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Abstract

This paper argues that first passage time models are likely to better than

affi ne hazard rate models in modelling stressed credit markets and confirms their

superior performance in explaining the behavior of Credit Default Swap rates

for the major US banking groups over the period of the financial crisis. Affi ne

models find it hard to deal with periods of exceptionally high or low default

risk given their assumption of a constant rate of mean reversion in the hazard

rate. In contrast, first passage time models are specified in terms of the distance

to default rather than the hazard rate. The persistence of shocks varies with

the distance to default, allowing the default curve to invert sharply (compress)

when the distance to default is low (high). I use an empirical version of the

Collin-Dufresne et al (2003) model, which contains a smoothing parameter that

allows it to control the relative effect of these shocks on the short spreads and

can be interpreted as an information lag. Investors in the CDS market behaved

as if they observed the distance to default with a lag of two to four years.

∗Department of Economics and Related Studies; ps35@york.ac.uk. This paper has benefitted
from conversations on this subject with Karim Abadir, John Campbell, Laura Coroneo, Alex
Kostakis, Menno Middeldorp, Alistair Milne, Gulcin Ozcan, Tuomas Peltonen, Marco Realdon,
Yongcheol Shin, Jacco Thijssen and Mike Wickens. I am also grateful to participants at the 2013
Southampton Conference on the Global Financial Crisis and the 2013 European Financial Manage-
ment Association and 2014 Infiniti conferences for helpful comments and suggestions.
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1 Introduction

The global …nancial crisis provided a stark reminder of the importance of understand-

ing and pricing bank default risk. This paper develops a non-linear econometric model

which is designed to capture both the compressed hazard rate structures seen in the

run up to the crisis and the strongly inverted structures seen during the crisis itself.

The econometric model is used to model risk neutral default probabilities implied by

the CDS market for six of the largest US banking institutions since the turn of the

millennium1 .

CDS and other credit spreads can be analyzed using structural models, which use

accounting information about factors such as pro…tability and leverage to explain the

price of default risk. However, it is di¢cult to explain the pricing of default risk on

a company using accounting data if only because there are many management and

economy-wide factors that a¤ect the viability of its business and are not re‡ected

in its accounts. Studies of industrial company spreads suggest that these data can

account for only about 60% of the variance (Huang and Huang (2003)). It is necessary

to allow for additional factors such as the e¤ect of the business cycle (Collin-Dufresne,

Goldstein, and Martin (2001)).

Banks are excluded from these studies since they have very high leverage ratios

and their capital and other balance sheet ratios are subject to regulatory require-

ments. Indeed, once the crisis unfolded and liquidity in banking markets evaporated,

it became very di¢cult to value many of the assets in the balance sheet. Asset value

uncertainty and the associated counterparty risk caused the interbank deposit market

to become extremely stressed over this period Afonso, Kovner, and Schoar (2011).

In view of these di¢culties, I use a reduced form approach to model bank credit

1 These have been classed as ‘globally systemically important’ institutions. The CDS data for
two other important US banks, State Street and Bank of New York Mellon were too sparse to be
used in this study.
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risk. The standard reduced form model assumes that under the risk-neutral measure,

the instantaneous default or hazard rate  follows a di¤usion similar to that followed

by the spot rate in an A¢ne Term Structure Model (ATSM).2 This provides an

exponential-a¢ne speci…cation of the cross-section of default probabilities in terms

of the hazard rate, which is analogous to the speci…cation used to represent discount

bond prices in terms of the spot interest rate in an ATSM (Du¢e and Singleton

(2003)). The hazard rate is modeled as a latent variable that can be estimated using

a Kalman …lter or simply by assuming that a particular maturity in the cross section

of default probabilities is measured without error. A major advantage of the reduced

form approach is that it allows me to employ latent variable and other techniques

developed in the term structure literature.

A¢ne hazard rate models usually provide a good empirical explanation of the

term structure of credit risk on a particular entity, ‡exible enough to …t a variety of

upward sloping, inverted and hump shaped term structures. However, I …nd that the

extremes exhibited by the default curves seen in the US banking sector since the turn

of the millennium cannot be replicated using this model. These extremes are shown

in …gures 2 and 3. The …rst …gure shows the 1, 5 and 10 year senior CDS spreads,

essentially the cost of insurance against default by these six banks (in percent per

annum).3 The second shows the implied term structure of annual forward default

probabilities.4 It shows that these default curves typically exhibit a gradual upward

slope, but became compressed in 2006 before inverting sharply during the crisis.

Figure 4 illustrates the di¢culty that a¢ne models have in replicating the ex-

2 Appendix A in Du¢e and Singleton (2003) show that a¢ne models can also be obtained using
jump di¤usions and other speci…cations of the hazard rate process.

3 Strictly speaking these are the probabilities of a ‘credit event’, not just default. Besides outright
bankruptcy, the 1999 ISDA agreement de…ned the other credit events that trigger compensation
payments under a CDS contract: failure to pay an obligation; obligation acceleration: repudiation,
and debt restructuring.

4 The annual forward default probabilities are calculated as ln(+¡12+) where +
is the survivorship probability for maturity  = 12 24  120 in months.
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tremes seen in December 2006 and March 2009, which bound the observations of the

sample. It shows the results for Citigroup, which was the most heavily impacted

by the Lehman default and JPMorgan which was the least severely a¤ected. While

…gure 3 shows forward rates (to distinguish the default probabilities in the time series

more clearly), this …gure shows the average default rates over di¤erent time horizons.

These default rates are the analogue of the discount rates employed in the analysis

of the Treasury bond market and are computed as the negative of the log of the

probability of survival divided by maturity5 . The a¢ne models are represented by

the well-known model of Cox, Ingersoll, and Ross (1985) (henceforth CIR) and an

unrestricted Ordinary Least Squares model (OLS) suggested by recent work on the

term structure of interest rates (Hamilton and Wu (2012)). The panels on the left

show the very poor explanation provided by the a¢ne models in the case of Citi-

group. The panels on the right show that the a¢ne models provide a reasonable

explanation of the curve seen in December 2006 for JPMorgan, but underestimate

the degree of inversion seen in March 2009.

The basic problem with these models lies in their linear structure. This makes

them highly tractable but means that shocks to the hazard rate, which have a one for

one e¤ect on the short end of the default curves, always have the same proportionate

e¤ect on the longer maturities. This re‡ects the assumption that the degree of mean

reversion is constant. To explain the low and ‡at CDS term structure prior to the

crisis the model would need the hazard rate to be low and very persistent. Yet to

explain the steeply inverted structure seen during the crisis it would have to be high

but much less persistent. Clearly, we need to …nd a non-linear model that allows the

degree of persistence to vary with the initial hazard rate in this nonlinear way.

5 This calculation gives the maturity-average of the forward default rates shown in …gure 3. They
are calculated as ¡ ln + where + are the survivorship probabilities.
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This is a characteristic feature of First Passage Time (FPT) models, which specify

the risk neutral dynamics in terms of the distance to default rather than the hazard

rate. They assume that the …rm’s asset value follows a Geometric Brownian Motion

and that the …rm defaults the …rst time this reaches a default boundary. Black

and Cox (1974) showed that the default probabilities are then given by standard

First Passage Time formulae. Consequently, if the initial asset value is close to the

boundary, the immediate default probability is very high. However, the forward

default probabilities fall back sharply with maturity in this case since the longer the

…rm survives the more likely it is that the asset value has di¤used away from the

boundary. This ‘survivorship e¤ect’ causes the term structure to invert sharply. On

the other hand, if the initial distance to default is high, it is likely to remain so for

some time, compressing the default probability structure.

The basic full information version of the FPT model is very sensitive to the initial

value of the distance to default, which makes it unsuitable for modelling short credit

spreads. However, Du¢e and Lando (2001) deal with these problems by allowing

for imperfect information. Figure 5 illustrates this model’s non-linear hazard rate

reversion e¤ects using my empirical results. The right hand panel shows how the

distance to default indicator () a¤ects the theoretical value of the default rate across

the maturity range using the parameter estimates obtained for Citigroup. With a

distance to default of  = 8 standard deviations, the (Gaussian) probability mass is

well away from the default barrier at all horizons up to 10 years, so the default risk

is compressed, as it was prior to the crisis. As the distance to default reduces to one

standard deviation, the probability of a near-term default becomes very large and

the curve inverts sharply. In contrast, the left hand panel shows that shocks in the

a¢ne hazard rate model are quite persistent, making it very di¢cult for it to …t the

extremes in the data.
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Du¢e and Lando (2001) modify the FPT model by assuming that the investors

observe the …rm’s asset value with a lag. They show that in this situation, it is im-

portant to condition the default probabilities on the observation of no prior default.

They allow the market estimate of the …rm’s current asset value to be informed by

additional signals like credit downgrades. The risk-neutral expectations describing

security prices then involve integrals, making it very hard to test this model empir-

ically. However, Collin-Dufresne, Goldstein, and Helwege (2003) show that if these

additional signals are not informative, this simpli…es the model considerably. They

also abstract from the e¤ect of the tax system, using the structure of the Black and

Cox (1976) model rather than the more complex structure of Leland (1976) that un-

derpins the model of Du¢e and Lando (2001). They report a closed form expression

for the conditional probability of default over any future horizon.

I use this basic deferred …ltration (DF) speci…cation to model market perceptions

of bank default risk during the recent crisis, developing a reduced from model which

treats the distance to default as a latent variable. This model also provides a con-

venient closed form for the instantaneous hazard rate which can be compared with

that implied by an a¢ne hazard rate model. It could also be …tted to overnight

and other inter-bank rates. However, in view of the well documented doubts about

the liquidity of the inter-bank markets and the veracity of Libor quotes, I model US

bank credit risk using spreads from the credit default swap (CDS) market, which

were much more liquid over this period. The use of CDS also circumvents the prob-

lem of specifying the tax regime (Houweling and Ton Vorst (2005) ) and allows me

to follow Collin-Dufresne et al (2003) in using the structure of Black and Cox (1976).

I back out the implied risk neutral default rates from CDS spreads and data for

non-defaultable bond prices and …t them using rival econometric models based on

the principle of risk neutral pricing. Comparing the …t of the DF model with that of

6



the full information FPT model of Black and Cox (a special case with no information

lag), shows that this lag parameter is of crucial importance, allowing the model to

capture the relative sensitivity of the short spreads. The performance of the DF

model is also superior to that of the a¢ne hazard rate model for …ve out of the six

banks studied in this paper, the only exception being JPMorgan.

The paper is set out along the following lines. The next section describes the

basic Black Cox (1976) model structure and the deferred …ltration setting of Collin-

Dufresne, Goldstein, and Helwege (2003). It also reviews the two a¢ne models.

Section 3 describes the CDS data set and empirical methodology. Section 4 describes

the econometric models and reports the empirical results. Section 5 o¤ers a conclusion

and suggestions for future research.

2 Theoretical approaches to modeling default risk

This section sets out the various theoretical models that I use to analyze default risk,

starting with the …rst passage time model of Black and Cox (1976) and the deferred

…ltration model of Collin-Dufresne et al (2003). I then give a brief review of the a¢ne

model of Cox et al (1985), henceforth CIR.

2.1 The model of Black and Cox (1976)

Consider the structure of the model of Black and Cox (1976):

Assumption 1: All agents observe the value of the bank  () at time .

Assumption 2: The logarithm of this value  = ln () follows a Brownian Motion

under the risk neutral measure:

 = +  (1)

where:  = ( ¡ );  is the expected logarithmic return common to all assets
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and  the percentage cash ‡ow return to the equity owners;

Assumption 3: The bank has perpetual debt with a face value of . This value

is …xed and cannot be used to …nance coupon and dividend payments;

Assumption 4: Interest, dividends and other payments are made continuously;

Assumption 5: There are no taxes;

Assumption 6: Protective covenants or legal restrictions prevent the bank trading

with a negative net asset value. In this case, default occurs as the net asset value

…rst reaches zero, or equivalently when the logarithm of the distance to default ratio

() = ln( ()) …rst reaches zero;

Assumption 7: In the event of bankruptcy, the banks assets fetch the liquidation

value () =  ()  2 [0 1]

This model can be regarded as a simpli…ed version of the model of Leland (1994),

which relaxes assumptions 4 and 5 to allow for a lower default trigger value    6

and for a non-zero corporate tax rate. My empirical version of the model uses latent

variable techniques to estimate the log distance to default () = ln( () ) and

does not impose a particular value for   as a model based on accounting information

would. This model is consistent with the geometric Brownian motion used for the

…rm’s net asset value in equity pricing models, allowing comparisons of default risk

and asset value across CDS, bond, money and equity markets. Implied probabilities

of default can be obtained from the equity market in the full information setting

using the Black-Scholes formula if we view an equity on a leveraged …rm as a call

option on the …rm’s assets with a strike price equal to the debt (Merton (1974)).

My use of default swap spreads rather than corporate bonds in the empirical model

means that I can abstract from the tax regime, which has a neutral e¤ect on this

6 Leland (1994) shows that this simply adjusts the trigger value whilst preserving the mathemat-
ical structure of the model.
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market (Houweling and Ton Vorst (2005)).

2.2 Default behavior

In this model the probability of default during an investment period of length  and

a starting value of  =  is the probability  of a …rst passage from  to default at

zero during the period, which is given by:

(  ) = 1 ¡ ©

·
 + 


p


¸

+ exp

·

¡
2

2

¸

©

·
¡ + 


p


¸

¸ 0;   0 (2)

(Harrison (1985) and Du¢e and Singleton (2003)), where ©[] is the standard normal

distribution function and [] its density function:

() =
1

p
2

exp[¡
2

2
]

The probability of survival from time  to  =  +  given the observation () = 

of the distance to default is thus :

(  ) = ©

·
 + 


p


¸

¡ exp

·

¡
2

2

¸

©

·
¡ + 


p


¸

¸ 0;   0 (3)

The survivorship function plays a role in the defaultable bond markets that is

similar to that played by the discount function in the non-defaultable markets. If the

short term interest rate is independent of the default probability structure as in the

standard FPT model, then the price  at time  for a defaultable payment at time

   can be written as the product of non-defaultable discount bond  and the

risk neutral expectation of the payout. If  is the rate of recovery in default and 

the probability of the …rm surviving from period  to  conditional upon the relevant
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information set or …ltration, then:

 = [ + (1 ¡ )] (4)

Inverting this relationship allows the risk neutral survival probability to be deter-

mined as  =(¡)(1¡). These survival probabilities are in principle

tradeable securities7 .

My empirical model (see section 3) uses latent variable estimation methods that

allow the ratios  and  but not the separate e¤ects of   and  to be identi…ed.

Therefore the rest of this paper uses the normalization  = 1 The latent variable

 driving the cross section is interpreted as the number of standard deviations to

default. The drift parameter  plays the key role in this model, having a positive

e¤ect on the survival probabilities (Spencer (2014)).

As noted in the introduction, this model must be modi…ed to allow it to provide

a realistic description of the short spreads. For example, discrete jump processes can

be added to the Brownian motion to make the default intensity and short spreads

signi…cant when the asset value is within jump-range of the boundary Baxter (2007).

The Levy distribution can be used to analyze default intensity in this situation and

has been used to develop structural default models. Unfortunately, solutions for these

distributions are not available in closed form and in practice numerical approxima-

tions have to be employed, making them di¢cult to use in econometric work.8

Finger, Finkelstein, Lardy, Pan, Ta, and Tierney (2002) deal with these problems

by assuming that investors observe the balance sheet of the …rm but do not know

7 A position in the ¡horizon default probability can be established by buying an -year de-
faultable bond and shorting an ¡year non defaultable bond like a Treasury with the same face
value.

8 Moreover, as Du¢e and Lando (2001) note, the hazard rate (or instantaneous default intensity)
is not well-de…ned in these models.
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precisely where the default barrier is. This model is extensively used by practitioners

like RiskMetrics. The default barrier is related to the observed debt by a lognormally

distributed multiplier exp[2+2] which has the value exp[2] at  = 0 at the outset

and increases with the time horizon . Unfortunately this device is problematic

because it only conditions the forward default rates on balance sheet variables, not

the informative observation that there have been no previous defaults. This means

that the algebra is not valid for forward maturities  less than 22 (see Finger et al

(2002)) Re‡ecting this problem, it is not possible to model the hazard rate or short

spreads using this speci…cation.

2.3 The Deferred Filtration model

Du¢e and Lando (2001) assume instead that the …rm’s asset value is uncertain.

They deal with these short-maturity problems by conditioning the forward default

probabilities on the observation of no prior default as well as balance sheet variables.

Their approach is thus valid for modelling the default rate at all horizons. Speci…cally,

the investment decision is conditioned by a ‘deferred …ltration’ or a lagged information

set, which could re‡ect delays in …nancial reporting for example. This lag damps the

e¤ect of accounting information on market prices and allows room for other risk

indicators to a¤ect them.

In a deferred …ltration model, the time of default is not a¤ected because the bank

manager still observes the net asset value precisely. So assumption 1 is maintained for

the bank manager, who declares bankruptcy when  attains zero as in the standard

FPT model. However, investors and other outsiders observe the value of the bank

with a lag of length  The time line is shown in …gure 1. Thus we adapt assumption

1 and assume that at time  investors get a lagged accounting signal  = () where

 =  ¡  (i.e. they have access to the deferred …ltration F). Suppose that the
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only other information that they have is that the bank has survived until . Collin-

Dufresne, Goldstein, and Helwege (2003) note that because survival from  until   

implies survival until , the joint probability of survival to  and then to  = + +

is simply the probability of survival to : (   + ). Using Bayes Law, it

follows that the probability of survival to  conditional upon survival to  is obtained

by dividing this by the probability (  ) of surviving to  =  +  given

() = :

+ =
(   +)

(  )
(5)

Substituting (3) with the normalization  = 1 then gives their closed form solution:

+ = (   +) =

©

·
+(+)p

(+)

¸

¡ exp [¡2] ©

·
¡+(+)p

(+)

¸

©
h
+p



i
¡ exp [¡2] ©

h
¡+p



i (6)

Taking the logarithm of this function gives the negative of the default probability

+ (since ln + = ln(1¡+) ' ¡+). Changing sign and dividing by the

time horizon or maturity  then gives a model of + = ¡ ln + ' +

or the average default rate over the period, which is the analogue of the discount yield

in the Treasury bond market. This is the default statistic I use my empirical models

to explain. Du¢e and Lando (2001) show that although the hazard rate is identically

zero in the standard FPT model, this is not the case in the deferred …ltration model.

Equation (11) of Appendix 1 describes the forward rate function for the DF model.

Importantly, the information lag  adds to the forward maturity  in this formula,

damping the e¤ect of the initial distance to default in the same way that forward

maturity does in the basic full information version of the model. This parameter

is crucially important in controlling the sensitivity of the instantaneous hazard rate
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and the ultra-short spreads to the distance to default. The instantaneous hazard

rate, which I will compare with that of the a¢ne model, follows by taking the limit

of (11) as the forward maturity  goes to zero. Appendix 2 describes the likelihood

function.

This algebra can be used to represent a situation in which the default barrier

(the outstanding liabilities  in the Black-Cox framework) is also uncertain, as in

the model of Finger et al (2002). Suppose for example that the default barrier

ln( ) as well as the asset value ln( ) follow a Brownian motion resembling (1) and

that at time  the investor observes an accurate but lagged value of the distance to

default () =  Then it follows that the ratio () = ln( ) representing the

distance to default also follows a model resembling (1) and that the unconditional

survivorship function is given by (3), where  and  now represent the combined drift

and volatility. The conditional survivorship function is given by (6) but unlike the

model of Finger et al, is conditioned by the observation of no prior default and valid

over the whole maturity range. Thus the model could capture the e¤ect of changes

in the resolution regime such as the Dodd-Frank Act of 2010 as well as uncertainty

about the default barrier implied by the regulatory regime.

Deferred …ltration models provide an interesting way of formalizing the e¤ect

of accounting and other information lags on asset prices. To estimate my model

econometrically, I assume that the information lag  is constant. Formally, this

means that in each new period the investor receives a precise observation  of the

distance to default that is one period more up to date. However, in view of the

doubts about the relevance of accounting information in this area, I adopt an eclectic

view of the informational structure, regarding the model as a convenient non–linear

reduced form rather than adopting a speci…c structural interpretation. In addition

to accounting information, the information set is likely to include information on the

13



state of the credit and business cycle as well as the regulatory environment. Similarly,

I regard  as a smoothing parameter which determines the relative sensitivity of the

short spreads to this information, without necessarily representing an information

lag. This gives a non-a¢ne reduced form model of the cross section of default rates

with one latent variable () and two …xed parameters ( ) that need to be estimated.

2.4 The a¢ne hazard rate model

The standard reduced form representation models the instantaneous hazard rate 

directly. This model provides an exponential-a¢ne speci…cation of the default func-

tion in terms of the instantaneous hazard rate by assuming that under the risk-neutral

measure, this follows a di¤usion similar to that followed by the spot interest rate in

an exponential-a¢ne speci…cation of the term structure of interest rates (Du¢e and

Singleton (2003)). To keep default and survivorship probabilities non-negative the

reduced form approach typically adopts the CIR square root volatility model of the

risk neutral dynamics:

 = ( ¡ )+ 
p
 (7)

This generates the familiar CIR negative exponential solution for the survivorship

function:

+ = (;  ) = [
22

( ¡ 1) + 2
] exp[¡()] (8)

where () = 2( ¡ 1)(( ¡ 1) + 2);  =  + ;  = (()2 + 22)12;  =

22. This model represents the log survivorship function and hence the default

probabilities as a¢ne functions of the hazard rate. Taking the logarithm of (8), using

ln + = ln(1 ¡ +) ' ¡+ and changing sign gives a linear representation

of the default probability Dividing by the time horizon or term then gives a linear
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model of the average default rate + = ¡ ln + ' + given any time

horizon:

¡ ln +=



ln[

22

( ¡ 1) + 2
] ¡

()


 (9)

= () + ()

These a¢ne structures have been extensively used in modelling defaultable and

non-defaultable bond price structures. However, they are restrictive because they …x

the relative e¤ect of the instantaneous hazard rate on the default rates at di¤erent

maturities independently of the hazard rate. So for example the relative e¤ect on the

default rates at the respective horizons  and  years given the model (9) is …xed in

the ratio ()() We will see this is a serious handicap when using a single factor

model to analyze bank default during the crisis9 .

3 The empirical models

This section describes the CDS data set and the empirical methods employed in this

paper. The empirical results are reported in the next section.

3.1 Data

Thus we have several rival econometric models that are designed to explain market

data for the cross-section of default rates: ¡ ln +. These rates could in princi-

ple be backed out from the prices of defaultable and non-defaultable bond using (4).

But in this paper they are backed out of the maturity structure of Credit Default

Swap (CDS) prices. Since the swaps market was more active than the bond market

9 This restriction might be relaxed by using a multiple factor model, but empirical models of
credit risk typically use a single factor speci…cation. Work on the term structure of interest rates
reveals that three factor models also …t inverted curves relatively poorly (see for example Dai and
Singleton (2000) Table IV).
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over the period of the crisis (being extensively used by hedge funds as a vehicle for

speculation against banks) this is the approach adopted here. Moreover, unlike bond

prospectuses, those for CDS contracts are standardized, facilitating liquidity. They

are not a¤ected by short-sale restrictions and there is evidence suggesting that they

lead the bond market in terms of price discovery.

The CDS data were provided by Markit Ltd. They have a panel structure, con-

sisting of daily observations on ten annual maturities of US bank debt CDS spreads10 .

The CDS spreads for senior debt are available back to January 2001. Subordinated

debt CDS started to trade later, though before the money market crisis of 200711 .

I use end-month observations for the 6 largest US banking groups. These comprise

three large universal banks (Bank of America, Citigroup and JPMorgan), two invest-

ment banks (Goldman Sachs and Morgan Stanley) and Wells Fargo, a large regional

bank (the largest bank in the US in terms of market capitalization at the time of

writing).

I back out the implied default probabilities + using standard recursion for-

mulae (given by E(2.7.4) of Hull (2003)). These calculations require an assumption

about the value of recovery rate. I used the values of 80% and 60% respectively

suggested by the calculations in the Markit spreadsheets for senior and subordinated

debt (respectively denoted + and +) These produce estimates for the

implicit default probabilities that align reasonably well, with no persistent di¤erences

as shown by the observations in …gure 3.12 Table 1 shows that as in many …nancial

data sets, these observations are negatively skewed and have fat tails. They are also

persistent.

10 The Markit …les also contain some observations on 6 month, 15 year and 20 year CDS spreads.
However there are a lot of missing observations for these spreads and they were not used for esti-
mation, only for ex post out of sample checks.

11 The dates of these samples are reported in table 1.
12 Further work at the estimation stage indicated that the …t of these models could not be signif-

icantly improved by adopting di¤erent assumptions about recovery rates.
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3.2 The yield factor method

These default probabilities are then used to compute the respective survivorship

probabilities and hence the default rates (+ = ¡ ln(1 ¡ +) and

+ = ¡ ln(1 ¡ +)) that are the dependent variables in the models

tested in this paper. I follow the (Du¢e and Singleton (2003)) literature (Du¢e and

Kan (1996)) which assumes that the prices and yields of some individual bonds or

portfolios of bonds are observed without error. Speci…cally I assume that the …rst

principal component of the ten rates derived from the senior CDS prices (which can

be considered to be a portfolio of senior CDS contracts) is observed without error.

I …rst use this as regressor in an unrestricted OLS regression that explains the 1, 2,

3, 5, 7 and 10 year default rates implied by the senior spreads and where available

the 1, 2, 3, 5, 7 and 10 year rates implied by the subordinated spreads. This gives

a dozen cross-sectional observations for months in the sample when both senior and

subordinated CDS data are available. As Hamilton and Wu (2012) note in the the

context of the term structure literature, this OLS model is a useful starting point

and provides a benchmark for evaluating a¢ne models such as CIR, since these are

of the same linear form but with non-linear restrictions across their coe¢cients.

To estimate the CIR model, I follow the procedure used in a principal component

based yield factor model, backing out a time series for the hazard rate  from the

time series for the principal component (PC) and substituting this back into the

relationships (9) used to …t the cross section. Similarly, to estimate the FPT models

I back out the log distance to default indicator  from the time series for the …rst

PC and substitute this back into the relationships (6) used to …t the cross section.

Appendix 2 derives the likelihood of the various cross-section models using this PC-

based yield factor approach and outlines the estimation procedure.
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4 The empirical results

This analysis began with a preliminary investigation of the data using principal

components analysis and the two linear models of the cross section (OLS and CIR).

Next, I estimated the two FPT models (DF and BC) of the cross section.

4.1 A¢ne models

Table 2 shows the likelihood statistics and parameter estimates for the a¢ne mod-

els. The …rst PC for each bank typically explains 90-95% of the variance of the

cross section of its senior default rates. Re‡ecting this, the OLS regression model

also provides a reasonable …t. But unfortunately, the CIR models all badly fail the

Hamilton-Wu (2102) test. This test is based on the fact that twice the di¤erence in

the loglikelihood of the OLS and CIR models has a 2 distribution (with 9 = 12 ¡ 3

degrees of freedom in this case). However, the large number of observations in large

data sets such as this strongly biases this test towards the rejection of the restricted

model. The Bayesian Information Criterion (BIC) provides a better model selection

criterion in this situation since it is asymptotically unbiased. Because it can also be

used to compare non-nested models such as the FPT and a¢ne models, it is the basic

selection criterion used in this paper.

Since the CIR model is nested within the OLS model, we can compare these using

a test statistic based on the Schwarz approximation Canova (2007)s, reported as SCA

in the table. The ¡values of the statistics shown in the table are e¤ectively zero,

indicating that the CIR model is mis-speci…ed. Moreover, the parameters of these

CIR models are problematic. The positive estimates of the autoregressive coe¢cient

 indicate that the risk neutral dynamics are unstable and the negative values of 

re‡ect the di¢culty the CIR model has in explaining the period of yield compression.
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4.2 FPT models

Table 3 shows the likelihood statistics and parameters for the FPT models. With

the exception of JPMorgan, the loglikelihood and BIC values for model DF are much

higher than for the two a¢ne models. The improvement in …t is particularly marked

for Bank of America and Citigroup. Table 4 shows how well the DL model …ts the

senior and subordinated default rates at di¤erent maturities. Clearly, this model also

has problems …tting the very volatile short rates, it but does well at the longer end.

The negative values of the drift parameter  shown in table 3 indicate investor

pessimism about long term default risk. (Wells Fargo is the only exception in having

a positive drift term.) This increases the level of default risk and gives an upward

bias to the slope of the term structure of default rates, consistent with the term

structure of the mean sample values reported in table 1. The slope is nevertheless

negative (i.e. curve inverted) when the value of  is depressed following the Lehman

default. The parameter  is highly signi…cant, showing that it is very important

to smooth the e¤ect of the the distance to default indicator on the short maturity

spreads. This is con…rmed by the very poor likelihood values shown in the lower

panel of table 3 for the Black-Cox model13 . If we interpret this parameter in terms

of the deferred …ltration model, this suggests that investors price these default risks

as if they observed the distance to default with a lag of between two and four years.

Figure 7 shows the estimates of the distance to default measures for the six banks.

These are highly correlated, suggesting the presence of a common risk factor as pro-

posed by Collin-Dufresne et al (2001). The …rst PC explains 94% of the variance,

although as in the case of the default rates shown in …gure 3, the indicators for the

two investment banks di¤er from the rest following the Lehman default. Further

13 The SCA statistics are not reported but again e¤ectively have zero ¡values, providing a decisive
rejection of the zero lag restriction.
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linear regression tests were conducted on these estimates to check the lag structure.

Stacking the six estimates into a vector and modelling them using …rst and second or-

der Vector Autoregressions (VAR) con…rmed that a …rst order model was appropriate

on the basis of the BIC. The o¤-diagonal elements of this VAR response matrix were

insigni…cant, suggesting that none of these default risk indicators Granger-caused

the risks to other banks. In other words, any contagion e¤ects occurred within the

monthly time frame of this analysis and the shocks were in that sense contempora-

neous.

4.3 Model comparisons

How does the non-linearity of the DF speci…cation allow it to outperform the linear

models in explaining the default risk in stressed institutions like Citigroup? Further

analysis of the model residuals reveals that both approaches provide a good expla-

nation of the regular observations found in the centre of the distribution. These

are characterized by upward sloping curves. However, the DF model outperforms in

the extremes of the distribution. Re‡ecting this, the a¢ne models perform tolerably

well in the case of JPMorgan which was not as seriously stressed as the other banks.

Figure 6 contrasts the behavior of the hazard rates in the DF and CIR models over

time. These are similar in the case of JPMorgan (as are the model residuals). For the

other institutions, the DF hazard rates tend to be more pronounced than they are in

the CIR model. The thin tails of the Gaussian distribution allow the DF model to

replicate the very low default rates seen before the crisis by increasing the distance

to default until the distribution of future values is away from the default boundary14 .

The central and lower panels of …gure 4 show how the two approaches attempt

14 The default rate becomes negligibly small as the distance to default increases beyond six stan-
dard deviations, allowing the DF model to replicate the period of compressed default rates with
ease.
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to explain the extreme values of the default curves that are shown for Citigroup

and JPMorgan in the top panel and discussed in the introduction. As noted there,

these extremes occurred in late 2006 as yields were compressed and in March 2009

following the Lehman default. These two curves e¤ectively bound the observations

of the sample. The panels on the right show that JPMorgan was relatively immune

to these developments and the a¢ne models …t tolerably well in this case. However

the panels on the right show that they hit Citigroup harder, making it di¢cult for

the a¢ne models to …t these periods using parameters that are largely determined

by the need …t the centre of the distribution. The linear …t tends to pivot around the

seven year time horizon, with large positive residuals at the short end in December

2006 and negative residuals in March 2009.

The DF speci…cation models these extremes relatively well. To see how it is able

to do this the right hand panel of …gure 5 shows how the distance to default indicator

() a¤ects the theoretical value of the default rate across the maturity range. This

panel uses the parameter values for Citigroup shown in tables 2 and 3. With a

distance to default of  = 8 standard deviations, the risk distribution is well away

from the default barrier at all horizons up to 10 years, so the default risk is negligibly

low. As the distance reduces to  = 4, the risk begins to increase. The e¤ect is

felt across the range, not just at the longer horizons, pushing the whole curve bodily

upwards, replicating the yield curve shapes seen in the centre of the distribution.

As the distance to default reduces to two and then one standard deviation, the

probability of a near-term default becomes very large.15 However, the long-term risk

is less severe because if the institution survives the near-term crisis, the odds are

that the balance sheet will recover (the survivorship e¤ect). It allows the model to

generate the strongly inverted curve shapes seen during the Lehman crisis.

15 This e¤ect would obviously be much greater in the absence of the information lag.
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The a¢ne models …nd it very hard to explain these extremes. The bold line in

the left hand panel of …gure 5 shows the intercepts () in (9). These are the default

rates at  = 0 used by the model to generate the CIR estimates shown in the lower

left hand panel of …gure 4. Positive hazard rates increase the default term structure

but as noted in section 2.4, the relative impact at di¤erent horizons is …xed in an

a¢ne model. The need to …t the persistent hazard rate shocks that characterize the

centre of the distribution means that the compromise e¤ect () is felt fairly evenly

across the term structure. But this restricts the ability of the model to explain the

inverted curve seen in March 2009. The empirical model selects a value of  = 017

which allows it to …t the 7 and 10 year rates quite well, but seriously underestimates

the shorter rates.

5 Conclusion

This paper reports the …rst attempt to take the deferred …ltration variant of the

FPT model to the data. The results con…rm the superiority of this model over the

standard a¢ne speci…cation, which …nds it hard to deal with periods of exceptionally

high or low default risk given its assumption of a constant rate of mean reversion

in the hazard rate. The dynamics of the FPT model are speci…ed in terms of the

distance to default rather than the hazard rate. This means that the persistence of

shocks varies with the distance to default, allowing the default curve to invert sharply

(compress) when the distance to default is low (high). The DF version of the model

uses a smoothing parameter to control the relative e¤ect of these shocks on the short

spreads.

I develop a reduced form variant of the model which treats the distance to default

as a latent variable, without specifying the precise information structure. However,

the structure of the model is consistent with the view that asymmetric information
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played a key role in the breakdown of the banking markets during the recent crisis.

Investors in the CDS market behaved as if they observed the distance to default with

a lag of two to four years.

The success of this approach opens the way to a more reliable and rigorous ap-

proach to regulatory issues concerning the banking sector. For example, the barrier

uncertainty model of Finger et al (2002) has been employed by Schweikhard and

Tsesmelidakis (2011) to estimate the value of government guarantees implicit in eq-

uity prices and …ve year CDS spreads. However, unlike the deferred …ltration model,

this model is not conditioned on the observation of no prior default and does not

handle near-term risk16 . As we have seen, most of the movement in the recent crisis

took place in the short spreads, which the deferred …ltration model handles nicely,

allowing the whole maturity range to be used to inform estimates of the distance to

default and the value of guarantees, rather than just the …ve year spread. Estimates

from the deferred …ltration model could also be used to obtain fair value deposit

insurance rates (Acharya and Dreyfus (1989)) and throw light on the optimal bank

closure decision (Fries and Perraudin (1997)).

Recent banking sector data may unduly favor the deferred …ltration model, which

clearly has a comparative advantage in handling stressed credit markets. This feature

makes it likely that it will o¤er a good explanation of other stressed credit markets

such as those of the periphery of the Euro area, which experienced default curves

similar to the extremes seen in the US banking markets. It might also provide a useful

structural interpretation of the data for entities that are less stressed, comparable in

terms of …t to that of the standard reduced form approach. However that remains

on the agenda for future research and remains to be seen.

16 Other papers on this topic (by Acharya, Anginer, and Warburton (2013) for example) have
avoided these problems by using linear regression models to explain spreads in terms of equity-
based measures of bank default and other relevant regressors.
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Given the simplicity of deferred …ltration model used in this study these results

are very encouraging. However, Collin-Dufresne et al (2003) suggest several exten-

sions that would be interesting to pursue in future empirical work. Du¢e and Lando

(2001) show that the deferred …ltration approach can allow for other signals of asset

value like credit downgrades and defaults of other banks, which become potentially

relevant once there are doubts about the accuracy of accounting information. Allow-

ing for these shocks could improve the performance of the model used in this study

and provide further insights into the informational structure of the banking markets

during the …nancial crisis.
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Appendix 1: The hazard rate in the Deferred Filtration model

The inter-bank market trades funds at very short maturities, making it important

to analyze the behavior of hazard rate (or default arrival intensity). Similarly, the

forward default intensity + at time  and forward maturity  is the probability

of default at any instant  +  conditional on no prior default until then and the

information set available to investors at time  Du¢e and Singleton (2003) show

how this is related to the survivorship value ¡. Providing that this value is

di¤erentiable, then:

+ = ¡
1

+

+


, + = exp[¡

Z 

0

+] (10)

To specify the forward default intensity structure for the DF model we thus di¤er-

entiate (6) with respect to  and divide by (6) to get:

+ = (   +) =

³


(+)32

´


·
+(+)p

(+)

¸

©

·
+(+)p

(+)

¸

¡ exp [¡2] ©

·
¡+(+)p

(+)

¸



(11)

The instantaneous hazard rate at time  follows by taking the limit as  tends to

zero17 :

 = (  ) =

¡


32

¢


h
+p



i

©
h
+p



i
¡ exp [¡2] ©

h
¡+p



i


(12)

17 This formula can also be obtained from Du¢e and Lando’s equation (A1) using the normaliza-
tion ~ =  and ~ =  (which specializes this to the Black-Cox model) and taking the limit in which
the variance (2) of the additional signal goes to in…nity and thus becomes uninformative.
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Appendix 2: The likelihood function and the estimation pro-

cedure

This appendix sets out the form of the likelihood function for the models discussed

in section 3 and outlines the optimization procedure.

First we use the default function to obtain an estimate of each implied value of

the default rate given the relevant model parameters and (depending on the model)

the distance to default or the hazard rate. For the FPT model we use (6) to get.

(   +) = ¡ ln (   +)

(For the a¢ne model we replace this by (9) in what follows.) The senior observations

+ = ¡+ are stacked in the vectors:

rsn = f+1 +2 +3 +5 +7 +10g
0;  = 1  

We next de…ne the conformable vectors of estimates and measurement errors:

r̂ = r̂(  ) = f(  +1)  (  +10)g0; esn = f+1  +10g

to get the econometric relationship:

rsn = r̂(  ) + esn;  = 1   (13)

where:

e »  (0D)

and where 0 is a 6£1 zero vector and D is a 6£6 diagonal covariance matrix. The

principal component  is a weighted average of these rates:  = w0rsn where w is

a 6£1 vector of loadings. We follow the yield factor approach and assume that  is
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observed without measurement error:

 = (  ) = w0r̂(  )

This allows  to be obtained by numerical inversion:

 = (  ) = ¡1(  ) (14)

Substituting this back into (13) gives the model:

rsn = r̂((  )  ) + esn

= f̂ + esn;  = 1  

Thus the loglikelihood for the senior rates in period  can be written as:

 = ¡
1

2
ln(jDj) ¡

1

2
(rsn ¡ f̂)

0D¡1(rsn ¡ f̂) (15)

(neglecting the intercept 3 ln(2) for simplicity). Summing this over  periods gives

the loglikelihood for the senior rates over the full estimation period:

¡


2
ln(jDj) ¡

1

2

X

=1

(rsn ¡ f̂)
0D(rsn ¡ f̂) (16)

Similarly if we de…ne a conformable vector of subordinated default rates for the

shorter period these are available :

rsb = f+1 +2 +3 +5 +7 +10g
0;  =   
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we obtain the loglikelihood for the entire cross section over the estimation period:

( D) = ¡
(2 + 1 ¡)

2
ln(jDj)¡

1

2

X

=1

(rsn¡f̂)
0D(rsn¡f̂)¡

1

2

X

=

(rsb¡f̂)
0D(rsb¡f̂)

(17)

Optimizing D (Hamilton (1994)) gives the concentrated function:

¤( ) = ¡
2 + 1 ¡

2
ln

Ã
1

2 + 1 ¡

"
X

=1

(rsb ¡ f̂)
0(rsb ¡ f̂) +

1

2

X

=

(rsb ¡ f̂)
0(rsb ¡ f̂)

#!



(18)

This is optimized by minimizing with respect to  and  the double sum in the

square brackets. I did this using the FindMinimum numerical optimization package

on Matlab. Standard errors and other diagnostics are obtained using the Hessian

generated by FindMinunc. I initially used a grid of starting values but soon realized

that they always converged to the same optimum which was a unique (for each

bank). This is clear from graphs of the likelihood showing how it depends upon its

two parameters, revealing that it is essentially quadratic in nature. The estimation

procedure for the CIR model is similar, but using (9) to de…ne f̂ and then optimizing

(18) with respect to the parameters   and .
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Table 1(a) Summary statistics for CDS based default probabilities
Type: Senior Subordinated
Term: 1 2 3 5 7 10 1 2 3 5 7 10

Bank of America January 2001-July 2014 August 2001-July 2014

Mean 1.022 1.156 1.289 1.555 1.656 1.764 1.196 1.326 1.448 1.694 1.780 1.872
Std.Devn. 1.591 1.517 1.481 1.497 1.454 1.400 1.854 1.763 1.732 1.725 1.685 1.603
Skewness 2.875 2.445 2.065 1.487 1.311 1.160 2.957 2.513 2.211 1.753 1.599 1.455
Kurtosis 8.791 6.450 4.624 2.152 1.583 1.022 9.848 6.856 5.371 3.422 2.822 2.331

Auto. 0.890 0.910 0.922 0.936 0.939 0.941 0.884 0.908 0.917 0.929 0.928 0.924
ADF -3.070 -2.762 -2.389 -1.869 -1.697 -1.539 -3.170 -2.780 -2.540 -2.170 -2.020 -1.900

Citigroup January 2001-July 2014 June 2001-July 2014

Mean 1.210 1.328 1.469 1.732 1.835 1.902 1.364 1.472 1.597 1.831 1.893 1.932
Std.Devn. 2.063 1.864 1.774 1.730 1.643 1.111 2.321 2.122 2.010 1.886 1.778 1.625
Skewness 3.525 2.837 2.302 1.646 1.293 1.025 3.452 2.974 2.636 1.923 1.619 1.354
Kurtosis 15.234 10.307 7.022 3.648 1.904 0.952 14.290 11.163 9.187 5.131 3.501 2.450

Auto. 0.910 0.906 0.913 0.902 0.867 0.780 0.921 0.923 0.929 0.920 0.883 0.801
ADF -2.744 -2.613 -2.378 -1.977 -1.790 -1.673 -2.580 .2.393 -2.419 -2.110 -2.014 -1.922

JPMorgan January 2001-July 2014 September 2001-July 2014

Mean 0.587 0.719 0.855 1.133 1.257 1.403 0.692 0.803 0.920 1.159 1.253 1.363
Std.Devn. 0.594 0.582 0.602 0.669 0.678 0.677 0.638 0.645 0.652 0.705 0.698 0.685
Skewness 3.049 2.024 1.367 0.689 0.437 0.353 2.140 1.685 1.315 0.804 0.546 0.437
Kurtosis 14.509 6.859 2.931 0.030 -0.768 -0.999 7.281 4.489 2.825 0.723 -0.213 -0.580

Auto. 0.840 0.868 0.886 0.914 0.920 0.917 0.889 0.918 0.918 0.932 0.941 0.930
ADF -2.936 -2.813 -2.541 -2.128 -1.945 -1.682 -2.306 -2.399 -2.305 -2.103 -2.056 -1.872



Table 1(b) Summary statistics continued
Type: Senior Subordinated
Term: 1 2 3 5 7 10 1 2 3 5 7 10

Goldman January 2001-July 2014 March 2006-July 2014

Mean 1.264 1.384 1.504 1.737 1.849 1.968 2.172 2.059 2.232 2.483 2.539 2.598
Std.Devn. 1.632 1.517 1.460 1.401 1.335 1.245 1.489 1.516 1.446 1.322 1.246 1.170
Skewness 2.343 1.961 1.698 1.306 1.125 1.040 1.111 1.068 0.966 0.748 0.662 0.476
Kurtosis 5.781 3.754 2.515 1.119 0.673 0.491 0.230 0.272 0.084 -0.026 0.133 0.035

Auto. 0.883 0.892 0.907 0.925 0.923 0.920 0.873 0.869 0.878 0.873 0.845 0.845
ADF -2.842 -2.769 -2.590 -2.237 -2.102 -2.001 -2.518 -2.792 -2.654 -2.674 -2.776 -2.735

Morgan Stanley January 2001-July 2014 June 2004-July 2014

Mean 1.844 1.876 1.925 2.110 2.177 2.265 2.145 2.180 2.253 2.465 2.454 2.498
Std.Devn. 3.188 2.542 2.202 2.010 1.859 1.696 2.860 2.471 2.190 2.081 1.897 1.783
Skewness 4.768 3.165 2.261 1.808 1.630 1.466 2.854 2.169 1.422 1.236 1.091 0.950
Kurtosis 33.872 15.371 7.090 4.364 3.532 2.576 12.588 7.162 1.990 1.772 1.378 0.806

Auto. 0.667 0.777 0.846 0.863 0.868 0.877 0.745 0.782 0.864 0.850 0.858 0.867
ADF -2.846 -2.686 -2.499 -2.266 -2.174 -2.117 -2.520 -2.475 -2.392 -2.175 -2.168 -2.022

Wells Fargo January 2001-July 2014 October 2002-July 2014

Mean 0.573 0.669 0.775 1.018 1.112 1.231 0.725 0.825 0.912 1.129 1.211 1.305
Std.Devn. 0.833 0.778 0.760 0.805 0.768 0.729 0.979 0.985 0.897 0.916 0.873 0.845
Skewness 3.835 2.954 2.276 1.351 0.900 0.630 3.597 3.192 2.180 1.534 1.228 1.277
Kurtosis 19.184 12.451 7.757 2.715 0.767 -0.122 18.198 14.818 7.539 4.244 2.996 3.676

Auto. 0.877 0.889 0.898 0.916 0.924 0.920 0.876 0.892 0.918 0.933 0.933 0.914
ADF -2.766 -2.578 -2.366 -1.898 -1.670 -1.643 -2.414 -2.368 -2.023 -1.809 -1.757 -1.789

This table shows the basic summary statistics for the default probabilities used in this study. These are backed out from senior and subordinated

debt CDS swap rates provided by Markit. The implied default probabilities + for horizon or maturity  are obtained using standard

recursion formulae (Hull (2003)). The default rates shown in this table are calculated as ¡ ln + where + = (1 ¡ +) are the

survivorship probabilities. Mean denotes sample arithmetic mean expressed as decimal fraction; Std.Devn standard deviation and Auto. the

…rst order monthly autocorrelation coe¢cient. Skewness & Kurtosis are standard measures of skewness (the third moment) and excess kurtosis

(the fourth moment). ADF is the Adjusted Dickey-Fuller statistic testing the null hypothesis of non-stationarity. The 10% and 5% signi…cance

levels are -2.575 and -2.877 respectively.



Table 2: A¢ne model estimates (t-statistics in parentheses)

Model/Bank
Loglike
-lihood

BIC SCA
Param
-eters

OLS
Bank of America 9795.9 19501.2

Citigroup 9903.9 19717.0

Goldman Sachs 8027.4 15966.9

Morgan Stanley 8492.4 16895.5

JPMorgan 10995.0 21899.1

Wells Fargo 10267.0 20443.9

Cox Ingersoll Ross   
Bank of America 9691.0 19291.4 104.9 0.1002 -0.0123 0.1590

(5.77) (0.13) (45.60)
Citigroup 9727.9 19365.0 176.0 0.0290 -0.0633 0.1464

(3.78) (3.57) (47.31)
Goldman Sachs 7977.5 15867.1 49.9 0.0676 -0.0262 0.1602

(4.39) (1.03) (46.71)
Morgan Stanley 8372.1 16654.9 120.3 0.0007 -3.4201 0.1395

(0.12) (8.90) (41.44)
JPMorgan 10955.0 21819.1 40.0 0.2407 -0.0027 0.1770

(12.39) (1.63) (34.99)
Wells Fargo 10142.0 20193.9 125.0 0.1719 -0.0059 0.1933

(11.49) (2.17) (39.13)

The …rst panel of this table shows the results of estimating an unrestricted OLS benchmark model

and the second the results of imposing non-linear parameter restrictions implied by the model of

Cox et al (1985) across the parameters of this model. The BIC indicates the value of the Bayesian

Information Criterion which is the model selection criterion used in this paper. This is computed as

 = 2¡ ln ( ), where  is the number of parameters and  the number of observations

SCA reports the Schwarz test statistic, SCA=(BIC¡BIC)/2 . This test has a 2
 distribution,

with  = 10 being the di¤erence in the parameters of the OLS and CIR models. The probability

of observing these test values is e¤ectively zero, indicating that the CIR model restrictions are not

accepted by the data.
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Table 3: First Passage Time model estimates (t-statistics in parentheses)

Model/Bank
Loglike
-lihood

BIC Parameters

Deferred Filtration  
Bank of America 9823.5 19631.9 -0.0810 3.4839

(73.63) (90.02)
Citigroup 10271.0 20526.9 -0.0300 2.2857

(25.00) (103.43)
Goldman Sachs 8028.2 16041.7 -0.0924 4.3668

(30.02) (78.90)
Morgan Stanley 8579.6 17144.3 -0.0472 2.2831

(23.51) (56.71)
JPMorgan 10864.0 21712.8 -0.0322 3.3660

(2927) (13304)
Wells Fargo 10370.0 20725.0 0.0305 2.4358

(21.11) (64.33)
Black-Cox


Bank of America 9380.0 18752.4 0.1254

(39.88)
Citigroup 9742.3 19477.0 0.1299

(36.51)
Goldman Sachs 7575.9 15144.5 0.1231

(41.00)
Morgan Stanley 8088.7 16170.0 0.1024

(31.01)
JPMorgan 10375.0 20742.4 0.1671

(38.98)
Wells Fargo 9913.8 19820.1 0.1976

(42.12)

The …rst panel of this table reports the results for the DF model. This has a much higher likelihood

than the standard full information BC model reported in the second panel, re‡ecting the signi…cance

of the accounting lag parameter  in the …rst panel. Indeed, the BC model is rejected against the DF

model on the SCA test. This reveals a very signi…cant degree of investor scepticism about accounting

information, the central …nding of this paper. With the exception of JPMorgan, the loglikelihood and

BIC values for model DF are also much higher than for the two a¢ne models reported in table 2.
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Table 4: DF model …t at di¤erent horizons
Type: Senior Subordinated
Term: 1 2 3 5 7 10 1 2 3 5 7 10

Bank of America January 2001-July 2014 August 2001-July 2014
ESE 0.7100 0.5379 0.3865 0.1875 0.0313 0.1442 0.8992 0.7208 0.5873 0.4334 0.3883 0.4033
2 0.8009 0.8743 0.9319 0.9843 0.9995 0.9894 0.7648 0.8328 0.8850 0.9369 0.9469 0.9367

Citigroup January 2001-July 2014 September 2002-July 2014
ESE 0.6240 0.4571 0.3421 0.1614 0.0451 0.1346 0.7700 0.5678 0.4599 0.3000 0.2468 0.2847
2 0.9085 0.9399 0.9628 0.9913 0.9992 0.9853 0.8899 0.9284 0.9476 0.9747 0.9807 0.9693

JP Morgan Chase January 2001-July 2014 September 2001-July 2014
ESE 0.4197 0.3500 0.2814 0.1546 0.0400 0.1057 0.4254 0.3739 0.3036 0.1983 0.1193 0.1294
2 0.5007 0.6383 0.7815 0.9466 0.9965 0.9756 0.5555 0.6640 0.7832 0.9209 0.9708 0.9643

Goldman Sachs January 2001-July 2014 December 2006-July 2014
ESE 0.7717 0.5449 0.4056 0.1841 0.0495 0.1460 0.6951 0.5444 0.4612 0.2562 0.1926 0.2400
2 0.7764 0.8710 0.9228 0.9827 0.9986 0.9862 0.7821 0.8710 0.8983 0.9624 0.9761 0.9579

Morgan Stanley January 2001-July 2014 June 2004-July 2014
ESE 1.2916 0.7624 0.5119 0.2127 0.0460 0.1994 0.8760 0.6417 0.5565 0.3730 0.2614 0.2719
2 0.8359 0.9101 0.9460 0.9888 0.9994 0.9862 0.9062 0.9326 0.9354 0.9679 0.9810 0.9767

Wells Fargo January 2001-July 2014 October 2002-July 2014
ESE 0.3762 0.3038 0.2445 0.1190 0.0460 0.0902 0.4225 0.3957 0.3028 0.2248 0.1753 0.1950
2 0.7960 0.8475 0.8965 0.9782 0.9964 0.9847 0.8137 0.8386 0.8860 0.9398 0.9597 0.9467

See notes to table 3. ESE denotes the equation standard error and 2 the coe¢cient of determination.



Figures

Figure 1: The e¤ect of the deferred …ltration in the model of Collin-Dufresne at al
(2003)

Accounting lag Maturity


¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡!

l  ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡!m 
past present future

The ¡maturity survival probability  at  with the accounting lag  conditional upon no
prior default is equal to the probability  of survival from  to  and then  divided by the
probability  of survival from  to  in the absence of an accounting lag:  = 
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Figure 2: CDS spreads on senior debt

These CDS spread data were provided by Markit Ltd. They have a panel structure, consisting of daily

observations on ten annual maturities of US bank debt CDS spreads. This …gure shows end-month

observations for one year (red) …ve year (black) and ten year (blue) spreads on the senior debts of three

large universal banks (Bank of America, Citigroup and JPMorgan), two investment banks (Goldman

Sachs and Morgan Stanley) and Wells Fargo, a large regional bank.

38



Figure 3: Forward default rates implied by CDS spreads

1 year snr 1 year sub 5 year snr 5 year sub 10 year snr 10 year sub

The continuous lines in this …gure show one year (red) …ve year (black) and ten year (blue) forward

default rates backed out from the senior spreads shown in the previous …gure. The equivalent values

from the subordinated spreads (where available) are shown by broken lines. These forward rates

are calculated as ln(+¡12+) where + is the probability of the bank surviving for 
months. December 2006 sees an exceptionally compressed rate structure, especially in the case of

Citigroup. These curves then move much higher and invert by March 2009. Again, this shift was

especially pronounced in the case of Citigroup.
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Figure 4: Empirical default rates
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The two charts shown in the top panel of this …gure depict the cross section of the default rates for

Citigroup and JPMorgan during representative episodes. This …gure shows the average default rates

over di¤erent time horizons, computed as the negative of the log of the probability of survival divided

by maturity. December 2006 shows an exceptionally compressed rate structure, especially in the case

of Citigroup. These curves then move much higher and invert by March 2009. Again, this shift was

especially pronounced in the case of Citigroup. The middle and bottom panels of the …gure show the

di¢culty that two a¢ne models (CIR and OLS) have in replicating these two extremes The panels on

the right show that JPMorgan was relatively immune to these developments and the a¢ne models …t

remarkably well in this case. Those on the right show that they impacted Citigroup harder, making it

di¢cult for the a¢ne models to …t these periods using parameters that are largely determined by the

need …t the centre of the distribution. However, the DF model is non-linear and gives a much better

representation of these extremes. See notes to the next …gure, which shows how it is able to generate

a range of di¤erent curve shapes.
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Figure 5: Theoretical default rates
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The right hand panel of this figure shows how the DF specification models the extremes of the data for
Citigroup and JPMorgan shown in the previous figure . This figure uses the parameter values shown in
table 3. With a distance to default of z = 8 standard deviations, the risk distribution is well away from
the default boundary area, so the default risk is negligibly small at all horizons up to 10 years. As the
distance to default falls, the probability of a near-term default becomes very large but the survivorship
effect means the longer term forward risk is much lower and the curve inverts sharply. In contrast, the
affi ne structure of the CIR model shown in the left hand panel means these curves all have a similar
shape. They tend to move up and down in a parallel fashion, with little more variation at the short
end than at the long end.
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Figure 6: The estimated latent factors

This …gure contrasts the behavior of the hazard rates (instantaneous default intensities) in the DF

(continuous blue line) and CIR (broken black line) models over time. The CIR model models the

hazard rate like the spot rate in an a¢ne term structure model. Appendix 1 derives the hazard rate

function for the DF model. These rates are similar in the case of JPMorgan, but movements in the DF

hazard rates tend to be more pronounced for the other banks than they are in the CIR model. The

thin tails of the Gaussian distribution allow the DF model to replicate the very low default rates seen

before the crisis without di¢culty, but as noted in section 4.1, the CIR model needs a negative hazard

rate to do this.
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Figure 7: Estimates of the distance to default in the DF model (z, in standard
deviations)

This …gure shows the estimates of the distance to default measures for the six

banks from the DF model. These are highly correlated, suggesting that a common

risk factor is at work. The …rst principal component explains 94% of the variance,

although as in the case of the default rates shown in the earlier …gures, the indicators

for the two investment banks di¤er from the rest following the Lehman default. This

previous …gure shows the associated estimates of the hazard rates in this model and

compares these with the estimates from the CIR model.
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