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On a Fundamental Property of Talman-Yang’s Auction under Price Control1

Zaifu Yang2 and Dongmo Zhang3

Abstract: Recently Talman and Yang (2008) examined an assignment market

under price control. In the market a number of heterogeneous items are to be

sold to several bidders. Each bidder has a valuation on each item. The seller

has a reservation price for every item. Meanwhile every item has a ceiling price

imposed by a central planner. Due to price controls, there usually do not exist

market-clearing prices. To deal with this allocation problem, Talman and Yang

proposed a dynamic auction with rationing that always yields a constrained

equilibrium. In this paper we establish that this dynamic auction can actually

find a core allocation in finite steps, resulting in a Pareto efficient outcome. A

core allocation consists of an assignment of items and a supporting price vector

for the assignment.

Keywords: Ascending auction, multi-item auction, housing market, price

control, Pareto efficiency, core.

JEL classification: D44.

1 Introduction

We examine a general assignment market under price control. In this market a seller

wishes to sell a number of items, say, houses, to many potential buyers. Each buyer has

a valuation on every item. The seller has a reservation price for every item. Meanwhile,

a central planner imposes a ceiling price on every item. The basic question is how to

1Part of this research was done while the first author was visiting the University of Western Sydney,

Australia. He wishes to thank the Institute and ARC (DPDP0988750) for the hospitality and financial

support.
2Department of Economics and Related Studies, University of York, York, UK,

zaifu.yang@york.ac.uk
3Intelligent Systems Laboratory, University of Western Sydney, Australia, d.zhang@uws.edu.au

1



allocate these items as efficiently as possible through a price system satisfying both the

reservation and ceiling price constraints. Typical examples include public housing and

on-campus housing. Price control has been also used on other occasions. For example, to

prevent breakdown of stock markets, often ceilings and floors are imposed upon the price

of each stock; price controls are used to reduce inflation or deflation; and minimum wages

are employed to protect certain groups of the society. See e.g., Drèze (1975), Cox (1980),

and Arnott (1995).

The assignment market under price control we study here reduces to the famous assign-

ment market investigated by Koopmans and Beckmann (1957) and Shapley and Shubik

(1971) where there is no price or rent control, i.e., the ceiling price of each item is suf-

ficiently large. It is well-known that the assignment market has at least one Walrasian

equilibrium (Koopmans and Beckmann, 1957) and the set of Walrasian equilibrium price

vectors forms a lattice (Shapley and Shubik, 1971). Due to price controls, a Walrasian

equilibrium usually fails to exist. Traditionally, to deal with this problem, a weaker solu-

tion called constrained equilibrium has been developed. In this solution a rationing scheme

must be used to curb consumers’ demand or seller’s supply on certain goods. The inter-

ested reader could refer to Drèze (1975), Cox (1980), van der Laan (1980), Kurz (1982),

Azariadis and Stiglitz (1983), Dehez and Drèze (1984), Weddepohl (1987), Herings, Tal-

man and Yang (1996), Talman and Yang (2008) among many others. Rationing will help

prices to facilitate the allocation of goods among agents. Unfortunately, it is known that

a constrained equilibrium need not be Pareto efficient; see e.g., Böhm and Müller (1977),

Herings and Konovalov (2009).

While the literature on price or rent control has focused almost entirely on economic

models with divisible goods, Talman and Yang (2008) recently have studied the assignment

market under price control where items for sale are inherently indivisible, such as houses or

apartments. Modifying the processes of Crawford and Knoer (1981), Demange, Gale and

Sotomayor (1986), Talman and Yang (2008) propose an ascending auction with rationing

that always generates a constrained equilibrium.4 The constrained equilibrium consists of

4Andersson and Svensson (2012) examined a similar problem and proposed a different constrained

equilibrium which depends on an exogenously given priority-ordering on buyers.
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an assignment of items, a price vector and a rationing scheme. In this paper instead of

using the notion of constrained equilibrium, we adopt the concept of core allocation to the

current model. The obvious advantage of this solution over the constrained equilibrium

is that firstly every core allocation is Pareto efficient and stable against any coalition

deviation, secondly the core allocation is conceptually simpler, more intutitive and more

straightforward than the constrained equilibrium, and thirdly the core allocation has been

widely used in general exchange economies and game theoretic models; see e.g., Scarf

(1967). A core allocation consists of only an assignment of items and a supporting price

vector for the assignment. It does not use any rationing scheme. We demonstrate that

the auction proposed by Talman and Yang (2008) always finds a core allocation in finitely

many steps, thus resulting in a Pareto efficient outcome.

The rest of the paper proceeds as follows. Section 2 sets up the model. Section 3

presents the main results.

2 The Model

A seller wishes to sell n heterogenous items, denoted by 1, 2, · · ·, n, to m potential bidders

indexed by 1, 2, · · ·, m. We use the set N = {0, 1, 2, · · · , n} to represent all items including

the dummy good 0 and the set M = {1, 2, · · · ,m} to stand for all bidders. The dummy

item 0 has no value but does no harm and can be assigned to any number of bidders.

Every bidder i ∈ M has a valuation V i(j) ∈ Z+ in monetary units on each item j ∈ N

with V i(0) = 0. The seller has a reservation price p
j
∈ Z+ for each item j ∈ N below which

the item will not be sold. In addition, a central planner, say, the government imposes rent

controls. That is, each item j ∈ N has a ceiling price p̄j ∈ Z+ above which the item is

not permitted to sell. By convention p
0
= p̄0 = 0. When there are no rent controls, i.e.,

p̄j = ∞ for every j = 1, 2, · · · , n, the model reduces to the famous assignment market

model as studied by Koopmans and Beckmann (1957), Shapley and Shubik (1971).

A feasible assignment π assigns every bidder i ∈ M an item π(i) such that no item in

N \{0} is assigned to more than one bidder. Note that a feasible allocation may assign the

dummy good to several bidders and a real item j ̸= 0 may not be assigned to any bidder
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at all. An item j ≥ 1 is unassigned at π if there is no bidder i such that π(i) = j. Let

U(π) denote the set of all unassigned items at π.

A price vector p ∈ IRN
+ indicates a price for every good. The price of each good

j ∈ N \ {0} is not completely flexible and is restricted to an interval [p
j
, p̄j], where p

j
and

p̄j are integers and 0 ≤ p
j
< p̄j. The set

P = {p ∈ IRN | p0 = 0, p
j
≤ pj ≤ p̄j, j = 1, · · · , n }

denotes the set of admissible prices. The price of the dummy good is always fixed at zero.

A feasible allocation (π, p) consists of a feasible assignment π and an admissible price

vector p such that pj = p
j
for every unassigned item j ∈ U(π).

A feasible assignment π∗ is socially optimal if

∑
i∈M

V i(π∗(i)) +
∑

j∈U(π∗)

p
j
≥

∑
i∈M

V i(π(i)) +
∑

j∈U(π)

p
j

for every feasible assignment π.

A feasible allocation (π, p) is Pareto efficient if there does not exist another feasible

allocation (ρ, q) such that V i(ρ(i)) − qρ(i) > V i(π(i)) − pπ(i) for every bidder i ∈ M , and∑
h∈N qh >

∑
h∈N ph for the seller.

Without rent controls (or price ceilings), the demand set of bidder i ∈ M at a price

vector p ∈ IRN
+ is given by

Di(p) = {j | V i(j)− pj ≥ V i(k)− pk for every k ∈ N}.

A Walrasian equilibrium consists of a feasible assignment π and a price vector p ∈ IRN
+

such that π(i) ∈ Di(p) for all i ∈ M and pj = p
j
for any unassigned good j at π. It

is well-known from Koopmans and Beckmann (1957), Shapley and Shubik (1971) that a

Walarasian equilibrium exists in the economy when there are no rent controls, i.e., p̄j = +∞

for all j. Furthermore, Crawford and Knoer (1981) and Demange, Gale and Sotomayor

(1986) propose two elegant auctions which can always find a Walrasian equilibrium.

In the case of rent control, a Walrasian equilibrium may not exist since the equilibrium

price vector may not be admissible. This can be easily seen from the following example.

Suppose that a seller wishes to sell one item 1 to two bidders. The reservation price is zero

and the ceiling price is p̄1 = 3. Bidder 1’s valuation is 5 and bidder 2’s valuation is 7. It
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is clear that at any admissible price p1, 0 ≤ p1 ≤ 3, that the seller can charge, the item is

always in excess demand. Therefore it is impossible to have a Walrasian equilibrium.

To deal with rent controls or price rigidities which fail the existence of Walrasian equilib-

rium, a weaker solution called constrained equilibrium has been explored. In this solution

rationing is used to curb either demand or supply but never both. There is a rich liter-

ature on this subject; see e.g., Drèze (1975), Dehez and Drèze (1984), Cox (1980), van

der Laan (1980), Kurz (1982), Azariadis and Stiglitz (1983), Weddepohl (1987), Arnott

(1995), Herings, Talman and Yang (1996), and Talman and Yang (2008) among many oth-

ers. Unfortunately, it is known that a constrained equilibrium need not be Pareto efficient;

see e.g., Böhm and Müller (1977), Herings and Konovalov (2009).

In this paper we adopt the notion of core to the current model. This concept is more

general than that of Walrasian equilibrium and is a widely used solution for general ex-

change economies and non-transferable utility games, see Scarf (1967). It does not use

rationing and is more intuitive and more straightforward than the constrained equilibrium.

It is also more familiar to economists.

Definition 2.1 A feasible allocation (π, p) is a core allocation if there do not exist a

coalition S of bidders and another feasible allocation (ρ, q) such that ρ(i) = 0 for every

i ∈ M \ S, and V i(ρ(i))− qρ(i) > V i(π(i))− pπ(i) for every i ∈ S, and
∑

h∈N qh >
∑

h∈N ph.

Clearly, a core allocation must be Pareto efficient.

3 The Talman-Yang Dynamic Auction

Talman and Yang’s auction works roughly as follows: The auctioneer starts the auction at

the reservation prices of the items for sale. Then the bidders respond with their demand

sets. The auctioneer accordingly eliminates over-demanded items by increasing their prices

or by a lottery to determine who should be assigned the item when its price has reached its

ceiling price. The auction stops when there are no over-demanded items at which a core

allocation will be shown to exist.

A set of real items S ⊆ N \ {0} is over-demanded at a price vector p ∈ IRN , if the

number of bidders who demand only items in S is strictly greater than the number of
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items in S, i.e., |{i ∈ M | Di(p) ⊆ S}| > |S|. An over-demanded set S is said to be

minimal if no strict subset of S is an over-demanded set. Now we are ready to describe

the Talman-Yang dynamic auction under price rigidities. Note that in the auction process,

since the set of bidders and the set of items are shrinking, the demand set of each bidder

and the over-demanded sets need to be adapted accordingly.

The Talman-Yang Auction

Step 1: The auctioneer announces the set of items N = {0, 1, · · · , n} for sale, the

reservation price vector p and the ceiling price vector p̄. The bidders, denoted by

M = {1, · · · ,m}, come to bid. Let t := 0 and pt := p. Go to Step 2.

Step 2: The auctioneer asks every remaining bidder i to report his demand set Di(pt)

on the remaining items and checks whether there is any over-demanded set of items

at pt. If there is no over-demanded set of items, the auction stops. Otherwise, there

is at least one over-demanded set. The auctioneer first chooses an over-demanded set

S of items and next checks whether the price of any item in the set S has reached its

ceiling price. Let S̄ := {j ∈ S | ptj = p̄j}. If S̄ is empty, the auctioneer increases the

price of each item in S by one unit and keeps the prices of all other items unchanged.

Let t := t+ 1 and return to Step 2. If S̄ is not empty, go to Step 3.

Step 3: The auctioneer picks an item at random from S̄ and asks all bidders who

demand the item to draw lots for the right to buy the item. Then the (unique)

winning bidder gets the item by paying its current price and exits from the auction.

Delete this bidder from M and delete his won item from N . If M = ∅ or N = ∅, the

auction stops. Otherwise, let t := t+ 1 and return to Step 2.

Note that in Step 2 the auctioneer just needs to choose an over-demanded set. This

rule is more general and more flexible than the original one of Talman and Yang (2008)

which requires a minimal over-demanded set.

Before proving the convergence of the auction, we illustrate by example how the auction

actually operates.
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Example 1: Suppose that there are five bidders (1, 2, 3, 4, 5) and four items (0, 1, 2,
3, 4) in a market. The reservation and ceiling price vectors are p = (0, 5, 4, 1, 5), and
p̄ = (0, 6, 6, 4, 7). Bidders’ values are given in Table 1.

Table 1: Bidders’ values on each item.

Items 0 1 2 3 4

Bidder 1 0 4 3 10 7

Bidder 2 0 7 6 20 3

Bidder 3 0 5 5 40 7

Bidder 4 0 9 4 40 2

Bidder 5 0 6 2 40 10

The auction starts at the price vector p0 = (0, 5, 4, 1, 5). Then bidders report their

demand sets: D1(p0) = {3}, D2(p0) = {3}, D3(p0) = {3}, D4(p0) = {3} and D5(p0) =

{3}. The set S = {3} is a minimal over-demanded set and the auctioneer adjusts p0 to

p1 = (0, 5, 4, 2, 5). The demand sets and price vectors and other relevant data generated

by the auction are illustrated in Table 2. In Step 3, the price of item 3 has reached its

upper bound 4. The auctioneer assigns randomly item 3, say, to bidder 1. So bidder 1

gets item 3 by paying 4 dollars and leaves the auction. Then we have M = {2, 3, 4, 5}

and N = {0, 1, 2, 4}. The auctioneer adjusts p3 to p4 = (0, 5, 4, 5). In Step 7, there is no

over-demanded set of items at p7= {6, 4, 7} and the auctioneer can assign item 2 to bidder

2, item 1 to bidder 4, and item 4 to bidder 5. In the end, bidder 1 gets item 3 and pays 4;

bidder 2 gets item 2 and pays 5; bidder 3 gets nothing and pays nothing; bidder 4 gets item

1 and pays 6; bidder 5 gets item 4 and pays 7. Let p∗ = (0, 6, 5, 4, 7) and π∗ = (3, 2, 0, 1, 4).

The auction ends up with the allocation (π∗, p∗).

Let us give a simple argument showing that (π∗, p∗) is a core allocation. At (p∗, π∗),

the seller’s revenue is 22, bidder 1’s profit is 6, bidder 2’s is 1, bidder 3’s is 0, bidder 4’s is

3, and bidder 5’s is 3. Suppose to the contrary that (π∗, p∗) is not a core allocation. There

must exist a blocking coalition consisting of the seller and some bidders who can make

themselves better off. In order for the seller to be better off, her revenue must be greater

than 22. Notice that all prices p∗j except p∗2 have reached the ceiling prices. So the seller
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has to sell her goods at a new price vector q = (q0, q1, q2, q3, q4) that must satisfy q0 = 0,

q1 = p∗1 = 6, p∗2 = 5 < q2 ≤ 6, q3 = p∗3 = 4, and q4 = p∗4 = 7. It means that all items must

be sold and the possible blocking coalition must have at least 4 bidders. Observe that item

2 can be sold only to bidder 2. But then bidder 2’s profit will be less than what he gets

from (π∗, p∗). This shows that (π∗, p∗) cannot be blocked by any coalition and thus must

be a core allocation.

Table 2: The data generated by the auction for the Example.

Step Prices N M S D1(p) D2(p) D3(p) D4(p) D5(p)

0 (0, 5, 4, 1, 5) {0, 1, 2, 3, 4} {1, 2, 3, 4, 5} {3} {3} {3} {3} {3} {3}

1 (0, 5, 4, 2, 5) {0, 1, 2, 3, 4} {1, 2, 3, 4, 5} {3} {3} {3} {3} {3} {3}

2 (0, 5, 4, 3, 5) {0, 1, 2, 3, 4} {1, 2, 3, 4, 5} {3} {3} {3} {3} {3} {3}

3 (0, 5, 4, 4, 5) {0, 1, 2, 3, 4} {1, 2, 3, 4, 5} ∅ {3} {3} {3} {3} {3}

4 (0, 5, 4, 5) {0, 1, 2, 4} {2, 3, 4, 5} {4} {1, 2} {4} {1} {4}

5 (0, 5, 4, 6) {0, 1, 2, 4} {2, 3, 4, 5} {2, 4} {1, 2} {1, 4} {1} {4}

6 (0, 6, 4, 7) {0, 1, 2, 4} {2, 3, 4, 5} {2} {2} {2} {1} {4}

7 (0, 6, 5, 7) {0, 1, 2, 4} {2, 3, 4, 5} ∅ {1, 2} {0, 2, 4} {1} {4}

The following finite convergence theorem establishes a fundamental property of the

auction. That is, the allocation found by the Talman-Yang auction is always in the core.

Theorem 3.1 The Talman-Yang auction always finds a core allocation in a finite num-

ber of steps.

Proof: We first show that the auction terminates in finitely many steps. This follows

immediately from the fact that the auction is ascending and the valuation of every bidder

on each item is finite. Let (π, p) be the allocation generated by the auction. It remains to

prove that (π, p) is a core allocation.

Suppose to the contrary that (π, p) were not a core allocation. Then there would exist
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a group S of bidders and an allocation (ρ, q) blocking (π, p). So for the seller, we have

∑
j∈N q(j) =

∑
i∈S qρ(i) +

∑
j∈U(ρ) pj

>
∑

i∈M pπ(i) +
∑

j∈U(π) pj

=
∑

j∈N pj

It is clear that there exists some j∗ ∈ N such that

qj∗ > pj∗ (3.1)

This means that some bidder i∗ ∈ S must be assigned item j∗ at ρ, i.e., ρ(i∗) = j∗. On the

other hand, for every bidder i ∈ S, we have

V i(ρ(i))− qρ(i) > V i(π(i))− pπ(i) (3.2)

For bidder i∗, it follows from (3.1) and (3.2) that

V i∗(j∗)− pj∗ > V i∗(j∗)− qj∗

> V i∗(π(i∗))− pπ(i∗)

But then this inequality would imply that at prices p, bidder i∗ should have rejected item

π(i∗) in favor of item j∗, yielding a contradiction. Observe that this argument is valid,

because item j∗ cannot be any item that has reached its upper price level p̄j∗ and has been

sold before the auction stops, for otherwise, then we would have qj∗ = pj∗ = p̄j∗ which then

contradicts inequality (3.1).

This demonstrates that (π, p) is indeed a core allocation. 2
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