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1 Introduction

In recent decades, applications of optimal stopping théame been used with great success in the areas
of economics and finance. In particular in the theory of ibtmesnt under uncertainty (“real options”) great
progress has been made in our understanding of timing dasisinder conditions of uncertairityn most

of the literature the resulting optimal stopping probleme solved heuristically and based on economic ar-
guments. In particular, a solution to optimal stopping jeots is typically obtained by solving the Bellman
equation and the so-called value-matching and smootlngastnditions.

This approach implicitly assumes that the solution takedahm of atrigger policy. stop as soon as the
underlying process reaches a certain, endogenously detatnthreshold. This is, however, hardly ever
established explicitly. Similarly, following this apprda does not establish two necessary conditions for
optimal stopping (Peskir and Shiryaev, 2006): (1) the vdlurestion must dominate the payoff function,
and (2) the value function must be superharmonic.

In this paper | consider optimal stopping problems of thenfor

F*(y) = sup By [T F(Y7)].

Here(Y:),> follows a time-homogeneous diffusion taking values on sopen seta, b):
dYy = p(Yy)dt + o(Ye)dB;, Yo =y,

(Bt)tzo is a Wiener process\ is the set of stopping times, ardis the payoff function The solutionF™

is called thevalue function £ dominatesF' if F* > I andF™* is superharmonic if
F*(y) > Ey, [eTTF*(Y,)],

forall 7 € M.

These problems are solved using gemerator .%;-, which onC? coincides with the differential operator

Zrgly) = 50 W)a" () + nw)g )

The kind of payoff functionsg” ¢ C? that | admit are: (1) monotonically non-decreasing, (2) oton-
ically non-increasing, or (3) monotonically non-incre&sbn (a, y] and monotonically non-decreasing on
[7,b), for somey. | call the first two casesne-sidedproblems, because they involve stopping eithér if
gets large (case 1) or ¥ gets small (case 2). The third case is referred totgasidedproblem, because

a decision is taken whexi gets large or small, whichever occurs first.

1See, for example, Dixit and Pindyck (1994) for an overvievitwf early literature.



To describe the contribution of the paper, consider thedase, i.eF’ > 0. Letyp € C? be an increasing
convex function withp(a) = 0.2 If a solution exists | show that (i) the optimal stopping rigea trigger

policy and (ii) that the trigger is given by the solutigh to the equation
ey ) F'(y*) = ¢ (Y )F(y"). (1)

Provided that
F'1o" < F'[¢, (2

such a solution is unique and, in fact, maximizes the functigy. The solution to the optimal stopping

problem is then given by

e(y) F(y*) if *
Sy ify<y

F(y) if y >y,

S

and the optimal stopping time is the first hitting time fronidve of ¢*.

Condition (1) encompasses the traditional “value-matghand “smooth-pasting” conditions (see Dixit
and Pindyck, 1994), whereas (2) ensures fatdominatest' and is superharmonic. Intuitively, condi-
tion (2) ensures that is “more convex” than the payoff function. In fact, | showtlf) and (2) are the first
and second order conditions, respectively, of an appr@lyi@hosen optimization problem. So, at some
level one can say that the traditional real options liteea&olves the first order condition, but neglects to
check the second order condition. An example is providedhtwvghat this can lead to erroneous conclu-
sions. Note, in addition, that rather than solving two eiguiat (value-matching and smooth-pasting) the
approach advocated here only requires solving one equdsiomlarly, in two-sided problems, the burden
is reduced from solving four equations (two value-matchamgl two smooth-pasting conditions) to two
equations.

The paper, therefore, provides easy-to-check conditimatsststablish a solution to a large class of optimal
stopping problems under a wide variety of diffusions. Thekns related to recent work by Boyarshenko
and Levendorsi(i(2007). Their approach, however, uses the Wiener-Hopbugosition of Lévy pro-
cesses, whereas the approach used here mainly uses Dyokinida. In addition, this paper does not aim
for full generality. For example, while Boyarshenko and eegorski (2011) focus on optimal stopping
problems with non-monotonic and discontinuous payoff fioms, the approach taken here emphasizes the
link between optimal stopping problems and “standard” mmzation problems. This implies that we make

smoothness assumptions throughout. The reward reapedpfagimg the price of these stronger assump-

2An increasing solution exists for all diffusions, it is cemvwunder certain conditions.



tions is that the resulting sufficient conditions for saas to optimal stopping problems are easily checked
and applicable.

The paper is organized as follows. Section 2 provides sonmatiag examples to illustrate the kind of
problems the results can be applied to. Section 3.1 solvesioled problems, whereas Section 3.2 solves
two-sided problems. In Section 4 the method developed itic&3e8.2 is applied to a Bayesian sequential

testing problem to illustrate the wide applicability of tresults.

2 Motivating Examples

The kind of problems that are considered in this paper oftese an the literature on investment under

uncertainty (or “real options”).

Example 1 (Optimal investment decision)Consider a firm that can decide to invest in a project thatdead
to a payoff streantY;),., and a constant cost stream- 0, by paying a sunk cost > 0, and suppose that
(Y1)~ follows some diffusion

dY; = u(Y)dt + o(Y;)dBy,

where(B;), is a Wiener process. Suppose that the firm discounts paydfie aater > 0.
If the current state of the proce@;’t)tzo is y and the firm decides to invest at that stage the net present

value (NPV) of the project is
F(y) = E, [/ e "HY; — c)dt] —1
0

—E, [/OOO e""thdt] - (I+ ;) :

provided that the integral and the expectation exist.
The firm’s problem then is to find a functiofi* and a stopping time* that solve the optimal stopping
problem

F*(y) .= E, [e_TT*F(YT*)] = ngja Ey [eTTF(Y;)],

where M is the set of stopping times.

Intuitively, there will be a triggeg™, such that investment is optimal as sooryass hit from below. <

Sufficient conditions for the existence of a unique triggeand a straightforward way of computing it

are given in Proposition 3 in Section 3.1.



Example 2 (Optimal liquidation decision) Consider a firm that is currently generating a revenue stream
(Yt)tzo against a constant cost streany 0 and that can decide to liquidate by paying a sunk 8ost/ <

c/r. Suppose that;),,, follows some diffusion
dY, = p(Y;)dt + o(Y,)dB;,

where(Blt)t20 is a Wiener process, and suppose that the firm discountsfpatdhe rate- > 0.
If the current state of the proce(s];’t)tzo is y and the firm decides to liquidate at the stopping time

then, using the strong Markov property of diffusions, thiigaof this liquidation policy can be written as
G(y) =E, / e Y, — c)dt — e‘”[]
LJo

=E, / e "(Y; — ¢)dt — e ""Ey. (/ e e —Y;)dt — Iﬂ
/o 0

o] v o [ ] -)]

=E, / e_’"thdt] — ; +Ey [eTTTF(Y;)],
LJo

assuming that all integrals and expectations exist, anaavhe

F(y) = —Ey. UOOO ndt] - (I— ;) .

The firm’s problem then is to find a functiofi* and a stopping time* that solve the optimal stopping
problem

F*(y) .= E, [e_”*F(YT*)] = ngja E, [e"TF(Y;)],

where M is the set of stopping times.

Intuitively, there will be a triggey*, such that liquidation is optimal as soomass hit from above. <

Sufficient conditions for the existence of a unique triggeland a straightforward way of computing it
are given in Proposition 5 in Section 3.1.

Both the investment and liquidation problems are what | ca#-sidedoptimal stopping problems, be-
cause only one decision needs to be taken: once the optiopglisg time is chosen itis obvious what action
is taken at that time. In many realistic problems a firm hasetidk not only when to stop, but also what
to do at that time. In the simplest case, the firm has to choeseden two different actions. | call such

problemstwo-sidedoptimal stopping problems.



Example 3 (Adoption or abandonment of an investment opportuni§jippose that a firm has an option to

invest in a particular project, the profits of which follow éfaision
dY, = p(Ys)dt + o(Y;)dB;,

where(B;), is a Wiener process. The sunk costs of investment are). If the project is infinitely-lived,
then the expected net present value (NPV) of investing ama when the proces{éft)tzo takes the valug
is
o0
F(y) =E, [ /0 e‘”Ytdt} —1,
again assuming that the integral and the expectation exist.

In addition, suppose that there is a constant cost stream0 for keeping the investment opportunity
alive (for example, in the case of real estate investmentidase of a plot of land on which to build a
development). The firm then has to decide (i) when to make @idagand stop paying the cost streajn
and (ii) at the time of decision whether to adopt the projecid(incur the sunk cost§ or to abandon the
project altogether.

So, the optimal stopping problem facing the firm is

F*(y) = sup E, {—c/ e "tdt + e max {F(y), 0}
TEM 0

—— 54 sup Ey 67" max {Fyu(Y:), FL(Y7)}],
™ rem

where

FL(y):Sa and FH(?J):F(?J)+§-

Intuitively, there will be a pair of triggeréYr, Yx), Yz < Yg, such that abandonment is optimal as soon

asY7 is hit from above and adoption is optimal as soorYasis hit from below. <

Sufficient conditions for the existence of triggérgs andYy and a straightforward way of computing

them are given in Proposition 7 in Section 3.2.

3 Optimal Stopping Problemswith Smooth Payoff Functions

Consider a measurable spg€g .# ), a state spac& = (a,b) C R, and a family of probability measures
(Py)yer. Foreachy € E, let(Y:),-, be a strongly Markovian, time-homogeneous, cadlag siifiu with
Yo =y, Py-a.s. Assume that7),. is the filtration generated by} ), ,, augmented by the null sets. The

procesgY;), is assumed to solve the stochastic differential equati®E(S

dY; = u(Yz)dt + o(Y;)dBy,
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where(Blt)t20 is a Wiener process. The functiopsando are assumed to satisfy the conditions that ensure
existence and unigueness of solutions to this SDE (see xtmgle, @ksendal, 2000). All payoffs are
discounted at a constant rate> 0.

The expectation operator undey, y € E, is denoted bye,. Note thatEy, = E(:|.%;), Py,-a.s., for all
t > 0. The generator ofY:),, is defined by the operator

zwwz%%W&y¢@7

whenever the limit exists. It is the equivalent of the ddixaof a function in cases where the variable
follows a stochastic process. For time-homogeneous diffisst can be shown that aii?( £) the generator

coincides with the partial differential equation
g = 30*0)g" () + n(w)g ().
The approach in this paper relies on the existence of corsletians to the differential equation
Lo —1p=0. 3)
The following lemma is due to Borodin and Salminen (1996) Ahcrez (2003).

Lemmal. If u(-)—ry is non-decreasing then there exist convex increasing andesodecreasing solutions
to (3).

Example 4. In this example we consider several often used diffusionerz&;(Bt)t20 be a Wiener process.

1. Arithmetic Brownian motion (ABMBuppose tha(th)t20 solves the SDE
dY; = pdt + od By,
with . € R ando > 0 constants. Then the quadratic equation
%a2ﬂ2 +uB—1r=0,
has two solutions3; > 0 > (5. The functions
ply) =¥, and @(y) =™,

are convex increasing and convex decreasing solutiong tcepectively.



2. Geometric Brownian motion (GBM$uppose tha(th)t20 solves the SDE
dY; = pYidt + oYidBy,
with 4 < r ando > 0 constants. Then the quadratic equation

So26(6—1)+up—r =0,

has two solutionsj; > 1 > 0 > 2. The functions
¢y) =y™, and @(y) =y,
are convex increasing and convex decreasing solutiong tcegpectively.
3. Geometric mean reversion (GMRuppose tha(th)t20 solves the SDE
dYy = (Y — Yy)Yidt + oV;dBy,
with n, Y, o > 0. Then the quadratic equation

5288 D)+ (r 4 a¥)B =0,

has two solutions3; > 0 > 5. The functions

) 8 7 (20 . B gy ( 20

oly) =y H ¥ fibi), and o(y) =y™H 2V b0z )
where

bi =2B; +2(r +nY)/0?, i=1,2,
are convex increasing and convex decreasing solutiong toegpectively. Here
2 T(a+n)/I'(a)z"
H(z;a,b) = _——
(z0,0) ;0 T(b+n)/T(b) n!’

is the confluent hypergeometric function.

<

Finally, the payoff functionis aC? function F : E — R. In investment problems, the payoff can be

thought of as the net present value (NPV) of an investmeng prablem facing the decision-maker (DM)

8



is to choose a stopping timeat which it is optimal to invest or, equivalently, at whichdtoptimal to stop
waiting. That is, the DM wishes to solve tlgtimal stopping problem

F*(y) = sup E, [e7"TF(Y;)], (4)
TeM

where M is the set of stopping times. It is obvious from this formigdatthat F* should (i) be time-
independent and (ii) dominate the payoff functibn The solutionF™* is called thevalue function It can
also be shown that if™* solves (4) it must be superharmonidunction, i.e.F*(y) > E, [e™"" F*(Y;)], for
all stopping times € M.

In this paper we consider payoff functiofsthat are (i) monotonically increasing or decreasing, incluhi
case we refer to (4) asane-sidedproblem, or (ii) decreasing then increasing, in which caseeafer to (4)

as atwo-sidedproblem.

3.1 One-Sided Problems
3.1.1 Problemswith Increasing Payoff Functions

First it will be assumed tha” > 0, so that an increase in the state variable corresponds witiceease in
the payoff. It will be assumed thdt(a) < 0 andF'(b) > 0, which implies that there exists a uniqges £
such thatF'(y) = 0. The assumption is made to to ensure that the problem is nabedcally vacuous.
The following proposition shows that the problem (4) can dleed by splitting the state spadeinto a
continuation setD whereF™* > [ and astopping set” \ D, whereF™* = F'. In addition, it shows that (4)
has a continuation set of the form = (a,y*) for some threshold/*. That is, the solution is &igger
policy. stop as soon as some threshgtds reached from below. In order to describe such a policyptien

thefirst-hitting timeof some thresholg™* from below (undei,) by
() =inf{t>0|Y; >y*}.

If no confusion is possible, the subscript will be dropped.

Proposition 1. The continuation seb is a connected set with O (a, 3].

Proof. It is well-known (cf. @ksendal, 2000) that the continuatiet is time-invariant and, thus, only
depends on the state of the procegssand not explicitly on timet.
Suppose that problem (4) has a solution. From Peskir ang&ivir(2006, Theorem 2.4) we know that

I is the least superharmonic majorantfobn E and that the first exit time ab,
p=inf{t>0]|Y; ¢ D},

9



is the optimal stopping time.

1. We first show thata, y] C D. Lety < g and let
T=inf{t>0|F(Y;)>0}.
Note that it is possible th&, (7 = oo) > 0. It holds that
Ey[e""F(Y;)] > 0> F(y) > F(y).

So, it cannot be optimal to stop @and, hence(a, §] C D.

2. We now show thabD is connected. Suppose not. Then there exist points
y1>Y, and y2 >y,
such that

yy € E\D, and y;e D.
Lett =inf{t>0|Y; > y2,Y; € E\ D }. SinceF* is a superharmonic majorant &fit holds that
F(y) = F(y1) 2 By, [F7(Y7)] = By, [F(Y7)] > By, [F(y2)] = F(y2)-

But this contradicts the fact thét is an increasing functionm
The problem of finding the optimal stopping time can now beuced to finding the optimal trigger*.
Because of the a.s. continuity of the sample path&pf;.., this implies that
F*(y) = sup E, [e_”F(YT)]
TEM

-ppe i)
=supE, [e_’"%@)] F(g).
yer

In order to find theexpected discount factaf 7(7), denoted by
7y() = Ey |70

we use the existence of an increasing functiore C?(E), such that% ¢ = r¢. In addition, we will

assume that(y) — ry is non-decreasing so that this functigns convex.

10



Proposition 2. For anyy > v, it holds that
v(g) = o(y)/ ().

Proof. Define the procesgX;),, by
s+t
Y;

~

For any functiony € C?(]0,00) x E), the generator of equals

Lxq dt+z Z 82 (')'.

ayzay]
So, in particular, it follows that fog (¢, y) = e "' F(y) we get:
S ()
Leal) =" .
() =e (Z ay, )y 2 Z Dopdn, )

7.7

—e (L F() —rF ().

From Dynkin’s formula (see, for example, @ksendal, 200€én follows that

) #d)
Ey |7 Wo(Yg)| =0y) + +E, /0 e (L p(Yi) — rp(Vh)) dt

=0 (y).

The a.s. continuity of sample paths(@f,),., then implies that
Ey [e " Do(Va)| = By [ 2(9),

from which the proposition follows immediately

This proposition implies that the problem (4) can be writhsn

F*(y) = ¢(y) Zlelg Z((z))

so that solving the optimal stopping problem reduces to maxng the functiony := F/¢. The main

result is summarized in the following proposition.

®In most formulations of Dynkin’s formula a condition for igplication is that- < oo, P,-a.s. to ensure that the integral is

finite. Here this condition is irrelevant because the irdedris zero.

11



Proposition 3. Suppose that there exists an increasing and convex fungtierC?, with ¢(a) = 0, which

solves%y-¢ = r¢. Suppose, in addition, that there exigtse (y, b) such that
P)F (") = ¢ (W) F (). (5)

Finally, assume thap is more convex tha#’, i.e. that

Fly) = @)

Then the optimal stopping problef#) is solved by

F'y) _ ") o4 (a.b). ©)

and7* = 7(y*).

Proof. It first shown thaty* is the unique maximizer of the functioh: £ — R, defined byf(y) =
F(y)/¢(y). Since the domain is open, any maximum must occur at anante@cation. It is easily checked
that

flly) =0 = ¢W)F(y) =¢W)F(y)

Let ¢ be such thaf’(j) = 0. Then (6) implies that

F'(§) _ F(@) _ F'({)
¢"(g) e ¢’
which implies that/”(y) < 0. So, any solution tg”’(y) = 0 is a maximum location. But them;* must be

unique.
The proposition is now proved using @ksendal (2000, Thedr@r.1). Note that the only conditions to

check aré
1. F* > F (F* dominatestF),
2. F* ¢ C! (F* is smooth),
3. Yy F*—rF*=0on(a,y*) (F*is minimal),
4. S F* —rF* <0on(y*,b) (F*is superharmonic),

5. the family { F*(Y;) | 7 < 7¢ } is uniformly integrable with respect t8, for all y € E, where

e =inf{t>0|Y: & (a,y") }.

“@ksendal (2000, Theorem 10.4.1) lists more conditionsckvhre all trivially satisfied.

12



Typically, only the second and third conditions are chedkeapplied papers. The other conditions, how-

ever, are important to guarantee optimality of a proposédtisa.

1. On (a,y] U [y*,b) it holds trivially that F* > F. Suppose that™* > F' does not hold on(g,y*).

Then there existg such that

This contradicts the fact that' is the unique maximizer of' /.

2. Continuity of £'* is obvious. Differentiability at* follows from

: o W)
lim F*(y) = lim ¢'(y) = = lim ¢/ (y)— = F'(y"),
lim (y) yTy*sO(y)(p(y*) yTy*sO(y) 700 (y")

where(x) follows because™ solves (5).

3. F* is minimal, because ofu, y*)it holds that

LA F* —rF* = lf(y* (B —r¢) =0.
¢(y*)

~—

4. F* is superharmonic ofy*, b), because
A F* —rF*=AF —rF

1
=—?(VF" + pu(\F' —rF

2
508" S 08 S = o
%02(-)@”2,/,/ + 1:7// [rcﬁ - %Uz(-)gﬁ"] - r@%
e[S E)enl5- ]
<0.

The final inequality follows from (6) and from the fact thafiee y* is the unique maximizer of it holds

that ' /@' < F/$ on[y*,b).

5. Consider the functioy : [0,00) — [0, ), defined byg(x) = x2. Theng is increasing and convex

on [0, o0) andlim,_, ~ @ = 00, SO thaty is auniform integrability test functianSince

sup { / g<|F*<YT>|>dPy} = sup E, [F*(+)?] <E, [F(y")] < oo,

T<7C T<7C

13



the family { £*(Y;) | 7 < 7¢ } is uniformly integrable (cf. @ksendal, 2000, Theorem C88).
If (5) has no solution, then it is never optimal to stop. Ndtatta sufficient condition for (6) is that
F"” < 0. So, a concave NPV function ensures optimality of the ogtst@pping trigger, provided it exists

in the first place. The proof of the theorem relies on the fuithg result, which is of interest in its own right.
Corollary 1. The optimal stopping thresholg is the unique maximizer of the functiéf/ on [y, y*).

In most of the literature on investment under uncertairdifpfving Dixit and Pindyck (1994), it is only
checked that%y F* = rF* on C and thatF™* is C'!'. To see that this is not enough consider the following

example.

Example5. Suppose tha(th)tZO follows a GBM

dYy
— = pdt + odB
}/t pat +o ts

on the state spacg = (0, co) and that the NPV of the project is given by

(e

Flo) =8 Uooo e_rtytadt} =0z alp +?.J5(a o2

wherea > 0 andr > a(u + .5(a — 1)0?). Note that whery = 1 this model reduces to the basic model
discussed in Dixit and Pindyck (1994, Chapter 6).
The solution ta%y ¢ = ry is given by

o(y) = Ay + By™,
wheres; > 0 andg, < 0 are the roots of the quadratic equation
L 5
57 B(B—1)+puB—r=0,
and A and B are arbitrary constants. We need the following restriction:
1. ¢(0) = 0 implies thatB = 0;
2. ¢/ > 0is satisfied ifA > 0;
3. ¢" > 0is satisfied if3; > 1, i.e.ifr > p.

We now find the optimal stopping trigger by solving (5):

. B - - ) 1/a
Y= (51 _a[r alp+ 5(a—1)o )]I) .

14



This leads to a unique solution of the optimal stopping pob(4)

b _ .
(&) 5241 ity <y,

F(y) =
-1 ify>y*,

r—a(u+%(a—1)cr?)
and7* = 7(y*).
In order to make sure that* is a maximizer and that™ is superharmonic we need to check (6). This
condition is easily verified to hold itk < 3;. These conditions show that* can only be superharmonic if

the NPV does not increase faster than the value of waitiagifiy is more convex thai'. <

3.1.2 Problemswith Decreasing Payoff Functions

Suppose now that” < 0, F'(a) > 0, andF(b) < 0, so that there exists a uniqges E such thatF'(y) = 0.
This represents a situation where it will be optimal to stdeny” gets small, rather than large. Rjxc E.

For anyy* < y, denote
) =inf {t>0[Yi <y}, and p(y) =, [e7707)].
The optimal stopping problem is again

F*(y) = Ts:/\pa[ Ey [e"TF(Y;)]. (8)
As in the case wheré&” > 0, the optimal policy is to stop as soon as a certain threspoid reached.
This time, however, the threshold is reached fr@oove i.e. the continuation region is of the forfp*, b) O
(7,0).

Proposition 4. The continuation seb is a connected set witly, b) C D.

The proof is identical to that of Proposition 1 and is, theref omitted.

So, the optimal stopping problem (8) can be written as

F*(y) = Stelg Uy (9)F (1)

Sufficient conditions for the existence of a solution of theirmal stopping problem (8) now follow

immediately.

Proposition 5. Suppose that there exists a decreasing and convex fungtiorC?, with ¢(b) = 0, which

solves %y ¢ = r@. Suppose, in addition, that there exigtse (y, b) such that
Py)F () = ¢ () F (). (9)

15



Finally, assume thap is more convex tha#’, i.e.

F'(y) _ ¢"(y)
> = , on(a,b). 10
Fi(y) = &'(y) (@?) (10)
Then the optimal stopping problef®) is solved by
F(y) ify <y*,
Fw =y | (11)
LR (y) ity >y

and7* = 7(y*).

3.2 Two-Sided Optimal Stopping Problems

Suppose that the payoff function is given by a functiBnwhich is non-increasing ofu, ) and non-
decreasing ony, b), for some uniquej € E, with F(a) > F(y) andF(b) > F(y). Assume thatt' €
C*(E\ {y})NnCHE\ {g}) N C(E). The functionF can, therefore, be thought of as

Fr(y) ify<gy

F(y) =

with F, € C%(a,3), F} < 0andFy € C%(g,b), Fi; > 0, with Fy,(§) = Fu(%). If the DM stops at a time
7whenY,; < g (Y; > §) | refer to this as th@bandonmenfinvestmentdecision, in line with the economic
situation described in Example 3.

The decision-maker discounts revenues at a constant aadhdeistic rater > 0 and wishes to find a
function F* and a stopping time* to solve the optimal stopping problem

F(y) =By [e‘”*F(YT*)] = sup By [T (V)] (12)

where M is the set of stopping times.

If the optimal stopping problem (12) has a solution of thgder type then one would expect, in analogy
with Section 3.1, that (12) can be written as

Fly) = o Ey [e_w (1(f(YL)<%(YH)>FL(YL) 1) siv Fr(Ye )ﬂ :

wherer* :=inf{t > 0| Y; € (Y, Yn) }. Denoting

b, (Yy, Yi) = E, [e—"ﬂYL)ﬁ(YL) < %(YH)] P, (7(Y1) < #(Yy)), and

2y(Ye, Yir) = By [T (Yer) < 7(V2)| Py (F(Vir) < #(Y2)),

16



this can be rewritten as
F*(y) = sup Dy(YL,YH)FL(YL) + ﬁy(YL,YH)FH(YH). (13)
Y <y<Ypy
The first task in solving this program is to determingYr,, Yr) andi, (Yz, Yy). Fix Yy, Yy € E, such
thatY; < Yy.

Proposition 6. Suppose that
1. there exists an increasing functigne C? such that%y, ¢ = r¢, with ¢(Yz) = 0, and
2. there exists a decreasing functigne C? such that%y, ¢ = r@, with ¢(Yz) = 0.

Then foranyy € (Y7, Yr)

and I)y(YL,YH) = (’;b((}gL)) .

Note thatp will depend explicitly onY7, due to the boundary conditiop(Y7,) = 0, while ¢ depends on
Y.

) _ $)
(Y1, Vi) = o(Yr)’

Proof. LetT = #(Yy) A 7(Y1) and take any solutiop € C? to %@ = re. Then
E, [ 7e(V7)] =, [T OW7 (VL) < (Vi) [Py (F(Y2) < #(Yar)) @(Yin)
B, [e 7O |7(Vir) < 7(V0)|Py ((Yir) < 7(Y2)) (V1)
=0y (YL, Yu)o(Ya) + 0y (YL, Y )p(YL ).
An application of Dynkin’s formula then gives that
oy(Ye, Yi)o(Yu) + 0y(Ye, Yi)e(Ye) = ¢(y).
The result now follows immediately by plugging ghand, respectively.m
Example 6. Suppose that;),, follows a GBM
dYy = pYidt + oYidB.
The general solution t& ¢ — r¢ = 0 is given by
¢(y) = Ay + By™,
for constants4 and B. Since we need thagi(Yz) = 0, it follows that
B=—AY) 7
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Therefore,
@(y) —A (y51 _ Y51—62y52> 7
which implies that

(Vo vy = LW _ Y YRR g - vy
o L L R L G

A similar analysis gives that
Yglyﬁz _ yﬁl YI§2
G I G i

Dy(YL7YH) =
<

Note thaty depends orY;, and¢ depends oYy, i.e. ¢(y; Yz) and@(y; Yi), respectively. Under the

assumptions of Proposition 6 the first-order condition efghogram (13) with respect ¥y reads

5(y; Y1), (Y3 Y
PV Y1) o(Yu;YL)
n O(Y; Y )@s(y; Ya) — o(y; Yi )25 (YL Yi)
o(YL; Yr)?

~ ,Y

Fr(Yz) = 0.

It turns out that this first-order condition only needs to atisfied atYy, i.e.

BZRERD
e(Yr;Yr)

Sincep(Yy) = 0, it holds thatp, (Yi; Yu) = —¢, (Yu; Y ), so that the above equation can be rewritten

(Y Y
Fur (Vi) + Fi(Yar) + “f;< m Vi) pyy o,

(Yz: Ym)

as
& (YE; Y1) / & (Yr; Y )
- Iy (Yy)+ Fy(Yyg) — = Fr(Yr) =0, 14
S0 Y1) g(Yn) + Fg(Yu) A(V0: Vi) L(YL) (14)
A similar reasoning gives the first-order condition f:
& (Y; Yr) / &1 (YY)
_AETH) ooy y 4 By - £ Fy(Yy) = 0. 15
(Y2 Vo) L(YL) + Fr(YL) SV Y1) u(Yr) (15)

The following proposition can now be proved.

Proposition 7. Suppose that there exists a péal7, Y ), witha < Y, < § < Yy < b, such thatYz, and

Y solve(14) and (15), and that the assumptions of Proposition 6 hold. Define thetfony € C? by

_ ) ¢(y)
o(y) = ¢(YL)FL(YL) + (’b(YH)FH(YH).

Lety € (Y7, Yy) be the unique point such thatis decreasing ofta, ) and increasing oriy, b). Suppose,

in addition, that

18



1. o is strictly convex,

; . i o Fr(y) "y)
2. ¢ is more convex thafy on (7, b), i.e. FZ(y) < fa,(é’) , 9 <y <b,and
Fr(y)

3. ¢ is more convex thaf, on (a,9), i.e. ;> W g < y < 9.

Fi(y ©'(y)?

Then a solution t@12) is given by

Fr(y) ify<Yg
Fiy)=Qely) ifYi<y<VYy
Fu(y) ify=>Yn,
and7* = 7(Yy) A 7(YL).
Proof. Note thaty can be written as
¢ = Ap+ Bo,
whereA = F(Yy)/¢(Yy) > 0andB = Fr(Y)/¢(Yr) > 0 are constants. It will be shown below that
¢ (Yr) = F;(Yr) and¢/(Yi) = Fj;(Yr), which implies thaty’(Yz) < 0 and¢’(Yy) > 0. Sinceyp is
strictly convex, there exists a uniqéec (Y7, Yy) such thaty is decreasing ofia, ) and increasing on
(9,0).
We first show thal’;, andYy maximize the functions

F F
fL:_Lv and fH:_H7
2 ¥

on (a,y) and(g, b), respectively. First considegi, on (a,Y7). Itis easily obtained that
Py — Fry

= T

 [Ap + B@|Fy, — FL[A' + BY].

fr

Sincep(Yr) = 0, it holds that

fi(Yr) = Bo(Yr) [Fi(YL) - %%@%YL) - MFL(YL)}

(Y1) (Y1)
o / ¢'(Y1) ¢'(Y1)
= Bo(Y1) [FL(YL) - @(Yé) Fr(Yr) — ?Y;)FL(YL)]

=0.

Suppose thaiy € (a,7) is such thatf; (yo) = 0. Note that

F — Fr o /
Z: 2L 2 LY - 2£fi
¥ ¥
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Therefore,

JL(wo) o< @(yo)Fr. (yo) — Fr(yo)e" (o)

B , Fil(yo)  Fr(yo)
= ¢(yo)¢" (vo) [wff(yo) v (yo)

= o(yo)F,(yo) [iﬁzg i,:((s(?))} <

i " Fi’(yo) _ Fi(yO)
} = #luo)¢"(wo) [«p”(yo) )

) _
)
So, any solution tgf7 (y) = 0 is a maximum location and, henck, is the unique maximum location on
(a,9).

A similar procedure establishes thgy is the unigue maximum location ¢f; on (g, b).

Following the proof of Proposition 3, we check that
1. F* > F,

2. F*eCl,

3. B F*—rF*=0o0n (Y, Yy),

4. Ly F* —rF* <0on(a, YL U [Yg,b).

1. On (Y, 9) it holds thatF™ is decreasing. In addition; is more convex thai;, and, as will be estab-
lished below,Fr(Yr) = ¢(Yz). Therefore,F* > Fy, on (a,y). In casey < g, it obviously holds that

F* > Fp, because is increasing orfy, 7). A similar argument establishes that > F on (g, b).

2. It is obvious thatF™ € C'. To show differentiability, observe that (14) implies that

. / _ (ﬁ/(YL) (p/(YL)
I ') = S v 2(V2)

recalling thatp(Yz,) = 0. A similar argument shows that (Yz) = F};(Y).

FH(YH) + FL(YL) = Fjg(YL%

3. This follows by construction.

4. In the same way as in the proof of Proposition 3 we can derigedh(a, Y7 ] it holds that

ER
o o]

Ly FT —rF =30 ()¢” {J o

The first term in square brackets is non-positive by assumpiihe second term in square brackets is non-
positive becaus#7, is a maximum location of;, and, thereforef; > 0 on (a,Yz). A similar argument

establishes thaty F* — rF* < 0on (Yy,b). m
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4 An lllustration: Bayesian Sequential Testing of Statistical Hypotheses

As an application of Proposition 7, we consider a decisi@®otetic approach to the problem of sequential
hypothesis testing. The probabilistic set-up follows $év (1978). That is, we consider a measurable
space((2,.#) and two probability measuré®, andP; on (2,.7). The observed process;), follows

an arithmetic Brownian motion
dX; = O'dBt, or dX; = /Ldt + O'dBt,

underP, andP, respectively, Wher(aBt)t20 is a Wiener process. From Girsanov’s theorem it follows that
Py andP; are equivalent probability measures, so thatRpenull sets and th®;-null sets coincide. The
filtration that we use is the one generated(lzy)tzo, augmented with th@y-null sets, and is denoted by
(F)

The problem can be thought of as a sequential hypothesiaggstoblemH, : § = 0vs H1 : 0 = 1,

t>0"

where the observed signal follows the SDE
dXt = H,udt + O'dBt.

We use a Bayesian approach and, thus, tiesd a random variable. Lete (0, 1) play the role ofprior

probability for the evenf{§ = 1}. Givenp € (0, 1), define the (equivalent) probability measure
P, = pP1 + (1 — p)Po.

Forp € [0, 1] theconditional measuref P, at timet > 0 is denoted by, |.Z;*.

Now define theikelihood ratio procesgY;),., as the Radon-Nikodym derivative

v =t
dPy| Z;

The likelihood ratio measures the relative evidence ttaj,., has provided up to timein favour of H;

over Hy. It can be shown that} ), follows the geometric Brownian motion
_H
dY; = =Y,dB;. (16)
o

Using Bayes’ rule it can be shown (Shiryaev, 1978) thatpbsterior probabilityof {§ = 1}, 7, follows
the diffusion

dﬂ't == gﬂ't(l — Wt)dBt, (17)

where(B;), ., is a Wiener process.

t>0
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Suppose that the observatio(n!ét)tZO follow from research conducted by a firm into the feasibibfy
say, marketing a new product. Hefé = 1} represents the event where the new product is profitable,
whereas{d = 0} represents the event that it is not. The costs of condudtiegdsearch areper unit of
time. The firm needs to decide when to stop the research anidatatime, whether to invest in the new
product or to abandon the project. Therefore, this is a tdeesoptimal stopping problem. Suppose that
(i) the profits of investing conditional ofy = 1} are P > 0, (i) that the losses of investing conditional on
{6 = 0} (a Type | error) are-L, L > 0, and (iii) that the losses associated with abandoning tiondi on
{6 = 1} (a Type Il error) are-L as well. Note that in a standard statistical decision problesses are
only attached to erroneous decisions. The sunk costs oftinent are denoted by > 0. The net present

value (NPV) of investment, when the posterior belieféth= 1} is = then equals
Fi(m)=nP—-(1—mL -1,
whereas the NPV of abandonment is equal to
Fy(r) = —nL.
Since

T 1—p
l—m p

T Yy =

is one-to-one and onto the problem can be formulated botéring ofY” or in terms ofr. Since(Y}),

follows a GBM it easier to formulate and solve the problememis ofY, leading to an upper and lower
trigger, Yz andY7, beyond which investment or abandonment is optimal, reésjgde These triggers can
then be transformed into triggers for the posterior befigfth = 1}, which is easier to interpret. The NPVs,

formulated as functions qf are given by

Fi(y) = 1 f_ycy

Cy L
1+ Cy

(P+L)—(I+L), and Fa(y)=—

where¢ = p/(1 — p) is theprior odds ratia

The firm’s optimal stopping problem then becomes

F*(y) = sup E, [—c/ e "tdt + e max(Fy(Y;), Fa(Yr))
TEM 0

C
=——+ E, e ""F(Y,)|,
Pl TE)

where

Ply) = Fy(y) = Fr(y) +
_|_

Fr(y) == Fa(y)

s ify>y
¢ ify <y,
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and
I+1L
YTUPYL—I)

is the unique point wher€y = Fy,. Note thatFy, > 0 andF; < 0. Letting3; > 1 andj3; < 0 denote the

roots of the equation

2
2(8) = 34588 - 1) = r =0,

it follows that the increasing and decreasing solutiong3oy = r¢ are
Ply) =y =Yy and g(y) =y - YTy
If the first-order conditions (14) and (15) have a soluti®dn, Y77 ), then the functiornp can be written as
p(y) = Ay™ + By™,
where
A Y2 Fy(Yy) - Y3 FrL(Yy) _ Y FL(YL) — YLﬁlFH(YH)‘

Yy - Yy YYD - Yy

If ¢ is a convex function, then, sind€}; < 0, it always holds that is more convex thad;. However,

, and B

since ;' > 0 there may be situations wherg, is more convex thag. In such cases the value function
is no longer superharmonic. This means that then the abamettnoption has no value and that the firm
should never exercise it. In such cases the investmentgroban be solved using the theory presented in
Section 3.1. If a solution exists, then the optimal decidiore ist* = inf{t > 0|Y; & (Y., Yn)}.

As a numerical illustration, consider the model with thegpaeter value$® = 10,/ =5, L =8,¢c =1,
r = pu = .1, ando = .1. Figure 1 shows the value functions and triggers (in ternth@®fikelihood ratio)
for the priorp = .5. Note thatY;, = 1, because at timeé = 0 no evidence has been gathered yet so that
Xy = 0. In terms of the posterior probability of the eveit= 1}, the triggers can be found to be equal to
(.3279,..6142). These triggers are the same for every value of the pridiue to the Markovian structure
of the problem.

What does change with the prior are the inferential propenif the optimal stopping rule. For example,
it can be found that (Poor and Hadijiliadis, 2009) the (imghliprobabilities of Type | and Type Il errors are

Ygp—1

1-Y,
Po(Yie =Yy)=——2 and Py(Yie =Yy) =Y, —2——
Y — Yy,

Yy —-Yr’

respectively. Obviously, these probabilities are only megful whenp € (7, 7). Forp = .5, the
probabilities are .4637 and .2617, respectively. One hdsetoareful in interpreting these probabilities,

because they reflect probabilities of reaching threshofdieudifferent measurest ¢ = 0 only. These
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Figure 1: Value functions for different priors.

probabilities change when the posterior beliefth= 1} change, i.e. when evidence accrues. This is due
to the Bayesian nature of the procedure. A frequentist @nalvabilities approach is possible but requires a

slightly different set-up (see, for example, Shiryaev,&6¥ Poor and Hadijiliadis, 2009).

5 Concluding Remarks

Ever since the seminal contribution of Dixit and Pindyck94Pthe literature on investment under uncer-
tainty solves optimal stopping problems by solving a Belineguation and then to find a threshold that
satisfies the value-matching and smooth-pasting conditidis procedure, however, does not check the
necessary conditions that the value function should damitiee payoff function and should be superhar-
monic.

This paper introduces easy-to-check sufficient conditibas allow for the solution to a wide variety of
optimal stopping problems to be obtained in a straightfodweay. LettingF' denote the payoff function and
 a solution to the Bellman equation, it is shown that the smuf™ dominatest' and is superharmonic if
@ is more convex thai'. In addition, the threshold beyond which stopping is optiimabtained by solving
the first-order condition of optimizing the functidn/. Under the condition thap is more convex thai’
this optimization problem has at most one solution, which msaximum.

The approach presented here also brings some computairaitages because the number of equations
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to be solved is halved when compared to the standard valtehing/smooth-pasting approach. An example
based on a Bayesian sequential hypothesis testing problenwsshe applicability of the approach to a wide

variety of problems.
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