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Abstract

This paper presents a model of investment in projects tleattaaracterized by (i) uncertainty over
both the construction costs and revenues, and (i) revethagsccrue only after construction is com-
pleted. Both processes are modeled as spectrally negamejump-diffusions. The optimal stopping
problem that determines the value of the project is solvatkufairly general assumptions. It is found
that the threshold for the benefit-to-cost ratio (BCR) belauhich investment is optimal is higher than
when investment costs are sunk and upfront. In additioncdineent value of the BCR decreases sharply
in the frequency of negative shocks to the constructiongsecThis implies that the cost overruns that
can be expected if one ignores such shocks are sharply siegga their frequency. Based on calibrated
data, the model is applied to the construction of high-spa#dh the UK and it is found that the eco-
nomic case for the first phase of High Speed 2 cannot be madis andlkely to be met in the next 10

years.
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1 Introduction

The theory of investment under uncertainty has been suct@sshe past few decades to help decision-
makers understand how uncertainty over future payoffsenttes the optimal timing of investment projetts.
Many investment projects, however, are not only charaatdrby uncertainty over future payoffs, but also
over the costs of construction. For example, large-scdfastructure projects are often plagued by sub-
stantial uncertainty over the time it takes to constructrth&loreover, the benefits of such projects do not
accrue until the construction process is finalized. As altréisa present value of the revenues has to be
discounted more than the present value of the costs.

This paper presents a model for projects that are influengesdisources of uncertainty: one over future
revenues and one over the construction period. These twar$agre modeled as two (possibly correlated)
Lévy jump-diffusions. The main result presents a way to pota the optimal time to invest when revenues
do not accrue until some pre-specified level of the proceffseimcing the construction is reached. For
example, if the project under consideration is a railwag,lithe process underlying the construction could
represent the mileage of track that has been constructed agertain point in time. Revenues can only
accrue when the distance between two cities has been covered

It is common practice in project evaluation to base decssion thebenefit-to-cost ratigBCR)2 This
is the ratio of the (estimated) present value of future reeenand the (estimated) present value of the
construction costs. Orthodox theory teaches that a prigeadrthwhile if the BCR exceeds unity. Standard
real options theory shows that this threshold should besas®d in order to take into account revenue
uncertainty. This paper argues that the threshold shoukl/be higher to account for (i) uncertainty over
total construction costs and (ii) the time difference be&mecurring costs and accruing revenues.

The importance of the development of techniques dealing aihstruction uncertainty is well-established
empirically. For example, Pohl and Mihaljek (1992) showt tiere tends to be a divergence betwegn
anteandex postproject evaluations, especially when construction tinted@g and uncertain. In particu-
lar, appraisal estimates tend to be too optimistic (i.e.réported BCR is too high). A study by Flyvbjerg
et al. (2002), using data on 258 transportation infrastingcprojects worth US$90 billion, shows that al-
most 9 out of 10 projects have higher costs than estimatedretdhe average cost overrun is 28%. For

rail projects this increases to 45%. The same authors, ivbidyg et al. (2004), expand on these results

'See, for example, McDonald and Siegel (1986), Brennan ahev&tz (1985), Dixit and Pindyck (1994), Cortazar et al.

(1998).
2See, for example, Vickerman (2007) for an overview.



and find evidence that cost overruns are more prominent tigetadhe implementation phase of the project.
Even though the engineering profession continues to worikngmoving the methods used for cost-benefit
analysis, none of these models is explicitly dynafic.

The model developed here is illustrated for a project wheeecbnstruction process follows a spectrally
negative geometric Lévy process and the revenue procews$oa geometric Brownian motion. A 2013
report into the viability of a high-speed rail link betwedretUK cities of London and Birmingham (HS2)
serves as a basis for a numerical illustration to estimatectiirent BCR estimate and its threshold of this
project. It is found that the report overestimates the curBCR an that it does not meet the threshold
that arises from the methodology advocated in this papefadh it is argued that the probability that the
economic case for HS2 is, based on the figures used, venelyntikbe met in the next 10 years. In its focus
on high-speed rail investment as a case study, the papéatsdd¢o Pimantel et al. (2012). That paper does
identify time-to-build as an important factor in high-sgde@il construction, but does not take it specifically
into account.

The contribution of the paper is two-fold. On the mathenzdt&ide, a new optimal stopping problem is
solved under fairly general conditions that can be used tainmany real-life situations. Second, the paper
provides a methodology that can help policy-makers in agsgdarge-scale investment projects where the
time (and, hence, the cost) of construction are uncertaimre@t practice often produces present values of
costs and benefits based on predictions far into the fututeseme prediction interval. In order to apply the
methodology advocated here, one needs estimates for Isegraditostin the current period onlytogether
with estimates of the growth rate and volatility. The chostthastic process then automatically delivers
the correct estimates and prediction intervals for any timtbe future.

In the existing literature on real options time to build igykely ignored. A notable exception is Alvarez
and Keppo (2002), who consider a model of investment undeertainty where the time to build is deter-
ministic. This paper builds on theirs by allowing the timebtold to be stochastic. In fact, a stochastic time
to build is easier to deal with in some sense. Mathematicthlbyresult presented here relies heavily on the
strong Markovian nature of Lévy processes and applicatarbDynkin’s formula.

The paper is organized as follows. In Section 2 the issueswuling appraisal of investment projects
under uncertainty are introduced. Section 3 presents tlidehand the main results. In Section 4 the optimal
threshold for the BCR is computed and it is shown that unicetiane to build implies a higher threshold

BCR over and above the threshold when only revenues aretaimce6ection 5 provides a particular ex-

3See, for example, Mills (2001), Molenaar (2005), and Toumad Lopez (2006).



ample, where the optimal BCR threshold is computed analjgiavhen the stochastic processes follow
spectrally negative geometric Lévy processes. A casg sifitligh-speed rail in the UK is presented in

Section 6 and Section 7 provides some concluding remarks.

2 An Introduction tothelssuesat Stake

The standard way of appraising investment projects is bylecing a cost-benefit analysis, resulting in
a benefit-to-cost ratio (BCR). Typically, such an exercieaststs of estimating the present value of the
benefits,PV, and an estimate of the sunk cosfsresulting inBCR = PV/I. Investment should take
place if, and only if BCR > 1.

It has been recognized for several decades now that thisagipignores the irreversibility of the decision
and the uncertainty surrounding benefits and/or costs. efgee the decision-maker aption value of
waiting: by delaying investment one can see how the probability tfréulosses evolves. A decision to
invest should be made only when that probability is low etougpr example, consider the construction of
a railway line. The future benefits of the line depend criiciah passenger numbers, Suppose that the

procesgY; ), follows a geometric Brownian motion, i.e.

dY
v pdt +odBy, Yy =1y,

where(By),- is a standard Wiener process, i.B; ~ N(0,t). Then a railway line that runs forever at
constant operating costsg, and a constant ticket price, has a present value, discounted at the constant

rater > u, of

PV(y) = E, [ [ty o] = 2L
0

r—u r

The optimal time of investment is determined by the solutmtheoptimal stopping problem
F*(y) =supE, [e”"" (PV(Y;) — I)],

over the set of all stopping timésNote that the present value is computed at timee. when the railway
becomes operational. So, one has to find the optimal stogipiregr at which to exchange the sunk costs
I for the then current estimate of the present value of lifeglbenefits. It is well-known (see, for example,
Dixit and Pindyck, 1994) that the solution to this problenegmribes that one should invest as soon as
passenger numbers exceed the threshold
vr B r—u(ngI)’
pr—1 p \r

“Intuitively, a stopping time is a random time of which you tertain at any point in time whether it has passed or not.
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wheref; > 1 is the positive root of the quadratic equation

SPB(5— 1)+ pB—r =0,

In terms of the BCR that means that investment should talee@a soon as

PV(Y*) 1 {1+ oc/r] -

I = 1 Bi—1 i

BCR(y) =
This is the familiar threshold that is determined by a bataotthe cost of foregoing revenues and the
benefits of waiting for more information and reducing th& B$ encountering future losses.

This approach, however, ignores that the constructionge®takes time and is, in general, of an uncertain
duration. Typically one estimates the construction tinag, B years, and then projects passenger numbers
T years from now, on the basis of which the present value ofree® is computed and then discounted
back to the present time. However, if at some stage the cmti®in process runs into unexpected delays

(due to unexpected geological or environmental issudkestrproblems in the supply chain, etc.) then the

projected time at which revenues start being accrued has poighed back. This has three consequences:
1. the construction costs are incurred for longer,
2. the present value of revenues has to be discounted ovegerlperiod, and
3. the projected passenger numbers on which the preset ebdbe project is based are incorrect.

The main idea of this paper is to model the construction m®ead the revenue process as two, possibly
correlated, stochastic processes. Any delays that may deecing construction are automatically tracked
and taken into account in the cost and benefit estimates. &sseequence, the model inputs are less demand-
ing than those used in current practice. First, no estin@t¢he time of completion is necessary. Rather,
an expected rate of construction together with an estinfatelatility suffice. The distributional properties
of construction progress then follow automatically frone tnodel of the evolution of construction. One
conseguence is that the expected time of completion canktberomputed (or simulated). Secondly, no
projected passenger numbers far into the future are nedtigtier, one needs an estimatecofrent pas-
senger demand together with a growth rate and a volatiltg. rdgain, together with the specific form that
is assumed for the stochastic process driving passengdrerarthis gives all the distributional information
needed. In particular, this would lead to a point estimat@asfsenger numbers at the expected time of

completion, together with its distribution, so that a poion interval can be computed.



3 TheMode and Main Results

Consider a decision-maker (DM) who can invest in a projeat tequires costs to be incurred over an
uncertain construction time and leads to an uncertainrstadaayoffs once construction is completed. The
two sources of uncertainty are represented by a stochastess( X:),, taking values int’ = (ay,b1) C
IR, for the construction process, and a stochastic pradess. ,, taking values iy = (az,b2) C R, for the
profit stream. So, the state variableZis= (X, Y), taking values inZ = X’ x ). Uncertainty is modeled by
a family of probability measure®.).c z on a measurable spat®, .7 ), endowed with afiltration.7;) - .
The restrictions oP, to X and) are denoted b¥, andP,, respectively,

The processegXt),-, and(Y}),>, are assumed to be adapted 8;),, and to follow the time homo-

geneous Lévy processes
dX; = /Ll(Xt_)dt + o1 (Xt_)dBlt + / K1 (U, Xt_)Nl (dt, dU), and
R

A4 = jip(Yy )t + os(Yy )dBay + / 1o (0, Yo ) N (dt, du),
R

respectively, wheréB;),> are standard Brownian motions wity,, ,\(dB1;dBs;) = pdt, Ny and N,
are independent compensated Poisson random measurekgwjtmeasures; andms, respectively, and
(Xo,Y0) = (z,y), P> ® Py-a.s. Itis assumed that botly;),-, and(Y}), are spectrally negative, i.e. that
k1(-) <0, Pg-a.s. andiy(-) <0, Py-a.s.

Foranyz, X* € X andy,Y* € ), let
7.(X*) =inf{t > 0/X; > X*} and 7,(Y")=inf{t > 0]Y; > Y™},

underP, andP,, respectively, be the first hitting times &f* andY*. The generatorsof (Xt)tZO (on

C*(X)), (Yoo (0N C*(Y)) and(Z;) ¢, (0nC?(Z)) are given by the partial integro-differential equations

@) B+ [ lgte -+ ) - g(o) - 5w wlm du),

g =330 2 o) 2+ [ oty + ma(w) — o) — 2 kafulma (),

SThat is,P., is the product measure &, andP,,.



and

“29 =37 (w)agig) * %Ug(y) a;gy(z') + plx,y)o(z)o(y) ?;ge;;
() 2 ) 200
—I—/R[g(w—l—m(u)) o(z) — agi)m(unml(du)
- /}R[g(y + Ra(w)) — gly) — ag(y') o) ma(d)

g()
0xdy’

=2Lx9+ Lyg+ +p(x,y)o(x)o(y)

respectively.

The proces:éXt)tZO represents the progress of construction. It starts at goamel is finished as soon as
some exogenously giver > 7 is reached. It is assumed that 2*] C X, and thatr; (z*) < oo, Pz-a.s.
The latter assumption ensures that construction is cospietfinite time a.s. The construction costs are

given by a measurable function X — R, where it is assumed that
E; [/000 e_’"t\c(Xt)\dt} < 0.
This assumption ensures that discounted constructios aostin expectation, finite. Denote these by
I(x) =E, {/000 e_"tc(Xt)dt} >0, z<z<zx"

On the revenue side it is assumed that, once constructionishdid, the profit flow accruing from the
project is given by some measurable functipn) — R, f € C?()), with f’ > 0 and f” < 0, where it is

assumed that
o0
E, [/ e‘”|f(Yt)|dt} <oo, allyex.
0
Denote the present value of revenues by

D) =&, | [, vey,

The net present value of the project, unBer z = (x,y) € [&,2*] x ), then equals

Tz(x*) [ele}
F(z,y) =E; [— / e "e(Xy)dt + / e " f(YVi)dt| .
0 Tz (2*)

Note that, forz > z* it holds thatr, (z*) = 0 and, thus, that

F(z,y) =E, UOO e‘”f(Yt)dt] =D(y), = >a".

0
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For any project that has not started yet, the NPV of commenaihen the current value of the process
(Yy);>0 is y equalsF (2, y).

The DM wishes to choose the investment time to maximize tbgpf's value, i.e. to solve the optimal
stopping problem

F*(y) = sup E, [e7"TF(2,Y;)], 1)
TeEM

where./ is the set of stopping times.
Sufficient conditions for a solution to this problem will bevgn below. First, however, the net present
value of the project is determined. The NPV can be used to aterthe current estimate of the benefit-to-

cost ratio of the project.
Proposition 1. Suppose that
(i) there exists an increasing solutighe C?(X) to the equation?x ¢ = ¢, such that(a;) = 0;

(i) there exists a solutiop € C2(2) to the equation? x y¢ = r¢, such thato(a1,y) = p(z,a2) =0,
allz € Xandy € Y, andp(z*,y) = D(y), all y € );

Then the net present value of the investment project is diyen

P = ela) - (1- {50 ) 160, @

The proof of this proposition can be found in Appendix A.
Let the expected construction costs (unBgy be denoted by
¢(x)
¢(z*)
and lety denote the traditional NPV threshold of the project, i.ee $mallest value that solvegz, ) =

Al(z) = (1 - ) I(z) > 0,

AlI(z) (provided it exists). Sufficient conditions for the exigterof a solution to the optimal stopping
problem (1) can now be established. The solution to thislprohwill provide the threshold benefit-to-cost

ratio against which any current estimate should be compared
Proposition 2. Suppose that, in addition to the assumptions of Proposition
(i) the functiony is such thaty;, > 0 andyy, < 0;

(i) there exists an increasing and convex solutione C2()) to the equation%y¢» = 71, such that

YP(az) = 0;

(iii) limyp, @(2,y) > AI(2); and



(iv) the function

o e = (- o) 19 “

has a stationary poiny* € ).

Theny* is unique,y is unique,y* > g, and7(y*) is a solution to the optimal stopping probleft) with

2 Toay) - (1- $2) 1)) ity <y
e(@y) - (1- £5) 1@) ity >y

If (3) has no stationary point, then the optimal stopping probleas ho solution and investment is never

F(y) =

optimal.

The proof of this proposition can be found in Appendix B.

A question that remains is whether functiafis), ¢(-), andy(-) as described in the propositions actually
exist. Based on known results in the literature it can be shtbat increasing functiond-) and(-) always
exist for any diffusion (cf. Borodin and Salminen, 1996).alddition, if 1, (y) — 7y is non-increasing, the
increasing function)(-) is also convex (cf. Alvarez, 2003). The conditions ofi) are more difficult to
establish in any generality. As will be seen in Section 5,401 to be concave iny, the expected growth of
the revenues should not be higher than the rate at whichuesgeare discounted. This makes intuitive sense,
for if this is not the case, then the expected discountedue®will explode. At the same time, the growth
rate of construction should exceed the discount rate, Isecatlnerwise the revenues will not be positively

valued and only the construction costs matter.

4 Evaluating Projects. the Dynamic BCR

A standard way to evaluate a project is to computd@sefit-to-cost ratigBCR). This is simply the ratio
of the project’s present value and its sunk costs of investma the context of this paper the BCR is easily
computed as

B p(@,y)
BOR@v) = 4=y jc@ i)

For a project that has not started yet this can be reduced to

B (@, y)
BORW) = T ¢t /@)

Standard practice prescribes that an investment shoulchtiertaken when the BCR exceeds unity.

Proposition 2, however, prescribes another threshold. oftienal stopping time (i.e. the optimal time

9



of investment) isr(y*) = inf{t > 0|Y; > y*}. Sincey* is a stationary point of (3), i.e.
Dy )y (@, y") = [p(@,y") — (1= (@) /C(2")I(2)] ¢ (y"),

it follows that investment is optimal if the BCR exceeds theeshold

Y(y*) oy (2,97 _ )
V) @) fceni@ ~ ¢

So, Proposition 2 shows that investment only should takeeplehen thecurrent (estimate of) benefits

BCR(y*) =1+

of the investmenty, is such thaBC R(y) > BCR*. From the assumptions it is obvious tHaC' R* > 1.
Policy makers should, therefore, increase the hurdle ratevestment, a result that is well-known and

standard in the literature on real options (see, for exanijitet and Pindyck, 1994).

5 An lllustration: Building a High-Speed Rail Link

To illustrate how Propositions 1 and 2 can be used, condigecdnstruction of a new high-speed rail link.
We model the revenues as a geometric Brownian motion (GBMY ea R, and assuméY;),-, follows
the stochastic differential equation

dY
7 = Iu,zdt + O‘Qng. (4)

The construction progress is modeled as a jump-diffusioitoa R, solving the stochastic differential
equation
dX;

—— = dt + 01dB; — / uN (dt, du), (5)
X, R

where0 < u < 1, P,-a.s. We allow for possible correlation between the two essesE[dB;dBs] = pdt,
wherep € (—1,1). The stream of construction costs is assumed to be condtant-a0. The costs of
operating the rail line are assumed to be constant and emuatt 0 per period. The jumps iQX:),, are

assumed to be Beta distributed with parameteaadb, i.e.

I'la+b) , 4

m'(u) = WU (1— )’ L. (6)

The increasing solution t&3-v¢ = r with ¢(0) = 0 is easily obtained as
w(y) = A2y517

where; > 0 is the positive root of the quadratic equation

2y(8) = 50,8(8 —1) + pyB —r =0,

1
2
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and A, is a positive constant. The functienis convex only if3; > 1, i.e. if r > puo.
The increasing solution t&x ¢ = r¢ with ¢(0) = 0 is solved by (cf. Alvarez and Rakkolainen, 2010)
((x) = A2, wherey; > 0 is the positive root of the equation

1
50%7(7 — 1Dz 4 pyyx? —r + / [(z — zu)” — 27 + yulm (du) =0

R
= 2%y — 1)+ (i + X))y — 7 — A+ XE[1 - )] =0
1 a Dla+b(b+7v)
= 50%7(7— 1)+ <,u1 +/\a—+b> v—(r+2X) +/\I‘(b)I‘(a—|—b—|—7) =0,

andA; is a positive constant.

In order to obtainy, first note that
o(v,y) = Ba®y'°,

solves the differential equatio| y y¢ — r¢ = 0 only if « solves the equation

2(a) E%[(O’l —02)* 4+ 2(1 — p)orog)a(a — 1) + <u1 — p2 + A%—I—b) o'
T

If p < 1 this equation has two roots; andas, and, since2(0) < 0, it holds that; > 0 andas < 0. So,

the general solution to the equaticfi y yyp = ¢ is
o(x,y) = Biz®y' =™ + Byz®y' T2,

whereB; and B, are constants.

In order to satisfy the boundary conditiopgz,0) = ¢(0,y) = 0, it needs to hold thaB; = 0 and
a1 < 1, respectively. The latter condition is fulfilled #f < 1, which implies that the growth rate of the
construction process should exceed the discount rate. midlies intuitive sense, for if > 1, then the
expected revenues are discounted faster than the rategyepsoon the construction, which implies that the
construction costs fully drown out the revenues.

Note that/ (x) = ¢/r, so that we find

)= i~ (2)"]

It also follows that the present value of the profits of thggubis

ocC

D(y) =E, UOOO Y, — oc)dt} =- _yuz -

11



The boundary conditiop(z*,y) = D(y) then gives

so that

Note thaty, > 0, ¢}, > 0, andyy, < 0.

Since all the conditions of Proposition 2 are met, the optivadue of the project can be obtained by

s e -(-(2)")3]
* il

Standard computations yield that
_ oc efi_ (2 (2N
vy = B1—1 roor x* x* '
The threshold BCR beyond which investment is optimal thenteacomputed as

. 1 oc_(&/z)™
BOR' =1+ 52— [1+ ; 1—(33/95*)71}

The specifics of the underlying stochastic constructiorgse determines the expected construction time,

finding a stationary poing* of

e

(r— p2)

provided it exists. For the model described in this sectlmn fbllowing lemma, the proof of which can

be found in Appendix C, describes this operator. The lemnes tisedigamma function, defined by
P(z) =T"(2) /T ().

Lemma 1. Suppose tha(tXlt)t20 follows the diffusior(5) with Lévy measur¢6). If

a 1 5
A (S o) - (et 0) > 5ot Q
thenE,[|7(z*)|] < oo, for anyz < z*, and

. log(z*/)
E.[r(z*)] = .
w4 A (ﬂ L) — latb) — %ﬂ)

6 An Application: High-Speed Rail in the UK

As an application of the model presented in Section 5, thesicse will look at a particular case study:
investment in Phase 1 of HS2, a high-speed rail link betwasmbn and Birmingham in the UK. A recently

published “strategic case” provides the figures used beldvch are taken at face value and used merely

12



for illustrative purpose$.This report estimates the (present value in 2011 pricesdftisrof this rail link to
be£28bn (this include£4.3bn in wider economic benefits), whereas the costs araastil to b&15.65bn.
Operating costs are estimated to have a present valg@.2bn. The report includes capital spending such
as replacement of rolling stock, etc., which will be ignofrezte. The report then provides a BCR of 1.7,
which renders this a “medium value” project in governmentgree.

The estimate of the BCR is obtained using traditional medtaxidescribed in Section 2. As a result, the
parameters for the model described here have to be calibaath “guesstimated” based on the information
provided. The estimate of the (present value of the) coasstiu costs are given with the upper bound of
a 95% prediction interval of£21.4bn, with an estimated time to completion of 8 years. Tiealiption
interval is consistent with a volatility af; = .994.” The current state of construction is taken taibe 1.
Birmingham is 150 miles from London, so the average constmicspeed over 8 years is 18.75 miles of
track p.a. This is commensurate with an average growth fatg e= 2.36. Since it is estimated that this
distance will be covered in 8 years, the inferred valuesfo(i.e. the value that giveB; [7(z*)] = 8) is
4.48. The cost flow is then inferred to ke= £2.24bn p.a.

The discount rate used in the report is 3.5%, which is transfd to the continuous rate= .0344. The
present value of the railway is estimated to28bn. No clear growth rate of revenues is mentioned in the
report, so it will be assumed here that = .022, which is the assumed growth rate of passenger numbers.
A present value o£8.2bn leads for operating costs leads to a constant opgaist flow ofoc = .28. This

implies that the estimated value B is

Y;
&S < T @> = Yy = 3742,
T — U2 T

which implies thatYy = e~®2 = .3138. The volatility of revenues accruing from HS2 is taken to be
o9 = .2.8

Since we assume that the construction process can be maekedtochastic proce¢X),., which
follows a GBM with Beta distributed negative jumps, the jugmponent of the proces{th)tZO still
needs to be determined. We take the expected jump rate t&l{ee8/a = 1.5 andb = 2). As a baseline
case for the frequency of an unexpected delay we assumédyad¢cur, on average, once a year, he= 1.

A sample path for botfiX;),., and(Y:),~ is given in Figure 1.

SAll figures quoted in this paper are taken from “The Strategise for HS2”, published on October 29, 2013 by the De-
partment for Transport (DfT) and High Speed Two (HS2) Ltd.eThport can be downloaded framh t ps: / / www. gov. uk/

gover nnent / upl oads/ syst enf upl oads/ attachnment _data/fil e/ 254360/ st r at egi c- case. pdf.
"This assumes that the report’s authors used a normal distnib No distributional assumptions are given in the repor
8This figure is not given in the report, but corresponds to aeslsed regularly in the literature, see Dixit and Pindy€04).
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Construction
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Figure 1: Sample paths f¢rX;),, and(Y%),-, based on base-case parameters

Using these data we find the following estimate of the curB@R, BC' Ry, and the threshold BCR,

BCR*, as well as the expected time to completion, expected agnign costs, and expected cost overrun.

A H BCRy BCR* E[r(z*)] AI(z) Costoverrun (%)
0 .99 6.62 8 15.58 -42
1 .87 6.39 9.24 17.55 12.11

Even if the construction process does not suffer from uneb@geshocks, but just from day-to-day risk,
(i.e. if A = 0) three conclusions can be drawn. First, the expected costctually somewhat lower than
DT estimates. This is because risk can lead to construstmmdowns, but also to positive shocks. So, itis
possible that construction finishes before 8 years haveegasswhich case expected costs are discounted
less. Secondly, the estimated BCR of 1.7 is wide off the matk@mes in at .99. This happens because
the revenues are discounted much more than the report aowg his, in turn, is due to the fact there
is uncertainty over the benefits while the railway line iswvagtbut alsowhile construction is taking place
Under current DfT practice a BCR of .99 would put the projest pn the cusp of being “medium value for
money”. However, and this is the third conclusion, the BCieshold beyond which a project can be called

value for money is not unity, but, in this case, 6.62. In face can compute the probability with which this
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threshold is reached in, say, the next 10 years: 1.37%.

As is to be expected, the picture is worse if there are undéegdetegative shocks to the construction
process. If, on average, there is one such event per yeacuthent BCR estimate drops further to .87,
while the BCR threshold decreases to 6.39. The latter deergaght seem surprising, but is due to the
fact that we are working with a compensated Poisson progesthe compensator is positive, because the
shocks are negative. The decrease in the current estimaitpyir, however, so that, on balance, the effect
of unexpected shocks is negative. This can be seen from gee®d construction time which goes up to
9.24 years, whereas the present value of expected costaiga@e£17.55bn, i.e. an expected cost overrun
of 12.11%. The probability that the BCR threshold is reachétin the next 10 years also goes down, to
.90%.

Note, by the way, that even if one does not take constructimremainty into account and accepts
BCRy = 1.7, then threshold used in Section 2 still implies that the gubjs value for money only if
the thresholdBC R* = 6.81 is reached.

The effect of the frequency of unexpected negative shockseweral quantities of interest can be found
in Figure 2. The panel labeled “Stochastic discount factives the ratio of the expected discount factors
with which revenues and costs are multiplied, respectivBly, forA = 0, the benefits are discounted by a
factor that is 4.3 times higher than the construction cagtss dichotomy is due to the fact that costs precede
benefits and, as can be seen the effect is substantial. Atsaimat the expected cost overrun (relative to
the DfT estimate of 15.65bn) is steeply increasing.inn fact, the average rate of 28% found by Flyvbjerg
et al. (2002) corresponds fo~ 2, whereas the 45% rate reported for railways correspondsi@.85.

Comparative statics far, are given in Figure 3. The threshold BCR is increasing4n This happens
because an increase in the volatility of the revenues isegethe option value of the project. As is well
known (see Sarkar, 2000) this does not necessarily imptyhiarobability of investment is also increasing.
The probability of the threshold being reached within th&trid years is reported in the right panel of
Figure 3. This probability is non-monotonic iy. It also shows that the likelihood that the case for HS2
will be economically sensible in the next ten years is falioky.

Figure 4 plots comparative statics for tt@nvenience yield = r — uo. This rate can be thought of as the
“dividend” rate that one forgoes while not investing in thejpct. Note that the probability that investment
will be optimal in the next 10 years in fairly sensitive toglparameter. This is due to the sensitivity of

results to the discount rate, as can be seen in Figure 5. &hsstisity is well-documented and shows the

°See Thijssen (2010) for an explicit formula for this protiapi
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Figure 3: Comparative statics for revenue volatility,

importance of a careful study into its effects.
Finally, Figure 6 gives the comparative statics for the @néssalue of the wider economic benefits.

The threshold BCR is insensitive to this value and equslsR* = 6.62. The current BCR estimate and
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probability that the threshold will be reached within 10 rgeare fairly sensitive to this value.

7 Conclusion

This paper presents a model of investment under uncertaingre the time of construction is influenced
by a stochastic process and revenues only start accruing thieeconstruction process is finalized. As a
result the expected discount factor applied to revenuegliehthan the expected discount factor applied to

costs. This, in turn, increases the threshold BCR beyondwihvestment is optimal. A case study using
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Figure 6: Comparative statics for wider economic benefits.

data from a report on the development of high-speed rail énUK points to a few effects. Firstly, both
the threshold BCR and the current estimate of the BCR areasang in the volatility of the construction
process. This is a standard result in the real options fitegaand is due to the fact that an increase in the
volatility increases the option value of the project. Intfdlse probability of the BCR reaching the threshold
within 10 years can be increasing in volatility.

The presence of unpredictable negative shocks to the catistn process, however, reduces the current
estimate of the BCR and the threshold BCR. The reduction énctirrent estimate is higher than in the
threshold, which implies a lower probability of investméring optimal within a certain period. It has been
shown numerically that this reduction in BCR can be dramatic

Several caveats can be added to the application of the mod#bR. First, the parameter values used
may not be appropriate given that they have been “backedfmrti an analysis that is not suited for the
approach presented here. Secondly, it is not obvious tipatential Lévy processes are best suited to model
the uncertainty in construction and benefits. Perhapsnagitic processes would be better suited. However,
the main points that standard practice overestimates the & underestimates the threshold BCR are
undisputed. It is important to realise that these effeatsnat due to risk aversion or the application of the
precautionary principle. The decision-maker in this mdud been modeled as being risk-neutral. The
results are entirely due to the dynamic uncertainty in castsbenefits. This shows that the likelihood of

unpredictable construction delays is ignored at some.peril
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Appendix

A Proof of Proposition 1

First note thatt' can be written as

= E(w,y) [e_TT(m*)D(YT(m*))] - (1 -E; [e_TT(I*)]> I(z).

Fle) =6 | [T e + B [ [ e cm)ar

SinceE, [7(z*)] < oo by assumption, an application of Dynkin’s formula gives

E:c e—rT(z*)C(XT(m*))] = C(x) + Ex

7(z*)
/0 e " (LxC(Xe) = r¢(Xy)) dt] = (().

So, sincg(X), is spectrally negative,

Therefore,

(1=Ee o) 1) = <1 - f(f*)>> 1)

Another application of Dynkin’s formula gives that
Ewy) [G_TT(I*)SO(XT(QEWYT(m*))] =p(z,y)
By [/()T(x*) e (Lyo(Xe, Yr) —re(Xy, Yy)) di
=p(z,y).
Sincegp(XT(x*), Yi) = D(YT(x*)), P, ,-a.s., it holds that
Ewy) |¢7)D(Yean)| = ().

This establisheg’. ]

B Proof of Proposition 2

The proof is established in several steps.

1. Recall from Proposition 1 thaf(z,y) = ¢(z,y) — Al(x). Sincep(z,a2) = 0 < AI(z) and¢’ > 0,
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assumption (iii) implies that there is a uniggiec ) such thatF'(z, ) = 0.

2. On[y*,by) it holds thatF™*(-) = F'(&,-). Sincey(az) = 0 > F(Z,a2) = —AI(), ¢, > 0,¢' > 0,and

lim F*(y) = F(z,y),
yty*

it holds thatF™*(-) > F(&,-) on[y*,b2). SO,F™*(-) > F(z,-)on ).
Denote

C={yeY|F(y) >F(y)}.

This set is also called thepbntinuation regiorwhere waiting is optimal.

3. We show thatC' is a connected set, such thab, y] C C. Suppose that (1) has a solution. From Peskir

and Shiryaev (2006, Theorem 2.4) we know th&(-) is the least superharmonic majorantrfz, -) on )
and that the first exit time af’,
TC:inf{tEO‘Yt€C},

is the optimal stopping time.

We first show thatas, y) C C. Lety < g and let
T=inf{t>0]F(z,Y;) >0}.
Note that it is possible th&, (7 = oo) > 0. It holds that
Ey[e"F(2,Y:)] > 0> F(2,7).

So, it cannot be optimal to stop g@iand, hence(as, 3] € C.

We now show tha€ is a connected set. Suppose not. Then there exist points
v1>9, and y2 >y,
such that

yley\c, and yQGC.

Lett =inf{t>0|Y; >y, Y € Y\ C}. SinceF*(:)is a superharmonic majorant &f(z,-) it holds
that
F(‘%ayl) = F*(yl) = Ey1 [F*(YT)] = Eyl [F(‘%?YT)] > Ey1 [F(‘%ayZ)] = F(‘%7y2)'
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But this contradicts the fact th#t(z, -) is an increasing function.

4. Since the continuation set is a connected set, problem (ljoa be reduced to a maximization problem

over thresholds:

where the last equality follows from the spectral negatiwit (Yt)tzo-

5. From Dynkin's formula and spectral negativity @f;) ., it follows that

Therefore, problem (1) can be rewritten as

F(y) = vy @Fw). (B.1)

6. If (B.1) has a solution it must be a stationary pajritof (3), i.e. it should solve (y) = 0, where
fy) = ¢y (@, y")0(") — ' (y") [e(@,y") — Al(2)] = 0. (B.2)
Sincey* > g it holds thaty(z,y*) > AI(z). Note thatf(y) > 0 and
') =)y, (2, y) — " (y)F(z,y) <0,

on|[g, bs). So, if f(y) = 0 has a solution it is unique and is a maximum location of (3) &edce, solves (1).

7.1f f(y) = 0 has no solution than the maximum for (B.1) is not attained@and, thusC = ). |

C Proof of Lemmal
Applying the characteristic operator @K} ), to the functionf (x) = log(x) gives

Lxf(z) = —%O‘% + 1+ /IR [log(z — uzx) — log(z) + u] m1(du)

1, a
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Let B denote the Beta function. A straightforward computaticelds that

Eflog(1 —U)] = Tt Jo %u“_l(l —u)’tdu
_ T(a)T(b) @ T(a+b)
" T(a+b) obT(a)T(b)

1 0 0
- BlaD) %B(a, b) = 5 log[B(a,b)]
= 2 108[I(0)] o108l (a,b)] = V() ~ v(a+ D).
Therefore,
Ly f(x) = —50% + 1+ Amp FAW(B) — wla+ D).

Under (7) it holds that?x f < 0, so that Dynkin’s formula gives that

7(z*)

log(z*) =log(z) + E, Lx log(Xy)dt

0

—tog(a) + |1 = gt + A (55 +000) ~ (et 0) )| Eulra)

from which the result follows. ]
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