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Abstract

This paper presents a model of investment in projects that are characterized by (i) uncertainty over

both the construction costs and revenues, and (ii) revenuesthat accrue only after construction is com-

pleted. Both processes are modeled as spectrally negative Lévy jump-diffusions. The optimal stopping

problem that determines the value of the project is solved under fairly general assumptions. It is found

that the threshold for the benefit-to-cost ratio (BCR) beyond which investment is optimal is higher than

when investment costs are sunk and upfront. In addition, thecurrent value of the BCR decreases sharply

in the frequency of negative shocks to the construction process. This implies that the cost overruns that

can be expected if one ignores such shocks are sharply increasing in their frequency. Based on calibrated

data, the model is applied to the construction of high-speedrail in the UK and it is found that the eco-

nomic case for the first phase of High Speed 2 cannot be made andis unlikely to be met in the next 10

years.
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1 Introduction

The theory of investment under uncertainty has been successful in the past few decades to help decision-

makers understand how uncertainty over future payoffs influences the optimal timing of investment projects.1

Many investment projects, however, are not only characterized by uncertainty over future payoffs, but also

over the costs of construction. For example, large-scale infrastructure projects are often plagued by sub-

stantial uncertainty over the time it takes to construct them. Moreover, the benefits of such projects do not

accrue until the construction process is finalized. As a result the present value of the revenues has to be

discounted more than the present value of the costs.

This paper presents a model for projects that are influenced by two sources of uncertainty: one over future

revenues and one over the construction period. These two factors are modeled as two (possibly correlated)

Lévy jump-diffusions. The main result presents a way to compute the optimal time to invest when revenues

do not accrue until some pre-specified level of the process influencing the construction is reached. For

example, if the project under consideration is a railway line, the process underlying the construction could

represent the mileage of track that has been constructed up to a certain point in time. Revenues can only

accrue when the distance between two cities has been covered.

It is common practice in project evaluation to base decisions on thebenefit-to-cost ratio(BCR).2 This

is the ratio of the (estimated) present value of future revenues and the (estimated) present value of the

construction costs. Orthodox theory teaches that a projectis worthwhile if the BCR exceeds unity. Standard

real options theory shows that this threshold should be increased in order to take into account revenue

uncertainty. This paper argues that the threshold should beeven higher to account for (i) uncertainty over

total construction costs and (ii) the time difference between incurring costs and accruing revenues.

The importance of the development of techniques dealing with construction uncertainty is well-established

empirically. For example, Pohl and Mihaljek (1992) show that there tends to be a divergence betweenex

anteandex postproject evaluations, especially when construction times are long and uncertain. In particu-

lar, appraisal estimates tend to be too optimistic (i.e. thereported BCR is too high). A study by Flyvbjerg

et al. (2002), using data on 258 transportation infrastructure projects worth US$90 billion, shows that al-

most 9 out of 10 projects have higher costs than estimated andthat the average cost overrun is 28%. For

rail projects this increases to 45%. The same authors, in Flyvbjerg et al. (2004), expand on these results

1See, for example, McDonald and Siegel (1986), Brennan and Schwartz (1985), Dixit and Pindyck (1994), Cortazar et al.

(1998).
2See, for example, Vickerman (2007) for an overview.
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and find evidence that cost overruns are more prominent the longer the implementation phase of the project.

Even though the engineering profession continues to work onimproving the methods used for cost-benefit

analysis, none of these models is explicitly dynamic.3

The model developed here is illustrated for a project where the construction process follows a spectrally

negative geometric Lévy process and the revenue process follows a geometric Brownian motion. A 2013

report into the viability of a high-speed rail link between the UK cities of London and Birmingham (HS2)

serves as a basis for a numerical illustration to estimate the current BCR estimate and its threshold of this

project. It is found that the report overestimates the current BCR an that it does not meet the threshold

that arises from the methodology advocated in this paper. Infact, it is argued that the probability that the

economic case for HS2 is, based on the figures used, very unlikely to be met in the next 10 years. In its focus

on high-speed rail investment as a case study, the paper is related to Pimantel et al. (2012). That paper does

identify time-to-build as an important factor in high-speed rail construction, but does not take it specifically

into account.

The contribution of the paper is two-fold. On the mathematical side, a new optimal stopping problem is

solved under fairly general conditions that can be used to model many real-life situations. Second, the paper

provides a methodology that can help policy-makers in assessing large-scale investment projects where the

time (and, hence, the cost) of construction are uncertain. Current practice often produces present values of

costs and benefits based on predictions far into the future with some prediction interval. In order to apply the

methodology advocated here, one needs estimates for benefits and costsin the current period only, together

with estimates of the growth rate and volatility. The chosenstochastic process then automatically delivers

the correct estimates and prediction intervals for any timein the future.

In the existing literature on real options time to build is largely ignored. A notable exception is Alvarez

and Keppo (2002), who consider a model of investment under uncertainty where the time to build is deter-

ministic. This paper builds on theirs by allowing the time tobuild to be stochastic. In fact, a stochastic time

to build is easier to deal with in some sense. Mathematically, the result presented here relies heavily on the

strong Markovian nature of Lévy processes and applications of Dynkin’s formula.

The paper is organized as follows. In Section 2 the issues surrounding appraisal of investment projects

under uncertainty are introduced. Section 3 presents the model and the main results. In Section 4 the optimal

threshold for the BCR is computed and it is shown that uncertain time to build implies a higher threshold

BCR over and above the threshold when only revenues are uncertain. Section 5 provides a particular ex-

3See, for example, Mills (2001), Molenaar (2005), and Touranand Lopez (2006).
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ample, where the optimal BCR threshold is computed analytically when the stochastic processes follow

spectrally negative geometric Lévy processes. A case study of high-speed rail in the UK is presented in

Section 6 and Section 7 provides some concluding remarks.

2 An Introduction to the Issues at Stake

The standard way of appraising investment projects is by conducting a cost-benefit analysis, resulting in

a benefit-to-cost ratio (BCR). Typically, such an exercise consists of estimating the present value of the

benefits,PV , and an estimate of the sunk costs,I, resulting inBCR = PV/I. Investment should take

place if, and only if,BCR > 1.

It has been recognized for several decades now that this approach ignores the irreversibility of the decision

and the uncertainty surrounding benefits and/or costs. These give the decision-maker anoption value of

waiting: by delaying investment one can see how the probability of future losses evolves. A decision to

invest should be made only when that probability is low enough. For example, consider the construction of

a railway line. The future benefits of the line depend crucially on passenger numbers,Y . Suppose that the

process(Yt)t≥0 follows a geometric Brownian motion, i.e.

dY

Y
= µdt+ σdBt, Y0 = y,

where(Bt)t≥0 is a standard Wiener process, i.e.Bt ∼ N(0, t). Then a railway line that runs forever at

constant operating costs,oc, and a constant ticket price,p, has a present value, discounted at the constant

rater > µ, of

PV (y) = Ey

[
∫ ∞

0
e−rt(pYt − oc)dt

]

=
py

r − µ
−
oc

r
.

The optimal time of investment is determined by the solutionto theoptimal stopping problem

F ∗(y) = sup
τ

Ey
[

e−rτ (PV (Yτ )− I)
]

,

over the set of all stopping times.4 Note that the present value is computed at timeτ , i.e. when the railway

becomes operational. So, one has to find the optimal stoppingtime τ at which to exchange the sunk costs

I for the then current estimate of the present value of life-long benefits. It is well-known (see, for example,

Dixit and Pindyck, 1994) that the solution to this problem prescribes that one should invest as soon as

passenger numbers exceed the threshold

Y ∗ =
β1

β1 − 1

r − µ

p

(oc

r
+ I

)

,

4Intuitively, a stopping time is a random time of which you canascertain at any point in time whether it has passed or not.
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whereβ1 > 1 is the positive root of the quadratic equation

1

2
σ2β(β − 1) + µβ − r = 0.

In terms of the BCR that means that investment should take place as soon as

BCR(y) =
PV (y)

I
≥
PV (Y ∗)

I
= 1 +

1

β1 − 1

[

1 +
oc/r

I

]

> 1.

This is the familiar threshold that is determined by a balance of the cost of foregoing revenues and the

benefits of waiting for more information and reducing the risk of encountering future losses.

This approach, however, ignores that the construction process takes time and is, in general, of an uncertain

duration. Typically one estimates the construction time, sayT years, and then projects passenger numbers

T years from now, on the basis of which the present value of revenues is computed and then discounted

back to the present time. However, if at some stage the construction process runs into unexpected delays

(due to unexpected geological or environmental issues, strikes, problems in the supply chain, etc.) then the

projected time at which revenues start being accrued has to be pushed back. This has three consequences:

1. the construction costs are incurred for longer,

2. the present value of revenues has to be discounted over a longer period, and

3. the projected passenger numbers on which the present value of the project is based are incorrect.

The main idea of this paper is to model the construction process and the revenue process as two, possibly

correlated, stochastic processes. Any delays that may occur during construction are automatically tracked

and taken into account in the cost and benefit estimates. As a consequence, the model inputs are less demand-

ing than those used in current practice. First, no estimate for the time of completion is necessary. Rather,

an expected rate of construction together with an estimate of volatility suffice. The distributional properties

of construction progress then follow automatically from the model of the evolution of construction. One

consequence is that the expected time of completion can thenbe computed (or simulated). Secondly, no

projected passenger numbers far into the future are needed.Rather, one needs an estimate ofcurrent pas-

senger demand together with a growth rate and a volatility rate. Again, together with the specific form that

is assumed for the stochastic process driving passenger numbers this gives all the distributional information

needed. In particular, this would lead to a point estimate ofpassenger numbers at the expected time of

completion, together with its distribution, so that a prediction interval can be computed.
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3 The Model and Main Results

Consider a decision-maker (DM) who can invest in a project that requires costs to be incurred over an

uncertain construction time and leads to an uncertain stream of payoffs once construction is completed. The

two sources of uncertainty are represented by a stochastic process(Xt)t≥0, taking values inX = (a1, b1) ⊂

R, for the construction process, and a stochastic process(Yt)t≥0, taking values inY = (a2, b2) ⊂ R, for the

profit stream. So, the state variable isZ = (X,Y ), taking values inZ = X ×Y. Uncertainty is modeled by

a family of probability measures(Pz)z∈Z on a measurable space(Ω,F ), endowed with a filtration(Ft)t≥0.

The restrictions ofPz to X andY are denoted byPx andPy, respectively.5

The processes(Xt)t≥0 and(Yt)t≥0 are assumed to be adapted to(Ft)t≥0 and to follow the time homo-

geneous Lévy processes

dXt = µ1(Xt−)dt+ σ1(Xt−)dB1t +

∫

R

κ1(u,Xt−)Ñ1(dt, du), and

dYt = µ2(Yt−)dt+ σ2(Yt−)dB2t +

∫

R

κ2(u, Yt−)Ñ2(dt, du),

respectively, where(Bi,t)t≥0 are standard Brownian motions withE(x,y)(dB1tdB2t) = ρdt, Ñ1 and Ñ2

are independent compensated Poisson random measures, withLévy measuresm1 andm2, respectively, and

(X0, Y0) = (x, y), Px⊗Py-a.s. It is assumed that both(Xt)t≥0 and(Yt)t≥0 are spectrally negative, i.e. that

κ1(·) ≤ 0, Px-a.s. andκ2(·) ≤ 0, Py-a.s.

For anyx,X∗ ∈ X andy, Y ∗ ∈ Y, let

τx(X
∗) = inf{t ≥ 0|Xt ≥ X∗} and τy(Y

∗) = inf{t ≥ 0|Yt ≥ Y ∗},

underPx andPy, respectively, be the first hitting times ofX∗ andY ∗. The generatorsof (Xt)t≥0 (on

C2(X )), (Yt)t≥0 (onC2(Y)) and(Zt)t≥0, (onC2(Z)) are given by the partial integro-differential equations

LXg =
1

2
σ21(x)

∂2g(·)

∂x2
+ µ1(x)

∂g(·)

∂x
+

∫

R

[g(x + κ1(u)) − g(x)−
∂g(·)

∂x
κ1(u)]m1(du),

LY g =
1

2
σ22(y)

∂2g(·)

∂y2
+ µ2(y)

∂g(·)

∂y
+

∫

R

[g(y + κ2(u))− g(y) −
∂g(·)

∂y
κ2(u)]m2(du),

5That is,Pz is the product measure ofPx andPy.
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and

LZg =
1

2
σ21(x)

∂2g(·)

∂x2
+

1

2
σ22(y)

∂2g(·)

∂y2
+ ρ(x, y)σ(x)σ(y)

∂2g(·)

∂x∂y

+ µ1(x)
∂g(·)

∂x
+ µ2(y)

∂g(·)

∂y

+

∫

R

[g(x + κ1(u))− g(x)−
∂g(·)

∂x
κ1(u)]m1(du)

+

∫

R

[g(y + κ2(u)) − g(y)−
∂g(·)

∂y
κ2(u)]m2(du)

=LXg + LY g ++ρ(x, y)σ(x)σ(y)
∂2g(·)

∂x∂y
,

respectively.

The process(Xt)t≥0 represents the progress of construction. It starts at somex̂ and is finished as soon as

some exogenously givenx∗ > x̂ is reached. It is assumed that[x̂, x∗] ⊂ X , and thatτx̂(x∗) < ∞, Px̂-a.s.

The latter assumption ensures that construction is completed in finite time a.s. The construction costs are

given by a measurable functionc : X → R+, where it is assumed that

Ex̂

[
∫ ∞

0
e−rt|c(Xt)|dt

]

<∞.

This assumption ensures that discounted construction costs are, in expectation, finite. Denote these by

I(x) = Ex

[
∫ ∞

0
e−rtc(Xt)dt

]

> 0, x̂ ≤ x ≤ x∗.

On the revenue side it is assumed that, once construction is finished, the profit flow accruing from the

project is given by some measurable functionf : Y → R, f ∈ C2(Y), with f ′ > 0 andf ′′ ≤ 0, where it is

assumed that

Ey

[
∫ ∞

0
e−rt|f(Yt)|dt

]

<∞, all y ∈ X .

Denote the present value of revenues by

D(y) = Ey

[
∫ ∞

0
e−rtf(Yt)dt

]

, y ∈ Y.

The net present value of the project, underPz, z = (x, y) ∈ [x̂, x∗]× Y, then equals

F (x, y) = Ez

[

−

∫ τx(x∗)

0
e−rtc(Xt)dt+

∫ ∞

τx(x∗)
e−rtf(Yt)dt

]

.

Note that, forx ≥ x∗ it holds thatτx(x∗) = 0 and, thus, that

F (x, y) = Ey

[
∫ ∞

0
e−rtf(Yt)dt

]

= D(y), x ≥ x∗.
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For any project that has not started yet, the NPV of commencing when the current value of the process

(Yt)t≥0 is y equalsF (x̂, y).

The DM wishes to choose the investment time to maximize the project’s value, i.e. to solve the optimal

stopping problem

F ∗(y) = sup
τ∈M

Ey
[

e−rτF (x̂, Yτ )
]

, (1)

whereM is the set of stopping times.

Sufficient conditions for a solution to this problem will be given below. First, however, the net present

value of the project is determined. The NPV can be used to compute the current estimate of the benefit-to-

cost ratio of the project.

Proposition 1. Suppose that

(i) there exists an increasing solutionζ ∈ C2(X ) to the equationLXζ = rζ, such thatζ(a1) = 0;

(ii) there exists a solutionϕ ∈ C2(Z) to the equationL(X,Y )ϕ = rϕ, such thatϕ(a1, y) = ϕ(x, a2) = 0,

all x ∈ X andy ∈ Y, andϕ(x∗, y) = D(y), all y ∈ Y;

Then the net present value of the investment project is givenby,

F (x̂, y) = ϕ(x̂, y)−

(

1−
ζ(x̂)

ζ(x∗)

)

I(x̂). (2)

The proof of this proposition can be found in Appendix A.

Let the expected construction costs (underPx) be denoted by

∆I(x) =

(

1−
ζ(x)

ζ(x∗)

)

I(x) > 0,

and letȳ denote the traditional NPV threshold of the project, i.e. the smallest value that solvesϕ(x̂, ȳ) =

∆I(x̂) (provided it exists). Sufficient conditions for the existence of a solution to the optimal stopping

problem (1) can now be established. The solution to this problem will provide the threshold benefit-to-cost

ratio against which any current estimate should be compared.

Proposition 2. Suppose that, in addition to the assumptions of Proposition1,

(i) the functionϕ is such thatϕ′
y > 0 andϕ′′

yy ≤ 0;

(ii) there exists an increasing and convex solutionψ ∈ C2(Y) to the equationLY ψ = rψ, such that

ψ(a2) = 0;

(iii) limy↑b2 ϕ(x̂, y) > ∆I(x̂); and
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(iv) the function
1

ψ(y)

[

ϕ(x̂, y)−

(

1−
ζ(x̂)

ζ(x∗)

)

I(x̂)

]

, (3)

has a stationary pointy∗ ∈ Y.

Theny∗ is unique,ȳ is unique,y∗ > ȳ, andτ(y∗) is a solution to the optimal stopping problem(1) with

F ∗(y) =











ψ(y)
ψ(y∗)

[

ϕ(x̂, y∗)−
(

1− ζ(x̂)
ζ(x∗)

)

I(x̂)
]

if y < y∗

ϕ(x̂, y)−
(

1− ζ(x̂)
ζ(x∗)

)

I(x̂) if y ≥ y∗.

If (3) has no stationary point, then the optimal stopping problem has no solution and investment is never

optimal.

The proof of this proposition can be found in Appendix B.

A question that remains is whether functionsζ(·), ϕ(·), andψ(·) as described in the propositions actually

exist. Based on known results in the literature it can be shown that increasing functionsζ(·) andψ(·) always

exist for any diffusion (cf. Borodin and Salminen, 1996). Inaddition, ifµy(y) − ry is non-increasing, the

increasing functionψ(·) is also convex (cf. Alvarez, 2003). The conditions onϕ(·) are more difficult to

establish in any generality. As will be seen in Section 5, forϕ(·) to be concave iny, the expected growth of

the revenues should not be higher than the rate at which revenues are discounted. This makes intuitive sense,

for if this is not the case, then the expected discounted revenues will explode. At the same time, the growth

rate of construction should exceed the discount rate, because otherwise the revenues will not be positively

valued and only the construction costs matter.

4 Evaluating Projects: the Dynamic BCR

A standard way to evaluate a project is to compute itsbenefit-to-cost ratio(BCR). This is simply the ratio

of the project’s present value and its sunk costs of investment. In the context of this paper the BCR is easily

computed as

BCR(x, y) =
ϕ(x, y)

[1− ζ(x)/ζ(x∗)]I(x)
.

For a project that has not started yet this can be reduced to

BCR(y) =
ϕ(x̂, y)

[1− ζ(x̂)/ζ(x∗)]I(x̂)
.

Standard practice prescribes that an investment should be undertaken when the BCR exceeds unity.

Proposition 2, however, prescribes another threshold. Theoptimal stopping time (i.e. the optimal time
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of investment) isτ(y∗) = inf{t ≥ 0|Yt ≥ y∗}. Sincey∗ is a stationary point of (3), i.e.

ψ(y∗)ϕ′
y(x̂, y

∗) = [ϕ(x̂, y∗)− (1− ζ(x̂)/ζ(x∗))I(x̂)]ψ′(y∗),

it follows that investment is optimal if the BCR exceeds the threshold

BCR(y∗) = 1 +
ψ(y∗)

ψ′(y∗)

ϕ′
y(x̂, y

∗)

(1− ζ(x̂)/ζ(x∗))I(x̂)
≡ BCR∗.

So, Proposition 2 shows that investment only should take place when thecurrent (estimate of) benefits

of the investment,y, is such thatBCR(y) ≥ BCR∗. From the assumptions it is obvious thatBCR∗ > 1.

Policy makers should, therefore, increase the hurdle rate of investment, a result that is well-known and

standard in the literature on real options (see, for example, Dixit and Pindyck, 1994).

5 An Illustration: Building a High-Speed Rail Link

To illustrate how Propositions 1 and 2 can be used, consider the construction of a new high-speed rail link.

We model the revenues as a geometric Brownian motion (GBM) onY = R+, and assume(Yt)t≥0 follows

the stochastic differential equation
dY

Y
= µ2dt+ σ2dB2. (4)

The construction progress is modeled as a jump-diffusion onX = R+, solving the stochastic differential

equation
dXt

Xt−

= µ1dt+ σ1dB2 −

∫

R

uÑ(dt, du), (5)

where0 < u < 1, Px-a.s. We allow for possible correlation between the two processes:E[dB1dB2] = ρdt,

whereρ ∈ (−1, 1). The stream of construction costs is assumed to be constant at c > 0. The costs of

operating the rail line are assumed to be constant and equal to oc > 0 per period. The jumps in(Xt)t≥0 are

assumed to be Beta distributed with parametersa andb, i.e.

m′(u) =
Γ(a+ b)

Γ(a)Γ(b)
ua−1(1− u)b−1. (6)

The increasing solution toLY ψ = rψ with ψ(0) = 0 is easily obtained as

ψ(y) = A2y
β1 ,

whereβ1 > 0 is the positive root of the quadratic equation

Qy(β) ≡
1

2
σ2yβ(β − 1) + µyβ − r = 0,
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andA2 is a positive constant. The functionψ is convex only ifβ1 > 1, i.e. if r > µ2.

The increasing solution toLXζ = rζ with ζ(0) = 0 is solved by (cf. Alvarez and Rakkolainen, 2010)

ζ(x) = A1x
γ1 , whereγ1 > 0 is the positive root of the equation

1

2
σ21γ(γ − 1)xγ + µ1γx

γ − r +

∫

R

[(x− xu)γ − xγ + γu]m1(du) = 0

⇐⇒
1

2
σ21γ(γ − 1) + (µ1 + λE(U))γ − r − λ+ λE[(1− U)γ ] = 0

⇐⇒
1

2
σ21γ(γ − 1) +

(

µ1 + λ
a

a+ b

)

γ − (r + λ) + λ
Γ(a+ b)Γ(b+ γ)

Γ(b)Γ(a+ b+ γ)
= 0,

andA1 is a positive constant.

In order to obtainϕ, first note that

ϕ(v, y) = Bxαy1−α,

solves the differential equationL(X,Y )ϕ− rϕ = 0 only if α solves the equation

Q(α) ≡
1

2
[(σ1 − σ2)

2 + 2(1− ρ)σ1σ2]α(α − 1) +

(

µ1 − µ2 + λ
a

a+ b

)

α

+ µ2 − (r + λ) + λ
Γ(a+ b)Γ(b+ α)

Γ(b)Γ(a+ b+ α)
= 0.

If ρ < 1 this equation has two roots,α1 andα2, and, sinceQ(0) < 0, it holds thatα1 > 0 andα2 < 0. So,

the general solution to the equationL(X,Y )ϕ = rϕ is

ϕ(x, y) = B1x
α1y1−α1 +B2x

α2y1−α2 ,

whereB1 andB2 are constants.

In order to satisfy the boundary conditionsϕ(x, 0) = ϕ(0, y) = 0, it needs to hold thatB2 = 0 and

α1 < 1, respectively. The latter condition is fulfilled ifr < µ1, which implies that the growth rate of the

construction process should exceed the discount rate. Thismakes intuitive sense, for ifr > µ1, then the

expected revenues are discounted faster than the rate of progress on the construction, which implies that the

construction costs fully drown out the revenues.

Note thatI(x) = c/r, so that we find

∆I(x) =
[

1−
( x

x∗

)γ1
] c

r
.

It also follows that the present value of the profits of the project is

D(y) = Ey

[
∫ ∞

0
e−rt(Yt − oc)dt

]

=
y

r − µ2
−
oc

r
.
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The boundary conditionϕ(x∗, y) = D(y) then gives

B1 =

[

y

r − µ2
−
oc

r

]

(x∗)−α1yα1−1,

so that

ϕ(x, y) =

[

y

r − µ2
−
oc

r

]

( x

x∗

)α1

.

Note thatϕ′
x > 0, ϕ′

y > 0, andϕ′′
yy ≤ 0.

Since all the conditions of Proposition 2 are met, the optimal value of the project can be obtained by

finding a stationary pointy∗ of

1

ψ(ŷ)

[

ϕ(x̂, ŷ)−

(

1−

(

x̂

x∗

)γ1
)

c

r

]

.

Standard computations yield that

y∗ =
β1

β1 − 1
(r − µ2)

[

oc

r
+
c

r

(

1−

(

x̂

x∗

)γ1
)(

x̂

x∗

)−α1

]

.

The threshold BCR beyond which investment is optimal then can be computed as

BCR∗ = 1 +
1

β1 − 1

[

1 +
oc

c

(x̂/x∗)α1

1− (x̂/x∗)γ1

]

.

The specifics of the underlying stochastic construction process determines the expected construction time,

provided it exists. For the model described in this section the following lemma, the proof of which can

be found in Appendix C, describes this operator. The lemma uses thedigamma function, ψ, defined by

ψ(x) = Γ′(x)/Γ(x).

Lemma 1. Suppose that(Xt)t≥0 follows the diffusion(5) with Lévy measure(6). If

µ1 + λ

(

a

a+ b
+ ψ(b)− ψ(a+ b)

)

>
1

2
σ21, (7)

thenEx[|τ(x∗)|] <∞, for anyx < x∗, and

Ex[τ(x∗)] =
log(x∗/)

µ1 + λ
(

a
a+b + ψ(b) − ψ(a + b)− 1

2σ
2
1

) .

6 An Application: High-Speed Rail in the UK

As an application of the model presented in Section 5, this section will look at a particular case study:

investment in Phase 1 of HS2, a high-speed rail link between London and Birmingham in the UK. A recently

published “strategic case” provides the figures used below,which are taken at face value and used merely

12



for illustrative purposes.6 This report estimates the (present value in 2011 prices) benefits of this rail link to

be£28bn (this includes£4.3bn in wider economic benefits), whereas the costs are estimated to be£15.65bn.

Operating costs are estimated to have a present value of£8.2bn. The report includes capital spending such

as replacement of rolling stock, etc., which will be ignoredhere. The report then provides a BCR of 1.7,

which renders this a “medium value” project in government parlance.

The estimate of the BCR is obtained using traditional methods as described in Section 2. As a result, the

parameters for the model described here have to be calibrated and “guesstimated” based on the information

provided. The estimate of the (present value of the) construction costs are given with the upper bound of

a 95% prediction interval of£21.4bn, with an estimated time to completion of 8 years. The prediction

interval is consistent with a volatility ofσ1 = .994.7 The current state of construction is taken to bex̂ = 1.

Birmingham is 150 miles from London, so the average construction speed over 8 years is 18.75 miles of

track p.a. This is commensurate with an average growth rate of µ1 = 2.36. Since it is estimated that this

distance will be covered in 8 years, the inferred value forx∗ (i.e. the value that givesEx̂ [τ(x∗)] = 8) is

4.48. The cost flow is then inferred to bec = £2.24bn p.a.

The discount rate used in the report is 3.5%, which is transformed to the continuous rater = .0344. The

present value of the railway is estimated to be£28bn. No clear growth rate of revenues is mentioned in the

report, so it will be assumed here thatµ2 = .022, which is the assumed growth rate of passenger numbers.

A present value of£8.2bn leads for operating costs leads to a constant operating cost flow ofoc = .28. This

implies that the estimated value ofY8 is

e8r
(

Y7
r − µ2

−
oc

r

)

⇐⇒ Y8 = .3742,

which implies thatY0 = e−8µ2 = .3138. The volatility of revenues accruing from HS2 is taken to be

σ2 = .2.8

Since we assume that the construction process can be modeledas a stochastic process(Xt)t≥0 which

follows a GBM with Beta distributed negative jumps, the jumpcomponent of the process(Xt)t≥0 still

needs to be determined. We take the expected jump rate to be 3/7 (i.e. a = 1.5 andb = 2). As a baseline

case for the frequency of an unexpected delay we assume that they occur, on average, once a year, i.e.λ = 1.

A sample path for both(Xt)t≥0 and(Yt)t≥0 is given in Figure 1.

6All figures quoted in this paper are taken from “The StrategicCase for HS2”, published on October 29, 2013 by the De-

partment for Transport (DfT) and High Speed Two (HS2) Ltd. The report can be downloaded fromhttps://www.gov.uk/

government/uploads/system/uploads/attachment_data/file/254360/strategic-case.pdf.
7This assumes that the report’s authors used a normal distribution. No distributional assumptions are given in the report.
8This figure is not given in the report, but corresponds to a values used regularly in the literature, see Dixit and Pindyck (1994).
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Figure 1: Sample paths for(Xt)t≥0 and(Yt)t≥0, based on base-case parameters

Using these data we find the following estimate of the currentBCR,BCR0, and the threshold BCR,

BCR∗, as well as the expected time to completion, expected construction costs, and expected cost overrun.

λ BCR0 BCR∗ E[τ(x∗)] ∆I(x̂) Cost overrun (%)

0 .99 6.62 8 15.58 -.42

1 .87 6.39 9.24 17.55 12.11

Even if the construction process does not suffer from unexpected shocks, but just from day-to-day risk,

(i.e. if λ = 0) three conclusions can be drawn. First, the expected costs are actually somewhat lower than

DfT estimates. This is because risk can lead to constructionslowdowns, but also to positive shocks. So, it is

possible that construction finishes before 8 years have passed, in which case expected costs are discounted

less. Secondly, the estimated BCR of 1.7 is wide off the mark and comes in at .99. This happens because

the revenues are discounted much more than the report allowsfor. This, in turn, is due to the fact there

is uncertainty over the benefits while the railway line is active, but alsowhile construction is taking place.

Under current DfT practice a BCR of .99 would put the project just on the cusp of being “medium value for

money”. However, and this is the third conclusion, the BCR threshold beyond which a project can be called

value for money is not unity, but, in this case, 6.62. In fact,one can compute the probability with which this

14



threshold is reached in, say, the next 10 years: 1.37%.9

As is to be expected, the picture is worse if there are unexpected negative shocks to the construction

process. If, on average, there is one such event per year, thecurrent BCR estimate drops further to .87,

while the BCR threshold decreases to 6.39. The latter decrease might seem surprising, but is due to the

fact that we are working with a compensated Poisson process and the compensator is positive, because the

shocks are negative. The decrease in the current estimate isbigger, however, so that, on balance, the effect

of unexpected shocks is negative. This can be seen from the expected construction time which goes up to

9.24 years, whereas the present value of expected costs goesup to£17.55bn, i.e. an expected cost overrun

of 12.11%. The probability that the BCR threshold is reachedwithin the next 10 years also goes down, to

.90%.

Note, by the way, that even if one does not take construction uncertainty into account and accepts

BCR0 = 1.7, then threshold used in Section 2 still implies that the project is value for money only if

the thresholdBCR∗ = 6.81 is reached.

The effect of the frequency of unexpected negative shocks onseveral quantities of interest can be found

in Figure 2. The panel labeled “Stochastic discount factor”gives the ratio of the expected discount factors

with which revenues and costs are multiplied, respectively. So, forλ = 0, the benefits are discounted by a

factor that is 4.3 times higher than the construction costs.This dichotomy is due to the fact that costs precede

benefits and, as can be seen the effect is substantial. Also note that the expected cost overrun (relative to

the DfT estimate of 15.65bn) is steeply increasing inλ. In fact, the average rate of 28% found by Flyvbjerg

et al. (2002) corresponds toλ ≈ 2, whereas the 45% rate reported for railways corresponds toλ ≈ 2.85.

Comparative statics forσ2 are given in Figure 3. The threshold BCR is increasing inσ2. This happens

because an increase in the volatility of the revenues increases the option value of the project. As is well

known (see Sarkar, 2000) this does not necessarily imply that the probability of investment is also increasing.

The probability of the threshold being reached within the next 10 years is reported in the right panel of

Figure 3. This probability is non-monotonic inσ2. It also shows that the likelihood that the case for HS2

will be economically sensible in the next ten years is fairlylow.

Figure 4 plots comparative statics for theconvenience yield, δ = r−µ2. This rate can be thought of as the

“dividend” rate that one forgoes while not investing in the project. Note that the probability that investment

will be optimal in the next 10 years in fairly sensitive to this parameter. This is due to the sensitivity of

results to the discount rate, as can be seen in Figure 5. This sensitivity is well-documented and shows the

9See Thijssen (2010) for an explicit formula for this probability.
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Figure 2: Comparative statics for frequency of unexpected shocks,λ.
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Figure 3: Comparative statics for revenue volatility,σ2.

importance of a careful study into its effects.

Finally, Figure 6 gives the comparative statics for the present value of the wider economic benefits.

The threshold BCR is insensitive to this value and equalsBCR∗ = 6.62. The current BCR estimate and
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Figure 4: Comparative statics for convenience yield,δ.
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Figure 5: Comparative statics for discount rate,r.

probability that the threshold will be reached within 10 years are fairly sensitive to this value.

7 Conclusion

This paper presents a model of investment under uncertaintywhere the time of construction is influenced

by a stochastic process and revenues only start accruing when the construction process is finalized. As a

result the expected discount factor applied to revenues is higher than the expected discount factor applied to

costs. This, in turn, increases the threshold BCR beyond which investment is optimal. A case study using
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Figure 6: Comparative statics for wider economic benefits.

data from a report on the development of high-speed rail in the UK points to a few effects. Firstly, both

the threshold BCR and the current estimate of the BCR are increasing in the volatility of the construction

process. This is a standard result in the real options literature and is due to the fact that an increase in the

volatility increases the option value of the project. In fact, the probability of the BCR reaching the threshold

within 10 years can be increasing in volatility.

The presence of unpredictable negative shocks to the construction process, however, reduces the current

estimate of the BCR and the threshold BCR. The reduction in the current estimate is higher than in the

threshold, which implies a lower probability of investmentbeing optimal within a certain period. It has been

shown numerically that this reduction in BCR can be dramatic.

Several caveats can be added to the application of the model to HS2. First, the parameter values used

may not be appropriate given that they have been “backed out”from an analysis that is not suited for the

approach presented here. Secondly, it is not obvious that exponential Lévy processes are best suited to model

the uncertainty in construction and benefits. Perhaps arithmetic processes would be better suited. However,

the main points that standard practice overestimates the BCR and underestimates the threshold BCR are

undisputed. It is important to realise that these effects are not due to risk aversion or the application of the

precautionary principle. The decision-maker in this modelhas been modeled as being risk-neutral. The

results are entirely due to the dynamic uncertainty in costsand benefits. This shows that the likelihood of

unpredictable construction delays is ignored at some peril.
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Appendix

A Proof of Proposition 1

First note thatF can be written as

F (x, y) = −Ex

[
∫ ∞

0
e−rtc(Xt)dt

]

+ E(x,y)

[

∫ ∞

τx(x∗)
e−rt (f(Yt) + c(Yt)) dt

]

= E(x,y)

[

e−rτ(x
∗)D(Yτ(x∗))

]

−
(

1− Ex
[

e−rτ(x
∗)
])

I(x).

SinceEx[τ(x∗)] <∞ by assumption, an application of Dynkin’s formula gives

Ex
[

e−rτ(x
∗)ζ(Xτ(x∗))

]

= ζ(x) + Ex

[

∫ τ(x∗)

0
e−rt (LXζ(Xt)− rζ(Xt)) dt

]

= ζ(x).

So, since(Xt)t≥0 is spectrally negative,

Ex
[

e−rτ(x
∗)
]

=
ζ(x)

ζ(x∗)
.

Therefore,
(

1− Ex
[

e−rτ(x
∗)
])

I(x) =

(

1−
ζ(x)

ζ(x∗)

)

I(x).

Another application of Dynkin’s formula gives that

E(x,y)

[

e−rτ(x
∗)ϕ(Xτ(x∗), Yτ(x∗))

]

=ϕ(x, y)

+ E(x,y)

[

∫ τ(x∗)

0
e−rt (LZϕ(Xt, Yt)− rϕ(Xt, Yt)) dt

]

=ϕ(x, y).

Sinceϕ(Xτ(x∗), Yτ(x∗)) = D(Yτ(x∗)), Px,y-a.s., it holds that

E(x,y)

[

e−rτ(x
∗)D(Yτ(x∗))

]

= ϕ(x, y).

This establishesF .

B Proof of Proposition 2

The proof is established in several steps.

1. Recall from Proposition 1 thatF (x, y) = ϕ(x, y) −∆I(x). Sinceϕ(x̂, a2) = 0 < ∆I(x̂) andζ ′ > 0,
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assumption (iii) implies that there is a uniqueȳ ∈ Y such thatF (x̂, ȳ) = 0.

2. On [y∗, b2) it holds thatF ∗(·) = F (x̂, ·). Sinceψ(a2) = 0 > F (x̂, a2) = −∆I(x̂), ϕ′
y > 0, ψ′ > 0, and

lim
y↑y∗

F ∗(y) = F (x̂, y),

it holds thatF ∗(·) > F (x̂, ·) on [y∗, b2). So,F ∗(·) ≥ F (x̂, ·) onY.

Denote

C = { y ∈ Y | F ∗(y) > F (x̂, y) } .

This set is also called thecontinuation regionwhere waiting is optimal.

3. We show thatC is a connected set, such that(a2, ȳ] ⊂ C. Suppose that (1) has a solution. From Peskir

and Shiryaev (2006, Theorem 2.4) we know thatF ∗(·) is the least superharmonic majorant ofF (x̂, ·) onY

and that the first exit time ofC,

τC = inf { t ≥ 0 | Yt 6∈ C } ,

is the optimal stopping time.

We first show that(a2, ȳ) ⊂ C. Let y ≤ ȳ and let

τ = inf { t ≥ 0 | F (x̂, Yt) ≥ 0 } .

Note that it is possible thatPy(τ = ∞) > 0. It holds that

Ey
[

e−rτF (x̂, Yτ )
]

≥ 0 > F (x̂, ȳ).

So, it cannot be optimal to stop aty and, hence,(a2, ȳ] ∈ C.

We now show thatC is a connected set. Suppose not. Then there exist points

y1 > ȳ, and y2 > y1,

such that

y1 ∈ Y \ C, and y2 ∈ C.

Let τ = inf { t ≥ 0 | Yt ≥ y2, Yt ∈ Y \ C }. SinceF ∗(·) is a superharmonic majorant ofF (x̂, ·) it holds

that

F (x̂, y1) = F ∗(y1) ≥ Ey1 [F
∗(Yτ )] = Ey1 [F (x̂, Yτ )] > Ey1 [F (x̂, y2)] = F (x̂, y2).
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But this contradicts the fact thatF (x̂, ·) is an increasing function.

4. Since the continuation set is a connected set, problem (1) can now be reduced to a maximization problem

over thresholds:

F ∗(y) = sup
τ

Ey
[

e−rτF (x̂, Yτ )
]

= sup
ŷ∈Y

Ey
[

e−rτ(ŷ)F (x̂, ŷ)
]

= sup
ŷ∈Y

Ey
[

e−rτ(ŷ)
]

F (x̂, ŷ),

where the last equality follows from the spectral negativity of (Yt)t≥0.

5. From Dynkin’s formula and spectral negativity of(Yt)t≥0 it follows that

Ey
[

e−rτ(ŷ)
]

=
ψ(y)

ψ(ŷ)
.

Therefore, problem (1) can be rewritten as

F ∗(y) = ψ(y) sup
ŷ∈Y

1

ψ(ŷ)
F (x̂, ŷ). (B.1)

6. If (B.1) has a solution it must be a stationary pointy∗ of (3), i.e. it should solvef(y) = 0, where

f(y) = ϕ′
y(x̂, y

∗)ψ(y∗)− ψ′(y∗) [ϕ(x̂, y∗)−∆I(x̂)] = 0. (B.2)

Sincey∗ > ȳ it holds thatϕ(x̂, y∗) > ∆I(x̂). Note thatf(ȳ) > 0 and

f ′(y) = ψ(y)ϕ′′
yy(x̂, y)− ψ′′(y)F (x̂, y) < 0,

on [ȳ, b2). So, iff(y) = 0 has a solution it is unique and is a maximum location of (3) and, hence, solves (1).

7. If f(y) = 0 has no solution than the maximum for (B.1) is not attained onY and, thus,C = Y.

C Proof of Lemma 1

Applying the characteristic operator of(Xt)t≥0 to the functionf(x) = log(x) gives

LXf(x) = −
1

2
σ21 + µ1 +

∫

R

[log(x− ux)− log(x) + u]m1(du)

= −
1

2
σ21 + µ1 + λ

a

a+ b
+ λE[log(1− U)].
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LetB denote the Beta function. A straightforward computation yields that

E[log(1− U)] =
Γ(a)Γ(b)

Γ(a+ b)

∫ 1

0

∂

∂b
ua−1(1− u)b−1du

=
Γ(a)Γ(b)

Γ(a+ b)

∂

∂b

Γ(a+ b)

Γ(a)Γ(b)

=
1

B(a, b)

∂

∂b
B(a, b) =

∂

∂b
log[B(a, b)]

=
∂

∂b
log[Γ(b)]−

∂

∂b
log[Γ(a, b)] ≡ ψ(b)− ψ(a+ b).

Therefore,

LXf(x) = −
1

2
σ21 + µ1 + λ

a

a+ b
+ λ[ψ(b) − ψ(a+ b)].

Under (7) it holds thatLXf ≤ 0, so that Dynkin’s formula gives that

log(x∗) = log(x) + Ex

[

∫ τ(x∗)

0
LX log(Xt)dt

]

= log(x) +

[

µ1 −
1

2
σ21 + λ

(

a

a+ b
+ ψ(b)− ψ(a+ b)

)]

Ex[τ(x∗)],

from which the result follows.
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