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Abstract

This paper shows that the standard and deferred …ltration structural models

of corporate default are isomorphic, allowing the insights of the standard full

information setting to be carried over to the more complex case of asymmetric

information. It shows that the accounting lag, which provides a general indi-

cator of uncertainty and opacity in the deferred …ltration model, plays a role

analogous to that of forward maturity in the standard model. The comparative

static properties of the standard model carry over mutatis mutandis and can

also be used to sign the e¤ect of signals upon the e¤ective accounting lag and

drift parameters.

¤Department of Economics and Related Studies; ps35@york.ac.uk. This paper has bene…tted
from conversations on this subject with Karim Abadir, Adam Golinski, Zhuoshi Liu, David Mayston,
Gulcin Ozcan, Marco Realdon, Jacco Thijssen, Mike Wickens and other colleagues. I am also grateful
to participants at the Money, Macro and Finance Conference 2011 and the 2013 Southamption
Conference on the Financial Crisis for helpful comments on a similar paper.
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Part I

Introduction

The structural approach to corporate default models the decision in terms of account-

ing information: the …rm’s management is assumed to observe the value of its assets

and liabilities and to default when the net asset value attains a critical value. The ba-

sic Gaussian model was developed by Black and Cox (1976), and has been extensively

used in studying optimal capital structure, default and the pricing of corporate secu-

rities. Important extensions include Leland and Toft (1996) who allow for strategic

default behavior and Hackbarth and Morellec (2006) who allow the dynamics of the

…rm to depend upon macroeconomic conditions that can change regime. These mod-

els have a similar Gaussian structure which lends itself to closed form solutions that

are easily understood in terms of their structural parameters. However, the …rm’s

asset value follows a Brownian motion and is observed by investors, so default never

comes as a surprise. The continuity of this process means that short spreads remain

negligible until the asset value approaches the default boundary. For this reason,

the reduced form hazard rate model is typically used in empirical research (Du¢e

and Singleton (2003)). Alternatively, jump processes can be added to the Brownian

motion to make the default intensity and short spreads signi…cant when the asset

value is within range of the boundary. The Levy distribution can be used to analyze

default intensity in this situation and has been used to develop structural default

models (Baxter (2007)). Unfortunately, solutions for these non-Gaussian models are

not available in closed form and so numerical approximations have to be employed

when using them.

However, Du¢e and Lando (2001) deal with these problems by assuming instead
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that the investment decision is conditioned by a ‘deferred …ltration’. Heuristically,

investors observe a lagged information set, re‡ecting delays in …nancial reporting.

This lag damps the e¤ect of accounting information on market prices in the same

way that maturity does in the forward market and allows room for other indicators

to a¤ect them. Investors do not know precisely how close the …rm is to default, which

therefore can come as a surprise. The Du¢e and Lando (2001) model potentially

provides a more realistic representation of the short risk spreads while preserving the

tractability of the basic Gaussian framework.

Despite these advantages, the deferred …ltration model has received very little

attention in the literature. This may re‡ect the complicated mathematical structure

of the conditional distributions used by Du¢e and Lando to model prices. However,

this paper shows that analyzing the model in terms of its default intensity makes

it much easier to manipulate and understand. Indeed, it shows that the deferred

…ltration model and the standard full information model are isomorphic, sharing

the same default mechanism and essentially the same default probability structure.

That is because in the risk-neutral world used for asset pricing, spot prices evolve in

line with the structure of forward prices if no ‘news’ arrives to perturb the system.

Additional value signal can perturb the system, but this e¤ect can be allowed for by

linear change of variable techniques which preserve the default probability structure

of the standard model.

The paper is set out along the following lines. The next section sets out the

basic Black Cox (1976) structure, which is a simpli…ed version of the Leland and

Toft (1996) full information model employed by Du¢e and Lando (2001) as their

baseline. Section 3 establishes the basic isomorphism between the Black & Cox and

Du¢e & Lando models. I look at the simple case in which investors observe a lagged

asset value and no additional value signals. I then show how additional signals a¤ect
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the estimate of the distance to default and its variance, preserving the isomorphism.

This updating mechanism is illustrated using data for the e¤ect of the Lehman default

on the survivorship values of other US investment banks. Finally I show how the

general model encompasses a variety of models used in the default literature.

1 The model of Black and Cox (1976)

Gaussian structural default models assume that the logarithm  = ln () of the

value of the …rm  () follows a Brownian Motion under the risk neutral measure:

 = +  (1)

where:  = ( ¡ );  is the expected total logarithmic return on assets and  the

percentage cash ‡ow return to the equity owners. This makes  () lognormal. The

…rm has perpetual debt with a face value of . The full information variant of the

model then follows from:

Assumption 1: All agents observe the value of the …rm  () at time . Formally:

Agents have the information …ltration F generated by  () where for each   0,

F is the ¡algebra generated by { () : 0 ·  · }.

The original model of Black and Cox (1976) is simpler than the model of Leland

and Toft (1996) because they assume that there are no taxes and that legal restric-

tions prevent the …rm trading with a negative net asset value. In this case, default

occurs at time  which is the …rst time that the net asset value  () reaches  = ,

or equivalently when the logarithm of the distance to default ratio () = ln( ())

…rst reaches zero. The critical default value is a negative constant in the Leland and

Toft (1996) model. Apart from that, the mathematical structure of their model is

identical to that of Black and Cox.
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In these Gaussian models, the probability  of default during an investment period

of length  and a starting value of (0) =  is the probability of a …rst passage from

 to default at  = 0 during the period. The probability  = (1 ¡ ) of survival is:

(  ) = ©

·
 + 


p


¸

¡ exp

·

¡
2

2

¸

©

·
¡ + 


p


¸

¸ 0;   0 (2)

(Du¢e and Singleton (2003)) where ©[] is the standard normal distribution function

and [] its density function:

[] =

µ
1

p
2

¶

exp

·

¡
2

2

¸



The Gaussian structure allows the state and drift values to be standardized as 

and . The forward default intensity, which plays the same role in the default-

able debt valuation as the forward rate does in non-defaultable valuation, follows by

substituting the derivative of (2) into the de…nition (Du¢e and Singleton (2003)):

(  ) = ¡
1

(  )

(  )


(3)

=

µ


32(  ))

¶



·
 + 


p


¸

  0;  ¸ 0 (4)

The default arrival intensity or hazard rate ( ) = (  0) is the limit

of the forward default intensity as the forward maturity goes to zero and is equivalent

to the spot interest rate in the non-defaultable market. Du¢e and Lando (2001) show

that although this is identically zero for   0 in the standard model this is not the

case in the deferred …ltration model.

As we would expect, increases in the …rm’s distance to default () and its growth
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rate () reduce the forward default intensity and hence the value of redeemable debt:




 0;




 0 (5)

(Spencer (2013a)). Note that the Gaussian structure means that the comparative

statics of the model can be analyzed in terms of the risk and maturity-adjusted

distance to default and growth variables 
p
 and 

p
. In other words, the

e¤ect of shocks in  on the forward structure falls with forward maturity at the rate

¡
1
2 , while the e¤ect of  increases at the rate 

1
2 . Black and Cox (1976) show that

the e¤ect of an increase in the forward maturity on the forward default intensity is

ambiguous, depending critically upon the initial distance to default. Lengthening

the forward maturity normally increases the forward default rate but reduces it if

the initial distance to default is low. In that case the passage of time without default

makes it likely that the …rm has been able to rebuild its asset value, reducing the

forward default intensity as maturity increases.

2 The Du¢e and Lando (2001) deferred …ltration model

Du¢e and Lando (2001) maintain assumption 1 for the …rm’s manager, who declares

bankruptcy when () attains zero ( () reaches  = ) as in the standard model.

They employ the event indicator 1fg which takes the value 1 at time  if the …rm

has not defaulted, zero otherwise. However they assume:

Assumption 10: At time  investors observe a lagged accounting value and may

receive subsequent value signals. Formally: investors have the deferred information

…ltration H de…ned in Du¢e and Lando (2001) equation (14):

H = (f (1)   () 1fg: 0 ·  · g)
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where  (1)   () are value signals published at times 0 · 1   · . These

allow an estimate of the distance to default to be inferred. Importantly investors

know whether the …rm has defaulted or not (1fg), which is also informative.

Du¢e and Lando show that a succession of informative signals allows investors

to update the parameters describing the conditional distribution of the distance to

default. They illustrate this using a basic example in which investors see a precise

but lagged value observation () =  (0) followed by a second noisy value signal

() = ln (). This is normally distributed and related to the true value () by:

() = () +  =  +  +() + ; (6)

where:  » (0 2)

(given (1), () » (0 2)) Appendix 1 establishes the following proposition:

Proposition 1: In the Du¢e and Lando model, the initial indicator  and the

signal  can be combined into a composite indicator  with a variance of 2  2

allowing the hazard rate to be represented as:

(  ) =

µ


32(  )

¶



·
 + 


p


¸

;   0;  ¸ 0 (7)

where   and  are signal-adjusted location, time and drift values and is  a scale

parameter, de…ned respectively as:

 = · ;  =  ·  (8)

=  +
2

2
  =

2

2 + 2
· 1

This expression is isomorphic with the expression (4) for the forward default
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intensity in the standard model (7). The reason for this is apparent if the second

signal is uninformative (the limit in which  tends to in…nity). In this case  = 1

 =   = ;  =  and:

(  ) =

µ


32(  ))

¶



·
 + 


p


¸

  0;  ¸ 0 (9)

This formula is the same as that for the forward default intensity in (4), but in this

context  represents the length of the accounting lag rather than the forward maturity

and  the lagged rather than the current accounting value indicator. Heuristically,

as noted in the introduction, in this case the deferred …ltration has the e¤ect of

stopping the ‡ow of news to investors and the hazard rate simply evolves in line with

the forward rates established when the ‡ow of new information ceased. I call this

signal-free speci…cation the basic deferred …ltration (BDF) model. Obviously, in the

limit as the information lag  tends to zero, (9) converges on the hazard rate in the

full information model: ( ) = (  0)

If on the other hand, the signal  () is informative,  is simply replaced in (4) or

(9) by the rescaled capital indicator:  = ;  by the rescaled accounting lag  = 

and  by the shifted drift parameter . Since   1 this has the e¤ect of shrinking

both the distance to default and the accounting lag. Apart from these linear changes

of variable the basic structure of the Gaussian default model is not a¤ected.

2.1 Comparative static properties

The isomorphism between equations like (4) and (7) immediately allows us to analyze

the comparative static properties of the model using those of the standard model.

For example, (5) implies that the post-signal capital  and drift  parameters (like

the initial capital and drift parameters  and  in the standard model) reduce the
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hazard rate in the deferred …ltration model. Although the e¤ect of the rescaled lag 

on the hazard rate (like  in the standard model) remains ambiguous, (depending as

we have seen upon the adjusted distance to default ) appendix 2 shows that

Proposition 2: The the overall e¤ect of a value signal on the scale parameter 

is negative:




 0 (10)

Since   1 this means that the scale e¤ect of a signal increases the hazard rate.

The updating equation (8) shows that the magnitude of this increase depends upon

the share of 2 (the variance of of  conditional upon both  and ) in the total

variance: 2 + 2. However, the scale e¤ect could be o¤set by the shift e¤ect of

‘good’ signal (de…ned as. a value   0) on  which is positive. Using (5) and (8):




=





2

2
=





2

2
 0

The magnitude of the shift e¤ect depends upon 22 : the precision of this signal

relative to that of  If the initial accounting information is relatively uninformative,

a good signal will have a powerful e¤ect, tending to reduce the hazard rate.

2.2 The Lehman default as an illustrative example

The recent …nancial crisis provides a good example of an additional value signal: the

e¤ect of the Lehman bankruptcy on 15 September 2008 on the position of similar

…nancial …rms. The deferred …ltration model can be used to analyze the e¤ect of this

on hazard rates. Let  represent the Lehman log distance to default and  that of

a similar …rm and suppose that  re‡ects the correlation between their asset value

di¤usions. Because default occurs in this model when  = 0 there is no ‘good signal’

shift e¤ect, only a scale e¤ect which unambiguously increases the hazard rate of the
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other bank.

The two tables show the e¤ect of this on default swap (CDS) spreads for the sub-

ordinated debt of the two surviving investment banks, Goldman Sachs and Morgan

Stanley. It is convenient to use spreads from the CDS swap market because this cir-

cumvents the problem of specifying the tax regime (Houweling and Ton Vorst (2005)),

consistent with the use of the Black-Cox rather than the more general Leland-Toft

model. The CDS market was also very active over this period. The spread data

is provided by Credit Market Analysis Ltd. and taken from Datastream. I use

the di¤erence between the end August and September observations to calibrate the

spillover e¤ect. I then back out the implied default probabilities (1 ¡ +) and

forward default probabilities (+ ¡ +¡1) using standard recursion formulae

(Hull (2003)).

What light does the deferred …ltration model throw on these …gures? Recall from

the basic model of section 2 that the e¤ect of the distance to default is negative and

tends to weaken with forward maturity while that of the drift or growth factor is

also negative but tends to become more powerful with maturity. Looking …rst at

the structure of rates before the Lehman default, we see from the …rst line of the

lower panel of these tables that the forward default probabilities are relatively ‡at for

Goldmans and decline gradually for Morgan Stanley, suggesting that these in‡uences

broadly o¤set each other initially.
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Table 1: The e¤ect of the Lehman default on the market’s assessment

of the risk of a default by Goldman Sachs

CDS spread (% p.a.)

Date 1 year 2 year 3 year 4 year 5 year 6 year 7 year

31/8/2008 1.675 1.69 1.725 1.765 1.8 1.8 1.8

30/9/2008 5.935 5.24 5.075 4.84 4.775 4.712 4.65

Increase 4.26 3.55 3.35 3.075 2.975 2.912 2.85

Default probability

31/8/2008 0.016 0.033 0.050 0.068 0.086 0.102 0.118

30/9/2008 0.056 0.097 0.137 0.170 0.205 0.238 0.268

Increase 0.040 0.064 0.087 0.102 0.120 0.136 0.150

Forward default probability

31/8/2008 0.016 0.016 0.017 0.018 0.018 0.016 0.016

30/9/2008 0.056 0.041 0.041 0.033 0.035 0.033 0.030

Increase 0.040 0.024 0.023 0.015 0.017 0.016 0.014

Notes: CDS spreads are provided by Credit Market Analysis Ltd. Default probabilities

are backed out using standard recursion formulae (Hull (2003)).

Looking at the e¤ect of the Lehman default, the bottom line of table 1 con…rms

that the shock to the forward default probability structure for Goldman Sachs was

positive and declined gradually across forward maturities. This is consistent with

the idea that we are observing the e¤ect of a downward shift in the shock-adjusted

distance to default  which is not o¤set by an increase in the e¤ective drift rate 

which would have the opposite e¤ect (of reducing the forward default probabilities
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at a rate increasing with maturity). The slow rate of decay indicates that the e¤ect

is damped by a relatively large shock-adjusted accounting lag . In contrast, the

shock to the forward default probability structure for Morgan Stanley (the bottom

line of table 2) is much larger and declines at a faster rate. This suggests that the

signal was more informative for Morgan Stanley that for Goldman Sachs, resulting

in a much bigger percentage decrease in the shock-adjusted distance to default. The

rapid rate of decay suggest that the shock also had the e¤ect of reducing the adjusted

accounting lag  which seems much smaller than for Goldmans.

Table 2: The e¤ect of the Lehman default on the market’s assessment of

the risk of a default by Morgan Stanley

Date CDS spread (% p.a.)

1 year 2 year 3 year 4 year 5 year 6 year 7 year

31/8/2008 3.050 2.900 2.775 2.640 2.500 2.473 2.445

30/9/2008 16.519 13.774 11.817 10.593 9.995 9.609 9.223

Increase 13.469 10.874 9.042 7.953 7.495 7.137 6.778

Default probability

31/8/2008 0.030 0.055 0.079 0.098 0.114 0.134 0.153

30/9/2008 0.142 0.224 0.276 0.316 0.359 0.399 0.430

Increase 0.112 0.169 0.197 0.218 0.245 0.265 0.277

Forward default probability

31/8/2008 0.030 0.026 0.023 0.020 0.016 0.020 0.019

30/9/2008 0.142 0.083 0.051 0.040 0.043 0.040 0.031

Increase 0.112 0.057 0.028 0.021 0.027 0.020 0.012
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2.3 The deferred …ltration model as an encompassing model

Finally it is worth noting that the deferred …ltration model encompasses variety of

other Gaussian default models. These are shown as limiting cases in the table below.

As we have seen, the standard structural default model (i) is obtained as the limit in

which the accounting lag  ! 0 In case (ii),  ! 0 so that   0 becomes perfectly

informative, acting just like the observed excess capital value does in the standard

model and making earlier accounts and signals redundant. As we have also seen, the

BDF model (in which there are no value signals other than ) results in case (iii) as:

 ! 1 with   0 so that  ! 1  ! . At the opposite extreme, case (iv) describes

the limit in which  ! 1 with   0 This is analyzed in appendix 2 and is a ‘worst

case scenario’ in the sense that the adjusted excess capital value is negligibly small

(since  ! 0 and  ! 1)

The …nal row of the table shows the limit  ! 1;  ! 1 in which both signals

are uninformative and the depositor assumes that the di¤usion is in a steady state.

The hazard rate is constant in this case, in line with the steady state.

Table 2: Limiting cases of the Deferred Filtration (DF) model

Model resulting as special case Parameter limit Informativeness of value signals

 

(i) Standard  ! 0 precise uninformative

(ii) Standard (with  replacing )  ! 0 with   0 uninformative precise

(iii) Basic deferred …ltration  ! 1 with   0 informative uninformative

(iv) Worst case scenario  ! 1 with   0 uninformative informative

(v) Static hazard rate model  ! 1 and  ! 1 uninformative uninformative
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3 Conclusion

The isomorphism between the standard and deferred …ltration models allows the

insights of the full information setting to be carried over to the more complex case

of asymmetric information. For example, it shows that the accounting lag, which

provides a general indicator of uncertainty and opacity in the deferred …ltration

model, plays a similar role to that of forward maturity in the standard model. The

comparative static properties of the standard model carry over mutatis mutandis and

can also be used to sign the e¤ect of signals upon the e¤ective accounting lag and

drift parameters. It shows how standard pricing formulae can be adapted to allow

for asymmetric information and facilitates empirical application. A companion paper

(Spencer (2013b)) shows how these formulae can be used to analyze the behavior of

US bank CDS spreads during the recent crisis and shows that the performance of the

structural model compares favorably with that of the reduced form pricing model

normally used in such studies.
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4 Appendix 1: Proof of proposition 1

Du¢e and Lando (2001) derive the conditional distribution of the …rm’s asset value

given incomplete accounting information and then use this to derive the default

arrival intensity and credit spreads. They use a tilde notation (~ ~ ~) to denote

deviations from bankruptcy trigger values, but we can drop this since our notation

is based on the zero trigger value of the Black Cox model. With this modi…cation,

their E(20) then shows that the density of the excess value () =   0 at time 

conditional upon survivorship until then; the lagged value  = (0) and the noisy

signal () =  is1 :

(j  ) =

q
0



£
1 ¡ exp

£
¡2
2

¤¤
exp [¡(  )]

µ

exp
h
2

1

40
¡ 3

i
©

·
1p
20

¸

¡ exp
h
2

2

40
¡ 3

i
©

·

¡ 2p
20

¸¶ (11)

(Du¢e and Lando (2001), equation (20)).where:

(  ) =
(¡ )2

22
+

( +  ¡ )2

22


0 =
2 + 2

222
 2 =

( ¡ )

2
¡



2


1 =
( + )

2
+



2
 3 =

2

22
+

( + )2

22


The numerator and denominator terms can be arranged as:

(j  ) =

q
0



£
1 ¡ exp

£
¡2
2

¤¤
exp [¡(  )] exp

h
2

1

40
¡ 3

i

µ

©

·
1p
20

¸

¡ exp
h
¡2(2+2)

(2+2)2

i
©
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20
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h
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40
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1 Their Equation (20), with  = .

16



where:

(  ) =
(2(¡ ) + (2(¡ ) ¡ 2))2

222(2 + 2)

[To see this, …rst consider the di¤erence:

(  ) ¡ (  ) =
2(¡ )2 + 2( + ¡ )2

222
¡

(2(¡ ) + (2(¡ ) ¡ 2))2

222(2 + 2)


=
(2 + 2)[2(¡ )2 + 2( +  ¡ )2] ¡ (2(¡ ) + (2(¡ ) ¡ 2)))2

222(2 + 2)

Expanding the quadratic terms in the numerator in this expression and cancelling common

terms simpli…es this numerator to:

3222 + 224 ¡ 224 ¡ 2222 + 224 + 2222 + 242 + 2222

¡222 ¡ 222 ¡ 24 + 222 + 222 + 24+ 24 ¡ 24 + 24

¡(224 ¡ 224 ¡ 2222+ 224 + 2222 + 242 + 2222 ¡ 222

¡222 ¡ 24+ 222 + 24+ 24 ¡ 24 + 24)

= ¡3222 + 2222 ¡ 2222¡ 222 + 222 ¡ 222

= ¡22 ( ¡  + )
2

allowing the di¤erence to be related to  []:

(  ) ¡ (  ) =
( ¡  + )

2

2(2 + 2)
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Also note that:

3 ¡ 2
140 =

22 + 2( + )2

222
¡

(2( + ) + 2)2

222(2 + 2)


=
(2 + 2)(22 + 2( + )2) ¡ (2( + ) + 2)2

222(2 + 2)


=
¡ ( ¡  + )

2

2(2 + 2)


allowing exponent in the numerator of (11) to be factorized using:.

(  ) = (  ) ¡
2

1

40

+ 3

To factorize the denominator of (11) …rst note that:

2
1 ¡ 2

2 = (1 + 2)(1 ¡ 2)

=
2

2

µ
2(2+ 2)

22

¶

Thus:

2
2

40

=
2

1

40

¡
2(2 + 2)

(2+ 2)2


Substituting this into the denominator of (11) allows this to be arranges as in (12).]

Equation (11) shows the common factor:

 [] =

µ
1

p
2

¶

exp

"

¡
( ¡  + )

2

2(2 + 2)

#
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µ
1

p
2

¶

exp

·
2
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Cancelling this factor and using (8) allows (11) to be arranged as:
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(   ) =
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1

22

³
exp

h
¡ (¡(+))2
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exp
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where: (  ) =

µ

©

·
( + )


p


¸

¡ exp

·

¡
2

2

¸

©

·
(¡ + )


p


¸¶

(14)

[To see this, note that the denominator of (13) follows directly by substituting (8). The

…rst term in the numerator of (13) follows by re-arranging the the exponent of (  )

and substituting (8):

(  ) =
f(2+ 2) ¡ 2 ¡ (2+ 2)g2

222(2 + 2)

=
f(2 + 2)(¡ ¡ (+ 2

2 ))g
2

222(2 + 2)

=
(¡ ( + ))2

22

The second term in the numerator is the product of two exponential terms and follows by

adding and rearranging the exponents to obtain.-
(+(+))2

22 ]

The conditional density in (11) and (13) is central to the behavior of the default

arrival intensity and credit spreads in the Du¢e and Lando (2001) model. They use

the dominated convergence theorem to show that the default arrival intensity is:

1

2
2

·
(   )



¸

=0

(15)
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Evaluating this using (13) gives:

(  ) =

³


32
p

2

´
exp

h
¡ (+)2

22

i

(  )
(16)

which may also be expressed as (7). Proposition 1 follows immediately.

5 Appendix 2. Proof of proposition 2

The hazard rate is di¢cult to analyze because it involves the ratio of the Gaussian

density and distribution functions:

ª[] =
© []

 []
 (17)

We can use this together with the well-known relationship:

exp

·

¡
2

2

¸



·
 ¡ 


p


¸

= 

·
 + 


p


¸

(18)

to express the post-signal survivorship function (14) as:
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and thus the post-signal hazard rate (16) as:
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The ratio (17) is closely related to the Mills Ratio (Mills (1926)):

[] = (1 ¡ © []) []  (20)
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Gordon (1941) shows that for   0:
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The ratio (17) has the derivatives:

ª0[] =
ª


= ª + 1 ¸ 0 (22)
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The signs of these derivative follow immediately for  ¸ 0 In the case   0, the

change of variable  = ¡  0 and the transform:
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allows us to transform (21) and get the bounds:
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which establishes (22) and (23) for   0 It follows immediately from (23) that ª []

is also increasing in  :

ª[]


= (1 + 2)ª [] +  ¸ 0 (24)

These inequalities allow us to show that the e¤ect of the scale variable  on the hazard

rate (19) is positive (Proposition 2). Di¤erentiating the term in curly brackets with
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respect to  gives the positive expression:
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The positive sign of the …rst line follows directly from (22) and the fact that with

_  0 the argument of the …rst component is larger than that of the second. The

positive sign of the second line follows from a similar argument, noting that it is

comprises two components of the form ª[] and using (23) and the fact that   0

Since the term in curly brackets is on the denominator of (19) it follows that an

increase in the scale variable  reduces the hazard rate: (10).

6 Appendix 3: Worst case scenarios

Now consider how the overnight forward default intensity behaves in a ‘worst case’

scenario - the limit in which  tends to zero. First approximate the numerator of

(16) by taking a …rst order approximation around  = 0:
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Similarly for the denominator:
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Taking the ratio of these approximations of numerator and denominator cancelling

the common factor 
p
 gives:
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Note that if the drift term  = 0 then this simpli…es to
¡
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