the results can be applied to. Section 3.1 solves one-sided problems, whereas Section 3.2 solves

two-sided problems. In Section 4 the method developed in Section 3.2 is applied to a Bayesian sequential

testing problem to illustrate the wide applicability of theresults.

2 Motivating Examples

The kind of problems that are considered in this paper often arise in the literature on investment under

uncertainty (or “real options”).

Example 1 (Optimal investment decision). Consider a firm that can decide to invest in a project that leads

to a payoff stream(Yt)t≥0 and a constant cost streamc > 0, by paying a sunk costI > 0, and suppose that

(Yt)t≥0 follows some diffusion

dYt = µ(Yt)dt+ σ(Yt)dBt,

where(Bt)t≥0 is a Wiener process. Suppose that the firm discounts payoffs at the rater > 0.

If the current state of the process(Yt)t≥0 is y and the firm decides to invest at that stage the net present

value (NPV) of the project is

F (y) = Ey

[
∫ ∞

0
e−rt(Yt − c)dt

]

− I

= Ey

[
∫ ∞

0
e−rtYtdt

]

−
(

I +
c

r

)

,

provided that the integral and the expectation exist.

The firm’s problem then is to find a functionF ∗ and a stopping timeτ∗ that solve the optimal stopping

problem

F ∗(y) := Ey

[

e−rτ∗F (Yτ∗)
]

= sup
τ∈M

Ey

[

e−rτF (Yτ )
]

,

whereM is the set of stopping times.

Intuitively, there will be a triggery∗, such that investment is optimal as soon asy∗ is hit from below. ⊳

Sufficient conditions for the existence of a unique triggery∗ and a straightforward way of computing it

are given in Proposition 3 in Section 3.1.
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Example 2 (Optimal liquidation decision). Consider a firm that is currently generating a revenue stream

(Yt)t≥0 against a constant cost streamc > 0 and that can decide to liquidate by paying a sunk cost0 < I <

c/r. Suppose that(Yt)t≥0 follows some diffusion

dYt = µ(Yt)dt+ σ(Yt)dBt,

where(Bt)t≥0 is a Wiener process, and suppose that the firm discounts payoffs at the rater > 0.

If the current state of the process(Yt)t≥0 is y and the firm decides to liquidate at the stopping timeτ ,

then, using the strong Markov property of diffusions, the value of this liquidation policy can be written as

G(y) =Ey

[
∫ τ

0
e−rt(Yt − c)dt− e−rτI

]

=Ey

[
∫ ∞

0
e−rt(Yt − c)dt− e−rτEYτ

(
∫ ∞

0
e−rt(c− Yt)dt− I

)]

=Ey

[
∫ ∞

0
e−rtYtdt

]

−
c

r
+ Ey

[

e−rτ

(

−EYτ

[
∫ ∞

0
Ytdt

]

−
(

I −
c

r

)

)]

≡Ey

[
∫ ∞

0
e−rtYtdt

]

−
c

r
+ Ey

[

e−rτF (Yτ )
]

,

assuming that all integrals and expectations exist, and where

F (y) = −EYτ

[
∫ ∞

0
Ytdt

]

−
(

I −
c

r

)

.

The firm’s problem then is to find a functionF ∗ and a stopping timeτ∗ that solve the optimal stopping

problem

F ∗(y) := Ey

[

e−rτ∗F (Yτ∗)
]

= sup
τ∈M

Ey

[

e−rτF (Yτ )
]

,

whereM is the set of stopping times.

Intuitively, there will be a triggery∗, such that liquidation is optimal as soon asy∗ is hit from above. ⊳

Sufficient conditions for the existence of a unique triggery∗ and a straightforward way of computing it

are given in Proposition 5 in Section 3.1.

Both the investment and liquidation problems are what I callone-sidedoptimal stopping problems, be-

cause only one decision needs to be taken: once the optimal stopping time is chosen it is obvious what action

is taken at that time. In many realistic problems a firm has to decide not only when to stop, but also what

to do at that time. In the simplest case, the firm has to choose between two different actions. I call such

problemstwo-sidedoptimal stopping problems.
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Example 3 (Adoption or abandonment of an investment opportunity). Suppose that a firm has an option to

invest in a particular project, the profits of which follow a diffusion

dYt = µ(Yt)dt+ σ(Yt)dBt,

where(Bt)t≥0 is a Wiener process. The sunk costs of investment areI > 0. If the project is infinitely-lived,

then the expected net present value (NPV) of investing at a time when the process(Yt)t≥0 takes the valuey

is

F (y) = Ey

[
∫ ∞

0
e−rtYtdt

]

− I,

again assuming that the integral and the expectation exist.

In addition, suppose that there is a constant cost streamc > 0 for keeping the investment opportunity

alive (for example, in the case of real estate investment thelease of a plot of land on which to build a

development). The firm then has to decide (i) when to make a decision (and stop paying the cost streamc)

and (ii) at the time of decision whether to adopt the project (and incur the sunk costsI) or to abandon the

project altogether.

So, the optimal stopping problem facing the firm is

F ∗(y) = sup
τ∈M

Ey

[

−c

∫ τ

0
e−rtdt+ e−rτ max {F (y), 0}

]

=−
c

r
+ sup

τ∈M
Ey

[

e−rτ max {FH(Yτ ), FL(Yτ )}
]

,

where

FL(y) =
c

r
, and FH(y) = F (y) +

c

r
.

Intuitively, there will be a pair of triggers(YL, YH), YL < YH , such that abandonment is optimal as soon

asYL is hit from above and adoption is optimal as soon asYH is hit from below. ⊳

Sufficient conditions for the existence of triggersYL andYH and a straightforward way of computing

them are given in Proposition 7 in Section 3.2.

3 Optimal Stopping Problems with Smooth Payoff Functions

Consider a measurable space(Ω,F ), a state spaceE = (a, b) ⊂ R, and a family of probability measures

(Py)y∈E . For eachy ∈ E, let (Yt)t≥0 be a strongly Markovian, time-homogeneous, càdlàg diffusion with

Y0 = y, Py-a.s. Assume that(Ft)t≥0 is the filtration generated by(Yt)t≥0, augmented by the null sets. The

process(Yt)t≥0 is assumed to solve the stochastic differential equation (SDE)

dYt = µ(Yt)dt+ σ(Yt)dBt,
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where(Bt)t≥0 is a Wiener process. The functionsµ andσ are assumed to satisfy the conditions that ensure

existence and uniqueness of solutions to this SDE (see, for example, Øksendal, 2000). All payoffs are

discounted at a constant rater > 0.

The expectation operator underPy, y ∈ E, is denoted byEy. Note thatEYt = E(·|Ft), PYt-a.s., for all

t ≥ 0. The generator of(Yt)t≥0 is defined by the operator

LY f(y) = lim
t↓0

Ey[f(Xt)]− f(y)

t
,

whenever the limit exists. It is the equivalent of the derivative of a function in cases where the variable

follows a stochastic process. For time-homogeneous diffusions it can be shown that onC2(E) the generator

coincides with the partial differential equation

LY g =
1

2
σ2(y)g′′(y) + µ(y)g′(y).

The approach in this paper relies on the existence of convex solutions to the differential equation

LY ϕ− rϕ = 0. (3)

The following lemma is due to Borodin and Salminen (1996) andAlvarez (2003).

Lemma 1. If µ(·)−ry is non-decreasing then there exist convex increasing and convex decreasing solutions

to (3).

Example 4. In this example we consider several often used diffusions. Let (Bt)t≥0 be a Wiener process.

1. Arithmetic Brownian motion (ABM). Suppose that(Yt)t≥0 solves the SDE

dYt = µdt+ σdBt,

with µ ∈ R andσ > 0 constants. Then the quadratic equation

1

2
σ2β2 + µβ − r = 0,

has two solutions,β1 > 0 > β2. The functions

ϕ̂(y) = eβ1y, and ϕ̌(y) = eβ2y,

are convex increasing and convex decreasing solutions to (3), respectively.
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2. Geometric Brownian motion (GBM). Suppose that(Yt)t≥0 solves the SDE

dYt = µYtdt+ σYtdBt,

with µ < r andσ > 0 constants. Then the quadratic equation

1

2
σ2β(β − 1) + µβ − r = 0,

has two solutions,β1 > 1 > 0 > β2. The functions

ϕ̂(y) = yβ1 , and ϕ̌(y) = yβ2 ,

are convex increasing and convex decreasing solutions to (3), respectively.

3. Geometric mean reversion (GMR). Suppose that(Yt)t≥0 solves the SDE

dYt = η(Ȳ − Yt)Ytdt+ σYtdBt,

with η, Ȳ , σ > 0. Then the quadratic equation

1

2
σ2β(β − 1) + (r + ηȲ )β − r = 0,

has two solutions,β1 > 0 > β2. The functions

ϕ̂(y) = yβ1H

(

2η

σ2
y;β1, b1

)

, and ϕ̌(y) = yβ2H

(

2η

σ2
y;β2, b2

)

,

where

bi = 2βi + 2(r + ηȲ )/σ2, i = 1, 2,

are convex increasing and convex decreasing solutions to (3), respectively. Here

H(x; a, b) =

∞
∑

n=0

Γ(a+ n)/Γ(a)

Γ(b+ n)/Γ(b)

xn

n!
,

is the confluent hypergeometric function.

⊳

Finally, thepayoff functionis aC2 functionF : E → R. In investment problems, the payoff can be

thought of as the net present value (NPV) of an investment. The problem facing the decision-maker (DM)
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is to choose a stopping timeτ at which it is optimal to invest or, equivalently, at which itis optimal to stop

waiting. That is, the DM wishes to solve theoptimal stopping problem

F ∗(y) = sup
τ∈M

Ey

[

e−rτF (Yτ )
]

, (4)

whereM is the set of stopping times. It is obvious from this formulation thatF ∗ should (i) be time-

independent and (ii) dominate the payoff functionF . The solutionF ∗ is called thevalue function. It can

also be shown that ifF ∗ solves (4) it must be asuperharmonicfunction, i.e.F ∗(y) ≥ Ey [e
−rτF ∗(Yτ )], for

all stopping timesτ ∈ M.

In this paper we consider payoff functionsF that are (i) monotonically increasing or decreasing, in which

case we refer to (4) as aone-sidedproblem, or (ii) decreasing then increasing, in which case we refer to (4)

as atwo-sidedproblem.

3.1 One-Sided Problems

3.1.1 Problems with Increasing Payoff Functions

First it will be assumed thatF ′ > 0, so that an increase in the state variable corresponds with an increase in

the payoff. It will be assumed thatF (a) < 0 andF (b) > 0, which implies that there exists a uniqueȳ ∈ E

such thatF (ȳ) = 0. The assumption is made to to ensure that the problem is not economically vacuous.

The following proposition shows that the problem (4) can be solved by splitting the state spaceE into a

continuation setD whereF ∗ > F and astopping setE \D, whereF ∗ = F . In addition, it shows that (4)

has a continuation set of the formD = (a, y∗) for some thresholdy∗. That is, the solution is atrigger

policy: stop as soon as some thresholdy∗ is reached from below. In order to describe such a policy, denote

thefirst-hitting timeof some thresholdy∗ from below (underPy) by

τ̂y(y
∗) = inf { t ≥ 0 | Yt ≥ y∗ } .

If no confusion is possible, the subscript will be dropped.

Proposition 1. The continuation setD is a connected set withD ⊃ (a, ȳ].

Proof. It is well-known (cf. Øksendal, 2000) that the continuationset is time-invariant and, thus, only

depends on the state of the process,y, and not explicitly on time,t.

Suppose that problem (4) has a solution. From Peskir and Shiryaev (2006, Theorem 2.4) we know that

F ∗ is the least superharmonic majorant ofF onE and that the first exit time ofD,

τD = inf { t ≥ 0 | Yt 6∈ D } ,
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is the optimal stopping time.

1. We first show that(a, ȳ] ⊂ D. Let y ≤ ȳ and let

τ = inf { t ≥ 0 | F (Yt) ≥ 0 } .

Note that it is possible thatPy(τ = ∞) > 0. It holds that

Ey

[

e−rτF (Yτ )
]

≥ 0 > F (ȳ) > F (y).

So, it cannot be optimal to stop aty and, hence,(a, ȳ] ⊂ D.

2. We now show thatD is connected. Suppose not. Then there exist points

y1 > Ȳ , and y2 > y1,

such that

y1 ∈ E \D, and y2 ∈ D.

Let τ = inf { t ≥ 0 | Yt ≥ y2, Yt ∈ E \D }. SinceF ∗ is a superharmonic majorant ofF it holds that

F (y1) = F ∗(y1) ≥ Ey1 [F
∗(Yτ )] = Ey1 [F (Yτ )] > Ey1 [F (y2)] = F (y2).

But this contradicts the fact thatF is an increasing function.

The problem of finding the optimal stopping time can now be reduced to finding the optimal triggery∗.

Because of the a.s. continuity of the sample paths of(Yt)t≥0 this implies that

F ∗(y) = sup
τ∈M

Ey

[

e−rτF (Yτ )
]

= sup
ŷ∈E

Ey

[

e−rτ̂(ŷ)F (Yτ̂(ŷ))
]

= sup
ŷ∈E

Ey

[

e−rτ̂(ŷ)
]

F (ŷ).

In order to find theexpected discount factorof τ̂(ŷ), denoted by

ν̂y(ŷ) := Ey

[

e−rτ̂(ŷ)
]

,

we use the existence of an increasing functionϕ̂ ∈ C2(E), such thatLY ϕ̂ = rϕ̂. In addition, we will

assume thatµ(y)− ry is non-decreasing so that this functionϕ̂ is convex.
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Proposition 2. For any ŷ ≥ y, it holds that

ν̂(ŷ) = ϕ̂(y)/ϕ̂(ŷ).

Proof. Define the process(Xt)t≥0 by

Xt =





s+ t

Yt



 .

For any functiong ∈ C2([0,∞) ×E), the generator ofg equals

LXg =
∂g(·)

∂t
dt+

d
∑

i=1

µi(y)
∂g(·)

∂yi
+

1

2

∑

i,j

σi(y)σj(y)
∂2g(·)

∂yi∂yj
.

So, in particular, it follows that forg(t, y) = e−rtF (y) we get:

LXg(·) =e−rt
(

d
∑

i=1

µi(y)
∂g(·)

∂yi
+

1

2

∑

i,j

σi(y)σj(y)
∂2g(·)

∂yi∂yj
− rg(·)

)

=e−rt(LY F (·)− rF (·)).

From Dynkin’s formula (see, for example, Øksendal, 2000) itthen follows that3

Ey

[

e−rτ̂(ŷ)ϕ̂(Yτ̂(ŷ))
]

=ϕ̂(y) + +Ey

[

∫ τ̂(ŷ)

0
e−rt (LY ϕ̂(Yt)− rϕ̂(Yt)) dt

]

=ϕ̂(y).

The a.s. continuity of sample paths of(Yt)t≥0 then implies that

Ey

[

e−rτ̂(ŷ)ϕ̂(Yτ̂ (ŷ))
]

= Ey

[

e−rτ̂(ŷ)
]

ϕ̂(ŷ),

from which the proposition follows immediately.

This proposition implies that the problem (4) can be writtenas

F ∗(y) = ϕ̂(y) sup
ŷ∈E

F (ŷ)

ϕ̂(ŷ)
,

so that solving the optimal stopping problem reduces to maximizing the functionϕ̂ := F/ϕ̂. The main

result is summarized in the following proposition.

3In most formulations of Dynkin’s formula a condition for itsapplication is thatτ < ∞, Py-a.s. to ensure that the integral is

finite. Here this condition is irrelevant because the integrand is zero.
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Proposition 3. Suppose that there exists an increasing and convex functionϕ̂ ∈ C2, with ϕ̂(a) = 0, which

solvesLY ϕ̂ = rϕ̂. Suppose, in addition, that there existsy∗ ∈ (ȳ, b) such that

ϕ̂(y∗)F ′(y∗) = ϕ̂′(y∗)F (y∗). (5)

Finally, assume that̂ϕ is more convex thanF , i.e. that

F ′′(y)

F ′(y)
<

ϕ̂′′(y)

ϕ̂′(y)
, on (a, b). (6)

Then the optimal stopping problem(4) is solved by

F ∗(y) =











ϕ̂(y)
ϕ̂(y∗)F (y∗) if y < y∗,

F (y) if y ≥ y∗,
(7)

andτ∗ = τ̂(y∗).

Proof. It first shown thaty∗ is the unique maximizer of the functionf : E → R, defined byf(y) =

F (y)/ϕ̂(y). Since the domain is open, any maximum must occur at an interior location. It is easily checked

that

f ′(y) = 0 ⇐⇒ ϕ̂(y)F ′(y) = ϕ̂′(y)F (y).

Let ŷ be such thatf ′(ŷ) = 0. Then (6) implies that

F ′′(ŷ)

ϕ̂′′(ŷ)
<

F (ŷ)

ϕ̂(ŷ)
=

F ′(ŷ)

ϕ̂′(ŷ)
,

which implies thatf ′′(ŷ) < 0. So, any solution tof ′(y) = 0 is a maximum location. But then,y∗ must be

unique.

The proposition is now proved using Øksendal (2000, Theorem10.4.1). Note that the only conditions to

check are4

1. F ∗ ≥ F (F ∗ dominatesF ),

2. F ∗ ∈ C1 (F ∗ is smooth),

3. LY F
∗ − rF ∗ = 0 on (a, y∗) (F ∗ is minimal),

4. LY F
∗ − rF ∗ ≤ 0 on (y∗, b) (F ∗ is superharmonic),

5. the family{ F ∗(Yτ ) | τ ≤ τC } is uniformly integrable with respect toPy for all y ∈ E, where

τC = inf { t ≥ 0 | Yt 6∈ (a, y∗) }.

4Øksendal (2000, Theorem 10.4.1) lists more conditions, which are all trivially satisfied.
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Typically, only the second and third conditions are checkedin applied papers. The other conditions, how-

ever, are important to guarantee optimality of a proposed solution.

1. On (a, ȳ] ∪ [y∗, b) it holds trivially thatF ∗ ≥ F . Suppose thatF ∗ ≥ F does not hold on(ȳ, y∗).

Then there existŝy such that

F ∗(ŷ) =
ϕ̂(ŷ)

ϕ̂(y∗)
F (y∗) < F (ŷ) ⇐⇒

F (ŷ)

ϕ̂(ŷ)
>

F (y∗)

ϕ̂(y∗)
.

This contradicts the fact thaty∗ is the unique maximizer ofF/ϕ̂.

2. Continuity ofF ∗ is obvious. Differentiability aty∗ follows from

lim
y↑y∗

F ∗(y) = lim
y↑y∗

ϕ̂′(y)
F (y∗)

ϕ̂(y∗)

(∗)
= lim

y↑y∗
ϕ̂′(y)

F ′(y∗)

ϕ̂′(y∗)
= F ′(y∗),

where(∗) follows becausey∗ solves (5).

3. F ∗ is minimal, because on(a, y∗)it holds that

LY F
∗ − rF ∗ =

F (y∗)

ϕ̂(y∗)
(LY ϕ̂− rϕ̂) = 0.

4. F ∗ is superharmonic on(y∗, b), because

LY F
∗ − rF ∗ =LY F − rF

=
1

2
σ2(·)F ′′ + µ(·)F ′ − rF

=
1

2
σ2(·)ϕ̂′′F

′′

ϕ̂′′
+ µ(·)ϕ̂′F

′

ϕ̂′
− rϕ̂

F

ϕ̂

=
1

2
σ2(·)ϕ̂′′F

′′

ϕ̂′′
+

F ′

ϕ̂′

[

rϕ̂−
1

2
σ2(·)ϕ̂′′

]

− rϕ̂
F

ϕ̂

=
1

2
σ2(·)ϕ̂′′

[

F ′′

ϕ̂′′
−

F ′

ϕ̂′

]

+ rϕ̂

[

F ′

ϕ̂′
−

F

ϕ̂

]

<0.

The final inequality follows from (6) and from the fact that, sincey∗ is the unique maximizer off it holds

thatF ′/ϕ̂′ < F/ϕ̂ on [y∗, b).

5. Consider the functiong : [0,∞) → [0,∞), defined byg(x) = x2. Theng is increasing and convex

on [0,∞) andlimx→∞
g(x)
x = ∞, so thatg is auniform integrability test function. Since

sup
τ≤τC

{
∫

g (|F ∗(Yτ )|) dPy

}

= sup
τ≤τC

Ey

[

F ∗(Yτ )
2
]

≤ Ey [F
∗(y∗)] < ∞,
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the family{ F ∗(Yτ ) | τ ≤ τC } is uniformly integrable (cf. Øksendal, 2000, Theorem C.3).

If (5) has no solution, then it is never optimal to stop. Note that a sufficient condition for (6) is that

F ′′ ≤ 0. So, a concave NPV function ensures optimality of the optimal stopping trigger, provided it exists

in the first place. The proof of the theorem relies on the following result, which is of interest in its own right.

Corollary 1. The optimal stopping thresholdy∗ is the unique maximizer of the functionF/ϕ̂ on [ȳ, y∗).

In most of the literature on investment under uncertainty, following Dixit and Pindyck (1994), it is only

checked thatLY F
∗ = rF ∗ onC and thatF ∗ is C1. To see that this is not enough consider the following

example.

Example 5. Suppose that(Yt)t≥0 follows a GBM

dYt

Yt
= µdt+ σdBt,

on the state spaceE = (0,∞) and that the NPV of the project is given by

F (y) = Ey

[
∫ ∞

0
e−rtY α

t dt

]

− I =
yα

r − α(µ + .5(α − 1)σ2)
− I,

whereα > 0 andr > α(µ + .5(α − 1)σ2). Note that whenα = 1 this model reduces to the basic model

discussed in Dixit and Pindyck (1994, Chapter 6).

The solution toLY ϕ = rϕ is given by

ϕ(y) = Ayβ1 +Byβ2,

whereβ1 > 0 andβ2 < 0 are the roots of the quadratic equation

1

2
σ2β(β − 1) + µβ − r = 0,

andA andB are arbitrary constants. We need the following restrictions onϕ:

1. ϕ(0) = 0 implies thatB = 0;

2. ϕ′ > 0 is satisfied ifA > 0;

3. ϕ′′ > 0 is satisfied ifβ1 > 1, i.e. if r > µ.

We now find the optimal stopping trigger by solving (5):

y∗ =

(

β1
β1 − α

[r − α(µ + .5(α − 1)σ2)]I

)1/α

.
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This leads to a unique solution of the optimal stopping problem (4)

F ∗(y) =











(

y
y∗

)β1 α
β1−αI if y < y∗,

yα

r−α(µ+.5(α−1)σ2)
− I if y ≥ y∗,

andτ∗ = τ̂(y∗).

In order to make sure thaty∗ is a maximizer and thatF ∗ is superharmonic we need to check (6). This

condition is easily verified to hold iffα < β1. These conditions show thatF ∗ can only be superharmonic if

the NPV does not increase faster than the value of waiting, i.e. if ϕ is more convex thanF . ⊳

3.1.2 Problems with Decreasing Payoff Functions

Suppose now thatF ′ < 0, F (a) > 0, andF (b) < 0, so that there exists a uniqueȳ ∈ E such thatF (ȳ) = 0.

This represents a situation where it will be optimal to stop whenY gets small, rather than large. Fixy ∈ E.

For anyy∗ ≤ y, denote

τ̌(y∗) = inf { t ≥ 0 | Yt ≤ y∗ } , and ν̌y(y
∗) = Ey

[

e−rτ̌(y∗)
]

.

The optimal stopping problem is again

F ∗(y) = sup
τ∈M

Ey

[

e−rτF (Yτ )
]

. (8)

As in the case whereF ′ > 0, the optimal policy is to stop as soon as a certain thresholdy∗ is reached.

This time, however, the threshold is reached fromabove, i.e. the continuation region is of the form(y∗, b) ⊃

(ȳ, b).

Proposition 4. The continuation setD is a connected set with[ȳ, b) ⊂ D.

The proof is identical to that of Proposition 1 and is, therefore, omitted.

So, the optimal stopping problem (8) can be written as

F ∗(y) = sup
ŷ∈E

ν̌y(ŷ)F (ŷ).

Sufficient conditions for the existence of a solution of the optimal stopping problem (8) now follow

immediately.

Proposition 5. Suppose that there exists a decreasing and convex functionϕ̌ ∈ C2, with ϕ̌(b) = 0, which

solvesLY ϕ̌ = rϕ̌. Suppose, in addition, that there existsy∗ ∈ (ȳ, b) such that

ϕ̌(y∗)F ′(y∗) = ϕ̌′(y∗)F (y∗). (9)
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Finally, assume thaťϕ is more convex thanF , i.e.

F ′′(y)

F ′(y)
>

ϕ̌′′(y)

ϕ̌′(y)
, on (a, b). (10)

Then the optimal stopping problem(8) is solved by

F ∗(y) =











F (y) if y ≤ y∗,

ϕ̌(y)
ϕ̌(y∗)F (y∗) if y > y∗,

(11)

andτ∗ = τ̌(y∗).

3.2 Two-Sided Optimal Stopping Problems

Suppose that the payoff function is given by a functionF , which is non-increasing on(a, ȳ) and non-

decreasing on(ȳ, b), for some uniquēy ∈ E, with F (a) > F (ȳ) andF (b) > F (ȳ). Assume thatF ∈

C2(E \ {ȳ}) ∩ C1(E \ {ȳ}) ∩ C(E). The functionF can, therefore, be thought of as

F (y) =











FL(y) if y ≤ ȳ

FH(y) if y ≥ ȳ,

with FL ∈ C2(a, ȳ), F ′
L ≤ 0 andFH ∈ C2(ȳ, b), F ′

H ≥ 0, with FL(ȳ) = FH(ȳ). If the DM stops at a time

τ whenYτ < ȳ (Yτ > ȳ) I refer to this as theabandonment(investment) decision, in line with the economic

situation described in Example 3.

The decision-maker discounts revenues at a constant and deterministic rater > 0 and wishes to find a

functionF ∗ and a stopping timeτ∗ to solve the optimal stopping problem

F ∗(y) := Ey

[

e−rτ∗F (Yτ∗)
]

= sup
τ∈M

Ey

[

e−rτF (Yτ )
]

, (12)

whereM is the set of stopping times.

If the optimal stopping problem (12) has a solution of the trigger type then one would expect, in analogy

with Section 3.1, that (12) can be written as

F ∗(y) = sup
YL<ȳ<YH

Ey

[

e−rτ∗
(

1(τ̌ (YL)<τ̂ (YH ))FL(YL) + 1(τ̌ (YL)>t̂(YH ))FH(YH)
)]

,

whereτ∗ := inf { t ≥ 0 | Yt 6∈ (YL, YH) }. Denoting

ν̌y(YL, YH) = Ey

[

e−rτ̌(YL)|τ̌(YL) < τ̂(YH)
]

Py (τ̌(YL) < τ̂(YH)) , and

ν̂y(YL, YH) = Ey

[

e−rτ̂(YH )|τ̂(YH) < τ̌(YL)
]

Py (τ̂(YH) < τ̌(YL)) ,
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this can be rewritten as

F ∗(y) = sup
YL<ȳ<YH

ν̌y(YL, YH)FL(YL) + ν̂y(YL, YH)FH(YH). (13)

The first task in solving this program is to determineν̂y(YL, YH) andν̌y(YL, YH). Fix YL, YH ∈ E, such

thatYL < YH .

Proposition 6. Suppose that

1. there exists an increasing function̂ϕ ∈ C2 such thatLY ϕ̂ = rϕ̂, with ϕ̂(YL) = 0, and

2. there exists a decreasing functionϕ̌ ∈ C2 such thatLY ϕ̌ = rϕ̌, with ϕ̌(YH) = 0.

Then for anyy ∈ (YL, YH)

ν̂y(YL, YH) =
ϕ̂(y)

ϕ̂(YH)
, and ν̌y(YL, YH) =

ϕ̌(y)

ϕ̌(YL)
.

Note thatϕ̂ will depend explicitly onYL due to the boundary condition̂ϕ(YL) = 0, while ϕ̌ depends on

YH .

Proof. Let τ = τ̂(YH) ∧ τ̌(YL) and take any solutionϕ ∈ C2 to LY ϕ = rϕ. Then

Ey

[

e−rτϕ(Yτ )
]

=Ey

[

e−rτ̌(YL)|τ̌(YL) < τ̂(YH)
]

Py (τ̌(YL) < τ̂(YH))ϕ(YH)

+Ey

[

e−rτ̂(YH )|τ̂(YH) < τ̌(YL)
]

Py (τ̂(YH) < τ̌(YL))ϕ(YL)

=ν̂y(YL, YH)ϕ(YH ) + ν̌y(YL, YH)ϕ(YL).

An application of Dynkin’s formula then gives that

ν̂y(YL, YH)ϕ(YH) + ν̌y(YL, YH)ϕ(YL) = ϕ(y).

The result now follows immediately by plugging in̂ϕ andϕ̌, respectively.

Example 6. Suppose that(Yt)t≥0 follows a GBM

dYt = µYtdt+ σYtdB.

The general solution toLY ϕ− rϕ = 0 is given by

ϕ(y) = Ayβ1 +Byβ2,

for constantsA andB. Since we need that̂ϕ(YL) = 0, it follows that

B = −AY β1−β2

L .
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Therefore,

ϕ̂(y) = A
(

yβ1 − Y β1−β2

L yβ2

)

,

which implies that

ν̂y(YL, YH) =
ϕ̂(y)

ϕ̂(YH)
=

yβ1 − Y β1−β2

L yβ2

Y β1

H − Y β1−β2

L Y β2

H

=
yβ1Y β2

L − Y β1

L yβ2

Y β1

H Y β2

L − Y β1

L Y β2

H

.

A similar analysis gives that

ν̌y(YL, YH) =
Y β1

H yβ2 − yβ1Y β2

H

Y β1

H Y β2

L − Y β1

L Y β2

H

.

⊳

Note thatϕ̂ depends onYL andϕ̌ depends onYH , i.e. ϕ̂(y;YL) andϕ̌(y;YH), respectively. Under the

assumptions of Proposition 6 the first-order condition of the program (13) with respect toYH reads

−
ϕ̂(y;YL)ϕ̂

′
1(YH ;YL)

ϕ̂(YH ;YL)2
FH(YH) +

ϕ̂(y;YL)

ˆϕ(YH ;YL)
F ′
H(YH)

+
ϕ̌(YL;YH)ϕ̌′

2(y;YH)− ϕ̌(y;YH)ϕ̌′
2(YL;YH)

ϕ̌(YL;YH)2
FL(YL) = 0.

It turns out that this first-order condition only needs to be satisfied atYH , i.e.

−
ϕ̂′
1(YH ;YL)

ϕ̂(YH ;YL)
FH(YH) + F ′

H(YH) +
ϕ̌′
2(YH ;YH)

ϕ̌(YL;YH)
FL(YL) = 0,

Sinceϕ̌(YH) = 0, it holds thatϕ̌′
2(YH ;YH) = −ϕ̌′

1(YH ;YH), so that the above equation can be rewritten

as

−
ϕ̂′
1(YH ;YL)

ϕ̂(YH ;YL)
FH(YH) + F ′

H(YH)−
ϕ̌′
1(YH ;YH)

ϕ̌(YL;YH)
FL(YL) = 0, (14)

A similar reasoning gives the first-order condition forYL:

−
ϕ̌′
1(YL;YH)

ϕ̌(YL;YH)
FL(YL) + F ′

L(YL)−
ϕ̂′
1(YL;YL)

ϕ̂(YH ;YL)
FH(YH) = 0. (15)

The following proposition can now be proved.

Proposition 7. Suppose that there exists a pair(YL, YH), with a < YL < ȳ < YH < b, such thatYL and

YH solve(14) and (15), and that the assumptions of Proposition 6 hold. Define the functionϕ ∈ C2 by

ϕ(y) =
ϕ̌(y)

ϕ̌(YL)
FL(YL) +

ϕ̂(y)

ϕ̂(YH)
FH(YH).

Let ŷ ∈ (YL, YH) be the unique point such thatϕ is decreasing on(a, ŷ) and increasing on(ŷ, b). Suppose,

in addition, that
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1. ϕ is strictly convex,

2. ϕ is more convex thanFH on (ŷ, b), i.e.
F ′′

H
(y)

F ′

H
(y) <

ϕ′′(y)
ϕ′(y) , ŷ < y < b, and

3. ϕ is more convex thanFL on (a, ŷ), i.e.
F ′′

L(y)

F ′

L
(y) > ϕ′′(y)

ϕ′(y) , a < y < ŷ.

Then a solution to(12) is given by

F ∗(y) =



























FL(y) if y ≤ YL

ϕ(y) if YL < y < YH

FH(y) if y ≥ YH ,

andτ∗ = τ̂(YH) ∧ τ̌(YL).

Proof. Note thatϕ can be written as

ϕ = Aϕ̂+Bϕ̌,

whereA = FH(YH)/ϕ̂(YH) > 0 andB = FL(YL)/ϕ̌(YL) > 0 are constants. It will be shown below that

ϕ′(YL) = F ′
L(YL) andϕ′(YH) = F ′

H(YH), which implies thatϕ′(YL) < 0 andϕ′(YH) > 0. Sinceϕ is

strictly convex, there exists a uniquêy ∈ (YL, YH) such thatϕ is decreasing on(a, ŷ) and increasing on

(ŷ, b).

We first show thatYL andYH maximize the functions

fL =
FL

ϕ
, and fH =

FH

ϕ
,

on (a, ŷ) and(ŷ, b), respectively. First considerfL on (a, YL). It is easily obtained that

f ′
L =

ϕF ′
L − FLϕ

′

ϕ2

∝ [Aϕ̂ +Bϕ̌]F ′
L − FL[Aϕ̂

′ +Bϕ̌′].

Sinceϕ̂(YL) = 0, it holds that

f ′
l (YL) = Bϕ̌(YL)

[

F ′
L(YL)−

A

B

FL(YL)

ϕ̌(YL)
ϕ̂′(YL)−

ϕ̌′(YL)

ϕ̌(YL)
FL(YL)

]

= Bϕ̌(YL)

[

F ′
L(YL)−

ϕ̂′(YL)

ϕ̂(YH)
FH(YH)−

ϕ̌′(YL)

ϕ̌(YL)
FL(YL)

]

= 0.

Suppose thaty0 ∈ (a, ŷ) is such thatf ′
L(y0) = 0. Note that

f ′′
L =

ϕF ′′
L − FLϕ

′′

ϕ2
− 2

ϕ′

ϕ
f ′
L.
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Therefore,

f ′′
L(y0) ∝ ϕ(y0)F

′′
L(y0)− FL(y0)ϕ

′′(y0)

= ϕ(y0)ϕ
′′(y0)

[

F ′′
L(y0)

ϕ′′(y0)
−

FL(y0)

ϕ(y0)

]

= ϕ(y0)ϕ
′′(y0)

[

F ′′
L(y0)

ϕ′′(y0)
−

F ′
L(y0)

ϕ′(y0)

]

= ϕ(y0)F
′
L(y0)

[

F ′′
L(y0)

F ′
L(y0)

−
ϕ′′(y0)

ϕ′(y0)

]

< 0.

So, any solution tof ′
L(y) = 0 is a maximum location and, hence,YL is the unique maximum location on

(a, ŷ).

A similar procedure establishes thatYH is the unique maximum location offH on (ŷ, b).

Following the proof of Proposition 3, we check that

1. F ∗ ≥ F ,

2. F ∗ ∈ C1,

3. LY F
∗ − rF ∗ = 0 on (YL, YH),

4. LY F
∗ − rF ∗ ≤ 0 on (a, YL] ∪ [YH , b).

1. On (YL, ŷ) it holds thatF ∗ is decreasing. In addition,ϕ is more convex thanFL and, as will be estab-

lished below,FL(YL) = ϕ(YL). Therefore,F ∗ ≥ FL on (a, ŷ). In caseŷ < ȳ, it obviously holds that

F ∗ ≥ FL, becauseϕ is increasing on[ŷ, ȳ). A similar argument establishes thatF ∗ ≥ FH on (ȳ, b).

2. It is obvious thatF ∗ ∈ C. To show differentiability, observe that (14) implies that

lim
y↓YL

ϕ′(y) =
ϕ̂′(YL)

ϕ̂(YH)
FH(YH) +

ϕ̌′(YL)

ϕ̌(YL)
FL(YL) = F ′

L(YL),

recalling thatϕ̂(YL) = 0. A similar argument shows thatϕ′(YH) = F ′
H(YH).

3. This follows by construction.

4. In the same way as in the proof of Proposition 3 we can derive that on(a, YL] it holds that

LY F
∗ − rF ∗ =

1

2
σ2(·)ϕ′′

[

F ′′
L

ϕ′′
−

F ′
L

ϕ′

]

+ rϕ

[

F ′
L

ϕ′
−

FL

ϕ

]

.

The first term in square brackets is non-positive by assumption. The second term in square brackets is non-

positive becauseYL is a maximum location offL and, therefore,f ′
L > 0 on (a, YL). A similar argument

establishes thatLY F
∗ − rF ∗ ≤ 0 on (YH , b).
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4 An Illustration: Bayesian Sequential Testing of Statistical Hypotheses

As an application of Proposition 7, we consider a decision-theoretic approach to the problem of sequential

hypothesis testing. The probabilistic set-up follows Shiryaev (1978). That is, we consider a measurable

space(Ω,F ) and two probability measuresP0 andP1 on (Ω,F ). The observed process(Xt)t≥0 follows

an arithmetic Brownian motion

dXt = σdBt, or dXt = µdt+ σdBt,

underP0 andP1, respectively, where(Bt)t≥0 is a Wiener process. From Girsanov’s theorem it follows that

P0 andP1 are equivalent probability measures, so that theP0-null sets and theP1-null sets coincide. The

filtration that we use is the one generated by(Xt)t≥0, augmented with theP0-null sets, and is denoted by
(

FX
t

)

t≥0
.

The problem can be thought of as a sequential hypothesis testing problemH0 : θ = 0 vs H1 : θ = 1,

where the observed signal follows the SDE

dXt = θµdt+ σdBt.

We use a Bayesian approach and, thus, treatθ as a random variable. Letp ∈ (0, 1) play the role ofprior

probability for the event{θ = 1}. Givenp ∈ (0, 1), define the (equivalent) probability measure

Pp = pP1 + (1− p)P0.

Forp ∈ [0, 1] theconditional measureof Pp at timet ≥ 0 is denoted byPp|F
X
t .

Now define thelikelihood ratio process(Yt)t≥0 as the Radon-Nikodym derivative

Yt =
dP1|F

X
t

dP0|FX
t

.

The likelihood ratio measures the relative evidence that(Xt)t≥0 has provided up to timet in favour ofH1

overH0. It can be shown that(Yt)t≥0 follows the geometric Brownian motion

dYt =
µ

σ
YtdBt. (16)

Using Bayes’ rule it can be shown (Shiryaev, 1978) that theposterior probabilityof {θ = 1}, πt, follows

the diffusion

dπt =
µ

σ
πt(1− πt)dB̄t, (17)

where
(

B̄t

)

t≥0
is a Wiener process.
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Suppose that the observations(Xt)t≥0 follow from research conducted by a firm into the feasibilityof,

say, marketing a new product. Here{θ = 1} represents the event where the new product is profitable,

whereas{θ = 0} represents the event that it is not. The costs of conducting the research arec per unit of

time. The firm needs to decide when to stop the research and, atthat time, whether to invest in the new

product or to abandon the project. Therefore, this is a two-sided optimal stopping problem. Suppose that

(i) the profits of investing conditional on{θ = 1} areP > 0, (ii) that the losses of investing conditional on

{θ = 0} (a Type I error) are−L, L > 0, and (iii) that the losses associated with abandoning conditional on

{θ = 1} (a Type II error) are−L as well. Note that in a standard statistical decision problem, losses are

only attached to erroneous decisions. The sunk costs of investment are denoted byI ≥ 0. The net present

value (NPV) of investment, when the posterior belief in{θ = 1} is π then equals

FI(π) = πP − (1− π)L− I,

whereas the NPV of abandonment is equal to

FA(π) = −πL.

Since

πt 7→ Yt =
πt

1− πt

1− p

p
,

is one-to-one and onto the problem can be formulated both in terms ofY or in terms ofπ. Since(Yt)t≥0

follows a GBM it easier to formulate and solve the problem in terms ofY , leading to an upper and lower

trigger,YH andYL, beyond which investment or abandonment is optimal, respectively. These triggers can

then be transformed into triggers for the posterior belief in {θ = 1}, which is easier to interpret. The NPVs,

formulated as functions ofy are given by

FI(y) =
ζy

1 + ζy
(P + L)− (I + L), and FA(y) = −

ζy

1 + ζy
L,

whereζ = p/(1− p) is theprior odds ratio.

The firm’s optimal stopping problem then becomes

F ∗(y) = sup
τ∈M

Ey

[

−c

∫ τ

0
e−rtdt+ e−rτ max(FI(Yτ ), FA(Yτ ))

]

= −
c

r
+ sup

τ∈M
Ey

[

e−rτF (Yτ )
]

,

where

F (y) =











FH(y) := FI(y) +
c
r if y ≥ ȳ

FL(y) := FA(y) +
c
r if y < ȳ,
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and

ȳ =
I + L

ζ(P + L− I)
,

is the unique point whereFH = FL. Note thatF ′
H > 0 andF ′

L < 0. Lettingβ1 > 1 andβ2 < 0 denote the

roots of the equation

Q(β) =
1

2

µ2

σ2
β(β − 1)− r = 0,

it follows that the increasing and decreasing solutions toLY ϕ = rϕ are

ϕ̂(y) = yβ1 − Y β1−β2

L yβ2 , and ϕ̌(y) = yβ2 − Y β2−β1

H yβ1 .

If the first-order conditions (14) and (15) have a solution(YL, YH), then the functionϕ can be written as

ϕ(y) = Ayβ1 +Byβ2,

where

A =
Y β2

L FH(YH)− Y β2

H FL(YL)

Y β1

H Y β2

L − Y β1

L Y β2

H

, and B =
Y β1

H FL(YL)− Y β1

L FH(YH)

Y β1

H Y β2

L − Y β1

L Y β2

H

.

If ϕ is a convex function, then, sinceF ′′
H < 0, it always holds thatϕ is more convex thanFH . However,

sinceF ′′
L > 0 there may be situations whereFL is more convex thanϕ. In such cases the value function

is no longer superharmonic. This means that then the abandonment option has no value and that the firm

should never exercise it. In such cases the investment problem can be solved using the theory presented in

Section 3.1. If a solution exists, then the optimal decisiontime isτ∗ = inf{t ≥ 0|Yt 6∈ (YL, YH)}.

As a numerical illustration, consider the model with the parameter valuesP = 10, I = 5, L = 8, c = 1,

r = µ = .1, andσ = .1. Figure 1 shows the value functions and triggers (in terms ofthe likelihood ratio)

for the priorp = .5. Note thatY0 = 1, because at timet = 0 no evidence has been gathered yet so that

X0 = 0. In terms of the posterior probability of the event{θ = 1}, the triggers can be found to be equal to

(.3279, ..6142). These triggers are the same for every value of the priorp, due to the Markovian structure

of the problem.

What does change with the prior are the inferential properties of the optimal stopping rule. For example,

it can be found that (Poor and Hadjiliadis, 2009) the (implied) probabilities of Type I and Type II errors are

P0(Yτ∗ = YH) =
1− YL

YH − YL
, and P1(Yτ∗ = YL) = YL

YH − 1

YH − YL
,

respectively. Obviously, these probabilities are only meaningful whenp ∈ (πL, πH). For p = .5, the

probabilities are .4637 and .2617, respectively. One has tobe careful in interpreting these probabilities,

because they reflect probabilities of reaching thresholds under different measuresat t = 0 only. These
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Figure 1: Value functions for different priors.

probabilities change when the posterior belief in{θ = 1} change, i.e. when evidence accrues. This is due

to the Bayesian nature of the procedure. A frequentist errorprobabilities approach is possible but requires a

slightly different set-up (see, for example, Shiryaev, 1978 or Poor and Hadjiliadis, 2009).

5 Concluding Remarks

Ever since the seminal contribution of Dixit and Pindyck (1994) the literature on investment under uncer-

tainty solves optimal stopping problems by solving a Bellman equation and then to find a threshold that

satisfies the value-matching and smooth-pasting conditions. This procedure, however, does not check the

necessary conditions that the value function should dominate the payoff function and should be superhar-

monic.

This paper introduces easy-to-check sufficient conditionsthat allow for the solution to a wide variety of

optimal stopping problems to be obtained in a straightforward way. LettingF denote the payoff function and

ϕ a solution to the Bellman equation, it is shown that the solution F ∗ dominatesF and is superharmonic if

ϕ is more convex thanF . In addition, the threshold beyond which stopping is optimal is obtained by solving

the first-order condition of optimizing the functionF/ϕ. Under the condition thatϕ is more convex thanF

this optimization problem has at most one solution, which isa maximum.

The approach presented here also brings some computationaladvantages because the number of equations
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to be solved is halved when compared to the standard value-matching/smooth-pasting approach. An example

based on a Bayesian sequential hypothesis testing problem shows the applicability of the approach to a wide

variety of problems.
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Basel.
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