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Abstract: We study a market model where there are n different types of

indivisible goods for sale. The goods can be substitutable or complementary.

There are multiple units of each good. Each agent may consume several goods

and has quasi-linear utilities in money. We introduce a general condition which

will be shown to guarantee the existence of a Walrasian equilibrium and gen-

eralize several existing conditions such as gross substitutes, strong substitutes,

and gross substitutes and complements. We also identify several characteriza-

tions of this condition. Furthermore, we propose a price adjustment process

which converges globally to a Walrasian equilibrium.

Keywords: Indivisibility, equilibrium, existence, substitutes and comple-

ments, auction.

JEL classification: C61, C62, D44, D51.

1 Introduction

Auctions are fundamental market mechanisms for efficiently allocating goods and services.

Traditionally, research has focused on auctions for selling a single item; see e.g., Vickrey

(1961), Myerson (1981), and Milgrom and Weber (1982). Over the last two decades we

have seen a growing use of auctions for selling multiple items. Such auctions have been

used to sell spectrum licenses, electrical power, natural resources and pollution permits,

etc; see Klemperer (2004) and Milgrom (2004).

The purpose of the current paper is to propose a dynamic auction for selling multiple

indivisible goods to finitely many bidders. Goods can be substitutes or complements.

There may be several units of each good. To devise an auction mechanism, we first have to

identify a suitable condition under which a Walrasian equilibrium exists. Then we establish

fundamental characterizations of this condition which will be conducive to our dynamic

1The first author was partially supported by Grant-in-Aid of the Ministry of Education, Culture, Sports,

Science and Technology of Japan.
2A. Shioura, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan;

shioura@dais.is.tohoku.ac.jp
3Z. Yang, Department of Economics and Related Studies, University of York, York YO10 5DD, UK;

zaifu.yang@york.ac.uk
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design. The literature on dynamic auction design for selling multiple items starts with a

seminar article of Kelso and Crawford (1982). They examine a general labor market where

each firm may hire several workers and each worker works for at most one firm. They prove

through a salary adjustment process that the market has a nonempty (strict) core and thus

possesses a Walrasian equilibrium, as long as every firm views all workers as substitutes.

This condition is called the gross substitutes (GS) and has become a benchmark condition

in auction design, matching and equilibrium literature; see Roth and Sotomayor (1990)

and Milgrom (2004).

Gul and Stacchetti (1999) study economies with indivisible goods and introduce two

new conditions labeled as single improvement (SI) condition and no complementarities

(NC) condition both being equivalent to the GS condition. Gul and Stacchetti (2000)

propose an ascending auction that leads to the smallest Walrasian equilibrium prices in

economies with indivisible goods that satisfy the gross substitutes (GS) condition. For

similar economies, Milgrom (2000) develops a different ascending auction that converges

to approximate equilibrium prices of any desired degree of accuracy, and has used this

auction in the sale of US spectrum licenses. Ausubel (2006) has devised an ingenious

strategy-proof dynamic auction under the GS environment.4 In Gul and Stacchetti’s auc-

tion design and Ausubel’s the SI condition proves to be a very handy and useful property.

Sun and Yang (2006) generalize the gross substitute (GS) condition to the gross substitutes

and complements (GSC) condition and show that there exists a Walrasian equilibrium in

economies with indivisible goods.5 The GSC states that if all the indivisible goods can

be split into two groups and to every agent goods in the same group are substitutable

but complementary to those in the other group. Sun and Yang (2009) propose a dynamic

auction for economies with indivisible goods under the GSC condition.6

The auctions cited above and the one to be introduced in the current paper all use

linear and anonymous pricing rules. A related strand of the literature concerns auctions

that apply to more general environments but have to use discriminatory and nonlinear

pricing rules; see e.g., Ausubel and Milgrom (2002), de Vries, Schummer and Vohra (2007),

Mishra and Parkes (2007), Day and Milgrom (2008), Erdil and Klemperer (2010). Another

strand of the literature concerns auction design in the environment where bidders have

interdependent values and the goods are multiple but homogeneous; see Ausubel (2004),

and Perry and Reny (2005).

In this paper extending the model of Sun and Yang (2006), we study a general economy

4He also proposes a strategy-proof dynamic auction for economies with perfectly divisible goods in

which every bidder’s value function is increasing and concave.
5Ostrovsky (2008) independently proposes a similar condition for a supply chain network where prices

are fixed and instead of the Walrasian equilibrium the notion of stability is used.
6See Sun and Yang (2008A) for a detailed account on the auction.
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in which a seller wishes to sell two classes S1 and S2 of indivisible goods to finitely many

bidders. Each class contains several different types of goods. There are multiple units of

each type. Units of the same type are perfectly substitutable, and goods of different types

in the same class are heterogeneous but still substitutable, whereas goods across two classes

are complementary.7 We call this condition the generalized gross substitutes and comple-

ments (GGSC) condition which will be shown to guarantee the existence of a Walrasian

equilibrium in the economy. This condition is specified on the demand correspondence

of every bidder. When there is only one class of indivisible goods, i.e., either S1 = ∅ or

S2 = ∅, the GGSC condition becomes identical to the strong-substitute valuation of Mil-

grom and Strulovici (2009) and is similar to the M ♮-GS condition of Murota and Tamura

(2003). Further, if each type of good has only one unit, it becomes the gross substitute

condition of Kelso and Crawford (1982). Bikhchandani and Mamer (1997) and Ma (1998)

provide necessary and sufficient conditions to the existence problem. In contrast to GS,

GSC and our current conditions which are imposed upon each individual, their conditions

are imposed upon the aggregated behavior of all individuals in the economy. Baldwin and

Klemperer (2012) have recently applied tropical geometry to equilibrium analysis.

We identify three fundamental characterizations of the GGSC condition. First, we show

that a value function satisfies the GGSC condition if and only if it is a GM-concave function.

The GM-concave function is due to Sun and Yang (2008B) and generalizes the M ♮-concave

function of Murota and Shioura (1999). Our second characterization gives a totally different

property on each bidder’s demand correspondence which will play an important role in our

auction design. This condition extends the generalized single improvement (GSI) property

of Sun and Yang (2009) and is called the extended generalized single improvement (EGSI)

condition. GSI is a generalization of the single improvement property of Gul and Stacchetti

(1999). Our proof makes use of several results from Murota and Tamura (2003) and Murota

(2003). Our third characterization theorem extending a theorem of Ausubel and Milgrom

(2002) establishes that a value function is a GM-concave function if and only if its indirect

utility function is a generalized variant of L♮-convex function by Murota and Shioura (2000,

2004). Furthermore, we extend the auction of Sun and Yang (2008A, 2009) to the current

market model and demonstrate that starting from any initial price vector, the auction

always converges to a Walrasian equilibrium. This auction works as follows. The auctioneer

announces a vector of current prices, every bidder reports his demand set at these prices,

and the auctioneer adjusts prices of goods in one class upwards but those of goods in

the other class downwards. We call it a generalized double-track auction. Furthermore,

7It is well recognized in the literature that indivisibility and complementarity pose serious problems

for equilibrium existence, stability, and auction design; see e.g., Debreu (1959, p. 36), Scarf (1960), Arrow

and Hahn (1971), Samuelson (1974), Kelso and Crawford (1982), Milgrom (2000), Jehiel and Moldovanu

(2003), Klemperer (2004), Maskin (2005).
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we examine the structure of Walrasian equilibrium price vectors and demonstrate that it

exhibits an elegant geometry called L♮-convexity being a refinement of lattice.

The rest of the paper proceeds as follows. Section 2 introduces the auction model and

the GGSC condition. Section 3 presents three characterizations of the GGSC condition.

Section 4 establishes several results concerning Walrasian equilibria and their structure.

Section 5 deals with the auction process and its convergence. Finally, Section 6 introduces

one practical application of the general model. All proofs are given in the appendix.

2 The Model

Consider an auction model where a seller wishes to sell n different kinds of indivisible

commodities to a finite group B of bidders. Let N = {1, 2, · · · , n} denote the family of n

types, and ω = (ω1, ω2, · · · , ωn) the bundle of goods for sale where ωh > 0 stands for the

available units of type h ∈ N . The types can be divided into two classes S1 and S2 (i.e.,

N = S1 ∪ S2 and S1 ∩ S2 = ∅). For instance, one can think of S1 as |S1| different kinds of
tables and of S2 as |S2| different kinds of chairs. Items of the same kind are identical and

thus perfectly substitutes. Let Ω = {x ∈ ZN
+ | x ≤ ω} represent the space of all possible

bundles for exchange. Every bidder i has a value or utility function ui : Ω → IR specifying

his valuation ui(z) (in units of money) on each bundle z with ui(0) = 0. We assume that

every bidder can pay up to his value and has quasi-linear utilities in money, and that the

seller values every bundle at zero.

A price vector p = (p1, · · · , pn) ∈ IRN indicates the price for a unit of each good. Given

a price vector p ∈ IRN , we define every bidder i’s demand correspondence D(ui, p), and the

indirect utility function V i(p), respectively as

D(ui, p) = argmax
z∈Ω

{ui(z)− p · z},

V i(ui, p) = max
z∈Ω

{ui(z)− p · z}.

When bidder i’s value function is represented by ui, for convenience we may simply use

Di(p) and V i(p) to denote D(ui, p) and V i(ui, p) respectively by ignoring ui. It is known

that for any value function ui : Ω → IR, the indirect utility function V i is a decreasing and

polyhedral convex function; see Rockafellar (1970).

An allocation is a distribution (zi | i ∈ B) of the goods ω among all bidders in B, i.e.,∑
i∈B zi = ω and zi ∈ Ω for all i ∈ B. Note that zi = 0 is allowed. At the allocation,

bidder i receives bundle zi. An allocation (zi | i ∈ B) is said to be efficient if
∑

i∈B ui(zi) ≥∑
i∈B ui(yi) for every allocation (yi | i ∈ B). Given an efficient allocation (zi | i ∈ B), let

R(ω) =
∑

i∈B ui(zi). We call R(ω) the market value of the goods.
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Definition 1: A Walrasian equilibrium (p, (zi | i ∈ B)) consists of a price vector

p ∈ IRN and an allocation (zi | i ∈ B) such that zi ∈ Di(p) for every i ∈ B.

It is well known that every equilibrium allocation is efficient, but an equilibrium may

not always exist. In order to ensure the existence of an equilibrium, we need to impose the

generalized gross substitutes and complements (GGSC) condition.8 We say that a discrete

set C ⊆ ZN is discrete convex9 if it contains all integral vectors in its convex hull conv(C),

i.e., C = ZN ∩ conv(C).

Definition 2: The value function ui of bidder i satisfies the generalized gross substi-

tutes and complements (GGSC) condition if

(i) for any price vector p ∈ IRN , Di(p) is a discrete convex set; and

(ii) for any price vector p ∈ IRN , any type k ∈ Sj for j = 1 or 2, any δ > 0, and any

y ∈ Di(p), there exists z ∈ Di(p+ δe(k)) such that

zh ≥ yh (∀h ∈ Sj \ {k}), zh ≤ yh (∀h ∈ Sc
j ),∑

h∈Sj

zh −
∑
h∈Sc

j

zh ≤
∑
h∈Sj

yh −
∑
h∈Sc

j

yh.

GGSC condition states that bidder i’s value function exhibits the concavity property,

and the bidder views goods of each type in each set Sj as substitutes, but goods across the

two sets S1 and S2 as complements, in the sense that if the bidder demands a bundle y at

prices p and if now the price of goods of some type k ∈ Sj is increased, then he would not

decrease his demand on goods of each type in Sj except type k, and would not increase his

demand on goods of each type in the other group Sc
j , and the difference of demand across

two groups at current prices should not exceed that at the previous prices. In the case of

ω = (1, · · · , 1) which corresponds to a set value function ui : 2N → IR, GGSC condition

reduces to the gross substitutes and complements (GSC) condition of Sun and Yang (2006,

2009).

Observe that condition (i) will be automatically satisfied when ω = (1, · · · , 1). In

particular, when either S1 = ∅ or S2 = ∅, GGSC conditon reduces to the strong substitutes

(GS) condition of Milgrom and Strulovici (2009) and is essentially equivalent to the M ♮-

GS condition of Murota and Tamura (2003).10 Furthermore, for the set function ui, when

8The following piece of notation is used throughout the paper. For any integer k = 1, 2, . . . , n, the k-th

unit vector is denoted by e(k) ∈ ZN . Let 0 = e(0) ∈ ZN be the vector of 0’s. We also denote by 1 ∈ ZN

the vector of 1’s. For any subset A of N , let Ac denote its complement, i.e., Ac = N \ A. For any set

D ⊆ IRN , conv(D) denotes its convex hull.
9This property is also called hole-free in Murota (2003).

10In Murota and Tamura (2003), their GS definition does not requireDi(p) to be discrete convex. Instead

they need ui to be concave-extensible which is less natural from a viewpoint of economics. See Murota

and Tamura (2003, Theorem 18 (b)).
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either S1 = ∅ or S2 = ∅, GSC condition reduces to the gross substitutes (GS) condition

of Kelso and Crawford (1982). The GS condition has been studied extensively in the

literature; see e.g., Kelso and Crawford (1982), Gul and Stacchetti (1999, 2000), Milgrom

(2000), Crawford (2005), and Ausubel (2006).

3 Value Functions and Demand Correspondences

In this section we give three major characterizations of GGSC condition in term of value

functions, demand correspondences, and indirect utility functions.

Before presenting two classes of value functions, we first introduce several notations.

Let U be the n × n matrix whose i-th column is given by e(i), i ∈ S1 and −e(i), i ∈ S2.

That is, if S1 = {1, 2, . . . , n′} and S2 = {n′+1, n′+2, . . . , n}, then U is the diagonal matrix

given as

U =



1
. . . O

1

−1

O
. . .

−1


.

Given x ∈ IRN , define

supp+(x) = {k ∈ N | xk > 0}, supp−(x) = {k ∈ N | xk < 0}.

We also define

supp+
g (x) = supp+(Ux) = {k ∈ S1 | xk > 0} ∪ {k ∈ S2 | xk < 0},

supp−
g (x) = supp−(Ux) = {k ∈ S1 | xk < 0} ∪ {k ∈ S2 | xk > 0}.

An (finite) integer interval is a set of integral vectors given as

Γ = {x ∈ ZN | ai ≤ xi ≤ bi (∀i = 1, 2, . . . , n)},

where ai, bi ∈ Z for each i = 1, 2, . . . , n. Note that Γ = Ω holds if ai = 0 and bi = ωi, and

Γ = {0, 1}N if ai = 0 and bi = 1.

Definition 3: A value function u : Γ → IR defined on a finite integer interval Γ is GM-

concave if, for every x, y ∈ Γ and k ∈ supp+
g (x−y), there exists some l ∈ supp−

g (x−y)∪{0}
such that

u(x) + u(y) ≤ u(x− U(e(k)− e(l))) + u(y + U(e(k)− e(l))).
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The class of GM-concave functions is introduced by Sun and Yang (2008B), where they

consider functions defined on more general domains, including integer intervals. GM-

concave function is referred to as twisted M ♮-concave function in Ikebe and Tamura (2012).

Sun and Yang (2006) deal with GM-concave functions defined on a special domain of

{0, 1}N . GM-concave functions given by Definition 3 generalize the class of M ♮-concave

functions proposed by Murota and Shioura (1999).

Definition 4: A value function u : Γ → IR defined on a finite integer interval Γ is M ♮-

concave if, for every x, y ∈ Γ and k ∈ supp+(x−y), there exists some l ∈ supp−(x−y)∪{0}
such that

u(x) + u(y) ≤ u(x− (e(k)− e(l))) + u(y + (e(k)− e(l))).

Clearly, if S1 = N and S2 = ∅, then the concept of GM-concave function coincides with

that of M ♮-concave function. The concept of M ♮-concave function is originally defined on

more general domains, other than finite integer intervals; see Murota and Shioura (1999)

for details.

The following theorem gives the first major characterization of the GGSC condition.

Observe that the GGSC condition characterizes a bidder’s demand set while the GM-

concavity of a function describes a bidder’s valuation on every bundle. We note that the

GGSC condition can be naturally extended to value functions defined on general finite

integer intervals, although the original definition considers value functions only on Ω.

Theorem 1: A value function u : Γ → IR defined on a finite integer interval Γ satisfies

the GGSC condition if and only if it is GM-concave.

This result reveals an intimate relationship between two totally distinct objects: demand

sets and value functions, generalizing a result of Fujishige and Yang (2003) which shows

that any value function u : {0, 1}N → IR satisfies the GS condition if and only if it is

M ♮-concave.

The following definition gives another characterization of a bidder’s demand behavior.

Definition 5: A value function u : Γ → IR defined on a finite integer interval Γ satisfies

the extended generalized single improvement (EGSI) condition if for any p ∈ IRN and

x, y ∈ Γ with u(y)−p ·y > u(x)−p ·x, there exists z ∈ Γ such that u(z)−p ·z > u(x)−p ·x
and z satisfies one of the following conditions:

(i) z = x− e(k)+ e(l) for some k ∈ supp+(x− y)∪{0} and l ∈ supp−(x− y)∪{0} so that

if k ̸= 0 and l ̸= 0, then k, l ∈ S1 or k, l ∈ S2;

(ii) z = x− e(k)− e(l) for some k, l ∈ supp+(x− y) with k ∈ S1 and l ∈ S2;

(iii) z = x+ e(k) + e(l) for some k, l ∈ supp−(x− y) with k ∈ S1 and l ∈ S2.
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The bundle z in the definition is called an EGSI improvement of bundle x.

EGSI condition says that every suboptimal bundle x of a bidder at prices p can be

strictly improved by either adding a unit of some good to x, or removing one unit of

some good from x, or adding one unit of some good in one set Sj and simultaneously

removing one unit of another good also in the same set Sj. The bundle x can be also

strictly improved by adding simultaneously one unit of some good from each set Sj to it,

or removing simultaneously one unit of some good from each set Sj, j = 1, 2.

When Γ = {0, 1}N , EGSI condition reduces to the generalized single improvement

property of Sun and Yang (2009). Furthermore, if either S1 or S2 is empty, EGSI condition

coincides with the single improvement (SI) condition of Gul and Stacchetti (1999) which

in turn is equivalent to the GS condition. The EGSI condition plays an important role in

our adjustment process design as SI condition does in Ausubel (2006), Gul and Stacchetti

(2000).

The following theorem shows that GGSC and EGSI conditions are equivalent, although

they appear dramatically different from each other.

Theorem 2: A value function u : Γ → IR defined on a finite integer interval Γ satisfies

the GGSC condition if and only if it satisfies the EGSI condition.

Before presenting the third characterization of the GGSC condition, we need to intro-

duce several additional concepts. Let x, y ∈ IRN be any vectors. The standard meet and

join are defined, respectively, by

x ∧ y = (min{x1, y1},min{x2, y2}, · · · ,min{xn, yn}),
x ∨ y = (max{x1, y1},max{x2, y2}, · · · ,max{xn, yn}).

We also define the generalized meet s = (s1, · · · , sn) = x ∧g y and generalized join t =

(t1, · · · , tn) = x ∨g y by

sk = min{xk, yk} if βk ∈ S1, sk = max{xk, yk} if βk ∈ S2;

tk = max{xk, yk} if βk ∈ S1, tk = min{xk, yk} if βk ∈ S2.

For x, y ∈ IRN , we introduce a new order by defining x ≤g y if

xh ≤ yh for h ∈ S1, xh ≥ yh for h ∈ S2.

Given a set C ⊆ IRN , a point x∗ ∈ C is called a minimal element if x∗ ≤g y for every

y ∈ C. Similarly, a point y∗ ∈ C is called a maximal element if y∗ ≥g x for every x ∈ C.

In general, there may exist many minimal and maximal elements in C.

Definition 6: A function g : IRN → IR

8



(i) is submodular if g(x ∧ y) + g(x ∨ y) ≤ g(x) + g(y) for any x, y ∈ IRN ;

(ii) is generalized submodular if g(x ∧g y) + g(x ∨g y) ≤ g(x) + g(y) for any x, y ∈ IRN ;

(iii) is polyhedral L♮-convex if it is a polyhedral convex function and satisfies

g(x ∧ (y + α1)) + g((x− α1) ∨ y) ≤ g(x) + g(y) (∀x, y ∈ IRN , α ∈ IR+);

(iv) is generalized polyhedral L♮-convex if it is a polyhedral convex function and satisfies

g(x ∧g (y + α1)) + g((x− α1) ∨g y) ≤ g(x) + g(y) (∀x, y ∈ IRN , α ∈ IR+).

A polyhedron is integral if all its vertices are integral. A (generalized) polyhedral L♮-convex

function g : IRN → IR is integral if for every x ∈ IRN , the set argmin{g(p)−x · p | p ∈ IRN}
is an integral polyhedron (or an empty set).

Clearly, a polyhedral L♮-convex function is submodular but the reverse need not be true.

See Murota (2003) on L♮-convex functions for details. A generalized polyhedral L♮-convex

function is generalized submodular but the reverse need not be true.

Ausubel and Milgrom (2002, Theorem 10) prove that goods are substitutes for a bidder

if and only if his indirect utility function is submodular.

Theorem 3: Let u : Γ → IR be a value function defined on a finite integer interval Γ.

Then, u is GM-concave if and only if its indirect utility function V (p) = max{u(x)− p ·x |
x ∈ Γ} is a generalized polyhedral L♮-convex function in p ∈ IRN . Moreover, u is an

integer-valued GM-concave function if and only if V is an integral generalized polyhedral

L♮-convex function.

In this section we have given three different equivalent conditions of the GGSC condition.

In the following we may state anyone of these four as a sufficient condition for the existence

of a Walrasian equilibrium. Observe that we do not impose any monotonicity condition,

which means the model can accommodate indivisible bads. In this case, equilibrium prices

can be negative and the seller pays the bidders for buying bads.

4 Equilibrium Theorems

For the auction model, define the Lyapunov function L : IRN → IR by

L(p) =
∑
i∈B

V i(p) + p · ω,(1)

where V i(p) is the indirect utility of bidder i ∈ B at prices p and p · ω is the seller’s

value of her goods at prices p. This type of function has been used in the literature for

9



economies with divisible goods (see, e.g., Arrow and Hahn (1971) and Varian (1981)) but

was only recently explored by Ausubel (2005, 2006), Sun and Yang (2009) in the context of

indivisible goods. The Lyapunov function will be used in our auction design. Note that the

following two lemmas do not assume that value functions ui satisfy the GGSC condition.

In other words, the lemmas hold for general value functions.

Lemma 1: If (p, (zi | i ∈ B)) is an equilibrium, (zi | i ∈ B) must be efficient, and

(p, (yi | i ∈ B)) is an equilibrium for any efficient allocation (yi | i ∈ B).

Lemma 2: A price vector p∗ is a Walrasian equilibrium price vector if and only if it is

a minimizer of the Lyapunov function L satisfying L(p∗) = R(ω).

We will now demonstrate the existence of a Walrasian equilibrium under the GGSC

condition and examine the structure of the set of Walrasian equilibrium price vectors.

Definition 7: Let D ⊆ IRN be a nonempty set.

(i) D is a lattice if

p ∧ q ∈ D, p ∨ q ∈ D (∀p, q ∈ D).

(ii) D is a generalized lattice if

p ∧g q ∈ D, p ∨g q ∈ D (∀p, q ∈ D).

(iii) D is L♮-convex if

(p− λ1) ∨ q ∈ D, p ∧ (q + λ1) ∈ D (∀p, q ∈ D, ∀λ ∈ IR+).

(iv) D is generalized L♮-convex if

(p− λ1) ∨g q ∈ D, p ∧g (q + λ1) ∈ D (∀p, q ∈ D, ∀λ ∈ IR+).

Clearly, D is generalized L♮-convex (a generalized lattice) if D = {Up | p ∈ D′} for some

L♮-convex set D′ (some lattice D′). An (generalized) L♮-convex set is a (generalized) lattice

but the reverse need not be true. Obviously, a nonempty compact L♮-convex set has unique

minimal and maximal vectors with respect to the order ≤. Similarly, a nonempty compact

generalized L♮-convex set has unique minimal and maximal vectors with respect to the

order ≤g.
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Lemma 3: Let D ⊆ IRN be a nonempty closed set.

(i) D is L♮-convex if and only if it is a polyhedron given as

D = {p ∈ IRN | ai ≤ pi ≤ bi (i ∈ N), pi − pj ≤ ci,j (i, j ∈ N, i ̸= j)}

with numbers ai, bi (i ∈ N) and ci,j (i, j ∈ N, i ̸= j) such that −ai, bi ∈ IR ∪ {+∞} and

ci,j ∈ IR∪{+∞}. Moreover, the polyhedron is integral if and only if the numbers ai, bi, and

ci,j are integral (or +∞ or −∞).

(ii) D is generalized L♮-convex if and only if it is a polyhedron given as

D = {p ∈ IRN | ai ≤ pi ≤ bi (i ∈ N), pi − pj ≤ ci,j (i, j ∈ Sk, i ̸= j, k = 1, 2),

−cj,i ≤ pi + pj ≤ ci,j (i ∈ S1, j ∈ S2)}

with numbers ai, bi (i ∈ N) and ci,j (i, j ∈ N, i ̸= j) such that −ai, bi ∈ IR ∪ {+∞} and

ci,j ∈ IR∪{+∞}. Moreover, the polyhedron is integral if and only if the numbers ai, bi, and

ci,j are integral (or +∞ or −∞).

The following theorems will be used to prove the convergence of the generalized double-

track auction.

Theorem 4: Assume that every bidder i ∈ B has a GM-concave value function ui. Then

the Lyapunov function L defined by (1) is a generalized polyhedral L♮-convex function.

Moreover, if value functions ui (i ∈ B) take only integer values, then L is an integral

generalized polyhedral L♮-convex function.

The next theorem establishes the existence of a Walrasian equilibrium under the GGSC

condition and reveals the structure of the set of Walrasian equilibrium price vectors.

Theorem 5: Assume that every bidder i ∈ B has a GM-concave value function ui. Let

Λ ⊆ IRN be the set of Walrasian equilibrium price vectors.

(i) Then Λ is a nonempty compact, generalized L♮-convex set which is equal to the set of

minimizers of the Lyapunov function. In particular, Λ has unique minimal and maximal

equilibrium price vectors, denoted by p and p̄, respectively.

(ii) Suppose further that the value functions ui (i ∈ B) are integer-valued. Then, Λ is a

nonempty integral polyhedron and vectors p and p̄ are integral.

Theorem 4 implies that the Lyapunov function is a well-behaved function meaning

that a local minimum is also a global minimum, while Theorem 5 asserts that the set

of Walrasian equilibrium price vectors possesses an elegant geometry, i.e., the set is a

polyhedron described by simple inequalities.
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5 The Price Adjustment Process

In this section we present a price adjustment process which can always globally converge

to a Walrasian equilibrium in finitely many steps. In the following, we assume that every

bidder i’s value function ui takes integer values. This assumption is quite standard and

natural, since one cannot value a bundle of goods more closely than to the nearest penny;

see, e.g., Ausubel (2006) and Sun and Yang (2009). We see from this assumption and

Theorem 5 (ii) that there exists an integral equilibrium price vector. We can therefore

concentrate on integral price vectors in the following discussion.

Define

2Z = {δ ∈ ZN | δk ∈ {0,+1},∀k ∈ S1, δl ∈ {0,−1}, ∀l ∈ S2 }.

For any bidder i ∈ B, any price vector p ∈ ZN , and any price variation δ ∈ 2Z, choose

z̃i ∈ arg min
zi∈Di(p)

δ · zi.(2)

The next lemma asserts that bidder i’s optimal bundle z̃i in (2) chosen from Di(p)

remains the same for all price vectors on the line segment from p to p+ δ.

Lemma 4: Assume that every bidder i ∈ B has an integer-valued GM-concave value

function ui. Let i ∈ B, p ∈ ZN , and δ ∈ 2Z. For every λ with 0 ≤ λ ≤ 1, the solution z̃i

of Formula (2) satisfies z̃i ∈ Di(p + λδ). Moreover, the Lyapunov function L(p + λδ) is

linear in λ in the interval 0 ≤ λ ≤ 1.

We now describe the basic idea of the price adjustment process. At time t ∈ Z+, the

auctioneer announces the current price vector p(t) ∈ ZN and then asks every bidder i to

report his demand Di(p(t)) at prices p(t). Then the auctioneer uses all bidders’ reported

demand sets Di(p(t)), i ∈ B, to determine the next price vector p(t + 1). The auctioneer

chooses a price adjustment δ ∈ 2Z that can reduce the value of the Lyapunov function L as

much as possible. In other words, the auctioneer needs to find δ that solves the following

problem:

max{L(p(t))− L(p(t) + δ) | δ ∈ 2Z}.(3)

However, because the Lyapunov function L involves every bidder’s private valuation on

every bundle of goods, it will be practically impossible for the auctioneer to obtain such

information. Instead of tackling the problem (3) directly, the auctioneer can solve the

following problem:

max
{∑
i∈B

(
min

zi∈Di(p(t))
δ · zi

)
− δ · ω

∣∣∣ δ ∈ 2Z

}
.(4)
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Observe that this formula contains only every bidder i’s reported demand set Di(p(t)) and

nothing else. It states that when the prices are adjusted from p(t) to p(t+1) = p(t) + δ(t)

with δ(t) being a solution to the problem (4), every bidder i tries to minimize his indirect

utility loss δ · zi whereas the auctioneer aims to achieve the highest gain. We stress that

the problem (4) is actually solved by the auctioneer based upon every bidder’s reported

demand Di(p(t)).

We show how to derive the formula (4) from the formula (3). By the definition of the

Lyapunov function we have

L(p(t))− L(p(t) + δ) =
∑
i∈B

(V i(p(t))− V i(p(t) + δ))− δ · ω.(5)

Then it follows from Lemma 4 that

V i(p(t))− V i(p(t) + δ) = min
zi∈Di(p(t))

δ · zi.

Consequently, the formula (5) becomes

L(p(t))− L(p(t) + δ) =
∑
i∈B

(
min

zi∈Di(p(t))
δ · zi

)
− δ · ω.

Hence, the problem (3) can be reduced to the problem (4).

We are now ready to give a formal description of the price adjustment process.

The price adjustment process

Step 1: The auctioneer announces an initial price vector p(0) ∈ ZN . Let t := 0 and go to

Step 2.

Step 2: The auctioneer asks every bidder i to report his demand Di(p(t)) at p(t). Then

based on reported demands Di(p(t)), the auctioneer finds a solution δ(t) to the

problem (4). If δ(t) = 0, go to Step 3. Otherwise, set the next price vector

p(t+ 1) := p(t) + δ(t) and t := t+ 1. Return to Step 2.

Step 3: The auctioneer asks every bidder i to report his demand Di(p(t)) at p(t). Then

based on reported demands Di(p(t)), the auctioneer finds a solution δ(t) to (4) where

2Z is replaced by −2Z. If δ(t) = 0, then the procedure stops. Otherwise, set the

next price vector p(t+ 1) := p(t) + δ(t) and t := t+ 1. Return to Step 3.

Several remarks are in order. First, observe that in Step 2, the auctioneer adjusts

the price of each type of good i ∈ S1 upwards but the price of each type of good i ∈ S2

download, whereas in Step 3, the auctioneers adjusts prices in the reverse way. This auction

extends the double-track auction of Sun and Yang (2008A, 2009) from set utility functions
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ui : {0, 1}N → Z to more general utility functions ui : Γ → Z and is called a generalized

double-track auction. This type of auction differs crucially from other auctions in that

it simultaneously adjusts prices in one family and prices in another family in opposite

directions, whereas other existing auctions are either ascending or descending. Second,

the process terminates in Step 3 and never goes from Step 3 to Step 2. This is a crucial

step quite different from the global auction of Ausubel (2006) which requires repeated

implementation of his ascending auction and descending auction one after the other in the

GS case. Third, in the current process the auctioneer computes only an optimal solution

which need not be the minimal or maximal element as required in the auction of Ausubel

(2006). This will improve computational efficiency.

Theorem 6: Assume that every bidder i ∈ B has an integer-valued GM-concave value

function ui. Starting with any integer price vector p(0) ∈ ZN , the price adjustment process

converges to an equilibrium price vector in a finite number of rounds.

The following result shows that if the auctioneer starts with a particular price vector

p(0) ∈ ZN with very low price for each type of good in S1 and very high price for each

type of good in S2, say, pi(0) = −L for every i ∈ S1 and pi(0) = +L for every i ∈ S2 with

a sufficiently large positive integer L, the price adjustment process will terminate at the

minimal equilibrium price vector p, provided that in each round t the minimal δ(t) that

solves the problem (4) is chosen. In this case the auction never goes to Step 3. Recall that

there exists a unique minimal equilibrium price vector p by Theorem 5.

Theorem 7: Assume that every bidder i ∈ B has an integer-valued GM-concave value

function ui. Starting at an integer price vector p(0) ∈ ZN with p(0) ≤g p, the price

adjustment process converges to the minimal equilibrium price vector p in a finite number

of rounds if in every round t ∈ Z+ the auctioneer chooses the minimal δ(t) (in the sense

≤g) that solves the problem (4).

6 A Practical Example

In this section we discuss a practical application of the general model. Consider a man-

ufacturing industry consisting of many firms, workers and machines. Each firm can hire

many workers and use many machines to produce goods. Each worker can work at most at

one firm and one machine can be used at most in one firm. Let I denote the set of all firms,

W = {w1, w2, · · · , wm} the family of all types of workers, and M = {m1,m2, · · · ,mn} the

family of all types of machines. There are dk ∈ Z++ workers of type wk ∈ W , and bl ∈ Z++

units of machine ml ∈ M . When worker wk operates machine ml at firm i ∈ I, they will
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generate a revenue Ri(wk,ml) for firm i. This revenue can be nonnegative or negative.

If it is negative, firm i will let wk and ml stay idle and thus make no gain and no loss.

Without loss of generality, we can therefore assume that Ri(wk,ml) is a nonnegative inte-

ger. When firm i hires α workers of type wk and uses β machines of type ml, the firm can

achieve a revenue of min{α, β}Ri(wk,ml). When firm i has only workers or only machines,

it cannot produce anything and thus its revenue is zero. Let S1 = W and S2 = M . Then

a vector x = (x′, x′′) ∈ ZS1 × ZS2 denotes the numbers of workers and machines hired or

used by a firm. Given such (x′, x′′), firm i′s revenue is uniquely determined by the optimal

pair combinations between workers and machines given in (x′, x′′) and will be denoted by

Ri(x′, x′′). The revenue function Ri is a function defined on the set

Ω = {(x′, x′′) ∈ ZS1 × ZS2 | 0 ≤ x′
k ≤ dk, k ∈ S1, 0 ≤ x′′

l ≤ bl, ∈ S2}.

An interesting question arises here: Does there exist a system of competitive wages and

prices through which workers and machines can be efficiently allocated to the firms? The

following result gives a positive answer.

Theorem 8: For the manufacturing industry model, each firm i′s revenue function Ri is

a GM-concave function. Thus the manufacturing industry possesses at least one Walrasian

equilibrium.

Sun and Yang (2006) consider the special but important case in which dk = 1 for all

k ∈ W and bl = 1 for all l ∈ M , and establish the existence of a Walrasian equilibrium.

Shapley (1962) examines the optimization problem of a single firm and shows that the

firm’s revenue function is submodular with respect to machines only (or workers only) but

supermodular with respect to workers and machines.

Appendix

This appendix contains the proofs of all results stated in the main body of the paper.

The proofs of Theorems 1, 3, and 5 appear most difficult and make extensive use of results

from discrete convex analysis for which Murota (2003) and Fujishige (2005) are excellent

references.

15



A Proof of Theorem 1

Recall that U represents the n × n matrix for which the i-th column is given by e(i) if

i ∈ S1 and by −e(i) if i ∈ S2 (see Section 3). Note that U−1 = U and U ·U is equal to the

identity matrix, i.e., U · Ux = x for every vector x.

For a function u : Γ → IR defined on a finite integer interval Γ, we define a finite integer

interval Γ̃ and a function ũ : Γ̃ → IR by

Γ̃ = {Uy | y ∈ Γ}, ũ(x) = u(Ux) (x ∈ Γ̃).(6)

Then, the following property is easy to see from the definition of GM-concavity.

Proposition 1 A function u : Γ → IR defined on a finite integer interval Γ is GM-

concave if and only if the function ũ : Γ̃ → IR defined by (6) is M♮-concave.

The GGSC condition for function u can be rewritten in terms of the function ũ given

by (6) as follows. For p ∈ IRN , we define

D(ũ, p) = argmax{ũ(z)− p · z | z ∈ Γ̃}.

(GGS±)

(i) For every p ∈ IRN , D(ũ, p) is a discrete convex set.

(ii) Let p ∈ IRN , δ > 0, and x ∈ D(ũ, p).

(ii-1) For any k ∈ S1, there exists y ∈ D(ũ, p+ δe(k)) such that

yh ≥ xh (∀h ∈ N \ {k}),
∑
h∈N

yh ≤
∑
h∈N

xh.

(ii-2) For any k ∈ S2, there exists y ∈ D(ũ, p− δe(k)) such that

yh ≤ xh (∀h ∈ N \ {k}),
∑
h∈N

yh ≥
∑
h∈N

xh.

Proposition 2 A function u : Γ → IR defined on a finite integer interval Γ satisfies

the GGSC condition if and only if the function ũ : Γ̃ → IR given by (6) satisfies (GGS±).

By Propositions 1 and 2, Theorem 1 is equivalent to the following statement:

Theorem 9 A function u : Γ → IR defined on a finite integer interval Γ satisfies the

condition (GGS±) if and only if it is an M♮-concave function.

In the following, we prove Theorem 9 instead of Theorem 1.
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A.1 Proof of “If” Part

The “if” part of Theorem 9 is proven first. A generalized polymatroid (g-polymatroid, for

short) is a polyhedron of the form

Q = {x ∈ IRN | µ(X) ≤ x(X) ≤ ρ(X) (X ∈ 2N)}

given by a pair of submodular/supermodular functions ρ : 2N → IR ∪ {+∞}, µ : 2N →
IR ∪ {−∞} satisfying the inequality

ρ(X)− µ(Y ) ≥ ρ(X \ Y )− µ(Y \X) (∀X, Y ∈ 2N).

If ρ and µ are integer-valued, then Q is an integral polyhedron; in such a case, we say that

Q is an integral g-polymatroid. Note that for any integral polyhedron Q, the set Q∩ ZN is

a discrete convex set.

Proposition 3 (see, e.g., Murota (2003, Chapter 6)) Let u : Γ → IR be an M♮-

concave function defined on a finite integer interval Γ. For every p ∈ IRN , D(u, p) is the

set of integral vectors in an integral g-polymatroid; it is a discrete convex set, in particular.

Proposition 3 immediately implies the condition (i) in (GGS±).

To prove the second condition in (GGS±), we show below a (slightly) stronger state-

ment.

Lemma 5 Let u : Γ → IR be an M♮-concave function defined on a finite integer interval

Γ. For p ∈ IRN , δ > 0, x ∈ D(u, p), and k ∈ N , the following properties hold:

(a) There exists y ∈ D(u, p+ δe(k)) such that

yh ≥ xh (∀h ∈ N \ {k}),
∑
h∈N

yh ≤
∑
h∈N

xh.(7)

(b) There exists y ∈ D(u, p− δe(k)) such that

yh ≤ xh (∀h ∈ N \ {k}),
∑
h∈N

yh ≥
∑
h∈N

xh.

Below we prove the claim (a) only since (b) can be done in the same way. Let q =

p + δe(k), and y be a vector in D(u, q) which minimizes the value ∥y − x∥1 among all

vectors in D(u, q). We prove that the vector y satisfies the condition (7). The proof below

is quite similar to the one for Theorem 8 of Murota and Tamura (2003) and Theorem 6.34

(2) of Murota (2003).
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To prove the first inequality in (7), assume, to the contrary, that yi < xi for some

i ∈ N \ {k}. By M♮-concavity of u applied to x, y, and i ∈ supp+(x− y), we have

u(x) + u(y) ≤ u(x− e(i) + e(j)) + u(y + e(i)− e(j))(8)

for some j ∈ supp−(x− y) ∪ {0}. Since x ∈ D(u, p) and y ∈ D(u, q), it holds that

u(x)− p · x ≥ u(x− e(i) + e(j))− p · (x− e(i) + e(j)),(9)

u(y)− q · y ≥ u(y + e(i)− e(j))− q · (y + e(i)− e(j)).(10)

From (9) and (10) follows that

u(x) + u(y) ≥ {u(x− e(i) + e(j))− p · (−e(i) + e(j))}
+{u(y + e(i)− e(j))− q · (e(i)− e(j))}

= u(x− e(i) + e(j)) + u(y + e(i)− e(j))− δe(k) · (e(i)− e(j))

= u(x− e(i) + e(j)) + u(y + e(i)− e(j)) + δe(k) · e(j)
≥ u(x− e(i) + e(j)) + u(y + e(i)− e(j)),(11)

where the second equality is by the fact that i ̸= k. From the inequalities (8) and (11)

we see that all inequalities in (8), (9), (10), and (11) hold with equality. This implies, in

particular, that y + e(i)− e(j) ∈ D(u, q), a contradiction to the choice of y since

∥(y + e(i)− e(j))− x∥1 < ∥y − x∥1.

Hence, we have yh ≥ xh for all h ∈ N \ {k}.
We then prove the second inequality in (7), where we use the following property of

M♮-concave functions:

Proposition 4 (Murota and Shioura (1999) and Murota (2003, Chapter 6))

Let u : Γ → IR be an M♮-concave function. For every x, y ∈ Γ with
∑

h∈N xh <
∑

h∈N yh,

there exists some j ∈ supp−(x− y) such that

u(x) + u(y) ≤ u(x+ e(j)) + u(y − e(j)).

Suppose, to the contrary, that
∑

h∈N yh >
∑

h∈N xh. By Proposition 4, there exists some

j ∈ supp−(x− y) such that

u(x) + u(y) ≤ u(x+ e(j)) + u(y − e(j)).(12)

Since x ∈ D(u, p) and y ∈ D(u, q), it holds that

u(x)− p · x ≥ u(x+ e(j))− p · (x+ e(j)),(13)

u(y)− q · y ≥ u(y − e(j))− q · (y − e(j)).(14)
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Hence, we have

u(x) + u(y) ≥ {u(x+ e(j))− p · e(j)}+ {u(y − e(j)) + q · e(j)}
= u(x+ e(j)) + u(y − e(j)) + δe(k) · e(j)
≥ u(x+ e(j)) + u(y − e(j)).(15)

Thus, all inequalities in (12), (13), (14), and (15) hold with equality. This implies, in

particular, that y−e(j) ∈ D(u, q), a contradiction to the choice of y since ∥(y−e(j))−x∥1 <
∥y − x∥1. Hence, we have

∑
h∈N yh ≤ ∑

h∈N xh.

This concludes the proof for “if” part of Theorem 9.

A.2 Proof of “Only If” Part

To prove the “only if” part of Theorem 9, we use a characterization of M♮-concave functions

by demand sets. Recall that conv(C) denotes the convex hull of a set C ⊆ IRN .

Proposition 5 (Theorem 6.30 of Murota (2003)) A function u : Γ → IR defined

on a finite integer interval Γ is M♮-concave if and only if D(u, p) is the set of integral

vectors in an integral g-polymatroid for every p ∈ IRN .

We now give a proof of the “only if” part of Theorem 9. Let u : Γ → IR be a function

defined on a finite integer interval Γ satisfying the condition (GGS±). We use Proposition

5 to prove the M♮-concavity of u, i.e., we show that for every p ∈ IRN , there exists some

integral g-polymatroid Q ⊆ IRN such that D(u, p) = Q ∩ ZN . By the condition (GGS±),

D(u, p) is a discrete convex set. Hence, it suffices to show that conv(D(u, p)) is a g-

polymatroid; note that conv(D(u, p)) is an integral polyhedron. In the proof, the following

characterization of g-polymatroids is used.

Proposition 6 (cf. Theorem A.1 of Fujishige and Yang (2003)) A bounded poly-

hedron Q ⊆ IRN is a g-polymatroid if and only if for every edge E of Q and every distinct

points x, y ∈ E, x− y is a multiple of a vector taken from the set

{+e(i) | i ∈ N} ∪ {−e(j) | j ∈ N} ∪ {+e(i)− e(j) | i, j ∈ N, i ̸= j}.(16)

Let Q = conv(D(u, p)), and E be an edge of Q. Since u is a function defined on a finite

set Γ, there exists some q ∈ IRN such that E = conv(D(u, q)). Since D(u, q) is a discrete

covnex set by the condition (GGS±), we have E ∩ ZN = D(u, q).

Let x, y ∈ E be the two endpoints of the edge E. We have x, y ∈ E ∩ ZN = D(u, q)

since E = conv(D(u, q)). Since x ̸= y, we may assume that xk > yk for some k ∈ N .
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By the choice of x and y, there exists some sufficiently small δ > 0 such that

D(u, q + δe(k)) = {y}, D(u, q − δe(k)) = {x}.(17)

Since x, y ∈ D(u, q), the condition (GGS±) (ii) and (17) imply that

yi ≥ xi (∀i ∈ N \ {k}),
∑
i∈N

yi ≤
∑
i∈N

xi;(18)

indeed, if k ∈ S1, then this follows immediately from (ii-1) in (GGS±) and the first equation

in (17); if k ∈ S2, then (18) follows from (ii-2) and the second equation in (17), where the

roles of x and y are changed.

If yi = xi holds for all i ∈ N \ {k}, then we are done since x − y = αe(k) for some

α > 0. Hence, we assume xh < yh for some h ∈ N \ {k}. Then, in a similar way as in the

discussion above with the roles of x and y changed, we can show that

xi ≥ yi (∀i ∈ N \ {h}),
∑
i∈N

xi ≤
∑
i∈N

yi,(19)

which, together with (18), implies

xi = yi (∀i ∈ N \ {h, k}),
∑
i∈N

xi =
∑
i∈N

yi.

From this follows that x− y = α(e(k)− e(h)) for some α > 0.

This concludes the proof for “only if” part of Theorem 9.

B Proof of Theorem 2

Theorem 2 follows from immediately from Theorem 1 and the following theorem.

Theorem 10: A function u : Γ → IR defined on a finite integer interval Γ satisfies the

EGSI condition if and only if it is GM-concave.

We now prove Theorem 10. For a function u : Γ → IR on a finite integer interval Γ,

let ũ : Γ̃ → IR be a function defined by (6). We say that a function ũ satisfies the single

improvement (SI) condition if it satisfies the following condition:

for any p ∈ IRN and any x, y ∈ Γ̃ with ũ(y) − p · y > ũ(x) − p · x, there exists

z ∈ Γ̃ such that ũ(z) − p · z > ũ(x) − p · x and z = x − e(k) + e(l) for some

k ∈ supp+(x− y) ∪ {0} and l ∈ supp−(x− y) ∪ {0}.

The following property can be found in Theorem 7 of Murota and Tamura (2003) and

Theorem 11.4 of Murota (2003).
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Proposition 7 A function ũ : Γ̃ → IR defined on a finite integer interval Γ̃ satisfies

the SI condition if and only if it is M♮-concave.

It is not difficult to see that function u satisfies the EGSI condition if and only if ũ satisfies

the SI condition. By Proposition 1, function u is GM-concave if and only if ũ is M♮-concave.

Hence, Theorem 10 follows immediately from Proposition 7. This concludes the proof of

Theorem 2.

C Proof of Theorem 3

We give some properties of (generalized) M♮-concavity and (generalized) polyhedral L♮-

convexity, which are useful in proving Theorem 3.

Proposition 8 (Theorem 7.10 of Murota (2003)) Let f, g : IRN → IR be (integral)

polyhedral L♮-convex functions, and x ∈ IRN .

(i) The function f + g is (integral) polyhedral L♮-convex.

(ii) The function gx(p) = g(p) + x · p is (integral) polyhedral L♮-convex in p.

Proposition 9 (see Murota (2003) and Fujishige (2005)) For a function u : Γ →
IR defined on a finite integer interval Γ, let u◦ : IRN → IR be a function given by

u◦(p) = min{p · x− u(x) | x ∈ Γ} (p ∈ IRN).(20)

Then, u is an M♮-concave function if and only if −u◦ is a polyhedral L♮-convex function.

Moreover, function u is an integer-valued M♮-concave function if and only if −u◦ is an

integral polyhedral L♮-convex function.

Propositions above for M♮-convexity and L♮-convexity can be rewritten as follows in

terms of generalized M♮-convexity and L♮-convexity.

Proposition 10 Let f, g : IRN → IR be (integral) generalized polyhedral L♮-convex func-

tions, and x ∈ IRN .

(i) The function f + g is (integral) generalized polyhedral L♮-convex.

(ii) The function gx(p) = g(p) + x · p is (integral) generalized polyhedral L♮-convex in p.

Proposition 11 For a function u : Γ → IR defined on a finite integer interval Γ, let

u◦ : IRN → IR be a function given by (20). Then, u is a GM-concave function if and

only if −u◦ is a generalized polyhedral L♮-convex function. Moreover, function u is an

integer-valued GM-concave function if and only if −u◦ is an integral generalized polyhedral

L♮-convex function.
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Proof: Given a function u, we define a function ũ : Γ̃ → IR by (6). By Proposition

1, function u is GM-concave if and only if ũ is M♮-concave.

Similarly to the function u◦, we define ũ◦ : IRN → IR by

ũ◦(p) = min{p · x− ũ(x) | x ∈ Γ̃} (p ∈ IRN).

Then, it holds that

ũ◦(p) = min{p · x− ũ(x) | x ∈ Γ̃}
= min{p · x− u(Ux) | x = Uy, y ∈ Γ}
= min{p · Uy − u(U · Uy) | y ∈ Γ}
= min{Up · y − u(y) | y ∈ Γ} = u◦(Up).

This equation implies that the function −u◦ is generalized polyhedral L♮-convex if and only

if −ũ◦ is polyhedral L♮-convex. Hence, the claim follows from Proposition 9. Q.E.D.

We can now prove Theorem 3. Consider a value function u : Γ → IR defined on a finite

integer interval Γ and its indirect utility function V : IRN → IR. It holds that

V (p) = max{u(x)− p · x | x ∈ Γ}
= −min{p · x− u(x) | x ∈ Γ} = −u◦(p) (p ∈ IRN),

where u◦ is given by (20). Hence, Theorem 3 follows immediately from Proposition 11.

D Proofs of Lemmas 1, 2, 3, and Theorem 4

Proof of Lemma 1: Take any allocation (yi | i ∈ B). Since zi ∈ Di(p), we have

ui(zi)− p · zi ≥ ui(yi)− p · yi.(21)

It follows that∑
i∈B

ui(zi)− p · (
∑
i∈B

zi) ≥
∑
i∈B

u(yi)− p · (
∑
i∈B

yi),

which implies∑
i∈B

ui(zi)−
∑
i∈B

ui(yi) ≥ p · (
∑
i∈B

zi)− p · (
∑
i∈B

yi) = p · (ω − ω) = 0.(22)

Therefore, (zi | i ∈ B) is efficient.

We then assume that the allocation (yi | i ∈ B) is efficient. Since (zi | i ∈ B) is also

efficient, we have
∑

i∈B ui(zi) =
∑

i∈B ui(yi), which, together with (22), implies that the
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inequality in (21) must hold with equality. Hence, yi ∈ Di(p) holds for every i ∈ B, i.e.,

(p, (yi | i ∈ B)) is an equilibrium. Q.E.D.

Proof of Lemma 2: Let (zi | i ∈ B) be an efficient allocation. Then, we have
∑

i∈B ui(zi) =

R(ω). Also, let p ∈ IRN . Since V i(p) ≥ ui(zi)− p · zi holds for all i ∈ B, we have

L(p) =
∑
i∈B

V i(p) + p · ω ≥
∑
i∈B

(ui(zi)− p · zi) + p · ω =
∑
i∈B

ui(zi) = R(ω).(23)

Suppose that p∗ is an equilibrium price vector. Then, Lemma 1 implies that (p∗, (zi |
i ∈ B)) is an equilibrium, i.e., zi ∈ Di(p∗) holds for all i ∈ B. Hence, we have V i(p∗) =

ui(zi) − p∗ · zi holds for all i ∈ B, which, together with (23), implies that L(p∗) = R(ω).

Note that it follows from the inequality (23) and L(p∗) = R(ω) that p∗ is a minimizer of

L.
We then assume that p∗ satisfies L(p∗) = R(ω). Then, the inequality (23) implies that

V i(p∗) = ui(zi)− p∗ · zi holds for all i ∈ B, i.e., zi ∈ Di(p∗) for all i ∈ B. This means that

(p∗, (zi | i ∈ B)) is an equilibrium. Q.E.D.

Proof of Lemma 3: The statement (i) is already shown in Murota (2003) and Murota and

Shioura (2004), while the statement (ii) follows from (i) and the definition of a generalized

L♮-convex set. Q.E.D.

Proof of Theorem 4: Since the Lyapunov function L is given as L(p) = ∑
i∈B V i(p)+p·ω,

the statement of the theorem follows from Theorem 3 and Proposition 10. Q.E.D.

E Proof of Theorem 5

E.1 Useful Properties

We present several properties which will be used in the proof of Theorem 5. For a convex

function g : IRN → IR and p ∈ IRN , the subdifferential ∂g(p) of g at p is defined by

∂g(p) = {x ∈ IRN | g(q)− g(p) ≥ (q − p) · x (∀q ∈ IRN)}.

Proposition 12 (Theorem 23.8 of Rockafellar (1970)) Let gi : IRN → IR (i =

1, 2, . . . ,m) be convex functions, and define g =
∑m

i=1 gi. For p ∈ IRN , it holds that

∂g(p) = ∂g1(p) + ∂g2(p) + · · ·+ ∂gm(p) = {
m∑
i=1

xi | xi ∈ ∂gi(p) (i = 1, 2, . . . ,m)}.
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For a set C ⊆ IRN , we denote −C = {−x | x ∈ C}. Recall that conv(C) denotes the

convex hull of a set C ⊆ IRN . For a function u : Γ → IR defined on a finite integer interval

Γ, its concave closure ū : conv(Γ) → IR is defined as

ū(x) = min{p ·x+α | p ∈ IRN , α ∈ IR, p ·y+α ≥ u(y) (∀y ∈ Γ)} (x ∈ conv(Γ)).(24)

Note that conv(Γ) is a finite interval and the concave closure ū is a concave function (see,

e.g., Rockafellar (1970)). The right-hand side of (24) can be seen as a linear programming

problem, and therefore the minimum always exists for x ∈ conv(Γ). For p ∈ IRN , we denote

DIR(ū, p) = argmax{ū(z)− p · z | z ∈ conv(Γ)}.(25)

Note that DIR(ū, p) is a convex set.

Proposition 13 (cf. Rockafellar (1970)) Let u : Γ → IR be a value function defined

on a finite integer interval Γ, and V : IRN → IR be its indirect utility function. For p ∈ IRN ,

it holds that ∂V (p) = −DIR(ū, p).

We call a set Q ⊆ IRN a twisted g-polymatroid if there exists a g-polymatroid Q̃ ⊆ IRN

such that Q = {Ux ∈ IRN | x ∈ Q̃}. Hence, every twisted g-polymatroid is a polyhedron;

we say that a twisted g-polymatroid is integral if it is an integral polyhedron. From

Proposition 5 and the relationship between GM-concavity and M♮-concavity, we obtain the

following property.

Proposition 14 Let u : Γ → IR be a GM-concave function defined on a finite integer

interval Γ. For every p ∈ IRN , the set DIR(ū, p) is an integral twisted g-polymatroid such

that DIR(ū, p) = conv(D(u, p)).

It is known that the sum of (integral) g-polymatroids is an (integral) g-polymatroid (see

Frank and Tardos (1988)). From this fact the following property of twisted g-polymatroids

follows.

Proposition 15 For twisted g-polymatroids Q1, Q2, . . . , Qm ⊆ IRN , their sum Q1+Q2+

· · ·+Qm is also a twisted g-polymatroid. Moreover, Q1 +Q2 + · · ·+Qm is integral if each

Qi is integral.

E.2 Proof

Recall that Λ ⊆ IRN denotes the set of Walrasian equilibrium price vectors.

Lemma 6 Assume that every bidder i ∈ B has a GM-concave value function ui. The

set argmin{L(p) | p ∈ IRN} is a nonempty compact set and satisfies argmin{L(p) | p ∈
IRN} ⊆ Λ.
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By Lemma 2, it holds that Λ ⊆ argmin{L(p) | p ∈ IRN}, which, combined with Lemma

6, implies that Λ is a nonempty compact set satisfying Λ = argmin{L(p) | p ∈ IRN}. Since
the Lyapunov function L is a generalized polyhedral L♮-convex function by Theorem 4, the

set Λ = argmin{L(p) | p ∈ IRN} satisfies the following property:

(p− λ1) ∨g q ∈ Λ, p ∧g (q + λ1) ∈ Λ (∀p, q ∈ W, ∀λ ∈ IR+),

i.e., the set Λ is a generalized L♮-convex set. Since every compact generalized L♮-convex set

contains unique minimal and maximal vectors with respect to the order ≤g (see Section

4), the claim (i) of Theorem 5 holds. Claim (ii) of Theorem 5 follows from the claim (i)

and the latter part of Theorem 4.

We now give a proof of Lemma 6. It is firstly shown that argmin{L(p) | p ∈ IRN} is a

nonempty compact set. Denote Φi = max{|ui(x)| | x ∈ Ω} for i ∈ B and Φ = maxi∈B Φi.

Lemma 7 Let p ∈ IRN .

(i) If ph > 2Φ holds for some h ∈ N , then the vector p′ ∈ IRN given by

p′j =

 pj (j ∈ N \ {h}),
2Φ (j = h)

satisfies L(p′) < L(p).
(ii) If ph < −2Φ holds for some h ∈ N , then the vector p′′ ∈ IRN given by

p′′j =

 pj (j ∈ N \ {h}),
−2Φ (j = h)

satisfies L(p′′) < L(p).

Proof: We first prove (i). For i ∈ B and x ∈ Γ with xh > 0, we have

[ui(x)− p · x]− [ui(x− e(h))− p · (x− e(h))] ≤ ui(x)− ui(x− e(h))− ph

≤ 2Φi − 2Φ ≤ 0.

This implies that the value ui(x)− p · x is maximized by a vector x with xh = 0, i.e.,

V i(p) = max{ui(x)− p · x | x ∈ Γ, xh = 0}.

Similarly, we have

V i(p′) = max{ui(x)− p′ · x | x ∈ Γ, xh = 0}.

Hence, it holds that

V i(p) = max{ui(x)− p · x | x ∈ Γ, xh = 0}
= max{ui(x)− p′ · x | x ∈ Γ, xh = 0} = V i(p′)
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for all i ∈ B. It follows from this equation that

L(p) =
∑
i∈B

V i(p) + p · ω =
∑
i∈B

V i(p′) + p · ω >
∑
i∈B

V i(p′) + p′ · ω = L(p′),

where the strict inequality follows from ωh > 0 and p′h < ph.

We then prove (ii). For i ∈ B and x ∈ Γ with xh < ωh, we have

[ui(x)− p · x]− [ui(x+ e(h))− p · (x+ e(h))] ≤ ui(x)− ui(x+ e(h)) + ph

≤ 2Φi − 2Φ ≤ 0.

This implies that the value ui(x)− p · x is maximized by a vector x with xh = ωh, i.e.,

V i(p) = max{ui(x)− p · x | x ∈ Γ, xh = ωh}.

Similarly, we have

V i(p′′) = max{ui(x)− p′′ · x | x ∈ Γ, xh = ωh}.

Hence, it holds that

V i(p) = max{ui(x)− p · x | x ∈ Γ, xh = ωh}
= max{ui(x)− p′′ · x− (ph + 2Φ)ωh | x ∈ Γ, xh = ωh}
= V i(p′′)− (ph + 2Φ)ωh

for all i ∈ B. This equation implies that

L(p)− L(p′) =

(∑
i∈B

V i(p) + p · ω
)
−
(∑
i∈B

V i(p′′) + p′′ · ω
)

=

(∑
i∈B

V i(p)−
∑
i∈B

V i(p′′)

)
+ (p · ω − p′′ · ω)

= −|B|(ph + 2Φ)ωh + (ph + 2Φ)ωh > 0,

where the strict inequality follows from ph < −2Φ < 0 and |B| > 1. Q.E.D.

From Lemma 7 follows that

argmin{L(p) | p ∈ IRN} = argmin{L(p) | p ∈ IRN , |ph| ≤ 2Φ (∀h ∈ N)},

where the set in the right-hand side is nonempty and compact since it is the set of mini-

mizers of a convex function in a bounded region (see, e.g., Rockafellar (1970)). Hence, the

first statement of Lemma 6 follows.

We now prove argmin{L(p) | p ∈ IRN} ⊆ Λ. For this, we show that for every minimizer

p∗ ∈ IRN of L, there exists a set of vectors zi ∈ Γ (i ∈ B) such that (p∗, (zi | i ∈ B)) is a

Walrasian equilibrium, i.e.,

zi ∈ Di(p∗) (i ∈ B),
∑
i∈B

zi = ω.(26)
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Since L is a convex function and p∗ is a minimizer of L, the subdifferential of L at p∗

contains the zero vector, i.e., 0 ∈ ∂L(p∗). By the definition of the Lyapunov function and

Propositions 12 and 13, it holds that

∂L(p∗) =
∑
i∈B

∂V i(p∗) + {ω} = −
∑
i∈B

DIR(ū
i, p∗) + {ω}.

By Proposition 14, we have DIR(ū
i, p) = conv(Di(p∗)) and Di(p∗) = DIR(ū

i, p) ∩ ZN for

i ∈ B. Hence, it follows that

∂L(p∗) ∩ ZN =
(
−
∑
i∈B

DIR(ū
i, p) + {ω}

)
∩ ZN

= −
∑
i∈B

(DIR(ū
i, p) ∩ ZN) + {ω} = −

∑
i∈B

Di(p∗) + {ω},

where the first equality is by Proposition 15. This equation and 0 ∈ ∂L(p∗) imply the

existence of a set of vectors zi ∈ Γ (i ∈ B) satisfying (26).

F Proofs of Lemma 4, Theorems 6 and 7

The proof of the following lemma is similar to those given in Ausubel (2006) and Sun and

Yang (2009).

Proof of Lemma 4: Suppose, to the contrary that, there exists λ such that 0 < λ ≤ 1 but

z̃i ̸∈ Di(p + λδ). By the EGSI property, for z̃i there exists an EGSI improvement bundle

zi with

ui(zi)− (p+ λδ) · zi > ui(z̃i)− (p+ λδ) · z̃i.(27)

By the choice of z̃i, we see that

ui(z̃i)− (p+ λδ) · z̃i ≥ ui(xi)− (p+ λδ) · x̃i for all xi ∈ Di(p),

and hence zi ̸∈ Di(p). It follows from the integrality assumption of value function ui and

p ∈ ZN that

ui(zi)− p · zi ≤ ui(z̃i)− p · z̃i − 1.(28)

On the other hand, since 0 ≤ λδk ≤ 1 for any k ∈ S1 and −1 ≤ λδl ≤ 0 for any l ∈ S2, and

zi is an EGSI improvement bundle of z̃i, we have |λδ · (z̃i − zi)| ≤ 1, implying that

λδ · z̃i − 1 ≤ λδ · zi.(29)

From inequalities (28) and (29) follows that

ui(zi)− (p+ λδ) · zi ≤ ui(z̃i)− (p+ λδ) · z̃i,
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yielding a contradiction to (27).

To prove the second part, observe that the above result z̃i ∈ Di(p+ λδ) implies

L(p+ λδ) = L(p) + λ(δ · ω −
∑
i∈B

δ · z̃i)

for all λ with 0 ≤ λ ≤ 1. Q.E.D.

We then prove Theorems 6 and 7 concerning the validity of price adjustment prodecure.

These theorems can be shown by the results in Kolmogorov and Shioura (2009), where we

use the observation that the procedure can be seen as an algorithm for minimizing the

Lyapunov function L which is generalized L♮-convex by Theorem 4. Instead, we give

below more elementary proofs of Theorems 6 and 7. Our proof is based on the generalized

submodularity of the Lyapunov function L, which follows from the generalized L♮-convexity

of L shown in Theorem 4.

Define an n-dimensional cube by

2 = {δ ∈ IRN | 0 ≤ δk ≤ 1,∀k ∈ S1, −1 ≤ δl ≤ 0, ∀l ∈ S2 }.

Note that 2Z = 2 ∩ ZN . Consider the problem:

max
δ∈2

{L(p(t))− L(p(t) + δ)}.(30)

The following result shows that the set of solutions to Problem (30) is a generalized L♮-

convex set and both its minimal and maximal elements are integral.

Lemma 8: Assume that every bidder i ∈ B has an integer-valued GM-concave value

function. Then the set of solutions to Problem (30) is a nonempty generalized L♮-convex

set and both its minimal and maximal elements are integer vectors.

Proof: The proof is similar to that of Theorem 5 and is thus omitted. Q.E.D.

This lemma implies, in particular, that Problem (30) has an integral optimal solution, i.e.,

max
δ∈2

{L(p(t))− L(p(t) + δ)} = max
δ∈2

Z

{L(p(t))− L(p(t) + δ)}.(31)

Proof of Theorem 6 Theorem 5 shows that the market has a Walrasian equilibrium

and an integral vector is a minimizer of the Lyapunov function L if and only if it is an

equilibrium price vector. Since the prices and value functions take only integer values, the

Lyapunov function is an integer valued function and it lowers by a positive integer value

in each round of the adjustment process. Moreover, the minimum value of the Lyapunov

function is finite. This guarantees that the auction terminates in finitely many rounds,
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i.e., δ(t∗) = 0 in Step 3 for some t∗ ∈ Z+. Let p(0), p(1), · · · , p(t∗) be the generated finite

sequence of price vectors. Let t̄ ∈ Z+ be the time when the adjustment process finds

δ(t̄) = 0 at Step 2. In the following, we conclude the proof by showing that the vector

p(t∗) is a minimizer of the Lyapunov function.

We claim that

L(p) ≥ L(p(t̄)) (∀p ∈ ZN with p ≥g p(t̄)),(32)

L(p) ≥ L(p(t∗)) (∀p ∈ ZN with p ≤g p(t
∗)).(33)

Since the proofs are quite similar, we prove the inequality (32) only. Suppose, to the

contrary, that there exists some p ≥g p(t̄) such that L(p) < L(p(t̄)). The convexity of

function L implies that there is a strict convex combination p′ of p and p(t̄) such that

p′ ∈ p(t̄) +2 and L(p′) < L(p(t̄)). By the equation (31) and the choice of δ(t̄), we have

L(p(t̄) + δ(t̄)) = min
δ∈2

Z

L(p(t) + δ) = min
δ∈2

L(p(t) + δ) ≤ L(p′) < L(p(t̄)),

implying that δ(t̄) ̸= 0, which is a contradiction.

By (32), we have L(p ∨g p(t̄)) ≥ L(p(t̄)) for all p ∈ ZN since p ∨g p(t̄) ≥g p(t̄). We will

further show that

L(p ∨g p(t)) ≥ L(p(t)) (∀t = t̄+ 1, t̄+ 2, · · · , t∗, ∀p ∈ ZN).(34)

By induction, it is sufficient to prove the case of t = t̄+1. Notice that p(t̄+1) = p(t̄)+δ(t̄),

where δ(t̄) ∈ −2Z is determined in Step 3 of the adjustment process. Assume, to the

contrary, that there is some p ∈ ZN such that L(p ∨g p(t̄ + 1)) < L(p(t̄ + 1)). Then if we

start the adjustment process from p(t̄ + 1), we can by the same previous argument find a

nonzero δ̂ ∈ 2Z in Step 2 such that L(p(t̄+ 1) + δ̂) < L(p(t̄+ 1)). Since L is a generalized

submodular function, we have

L(p(t̄) ∨g (p(t̄+ 1) + δ̂)) + L(p(t̄) ∧g (p(t̄+ 1) + δ̂)) ≤ L(p(t̄)) + L(p(t̄+ 1) + δ̂).(35)

Since p(t̄) ∨g (p(t̄ + 1) + δ̂) ≥g p(t̄), we have L(p(t̄) ∨g (p(t̄ + 1) + δ̂)) ≥ L(p(t̄)) by the

induction hypothesis, which, together with (35), impies that

L(p(t̄) ∧g (p(t̄+ 1) + δ̂)) ≤ L(p(t̄+ 1) + δ̂) < L(p(t̄+ 1)).

Observe that

p(t̄) ∧g (p(t̄+ 1) + δ̂) = p(t̄) ∧g (p(t̄) + δ(t̄) + δ̂) = p(t̄) + δ′,

where δ′ = 0∧g (δ(t̄)+ δ̂) ∈ −2Z. This yields L(p(t̄)+ δ′) < L(p(t̄)+ δ(t̄)) and so δ′ ̸= δ(t̄),

contradicting the chocie of δ(t̄) since L(p(t̄) + δ(t̄)) = minδ∈−2
Z
L(p(t̄) + δ).
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We finally show that for all p ∈ ZN , L(p(t∗)) ≤ L(p) holds. By (33), we have L(p ∧g

p(t∗)) ≥ L(p(t∗)) since p ∧g p(t
∗) ≤g p(t

∗). We also have L(p ∨g p(t
∗)) ≥ L(p(t∗)) by (34).

Since L is a generalized submodular function, we have

L(p) + L(p(t∗)) ≥ L(p ∨g p(t
∗)) + L(p ∧g p(t

∗)) ≥ 2L(p(t∗)),

implying that L(p(t∗)) ≤ L(p). Hence, we see that p(t∗) is a minimizer of the Lyapunov

function L. Q.E.D.

Proof of Theorem 7 The price adjustment process considered in Theorem 7 is a

special case of the one in Theorem 6, the termination of the process in a finite number of

rounds follows from Theorem 6.

Let {p(t) | t = 0, 1, · · · , t∗} be the sequence of price vectors generated by the process.

Note that for t = 0, 1, · · · , t∗−1, the vector p(t+1) is an integer vector with p(t) ≤g p(t+1)

and p(t) ̸= p(t+ 1). We also have

min
δ∈2

Z

L(p(t∗) + δ) = L(p(t∗)).(36)

In the following, we show that p(t∗) = t holds.

We claim that p(t) ≤g p holds for t = 0, 1, · · · , t∗. Proof is done by induction on t.

Suppose, to the contrary, that there exists a price vector p(t) such that p(t) ≤g p but

p(t+ 1) ̸≤g p. Then, we have p(t) ∧g p = p(t) and

p(t) ≤g p(t+ 1) ∧g p ≤g p(t+ 1) and p(t+ 1) ∧g p ̸= p(t+ 1)(37)

Recall that p is a minimizer of L by Theorem 5. Hence, we have

L(p) ≤ L(p(t+ 1) ∨g p).(38)

Since L is a generalized submodular function, we have

L(p(t+ 1) ∨g p) + L(p(t+ 1) ∧g p) ≤ L(p(t+ 1)) + L(p).(39)

From (38) and (39) follows that L(p(t + 1) ∧g p) ≤ L(p(t + 1)). By the construction of

p(t+1), this implies that L(p(t+1)∧gp) = L(p(t+1)) and therefore p(t+1) ≤g p(t+1)∧gp,

contradicting the inequality (37).

By the claim above, we have p(t∗) ≤g p, in particular. Suppose, to the contrary, that

p(t∗) ̸= p. Then, p(t∗) ∧g p is less than p in at least one component with respect to the

order of ≤g. This implies that p(t∗) ∧g p is not a minimizer of L, i.e.,

L(p) < L(p(t∗) ∧g p)(40)

30



since p is the unique minimal minimizer of L with respect to the order of ≤g by Theorem

5. Since L is a generalized submodular function, we have

L(p(t∗) ∨g p) + L(p(t∗) ∧g p) ≤ L(p(t∗)) + L(p).(41)

From (40) and (41) follows that L(p(t∗)∨gp) < L(p(t∗)). Hence, there exists a strict convex
combination p′ of p(t∗) and p(t∗)∨g p such that p′ − p(t∗) ∈ 2 and L(p′) < L(p(t∗)) due to
the convexity of L. On the other hand, (31) and (36) imply that

L(p′) ≥ min
δ∈2

L(p(t∗) + δ) = min
δ∈2

Z

L(p(t∗) + δ) = L(p(t∗)),

a contradiction. Hence, p(t∗) = t holds. Q.E.D.

G Proof of Theorem 8

Sun and Yang (2006) establish their Theorem 4.1 by showing that every firm’s revenue

function satisfies the GSC condition. In the current more general model, we will show that

every firm’s revenue function is GM-concave and thus satisfies the GGSC condition by

Theorem 1. Then it follows from Theorem 5 that the model has a Walrasian equilibrium.

To prove that every firm revenue function R (here we ignore the identity index i) is

a GM-concave function, we first construct a directed graph and show that the revenue

function can be formulated as the maximum weight circulation problem of a flow network.

The graph G = (V,A) is constructed as follows. The set V = M ∪ W ∪ {S} represents

all nodes or vertices, where M = {m1,m2, · · · ,mn} is the family of all types of machines,

W = {w1, w2, · · · , wm} is the family of all types of workers, and S stands for the intersection

node. The set A = {(S,ml) | ml ∈ M}∪{(S,wk) | wk ∈ W}∪{(wk,ml) | wk ∈ W,ml ∈ M}
denotes the set of all arcs in the graph. Here the arc (S,ml) enters ml and leaves S. S

and ml are called the tail and the head of the arc, respectively. (S,wk) and (wk,ml) can

be explained in a similar manner.

A function ξ that assigns every arc a real value is called a flow. A flow ξ = (ξ(a) | a ∈
A) ∈ ZA is called a circulation if the flow conservation law holds at every node, i.e.,∑

{ξ(a) | arc a enters v} =
∑

{ξ(a) | arc a leaves v}, ∀v ∈ V.

Suppose that we are given a vector y = (y′, y′′) ∈ Ω, where

Ω = {(y′, y′′) ∈ ZS1 × ZS2 | 0 ≤ y′k ≤ dk, k ∈ S1, −bl ≤ y′′l ≤ 0, l ∈ S2}.

For our graphG = (V,A), we have the following capacity constraints and revenues (weights)

for the flow in each arc. For each arc (S,wk) ∈ A, it should satisfy the capacity constraint
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0 ≤ ξ(S,wk) ≤ y′k and its revenue w(S,wk) is equal to 0; for each arc (S,ml) ∈ A, it should

satisfy the capacity constraint y′′l ≤ ξ(S,ml) ≤ 0 and its revenue w(S,ml) is 0; for each arc

(wk,ml) ∈ A, it should satisfy the capacity constraint 0 ≤ ξ(wk,ml) ≤ ∞ and its revenue

w(wk,ml) is R(wk,ml).

The maximum weight (revenue) circulation problem is to find a circulation ξ ∈ ZA that

maximizes the total revenue
∑

a∈Aw(a)ξ(a) subject to the described capacity constraints.

Clearly, this maximum revenue depends on all y′k and y′′l and can be seen as the function

of the variables (y′, y′′) ∈ ZS1 × ZS2 . We denote this function by F (y′, y′′). Below we will

prove that F (y′, y′′) is an M ♮-concave function. Since the firm’s revenue function is given

as R(x′, x′′) = F (U(x′, x′′)) with (x′, x′′) ∈ ZS1 ×ZS2 , it is GM-concave by Proposition 1 in

the Appendix.

We now prove that the function F (y′, y′′) is an M ♮-concave function. M ♮-concavity of

the function F (y′, y′′) is rewritten as follows:

for every y = (y′, y′′), z = (z′, z′′) ∈ Ω and k∗ ∈ supp+(y− z), there exists some

l∗ ∈ supp−(y − z) ∪ {0} such that

F (y) + F (z) ≤ F (y − e(k∗) + e(l∗)) + F (z + e(k∗)− e(l∗)).

The proof below is quite similar to the one for Theorem 1.4 of Murota and Shioura (2005).

Notice, however, that while they prove M ♮-concavity in upper capacity only or in lower

capacity only, here we have to show that M ♮-concavity holds true both for upper capacity

and for lower capacity simultaneously.

Let y = (y′, y′′), z = (z′, z′′) ∈ Ω and k∗ ∈ supp+(y − z). We here consider the case of

k∗ ∈ S1 only since the case of k∗ ∈ S2 can be shown in the same way. Let ξ ∈ ZA and ζ ∈ ZA

be optimal circulations for y and z, respectively, i.e., ξ (resp., ζ) is a circulation satisfying

the capacity constraint with respect to y (resp., z) such that F (y) =
∑

a∈A w(a)ξ(a) (resp.,

F (z) =
∑

a∈A w(a)ζ(a)).

Suppose that ξ(S,wk∗) < yk∗ holds. Then, ξ (resp., ζ) is a circulation satisfying the

capacity constraint with respect to y − e(k∗) (resp., z + e(k∗)), implying that∑
a∈A

w(a)ξ(a) ≤ F (y − e(k∗)),
∑
a∈A

w(a)ζ(a) ≤ F (z + e(k∗)).

Hence, we have

F (y) + F (z) =
∑
a∈A

w(a)ξ(a) +
∑
a∈A

w(a)ζ(a) ≤ F (y − e(k∗)) + F (z + e(k∗)).

We then consider the case with ξ(S,wk∗) = yk∗ . Then, it holds that

ξ(S,wk∗) = yk∗ > zk∗ ≥ ζ(S,wk∗).
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Therefore, by a standard network-flow argument (see, e.g., Gale and Politof (1981) and

Murota and Shioura (2005)), it can be shown that there exists a sequence of distinct nodes

v1, v2, . . . , vh of graph G satisfying the following conditions:

• v1 = S, v2 = wk∗ .

• for each i = 1, 2, . . . , h, either (vi, vi+1) or (vi+1, vi) is an arc in A; this means

that the arc set

C = {a ∈ A | a = (vi, vi+1) or a = (vi+1, vi) for some i}

is an (undirected) circuit in G.

• for each i = 1, 2, . . . , h, if (vi, vi+1) ∈ A then ξ(vi, vi+1) > ζ(vi, vi+1) holds; if

(vi+1, vi) ∈ A then ξ(vi+1, vi) < ζ(vi+1, vi) holds.

Observe that (v1, v2) = (S,wk) and (v1, vh) are the only arcs in C incident to the node S,

and vh ∈ S1 ∪ S2 holds.

Using the circuit C, we define two new flows ξ′ and ζ ′ by

ξ′(a) =


ξ(a)− 1 (if a = (vi, vi+1) for some i),

ξ(a) + 1 (if a = (vi+1, vi) for some i),

ξ(a) (otherwise),

ζ ′(a) =


ζ(a) + 1 (if a = (vi, vi+1) for some i),

ζ(a)− 1 (if a = (vi+1, vi) for some i),

ζ(a) (otherwise).

Then, the flows ξ′ and ζ ′ are circulations satisfying∑
a∈A

w(a)ξ′(a) +
∑
a∈A

w(a)ζ ′(a) =
∑
a∈A

w(a)ξ(a) +
∑
a∈A

w(a)ζ(a).

We then show that there exists some l∗ ∈ supp−(y − z) ∪ {0} such that ξ′ (resp., ζ ′)

satisfies the capacity constraint with respect to y − e(k∗) + e(l∗) (resp., z + e(k∗)− e(l∗)).

We have

0 ≤ ξ′(S,wk) = ξ(S,wk) ≤ y′k, 0 ≤ ζ ′(S,wk) = ζ(S,wk) ≤ z′k if wk ̸∈ {wk∗ , vh},
0 ≤ ζ(S,wk∗) ≤ ξ′(S,wk∗) = ξ(S,wk∗)− 1 = y′k∗ − 1,

0 ≤ ζ ′(S,wk∗) = ζ(S,wk∗) + 1 ≤ z′k∗ + 1,

y′′l ≤ ξ′(S,ml) = ξ(S,ml) ≤ 0, z′′l ≤ ζ ′(S,ml) = ζ(S,ml) ≤ 0 if ml ̸= vh.

Suppose that vh = wl∗ for some l∗ ∈ S1. Then, we have

0 ≤ ξ′(S,wl∗) = ξ(S,wl∗) + 1 ≤ y′l∗ + 1,

0 ≤ ξ(S,wl∗) ≤ ζ ′(S,wl∗) = ζ(S,wl∗)− 1 ≤ z′l∗ − 1,
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implying that ξ′ (resp., ζ ′) satisfies the capacity constraint with respect to y− e(k∗)+ e(l∗)

(resp., z + e(k∗)− e(l∗)).

We then suppose that vh = ml∗ for some l∗ ∈ S2. It holds that

y′′l∗ + 1 ≤ ξ(S,ml∗) + 1 = ξ′(S,ml∗) ≤ ζ(S,ml∗) ≤ 0,

z′′l∗ − 1 ≤ ζ(S,ml∗)− 1 = ζ ′(S,ml∗) ≤ 0,

implying that ξ′ (resp., ζ ′) satisfies the capacity constraint with respect to y− e(k∗)+ e(l∗)

(resp., z + e(k∗)− e(l∗)).

Hence, we have

F (y − e(k∗) + e(l∗)) + F (z + e(k∗)− e(l∗)) ≥
∑
a∈A

w(a)ξ′(a) +
∑
a∈A

w(a)ζ ′(a)

=
∑
a∈A

w(a)ξ(a) +
∑
a∈A

w(a)ζ(a)

= F (y) + F (z).

This concludes the proof for M♮-concavity of F .
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