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Efficiency in strategic form games:

A little trust can go a long way∗

Jianpei Li† Paul Schweinzer‡

Abstract

We study the incentives of noncooperative players to play a cooperative game. That is, we look
for individually rational, redistributive, pre-game agreements enacted in order to coordinate
towards efficient equilibrium play. Contrasting with standard Nash equilibrium analysis, we
assume that players can commit to the agreements they negotiate and that utility is verify-
and transferable. We show that agreeing on a proportional-exponential redistribution rule
is individually rational and implements the socially efficient outcome as Nash equilibrium.
Moreover, we show that this class of redistributional contracts may be naturally obtained as
the outcome of Nash bargaining. (JEL: C72, D62, D71. Keywords: Redistribution, Efficiency,

Social contract.)

1 Introduction

In Prisoners’ dilemma type of situations, players forego available, favourable outcomes of the game

because individual decisions are taken independently and players cannot commit to taking their

jointly profitable strategies. We are interested in whether or not players find it beneficial in such

situations to jointly establish some redistributive agreement—a social contract—specifying some

rule which redistributes social payoffs into individual utilities. A precondition for this to be possible

is that players must be able to commit to later redistribute payoffs in the contracted way.

Consider a game in which, in the absence of an agreement, two players can reap the fruits

of their individual labour. If they trust the other’s guarantees, however, they can agree to share

the added value of their joint surplus. If the latter, cooperative strategy is giving them a higher

payoff than what they can get individually, then they can voluntarily forego their natural right in
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through the University of York Research and Impact Support Fund. †School of International Trade and Eco-
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lijianpei@uibe.edu.cn. ‡Department of Economics, University of York, Heslington, York YO10 5DD, United
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the product of their own labour to write a binding contract which redistributes their joint, social

product. The redistribution rule that we consider in this paper redistributes the social payoffs in an

outcome of the game in proportion to each players’ inside options, these are, the highest payoffs they

can get by unilaterally deviating from this outcome of the original game. The exact proportionality

of redistribution is the only parameter of our social contract and potentially allows all outcomes

ranging from full expropriation of either player to equal sharing. It turns out that, in order for this

social contract to be acceptable, initial endowment asymmetries must not be too strong. If players

are prepared to preserve endowment asymmetries also in the redistributed outcomes, however, then

the efficient outcome can always be implemented as a Nash equilibrium of the transformed game.

Thus, the efficient, cooperative outcome can always be implemented through a jointly acceptable

redistributional agreement. The only requirement we need for reaching efficiency is that players can

commit to the social contract. Trust is the belief in the other’s commitment.1

The payoff transformations implied by the redistributional contract can favour the weaker or

stronger member of society. We define a proposal game in which an unanimously agreeable payoff

transformation parameter is proposed. In this ‘pre-game,’ a randomly chosen, perfectly rational

and self-interested player proposes a single redistributional parameter which allows this player to

maximise payoffs subject to (1) no deviation incentives from the efficient outcome by any player

and (2) no incentives to revert to the inefficient Nash equilibrium of the original game. If the

proposed parameter is rejected by at least one player, the original game is played. If the parameter is

unanimously accepted, then the game proceeds to the ‘redistribution’ stage at which the same social

contract is applied for each outcome. That is, the joint payoffs in each outcome are redistributed

according to the social contract. This redistribution transforms a wide range of strategic form games

in a way that makes the socially efficient outcome implementable as a Nash equilibrium.

In the next section, after a brief discussion of the relation of our contribution to the existing

literature, we present the model and our redistribution mechanism. In section 3, we derive the

conditions under which the efficient outcome can be implemented as (subgame perfect) Nash equi-

librium in various symmetric and (weighted) asymmetric settings. Our results include the case of

incomplete information. The final section 4 provides an explicit bargaining foundation for the class

of redistribution rules that we employ in this paper.

Literature

Coase (1960) states that if trade in an externality is possible and there are no transaction costs,

bargaining will lead to an efficient allocation of resources regardless of the initial allocation of

property. The present paper presents a mechanism which achieves this for a large class of strategic

form games. To the best of our knowledge, the first paper to propose a formal pre-play negotiation

or communication procedure as means to implementing efficiency in a game with externalities is

1 The kind of commitment required is similar to that assumed in Jackson and Wilkie (2005) and Ellingsen and
Paltseva (2013): players only commit to the use of a class of mechanisms if redistribution takes place. Every
player can opt for no redistribution if so desired. For a wider discussion of this interpretation of trust see, for
instance, Bacharach and Gambetta (2001).
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Kalai (1981). Since then, investigation into pre-play negotiation has developed mainly along two

lines: 1) payoff redistribution or side contracting and 2) commitment to certain strategies.

Along the first line, Jackson and Wilkie (2005) characterise the outcomes of games when players

may make binding offers of strategy contingent payments before the game is played. They arrive

at the anti-Coasian result that, despite complete information and costless contracting, unilateral

promises of payoff transfers cannot always lead to efficient outcomes. In a recent paper, Ellingsen

and Paltseva (2013) extend Jackson and Wilkie (2005) by considering not unilateral promises, but

agreements which have to be accepted unanimously by both parties. They find that efficiency

is implementable if it is compulsory for players to participate in contracting. If participation in

contracting is voluntary, however, inefficiency may persist. Similarly, Yamada (2003) finds that for

efficiency to obtain, the offers made by different players cannot be independent.2

Along the second line of commitment to certain strategies, Renou (2009) assumes that players

can unilaterally pre-commit to playing some of their strategies and characterises the equilibrium

payoffs of such commitment games. Bade, Haeringer, and Renou (2009) show that a strategy

profile is implementable if and only if it is implementable by a simple commitment in which one of

two players commits to a single action and the other commits to a subset of actions that contains

his best-reply to the commitment of his opponent. In these contributions, commitment is assumed

to be perfect, irrevocable and fully observable.

Instead of considering strategy contingent payoff transfers or commitments to a certain strategy

set, we analyse a redistributive contract (or law) which enacts a particular redistribution of payoffs

whatever strategies the players choose. Hence, this redistribution rule is not tailored to a particular

outcome realisation but the same rule is applied to any realised outcome. As long as the players

agree on the social contract and can commit to subsequently redistribute, the chosen outcome is

played and payoffs are redistributed according to the contract. If the commitment is not upheld,

then a legal machine is assumed to force the players in line with their commitments. If players do

not agree on a contract, then the status quo equilibrium of the original game realises.

The particular formulation of the proportional-exponential redistribution rule that we use is

borrowed from the contest literature. Corchón and Dahm (2010) interpret the ratio contest success

function as sharing rule and establish its connection to a bargaining problem. In the contest literature,

this Logit surplus sharing form has been axiomatised by Skaperdas (1996) and follows naturally from

micro-foundations à la Fu and Lu (2012) and Jia (2008). We provide a Nash bargaining foundation

for this rule in our payoff redistribution environment.

Finally, the modern literature on the social contract was initiated by Hobbes (1651), Locke

(1689), and Rousseau (1762) followed by Harsanyi (1953, 1955) and Rawls (1971). It is admirably

set into a general game theoretic context by Binmore (1994).

2 In two extensions to Jackson and Wilkie (2005), Qin (2008) shows that cooperation can be induced if players can
commit to paying penalties and Goranko and Turrini (2013) consider a dynamic pre-play negotiation process in
which players can make, reject, or withdraw strategy-contingent offers but still find that, under certain conditions,
efficiency can not be achieved. The earlier Varian (1994) models the pre-game stage using a regulator levying a
Pigouvian tax on the players in order to compensate for the social cost that player imposes on the other player
through the choice of a certain action. Watson (2011) examines the issue of side-contracting in a more general
network environment.
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2 The model

We consider standard, finite, strategic form games composed of a player set, a joint strategy space,

and a set of payoff functions {N , S, u}, and assume that players can commit to a particular social

contract to redistribute joint income. For ease of exposition we mainly consider generic two-player,

two-strategy games in the main body of the paper but, as shown in the propositions, the exten-

sion to the general case is straightforward. Utilities are assumed to be positive and transferable

among players in order to make payoff redistribution possible.3 This also implies that utilities are

interpersonally comparable.

We propose a pre-game in which the precise parameters of a redistributional social contract are

proposed. At this pre-game stage, a randomly chosen player proposes a payoff transformation in

order to maximise own payoffs subject to unanimous agreement. This take-it-or-leave-it proposal

pre-game is played under full knowledge of the game and, in particular, player identities.

More specifically, we assume that a randomly selected player proposes an exponent r ∈ R in

the class of redistribution rules (1) in order to maximise own expected payoffs.4 Conditional on

unanimous agreement on the proposed r, the second redistribution stage of the game is reached and

payoffs are transformed as agreed under the proposed contract. The transformed payoff a player

i ∈ N expects under the profile ŝ = (ŝ1, · · · , ŝn) ∈ S is defined as5

(1)ũi(ŝ) =

max
s′i 6=ŝi

ui(s
′
i, ŝ−i)

r

∑

j∈N

max
s′
j
6=ŝj

uj(s
′
j , ŝ−j)

r

∑

j∈N

uj(ŝ), for r ∈ R.

This ‘proportional-exponential’ payoff sharing rule gives each player a share of the joint payoff

proportional to the individual inside option realisable through unilateral deviation.6 The range of r

gives the set of all jointly and individually rational ways of sharing the available pie
∑

j∈N uj(ŝ), made

feasible through playing profile ŝ. Note that, since only the players’ maximum unilateral deviation

payoff max
s′i 6=ŝi

ui(s
′
i, ŝ−i), the inside option, is used in (1) apart from the profile under consideration, ŝ,

any generic strategic form game can be rearranged into a form requiring only two payoffs per player.

If the social contract is not upheld in the sense that players either do not agree on a contract in the

first place or unanimously choose the outside option, then play reverts to the original game.

3 Non-positive utilities can be easily accommodated by any increasing, linear transformation.
4 The simple rule prescribing players’ to ‘split social payoffs evenly’ in each outcome also implements the efficient
outcome as a Nash equilibrium in symmetric games (as does the heuristic prescribing a split proportional to the
players’ outside options in every asymmetric strategic form game of the class we consider.) This equal sharing rule
is a special case of the rule that we propose. Contrary to our rule, however, it is not endogenised in a proposal
game among rational, self-interested players.

5 This sharing rule seems to satisfy Aristotle’s dictum that “what is just . . . is what is proportional, and what is
unjust is what violates the proportion.” Part of a large literature on tournaments employs it to share available
rents between contestants. The most popular version of (1) employed in the contest literature comes with an
exponent of r = 1. It is there called Tullock or Lottery contest success function and is interpreted as specifying
the players’ effort-based winning probabilities. In the present context this function specifies individual shares of
social payoffs.

6 In (1), the inside option is defined on the highest payoff deviating strategy s′j 6= sj . Alternatively, and without
changing our results qualitatively, it can be defined on the best payoff including sj , given the opponents’ strategies.
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Definition 1. We define the socially efficient outcomes of game {N , S, u} as the set of profiles

s ∈ S satisfying
∑

i∈N ui(s) ≥
∑

i∈N ui(s
′) for all s′ ∈ S.

In order to avoid trivialities and because we are neither considering the problem of equilibrium

selection nor equilibrium uniqueness, we restrict attention to the class of games in which the set of

socially efficient outcomes is a singleton. This is not a critical assumption: in games with multiple

efficient outcomes we could just pick one efficient outcome, perhaps randomly, and the analysis

remains as it is. Note, moreover, that no renegotiation or pre-play communication is necessary if the

efficient outcome is already a Nash equilibrium. Next, we define the equilibrium concept we employ

for this analysis.

Definition 2. We define a proposal r∗ and a strategy profile (s∗i , s
∗
−i) to be a subgame perfect

Nash equilibrium if (1) a randomly chosen player i proposes r∗ which is accepted by all players j 6= i

in the pre-game; (2) given r∗ agreed upon unanimously in the pre-game, it is a Nash equilibrium for

the players to choose (s∗i , s
∗
−i) at the redistribution stage.

3 Results

3.1 Symmetric games

By symmetric games, we refer to the class of games where two players’ payoffs are identical if

they exchange their identities, i.e., the player indices i, j ∈ N . In such games, at least one Nash

equilibrium is symmetric.7 Consider the following symmetric, two-player game:8

c d

c a, a g, h

d h, g b, b

We make the assumption that 2a > max{2b, g + h}; this guarantees that (c,c) is the unique

efficient outcome; it does not guarantee, however, that (c,c) is a Nash equilibrium. Consider a

symmetric status quo Nash equilibrium of the game, in pure or mixed strategies, and denote its

corresponding payoffs by (ū, ū), the players’ outside options. Given that players agree on some r

and the game proceeds to the redistribution stage, the resulting allocation is:

c d

c a, a br

ar+br
(g + h), ar

ar+br
(g + h)

d ar

ar+br
(g + h), br

ar+br
(g + h) b, b

7 Asymmetric Nash equilibria of symmetric games are discussed in the section on asymmetric games.
8 For convenience, we always relabel strategy sets such that the efficient outcome is top-left.

5



Consider now a pre-game proposal by player 1. He proposes some r ∈ R such that

(2)

max
r∈R

ã1 =
hr

hr + hr
(2a) = a

s.t. (DC1) ã1 = a ≥
ar

ar + br
(g + h),

(DC2) ã2 = a ≥
ar

ar + br
(g + h)

where the ‘deviation constraints’ (DCi) ensure that player i = 1, 2 has no incentives to deviate from

(c,c) in the transformed game. If g + h ≤ a, for any r ∈ R,
ar

ar + br
< 1 and both deviation

constraints hold. In this case, the set of all proposals r which implement the efficient outcome is

R = {r | r ∈ R}. If g + h > a, the above program is satisfied by any r that is an element of

R =

{

r | r ≤
log

(

g+h−a
a

)

log(b)− log(a)

}

. (3)

Recall that by assumption a > b, log(b)− log(a) < 0. By assumption 2a > g + h, g+h−a
a

∈ (0, 1)

and log
(

g+h−a
a

)

< 0, thus the set R in (3) is nonempty and contains zero.

The players are symmetric, thus player 2’s utility is maximised by whatever maximises player

1’s utility and therefore she agrees to any proposed r ∈ R. Note, however, that since player 1’s

maximisation problem above is satisfied by any r ∈ R, both players are indifferent between any

member of R and any r ∈ R ensures that the efficient outcome is a Nash equilibrium at the

redistribution stage.

Hence, it is an equilibrium to suggest and accept redistribution under any r ∈ R for each player

and the game progresses to the redistribution stage. Participation constraints at the redistribution

stage are obviously satisfied by r ∈ R because of assumption 2a > max{g + h, 2b}. We arrive at

the following lemma.

Lemma 1. R̄, the set of r that ensures (c, c) to be a subgame perfect equilibrium, is nonempty in

the symmetric, two-player game.9

Proof. Immediate since at least r = 0 is an element of R.

The rationale is that players are contracting to transfer utility in inefficient states where their

own incentives destroy the efficient outcome as an equilibrium. Players bind themselves in order to

convince the opponents that they have no incentive to deviate from the efficient outcome. We only

allow for a single social contract governing all redistribution in the game. Hence, reciprocal utility

transfers in states where the opponents’ incentives make the efficient outcome of the original game

impossible are ensured. Note that the same procedure and outcome applies to symmetric n-player,

two-strategy games.

Example 1: This example illustrates that the equilibrium implementing the efficient outcome is not

necessarily unique even if the set of efficient outcomes is a singleton. Consider:

9 Throughout the paper, we use R for the set of parameters r that satisfies all players’ (DC), and R̄ for the set of
r that satisfies (DC) and (PC) for all players. In the current symmetric case, R̄ = R.
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c d

c 5,5 1,6

d 6,1 4,4

c d

c 5,5 31/2,3
1/2

d 31/2,3
1/2 4,4

under the right-hand side transformation with r = 0.10 This transformed game has two (strict) Nash

equilibria in pure strategies. But for sufficiently small r, efficiency can be uniquely implemented. ⊳

Proposition 1. Any symmetric, n-player strategic form game {N , S, u} can be transformed through

application of (1) to implement the socially efficient outcome as a Nash equilibrium.

Proof. We first reduce the original player strategy sets Si, i ∈ N , to two elements each and then

show that our equilibrium construction applies to any number of players. Find the unique socially

efficient outcome and call it (ci, c−i). Now find the inside option (the best unilateral deviation

strategy) for each player i ∈ N
(4)di = argmax

(s′
i
6=ci)∈Si

ui(s
′
i, c−i),

or, any best deviation s̃i ∈ Si among the set of strategies giving the highest deviation utility if the

set on the right-hand side is not a singleton. Since we want to preserve player symmetry, we choose

the same best deviation strategy for all players.

Call the set of all Nash equilibria of the original game N∗. Now, for every pure or mixed

(s∗i , s
∗
−i) ∈ N∗, we define u(di, d−i) = u(s∗i , s

∗
−i). Each Nash equilibrium induces a reduction

and each reduction gives subsequently rise to a transformation based on some outside option with

ūi = ui(s
∗
i , s

∗
−i); the efficient outcome pair is the same in each reduction (but the individual payoffs

in the efficient outcome of the transformed game depend on the inequality inherent in the chosen

outside option). If the efficient outcome can be implemented in an r-transformation of the reduced

game, it can be implemented in the same r-transformation of the original game. In the set N∗,

we pick a symmetric status quo Nash equilibrium as the basis for transformation such that the

reduced game remains symmetric. Whenever we use an asymmetric status quo Nash equilibrium in

a reduction, we turn the originally symmetric game into an asymmetric reduced game (which we

discuss in the following subsections).

This procedure constructs a set of reduced symmetric games featuring a strategy set comprised

of only two strategies per player. Since the game is symmetric, each player faces the same decision

problem and, thus, no part of its analysis depends on the number of players. Therefore, step (2)

in the above example applies in general, and we obtain the claimed transformation under r ∈ R.

Players’ interim participation constraints are satisfied because (c,c−i) is the efficient outcome and

players’s equilibrium payoffs in the reduced game must be no lower than their symmetric outside

options.

10 Our approach assumes that payoffs are verifiable so that redistribution of the payoffs is contractible. When
payoffs are not contractible while side transfers agreed on by the players contingent upon actions are verifiable
and contractible (as in, for example, Jackson and Wilkie (2005) and Ellingsen and Paltseva (2013)), the agreements
among the players in our setup can be modified to be based on these terms. To see this in the present example
we could, instead of agreeing on a contract specifying r, have players agree on a side transfer of 11/2 from player
1 to player 2 contingent on (d, c) being played and a side transfer of 11/2 from player 2 to player 1 contingent on
(c, d) being played. The transformed game and its equilibrium is then exactly the same as ours.

7



Example 2: As an illustration of our construction, consider the following two-player game:

L R M

L 5,5 1,6 3,2

R 6,1 1,1 2,2

M 2,3 2,2 4,4

In this example, we relabel (c,c)=(L,L), (d,c)=(R,L) and (c,d)=(L,R). For (d,d) we substitute

the original (unique) Nash equilibrium (M,M). The single (symmetric) reduction is shown below,

accompanied by the 0-transformation on the right-hand side.11

c d

c 5,5 1,6

d 6,1 4,4

c d

c 5,5 3.5,3.5

d 3.5,3.5 4,4

which implements the efficient outcome as a (subgame perfect) Nash equilibrium. ⊳

Example 3: As an illustration involving mixed equilibria, consider the following two-player game:

L R M

L 6,6 3,7 3,2

R 7,3 1,1 2,2

M 2,3 2,2 2,2

Again, we relabel (c,c)=(L,L), (d,c)=(R,L) and (c,d)=(L,R). Two of the three possible reduc-

tions are based on the original, pure strategy Nash equilibria (L,R) and (R,L). These two equilibria

are asymmetric and not discussed here. The remaining reduction employs the symmetric, mixed-

strategy equilibrium of the original game (2
3
L+1

3
R,2

3
L+1

3
R) with outcome (5,5). This is the payoff

pair used in place of (d,d). The 0-transformation of this game is shown on the right-hand side:

c d

c 6,6 3,7

d 7,3 5,5

c d

c 6,6 5,5

d 5,5 5,5

and, again, it implements the efficient outcome as a Nash equilibrium. ⊳

Example 4: As an illustration of the multiple-player case, consider the following three-player game:

c d

c 5,5,5 2,7,2

d 7,2,2 4,4,1

c d

c 2,2,7 1,4,4

d 4,1,4 2,2,2

11 In all cases, if (d,d) is played in the reduced, transformed game, then the original game is invoked.

8



with the payoff table on the left-hand side for s3 = c and the payoff table on the right-hand side for

s3 = d, and the third element in each cell is player 3’s payoff. Given the outside options (2, 2, 2),

the players unanimously agree on r = 0 and the redistributed payoffs are:

c d

c 5,5,5 32/3,3
2/3,3

2/3

d 32/3,3
2/3,3

2/3 3,3,3

c d

c 32/3,3
2/3,3

2/3 3,3,3

d 3,3,3 2,2,2

where the payoff table on the left-hand side is for s3 = c and the payoff table on the right-hand side

is for s3 = d. In this transformed game, (c, c, c) is the unique equilibrium implementing the socially

efficient outcome. ⊳

Corollary. The socially efficient outcome can be implemented as a Nash equilibrium through 0-

transformation in any dominance-solvable (that is, a < h and g < b), symmetric, two-player game.

The efficient outcome is implementable in dominant strategies through 0-transformation if and only

if g + h > 2b.

Example 5: Suppose that randomly chosen player 1 proposes a fixed sharing rule (α, 1−α), α ∈ [0, 1],

of every outcome to player 2. The transformed payoff now becomes:

c d

c 2aα, 2a(1− α) (g + h)α, (g + h)(1− α)

d (g + h)α, (g + h)(1− α) 2bα, 2bα

Any α ∈ [ b
2a
, 1 − b

2a
] is accepted by player 2, and for any α that is agreed upon, (c, c) is the

equilibrium outcome. Since player 1’s payoff strictly increases in α, player 1 proposes α = 1 − b
2a
.

For b very small, the majority of social surplus goes to player 1 in equilibrium. This ad hoc sharing

rule (which is a special case of our contract), however, is not supported naturally through Nash

bargaining while our class is (see section 4). ⊳

3.2 Asymmetric games

Consider the following asymmetric, two-player game where, for a notational convenience, we define

A = a1 + a2, B = b1 + b2, C = c1 + c2, D = d1 + d2:

c d

c a1, a2 c1, c2

d b1, b2 d1, d2

Assumption. A > max{B,C,D} so that (c,c) is the efficient action profile.

9



Similar to the symmetric case, (c,c) is not necessarily a Nash equilibrium. We do not restrict

the set of status quo equilibria to pure strategies. Choose a particular status quo Nash equilibrium

and denote its payoffs as (ū1, ū2). By the assumptions, we must have A ≥ ū1 + ū2. Conditional on

the acceptance of some proposed and agreed r-transformation, the resulting payoffs are as follows:

c d

c
br1

br1+cr2
A,

cr2
br1+cr2

A
dr1

dr1+ar2
C,

ar2
dr1+ar2

C

d
ar1

ar1+dr2
B,

dr2
ar1+dr2

B
cr1

cr1+br2
D,

br2
cr1+br2

D

At the pre-game stage, a randomly chosen player 1 proposes some r ∈ R such that

(5)

max
r∈R

ã1 =
br1

br1 + cr2
A

s.t. (DC1) ã1 =
br1

br1 + cr2
A ≥

ar1
ar1 + dr2

B = b̃1,

(DC2) ã2 =
cr2

br1 + cr2
A ≥

ar2
ar2 + dr1

C = c̃2.

Note that the set of proposals R satisfying (DC1) and (DC2) cannot be empty because both are

always satisfied for r = 0 (by the definition of efficiency).

The asymmetric game therefore progresses to the redistribution stage. In order to implement

(c,c) as an equilibrium of the transformed game at the redistribution stage, it is necessary that player

i has no incentive to deviate from playing ‘c’ given the other player playing ‘c’. This is ensured by

(DC1) and (DC2). Moreover, the players’ payoffs in the transformed game must be larger than what

they obtain from status quo equilibrium, the players’ outside options, i.e., the players’ participation

constraints have to be fulfilled

(6)(PC1) ã1 ≥ ū1, (PC2) ã2 ≥ ū2.

Any agreeable r ∈ R̄ that implements efficiency must satisfy (DC1), (DC2), (PC1), and (PC2)

simultaneously.

Lemma 2. R̄, the set of transformation parameters r that ensures that (c, c) is a subgame perfect

equilibrium, is nonempty in the asymmetric, two-player game if max{ū1, ū2} ≤ 1
2
A.

Proof. Immediate since at least r = 0 is an element of R̄.

Example 6: Efficiency can be implemented in the following game:

c d

c 5,5 1,6

d 7,2 4,4

P1

c d

c 5.7,4.3 2.7,4.3

d 5.5,3.5 4,4

P2

c d

c 4.0,6.0 4.5,2.5

d 3.2,5.8 4,4

10



If player 1 proposes (see payoff matrix P1), a satisfied (DC2) implies that r ≤ 1.96 while (DC1)

is satisfied for any r ∈ R. Since his objective
br1

br1+cr2
10 = 7r

7r+6r
10 is increasing in r, player 1 will

propose r∗ = 1.96 which is accepted by player 2 and implements the efficient outcome (c,c) with

payoffs (5.75, 4.25) which are better than the outside options (4,4) for both players.12

If player 2 proposes (see payoff matrix P2), (DC1) is satisfied for any r ∈ R. Since her objective

is decreasing in r, player 2 picks r∗ = −2.63 which makes (PC1) bind. This implements the efficient

outcome (c,c) with payoffs (4.0,6.0). Ex-ante payoff expectations are asymmetric. ⊳

Example 7: An example in which the condition max{ū1, ū2} ≤ 1
2
A is violated and efficiency cannot

be implemented:

c d

c 3, 3 1, 4

d 4.5, 1 4, 1

If player 1 proposes, (DC1) requires that either r ≤ 0.19, where (PC1) fails, or r ≥ 20.36,

where (PC2) fails. A proposal by player 2 must fail for the same reasons. Thus, there is no

acceptable proposal in this asymmetric game. As we show in the following subsection, efficiency

can be implemented in such cases if we modify the payoff allocation rule (1) with an asymmetric

weighting function. ⊳

3.3 An asymmetric weighting function

The symmetric weighting function (1) is restricted to assigning symmetric transformed payoffs if the

players’ inside options are symmetric. Thus, players’ transformed payoffs only depend on their inside

options. The idea of the asymmetric mechanism is that, if we are prepared to preserve the player’s

outside option (endowment) asymmetries also within the r-transformed game, then participation

may be ensured in a larger set of cases. Therefore, assuming that (ū1, ū2) are the players’ payoffs in

status quo equilibrium, we define a player’s asymmetric share of transformed payoffs based on the

players’ outside options (endowments) as13

(7)αi = ūi/
∑

j∈N

ūj.

The definition of weighted, transformed payoffs for strategy profile ŝ ∈ S is then

(8)ũi(ŝ) =

max
s′i 6=ŝi

αiui(s
′
i, ŝ−i)

r

∑

j∈N max
s′j 6=ŝj

αjuj(s′j , ŝ−j)r

∑

j∈N

uj(ŝ), for r ∈ R.

In the two players case, we can without loss of generality normalise α̃1 = α1/α1 = 1 and α =

α̃2 = α2/α1. Application of redistribution rule (8) to the asymmetric, two-player game leads to the

following transformed game:

12 We round off all numbers shown to two decimal places.
13 This is an arbitrary weight assignment which could be further simplified or normalised.
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c d

c
br1

br1+αcr2
A,

αcr2
br1+αcr2

A
dr1

dr1+αar2
C,

αar2
dr1+αar2

C

d
ar1

ar1+αdr2
B,

αdr2
ar1+αdr2

B
cr1

cr1+αbr2
D,

αbr2
cr1+αbr2

D

At the proposal stage of the weighted, asymmetric game, we consider player 1 proposing some

r ∈ R such that

(9)

max
r∈R

ã1 =
br1

br1 + αcr2
A

s.t. (DC1) ã1 =
br1

br1 + αcr2
A ≥

ar1
ar1 + αdr2

B = b̃1,

(DC2) ã2 =
αcr2

br1 + αcr2
A ≥

αar2
αar2 + dr1

C = c̃2.

Again, note that the set of agreeable proposals R is non-empty and contains zero. This set is not

necessarily convex. The participation constraints are given by

(10)(PC1) ã1 ≥ ū1, (PC2) ã2 ≥ ū2.

We obtain the following lemma:

Lemma 3. Redistribution parameter r = 0 satisfies both participation constraints.

Proof. The two participation constraints (10) bind, respectively, at

(11)r1 = −
log (A− ū1)− log (ū2)

log (b1)− log (c2)
and r2 =

log (A− ū2)− log (ū1)

log (b1)− log (c2)
.

Note thatmin{r1, r2} < 0 < max{r1, r2} and, depending on the ranking of b1 and c2, the expressions

change signs. Consider the case when r1 < 0, r2 > 0, i.e., when c2 < b1. Then ã1 is increasing in

r and ã2 is decreasing. Hence, r = 0 satisfies both (PCi) in this case. If r1 > 0, r2 < 0, i.e., when

c2 > b1, then ã1 is decreasing in r and ã2 is increasing and, again, r = 0 satisfies both (PCi). If

c2 = b1, both (PCi) hold for any r, and the result is immediate.

Observe that the set [min{r1, r2},max{r1, r2}] is convex and contains zero. The set R̄ =

R
⋂

[min{r1, r2},max{r1, r2}] which satisfies all participation and deviation constraints is convex

and contains zero.

Lemma 4. Both players can agree on either min{R̄} or max{R̄}.

Proof. If ãi, i = 1, 2, is increasing (decreasing) in r, then a proposing player i will choose max{R̄}

(min{R̄}) as redistribution parameter r. If ãi is independent of r (i.e., inside options are symmetric),

then player i is indifferent between all r ∈ R̄.

Thus, only in perfectly symmetric reduced games, interior points of R̄ may be proposed. In

general, only the extreme points of R̄ will be put forward. Again, note that the procedure developed

for the two-player, two-strategy game applies to an arbitrary n-player, two-strategy game.

Example 8: Continuing the previous example we get the following transformations:

12



c d

c 3,3 1,4

d 4.5,1 4,1

P1

c d

c 4.87,1.13 4.13, 0.87

d 4.87,0.63 4,1

P2

c d

c 4.63,1.37 3.63,1.37

d 2.50,3.00 4,1

If player 1 proposes, a satisfied (DC1) implies that r ≤ 0.59; at this value, both (PC1) and

(DC2) are satisfied. Since his objective
br1

br1+cr2
A = (9/2)r

(9/2)r+4r
6 is increasing in r, player 1 will propose

r∗ = 0.59 which is accepted by player 2 and implements the efficient outcome (c,c) as shown in the

top transformation on the right-hand side.

If player 2 proposes, (DC2) is satisfied for any r ≥ −1.43; at this value, all other constraints are

satisfied. Since her objective is decreasing in r, player 2 picks r∗ = −1.43 which implements (c,c)

as shown in the bottom transformation on the right-hand side. ⊳

Proposition 2. Any n-player strategic form game {N , S, u} can be transformed through application

of (8) to implement the socially efficient outcome as a Nash equilibrium.

Proof. As in the proof of proposition 1, we first reduce the original player strategy sets Si, i ∈ N ,

to two elements each and then show that our equilibrium construction applies to any number of

players. We label the unique socially efficient outcome (ci, c−i). Now, as in the symmetric case, we

find the best asymmetric unilateral deviation strategy for each player di = argmax
(s′i 6=ci)∈Si

ui(s
′
i, c−i).

If there is more than one best deviation s̃i ∈ Si for player i, then we choose either best deviation

with equal probability. Call the (nonempty) set of all Nash equilibria of the original game N∗. Now,

for every pure or mixed (s∗i , s
∗
−i) ∈ N∗, we define u(di, d−i) = u(s∗i , s

∗
−i). Each Nash equilibrium

induces a reduction and each reduction gives subsequently rise to a transformation based on some

outside option with ūi = ui(s
∗
i , s

∗
−i); the efficient outcome pair is the same in each reduction (but

the individual payoffs in the efficient outcome of the weighted, transformed game depend on the

inequality inherent in the chosen outside option). Then, in the set N∗, we pick a status quo Nash

equilibrium as the basis for transformation and apply the r-weighted transformation on the reduced

game as specified in (7) and (8).

This procedure constructs a set of reduced asymmetric games featuring a strategy set comprised

of only two strategies per player. By construction, for each player, this set contains the strategy

leading to the efficient outcome and a best deviation from that outcome. Thus, for each possible

outcome, every player faces the problem of making an identity-independent proposal as in (9).

As these problems are all identical for any number of players, the problem does not depend on

the set of players.

13



Example 9: An example in which efficiency cannot be implemented by a single transformation for

all status quo equilibria:14

c d

c 4,4 2,5

d 5,2 1,1

c d

c 4,4 2,5

d 5,2 2,5

c d

c 4,4 2,5

d 5,2 3,3

c d

c 4,4 2,5

d 5,2 5,2

c d

c 2.3,5.7 2,5

d 2,5 2,5

c d

c 4,4 3.5,3.5

d 3.5,3.5 3,3

c d

c 5.7,2.3 5,2

d 5,2 5,2

In this example, the two pure status quo equilibria are (c,d) and (d,c) and the mixed status quo

equilibrium is (1
2
c+1

2
d,1

2
c+1

2
d) with outcome (3,3). The three reductions based on the three equi-

libria are shown in the middle. The efficient outcome has symmetric inside options and therefore the

proposer is indifferent between all parameters r which satisfy (weighted) participation and deviation

constraints. For simplicity, consider r = 0. The corresponding transformations by the asymmetric

weighting mechanism are shown on the right-hand side. The efficient, transformed outcome can-

not be simultaneously individually rational for both pure status quo Nash equilibria and the mixed

strategy equilibrium of the original game. ⊳

Hence, redistributive contracts must be specified with respect to the status quo equilibrium and

not to the whole original game. This problem cannot occur in games with a unique status quo Nash

equilibrium, i.e., in dominance-solvable games.

Corollary. If there is a unique status quo equilibrium then there is a unique transformation through

(8) which implements the socially efficient outcome as a Nash equilibrium and satisfies participation

constraints with respect to the status quo.

3.4 Incomplete information

Consider the following asymmetric, two-player game with incomplete information on the side of

player 1. We assume that, at the pre-play stage, player 2 is privately informed on the realisation of

ε ∈ {−1,+1}, Pr(ε = 1) = p while player 1 only knows the distribution p. At the redistribution

stage, the realisation of ε is common knowledge. (We keep the notation employed previously but

now adopt C = c1 + c2 + ε.)

14 Note that this example is originally symmetric but requires an asymmetric weighting transformation to ensure
participation.
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c d

c a1, a2 c1, c2 + ε

d b1, b2 d1, d2

c d

c
br1

br1+α(c2+ε)r
A, α(c2+ε)r

br1+α(c2+ε)r
A

dr1
dr1+αar2

C,
αar2

dr1+αar2
C

d
ar1

ar1+αdr2
B,

αdr2
ar1+αdr2

B
cr1

cr1+αbr2
D,

αbr2
cr1+αbr2

D

Example 10: Assume that p = 1/2. Note that in the equally probable events of ε < 0, (c,c) is

efficient and if ε > 0, (c,d) is efficient. The ratio of outside options is α = 1/2. The right-hand-side

gives the weighted 0-transformation of the game.

c d

c 3, 3 3, 3 + ε

d 4, 1 3.5, 1.75

c d

c 4, 2 4 + ε
2
, 2 + ε

2

d 10
3
, 5

3
3.5, 1.75

The question is, whether there exists some r that can be agreed on and implements the efficient

outcome in the transformed game. Consider the case for a proposing player 1:

1. Assume first that ε = −1 implying that (c,c) is efficient. Following calculations similar to

those in the previous example, we obtain R̄ε<0 = [−0.25, 0.14] with ã1 increasing in r.15

2. Next, assume that ε = +1 implying that (c,d) is efficient. Then, R̄ε>0 = [−6, 3.76] with c̃1

increasing in r.

Define R̄ = R̄ε<0

⋂

R̄ε>0 = [−0.25, 0.14]. (It is worthwhile noting that both sets necessarily include

zero and, hence, the above shown weighted 0-transformation is always feasible and satisfies all DC

and PC.) If player 1 proposes, he chooses

max
r

1

2

br1
br1 + α(c2 − 1)r

(a1 + a2) +
1

2

dr1
dr1 + αar2

(c1 + c2 + 1)

which is increasing. If, perhaps because of ex-post contract scrutiny by a court with penalising

powers, player 1 were restricted to propose only r ∈ R̄, then this problem would yield r = 0.14

which player 2 always would accept as is shown below:

c d

c 3.96,2.04 5.37,2.63

d 3.42,1.58 3.50,1.75

But in our setup, player 1 is not restricted to choosing proposals from R̄ and he will in general

speculate on a high realisation to improve his payoffs. To see this, imagine that p → 1; then,

the chances for improving payoffs through betting on (c,d) are very high and player 1 will virtually

disregard the case of ε = −1 and propose the extreme point of R̄ε>0. But this will not always

implement the efficient outcome. ⊳

15 Note that our (DC) are now true incentive compatibility constraints.
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Thus, the above example shows that, in general, the efficient outcome cannot be implemented

through a proposal by the uninformed player. (Therefore, the same is also true for two-sided

incomplete information.) In the light of the Myerson-Satterthwaite theorem on efficient trade under

incomplete information, this conclusion is not surprising. We now consider the same example for

the informed player 2 in the role of proposer.

Example 11: By assumption, player 2 is perfectly informed on the game and its payoffs. We analyse

the game from the back. At the redistribution stage, because of (PC2), she prefers player 1 choosing

c over d. Hence, she is constrained to making offers from the ‘true’ R̄ε. But since this is the same

problem as under perfect information, we know that the efficient outcome can be implemented as

Nash equilibrium. ⊳

We conclude that offers by the privately informed player will indeed implement the efficient

outcome by the same argument as in the previous subsection.

4 Bargaining foundation

This section provides a cooperative foundation for the rent-seeking redistribution rules we use in (1)

and its asymmetrically weighted form in (8).16 Specifically, we want to implement these rules as

equilibrium of a well-specified bargaining game. Throughout this section, we restrict attention to

the two-player, two-strategy game forms analysed in the main body of the paper.

In our present analysis we want to find the bargaining solution for each individual outcome of a

two-player, asymmetric game. For instance, sharing the efficient outcome (a1, a2) according to the

Nash bargaining solution, with relative bargaining powers of (βA, 1− βA), βA ∈ (0, 1), implies that

players choose (â1, â2 = A− â1) such as to maximise ω(βA) defined as

(12)max
â1

ω(βA) = (â1 − b1)
βA((A− â1)− c2)

1−βA

resulting, after maximisation, in

(13)â∗1 = AβA + b1 − (b1 + c2)βA.

Repeating the process for all outcomes of the game, the Nash bargaining payoffs are:

c d

c
AβA + b1 − (b1 + c2)βA,

A(1− βA)− b1 + (b1 + c2)βA

CβC + d1 − (d1 + a2)βC ,

C(1− βC)− d1 + (d1 + a2)βC

d
BβB + a1 − (a1 + d2)βB,

B(1− βB)− a1 + (a1 + d2)βB

ū1, ū2

16 A well-known general noncooperative implementation of the cooperative Nash bargaining solution is Hart and
Mas-Colell (1996). Kalai and Kalai (2013) recently define a new solution concept, the co-co value, to unify
existing various bargaining solutions.
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In case Nash bargaining fails, the game reverts to the original one and the players receive their status

quo payoffs (d, d) → (ū1, ū2). We now equate player 1’s bargaining power in each outcome with

the bargaining power we use in our redistributive contract (1), i.e., we set

(14)βA =
br1

br1 + cr2
, βB =

ar1
ar1 + dr2

, βC =
dr1

dr1 + ar2

in proportion to the players’ marginal contribution in the outcome concerned. Solving now for the

exponent r which equates the Nash bargaining payoffs with those of the redistributive rule (1), we

obtain r = 1 as unique solution for each outcome.

We now generalise the Nash bargaining solution as defined above slightly by introducing an

exponent s on the bargaining power parameter β, i.e., we redefine the bargaining problem (12) as

(15)max
â1

ω(βA) = (â1 − b1)
(βA)s((A− â1)− c2)

1−(βA)s .

Going through the same steps as above, we can derive the following correspondence between this

form of ‘Nash power bargaining’ and our general redistributive rule. For any r in (1), the exponent

s which implements the outcome as Nash power bargaining outcome is given by17

sA =
log

(

br1(a1+a2−b1)−b1c
r
2

(br1+cr
2)(a1+a2−b1−c2)

)

log

(

br
1

br
1
+cr

2

) , sB =
log

(

a
r+1
1

+ar1(−(b1+b2))+a1d
r
2

(ar1+dr
2)(a1−b1−b2+d2)

)

log

(

ar
1

ar
1
+dr

2

) , sC =
log

(

d1a
r
2−dr1(c1+c2−d1)

(ar2+dr
1)(a2−c1−c2+d1)

)

log

(

dr
1

ar
2
+dr

1

) .

The different bargaining powers s, however, are only equal across outcomes for the simple case of

r = 1. Nevertheless, the Nash bargaining solution indeed provides an axiomatic justification for the

redistribution rule we use throughout the paper where the relative size of players inside options are

used as their individual bargaining powers.

Concluding remarks

We consider players’ incentives to devise and propose a social contract in full knowledge of all

aspects of the game including their identities. We find that, if players are able to choose from and

commit to a member of a certain class of proportional-exponential redistributional contracts, then

players will always find it profitable to unanimously agree to and honour such a contract capable of

implementing the efficient outcome.

We claim that our pre-game—the game in which payoff transformations are defined—is a rea-

sonable device to achieve this. By reasonable, we not only mean that the pre-game is the result of

a well-defined utility maximisation problem of the players, we would also like to point out that the

proportional-exponential rule which we use can be seen as fair precisely because it is grounded on the

players’ individual alternatives to cooperation. Moreover, we show that this class of redistributional

contracts is natural in the sense that the corresponding settlements can be micro-founded using the

Nash bargaining solution.

17 This formulation uses bargaining powers of, e.g., βA =
(

ar

1

ar

1
+dr

2

)s

; a similar result obtains for βA =
(

a1

a1+d2

)s

.
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