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Tommy Andersson1, Jens Gudmundsson2, Dolf Talman3, and Zaifu Yang4

Abstract

A group of heterogenous agents may form partnerships in pairs. All single agents as well as all
partnerships generate values. If two agents choose to cooperate, they need to specify how to split
their joint value among one another. In equilibrium, which may or may not exist, no agents have
incentives to break up or form new partnerships. This paper proposes a dynamic competitive
adjustment process that always either finds an equilibrium or exclusively proves the nonexistence
of any equilibrium in finitely many steps. When an equilibrium exists, partnership and revenue
distribution will be automatically and endogenously determined by the process. Moreover, several
fundamental properties of the equilibrium solution and the model are derived.

Keywords: Partnership formation, adjustment process, equilibrium, assignment market.
JEL classification: C62, C72, D02.

1. Introduction

Partnership is a fundamental and common pattern observed in many social and economic re-
lations. We consider a group of self-interested agents or firms who individually choose to act
alone, or, if it is to their mutual benefit, form partnerships in pairs. Any agent that stays inde-
pendent generates a value for herself, whereas a cooperating pair must agree upon how to split
their jointly generated value. The values together with the corresponding set of agents form the
basis of the partnership formation problem. In this competitive environment agents cannot simply
choose whom to cooperate with – if they do not offer a sufficiently generous split of the joint value,
their potential partner may look elsewhere for agents to cooperate with. Hence, each agent faces
a trade-off between trying to maximize her own benefit while still bestowing her partner with a
large enough fraction of their joint value. In equilibrium, no agents have incentives to break up or
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form new partnerships. More precisely, no agent gets less than she generates on her own, whereas
no two agents get less in total than their joint value.

Two special but prominent cases of the partnership formation problem are the widely studied
assignment and marriage matching markets; see Koopmans and Beckmann (1957), Shapley and
Shubik (1971), and Becker (1973) among many others. These markets are two-sided in the sense
that two disjoint groups are interacting, for example buyers and sellers, firms and workers, or men
and women. This separation is erased in the partnership formation problem – agents may well be
different (in the values they create), but they are nevertheless all gathered on “the same side” of
the market. The assignment markets have been extensively investigated, predominantly with an
equilibrium concept that coincides with the core. It is known not only that equilibrium always
exists (Koopmans and Beckmann, 1957), but also that the set of equilibria forms a lattice (Shapley
and Shubik, 1971; Demange and Gale, 1985). In practice, these markets are likely affected by
informational asymmetry: the surplus created by a firm employing a worker is information at
best available to that particular firm and worker. For assignment markets, several adjustment
processes have been proposed that converge to market equilibrium and in addition do not require
agents to disclose all of their private information (which they may be reluctant to). Two of the
most important ones are due to Crawford and Knoer (1981), and Demange, Gale, and Sotomayor
(1986).5

Unlike the assignment markets which always have an equilibrium, there exist partnership for-
mation problems that do not have any equilibrium. For instance, consider the following problem
with three agents – called 1, 2, and 3. Assume there is no gain from staying independent, whereas
any partnership generates a value of 3 dollars. Formally, a matching is used to keep track of who is
cooperating with whom, under the restriction that each agent at most may have one partner. Hence,
if agents 1 and 2 form a partnerships, then agent 3 necessarily remains single. Suppose that agents
1 and 2 allocate one dollar to agent 1 and two dollars to agent 2 out of their jointly generated 3
dollars. This situation is not stable as agent 3 can lure agent 1 away from agent 2 by offering him
two dollars – this is beneficial for agent 1 (he gets two instead of one) as well as for agent 3 (he
keeps one instead of zero). Hence, the partnership between agents 1 and 2 is broken up, and a
new one is formed between agents 1 and 3. By symmetry, this situation is no less unstable than
the previous. Applying similar arguments to different divisions of the joint values, one can verify
that there exists no equilibrium. To ensure the existence of an equilibrium, several necessary and
sufficient conditions have been identified. Chiappori, Galichon, and Salanié (2012) and Talman
and Yang (2011) use the linear programming approach to examine the existence problem, while
Eriksson and Karlander (2001) explore a graph-theoretic method. In particular, Talman and Yang
(2011, Theorem 1) introduce a general and natural sufficient condition which is easily satisfied by
the assignment markets. Chiappori, Galichon, and Salanié (2012) demonstrate that the existence
of an equilibrium is restored if the economy is duplicated by ”cloning” each agent.6

5All papers cited so far have assumed quasi-linear utility. The problems have been analyzed for more general
structures on the utility functions, see for instance Demange and Gale (1985), Kaneko and Yamamoto (1986), Quinzii
(1984), and Svensson (1983). In turn, there is an extensive literature on matching markets where monetary transfers
are not allowed, ranging from the house swapping market of Shapley and Scarf (1974) to the marriage and roommate
problems of Gale and Shapley (1962).

6Relatedly, Sotomayor (2005) shows that each core outcome coincides with what we call an equilibrium. Klaus
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Due to its inherent nature and generality, none of the existing adjustment processes (Crawford
and Knoer, 1981; Demange, Gale, and Sotomayor, 1986) can be applied to the partnership forma-
tion problem. The main contribution of this paper is to propose a novel adjustment process that
can always either find an equilibrium or exclusively disprove the existence of any equilibrium in
finitely many steps. This process imitates a kind of bargaining and negotiation in real life business
and is built upon two principles: market adjustment and fairness. It can be roughly described as
follows. Each agent initially announces her stand-alone value. We assume that each agent does
so without any strategic deliberations. At each step of the process, every agent looks for those
agents who can bring her the highest payoff. At this point, agents’ demand may be biased towards
some agents, say because they are more productive and create larger values. To get the market in
balance, we alter the payoffs for agents who are overdemanded, where a set of agents S is defined
to be overdemanded if there are fewer agents in S than there are agents only demanding agents in
S . By increasing the payoffs for these agents, we make them less attractive compared to the other
agents. By repeatedly increasing payoffs for minimal overdemanded sets, we eventually get rid
of all overdemand. We prove that this process always terminates in a finite number of steps. At
the last step, if it is possible to find a matching among the agents such that everyone is matched
to someone they demand, then there exists an equilibrium. On the other hand, if such a matching
does not exist, neither does an equilibrium.

The lattice structure of the equilibrium price vectors plays an important role in the analysis
of Demange, Gale, and Sotomayor (1986) for the assignment market. Their auction always ends
up with the minimum equilibrium price vector. However, the set of equilibrium payoff vectors
in the partnership formation problem need not be a lattice. We instead find that the set of payoff
vectors that induce no overdemanded sets is a lower semilattice. We show that our adjustment
process finds the unique minimum element of this set. Moreover, we show how this particular
payoff vector can be used to prove or disprove the existence of an equilibrium and is therefore a
stepping stone on the path to equilibrium if one exists. Our adjustment process can be seen as an
innovative and significant generalization of Crawford and Knoer (1981) and Demange, Gale, and
Sotomayor (1986) from the assignment markets to the partnership formation models. Similar to
their processes, an important feature of our process is that it does not require agents to disclose
their entire information on values.

The paper is organized as follows. In Section 2, we present the model. In Section 3, the
adjustment process is introduced accompanied by the four main theorems. In Section 4, we discuss
the relation between our findings and the assignment markets. We conclude in Section 5. Most of
the proofs are deferred to the Appendix.

2. The Model

Consider a competitive environment where a finite group of self-interested agents (or firms)
wish to make joint ventures. Let N = {1, . . . , n} denote the set of agents. Agent i ∈ N can work
alone and generate a stand-alone value of v({i}), or form a partnership with some other agent j
and generate a joint value of v({i, j}). It is natural to assume that all values v({i}) and v({i, j}) are

and Nichifor (2010) study properties of equilibrium using a consistency axiom.
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integers, e.g., that the revenues are specified to the nearest hundred dollars or nearest dollar. The
pair (N, v) is called a partnership formation problem.

A widely accepted solution to any competitive model is the notion of (competitive) equilib-
rium. For the partnership formation problem, an equilibrium consists of a matching and a payoff
distribution. A matching µ on the set N of agents is a one-to-one mapping from N to N satisfying
µ(i) = j if and only if µ( j) = i. M denotes the set of all matchings on N. We call agent i ∈ N the
partner of agent j ∈ N if µ(i) = j. With some abuse of notation, we denote µ(S ) = {µ(i) | i ∈ S }
for S ⊆ N. Note that #µ(S ) = #S . A payoff vector p = (p1, . . . , pn) ∈ Rn specifies a payoff pi for
each agent i ∈ N.

Definition 1. A pair (µ, p∗) ∈ M × Rn is an equilibrium for the partnership formation problem
(N, v) if for all i ∈ N it holds that

(i) p∗i ≥ v({i}) (individual rationality),
(ii) p∗i + p∗k ≥ v({i, k}) for all k , i (stability),

(iii) p∗i = v({i}) if µ(i) = i, and p∗i + p∗j = v({i, j}) if j = µ(i) and j , i (feasibility).

The expected payoff for agent i ∈ N of being matched to agent k ∈ N, k , i, at payoff vector
p ∈ Rn, is given by

P(i, k, p) = pi +
v({i, k}) − pi − pk

2
=

v({i, k}) + pi − pk

2
, (1)

i.e., if the partnership is formed, both agents expect to receive their payoff and then split the
remaining surplus equally among them. The expected payoff of an agent i ∈ N being single is
given by P(i, i, p) = v({i}).

At a given payoff vector, each agent demands the agents from whose partnership she gets the
highest expected payoff. Hence, the demand correspondence of agent i ∈ N, at payoff vector
p ∈ Rn, is given by

Di(p) = { j ∈ N | P(i, j, p) ≥ P(i, k, p) for all k ∈ N}.

An agent j ∈ N is demanded by agent i ∈ N at payoff vector p ∈ Rn if j ∈ Di(p), and a matching
µ ∈ M is demanded by S ⊆ N at p if µ(i) ∈ Di(p) for all i ∈ S .

Those agents who demand only agents in S ⊆ N at payoff vector p ∈ Rn form the set O(S , p) =
{i ∈ N | Di(p) ⊆ S }. If #O(S , p) > #S , the set S is overdemanded at payoff vector p. Note that
neither the empty set nor N can be overdemanded at any payoff vector. The set of individually
rational payoff vectors at which there are no overdemanded sets is given by

H = {p ∈ Rn | pi ≥ v({i}) for all i ∈ N and #O(S , p) ≤ #S for all S ⊆ N}.

An overdemanded set S ⊆ N at payoff vector p ∈ Rn is minimal if no proper subset T ⊂ S is
overdemanded at p. Similarly, U(S , p) = {i ∈ N | Di(p) ∩ S , ∅} represents the set of agents that
demand some agent in S at p. If #U(S , p) < #S , the set S is underdemanded at p.

The following auxiliary results concerning overdemanded or underdemanded sets are interest-
ing on their own right and will be used to prove our major results in Section 3.
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Lemma 1. If S ⊂ N is minimal overdemanded at p, then #[U(T, p)∩O(S , p)] ≥ #T for all T ⊆ S .7

Proof. Note first that the statement is trivially true if T = ∅. For this reason it is henceforth
assumed that T , ∅. Next, note that U(T, p)∩O(S , p) = O(S , p)\O(S \T, p). Because O(S \T, p) ⊂
O(S , p), it follows that #[U(T, p) ∩ O(S , p)] = #O(S , p) − #O(S \ T, p). Note that #O(S , p) > #S
and #O(S \ T, p) ≤ #(S \ T ), as S is minimal overdemanded at p and T , ∅. These observations
together with the above condition and that T ⊆ S give

#[U(T, p) ∩ O(S , p)] = #O(S , p) − #O(S \ T, p)
> #S − #O(S \ T, p)
≥ #S − #(S \ T )
= #S − (#S − #T )
= #T,

yielding the desired conclusion.

Lemma 2. A set S ⊆ N is overdemanded at p if and only if its complement N\S is underdemanded
at p.

Proof. Take any payoff vector p and any S ⊆ N. By definition it holds that U(N \ S , p) =
N \ O(S , p). Note that the statement of this lemma is equivalent to

#O(S , p) > #S ⇔ #U(N \ S , p) < #(N \ S ). (2)

Because O(S , p) ⊆ N, we obtain #U(N \ S , p) = #N − #O(S , p). Since #N = #S + #(N \ S ), this
implies #O(S , p) − #S = #(N \ S ) − #U(N \ S , p). Then condition (2) holds.

3. Main Results

This section starts by demonstrating that the set H is nonempty and that it contains a unique
minimum payoff vector. The key in proving these properties is a dynamic procedure called Pro-
cess 1. This process can be seen as a bidding procedure where each agent starts by announcing her
stand-alone value. A fictitious “auctioneer” then asks the agents to report their demand sets given
the revealed information. Based on the reported demand sets, the auctioneer checks if there is any
overdemanded set. If there is no overdemanded set, the process stops. Otherwise, the auctioneer
identifies a minimal overdemanded set, increases the payoff of every agent in the minimal overde-
manded set by one unit of money (recall that all values are assumed to be integers) and keeps
the payoff of any other agent unchanged. Then each agent reports her demand set at the updated
payoff vector, and so on. Formally, the procedure can be described as follows.

Process 1. Initialize t := 0 and let p0 = (v({1}), . . . , v({n})).

7Andersson, Andersson, and Talman (2012, Theorem 2) demonstrated that this property holds for any minimal
overdemanded set also at the assignment market. Lemma 1 can be seen as a generalization of their result as the
assignment market is a special case of the partnership formation problem (see Section 4).
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Iteration pt D1(pt) D2(pt) D3(pt) D4(pt) D5(pt) MOD set

t = 0 (2, 1, 0, 0, 0) {4} {3} {4} {3} {3} {3}
1 (2, 1, 1, 0, 0) {4} {3,5} {4} {3} {3} {3}
2 (2, 1, 2, 0, 0) {4} {5} {4} {1,3} {3} {4}
3 (2, 1, 2, 1, 0) {4} {5} {4,5} {1,3} {3} {4,5}
4 (2, 1, 2, 2, 1) {4} {3,5} {4,5} {1,3} {3} {1,3,4,5}
5 (3, 1, 3, 3, 2) {4} {2,3,5} {4,5} {1,3} {3} —

Table 1: Summary of the iterations in Process 1 for Example 1.

1. Collect the demand correspondences Di(pt) for all i ∈ N.
2. If there is no overdemanded set at pt, terminate the process. Otherwise, pick a minimal

overdemanded set S t, compute the updated payoff vector pt+1 whose components are given
by:

pt+1
i =

pt
i + 1 if i ∈ S t

pt
i otherwise,

set t := t + 1 and go to Step 1.

Because Process 1 is central for our analysis, it is instructive to illustrate it via an example.

Example 1. Suppose that N = {1, 2, 3, 4, 5} and construct the value function v such that v({i, j}) is
the (i, j)th entry of the matrix 

2 3 6 8 4
3 1 4 0 3
6 4 0 8 7
8 0 8 0 3
4 3 7 3 0

 .
The process starts at the payoff vector p0 = (2, 1, 0, 0, 0), being the vector of diagonal elements
representing the stand-alone values. At this step, agents 1 and 3 both only demand agent 4, whereas
agents 2, 4, and 5 only demand agent 3. There are in total eleven different overdemanded sets,
though only two are minimal: {3} and {4}. It is with no loss that we choose the one over the other;
the one that is not chosen remains a minimal overdemanded set in the upcoming iteration. Hence,
say {3} is chosen as the minimal overdemanded set for which payoffs are increased. The process
then reaches payoff p1 = (2, 1, 1, 0, 0). See Table 1 for the demand sets and the selected minimal
overdemanded sets (MOD set) in each step. Notice that {4} remains an overdemanded set at p1.
The process eventually terminates at payoff vector p5 = (3, 1, 3, 3, 2), where no set of agents is
overdemanded.

Theorem 1. The setH is nonempty for any partnership formation problem.

Proof. Take any partnership formation problem (N, v). We show that Process 1 terminates in a
finite number of iterations and that the final payoff vector belongs to the setH .
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Let S t denote the selected minimal overdemanded set at Step t of the process, and let the set
Rt ⊆ N contain all agents whose payoffs are greater than their stand-alone value at Step t:

Rt ≡ S 0 ∪ · · · ∪ S t−1 = {i ∈ N | pt
i > v({i})} for t ≥ 0.

At t = 0, p0
i = v({i}) for all i ∈ N, by construction, so indeed R0 = ∅. By induction on t, we first

show that no subset of Rt is underdemanded at any t ≥ 0, i.e., that #U(T, pt) ≥ #T for all T ⊆ Rt

and all t ≥ 0. Note that this condition holds trivially for R0 = ∅.
Next, we make the induction assumption that #U(T, pt) ≥ #T for all T ⊆ Rt and some t ≥ 0.

Take now an arbitrary T ⊆ Rt+1 = Rt ∪ S t. We need to show that #U(T, pt+1) ≥ #T . Partition T
into T1 = T \ S t ⊆ Rt and T2 = T ∩ S t ⊆ S t.

As prices are weakly increasing throughout the process, we have pt+1
j ≥ pt

j for all j ∈ N. In
addition, as T1 ∩ S t = ∅, we have pt+1

i = pt
i for all i ∈ T1. Hence, if i ∈ T1 and i ∈ D j(pt), then

i ∈ D j(pt+1). Consequently, U(T1, pt) ⊆ U(T1, pt+1). Therefore

U(T, pt+1) = U(T1, pt+1) ∪ U(T2, pt+1)
⊇ U(T1, pt) ∪ U(T2, pt+1)
⊇ U(T1, pt) ∪ (U(T2, pt+1) ∩ O(S t, pt)).

This observation together with elementary laws of set theory gives

#U(T, pt+1) ≥ #U(T1, pt) ∪ (U(T2, pt+1) ∩ O(S t, pt))
= #U(T1, pt) + #U(T2, pt+1) ∩ O(S t, pt)
− #U(T1, pt) ∩ (U(T2, pt+1) ∩ O(S t, pt)).

Note that U(T1, pt) ∩ O(S t, pt) = ∅, because if an agent only demands agents in S t she cannot
demand any agent in T1 as T1 ∩ S t = ∅. This means that the last term in the above equality equals
zero. Hence,

#U(T, pt+1) ≥ #U(T1, pt) + #U(T2, pt+1) ∩ O(S t, pt). (3)

Next, as T1 ⊆ Rt, we have by the induction assumption that

#U(T1, pt) ≥ #T1. (4)

As T2 ⊆ S t and S t is minimal overdemanded at pt, it follows from Lemma 1 that

#U(T2, pt) ∩ O(S t, pt) ≥ #T2. (5)

Moreover, if i ∈ O(S t, pt), then Di(pt) ⊆ Di(pt+1) by monotonicity. Hence, if i ∈ U(T2, pt) ∩
O(S t, pt), then i ∈ U(T2, pt+1) ∩ O(S t, pt). This together with condition (5) gives

#U(T2, pt+1) ∩ O(S t, pt) ≥ #U(T2, pt) ∩ O(S t, pt) ≥ #T2. (6)

Conditions (3), (4), and (6) and T1 ∪ T2 = T , T1 ∩ T2 = ∅ yield the desired conclusion, i.e.,
#U(T, pt+1) ≥ #T . Consequently, no subset of Rt is underdemanded at any t ≥ 0 by induction.
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We now show that there exists an agent i ∈ N such that pt
i = v({i}) for all t. Suppose that t is

the first iteration such that pt+1
i > v({i}) for all i ∈ N. Then N \ S t ⊆ Rt. By the above conclusion,

N \ S t is not underdemanded at Step t. By Lemma 2, S t is then not overdemanded at Step t which
contradicts that S t is minimal overdemanded at Step t. Hence, there exists an agent i ∈ N such that
pt

i = v({i}) for all t.
Finally, we prove that Process 1 terminates in a finite number of iterations. Define the finite

integer M by
M = 1 +max

j
{v({ j}),max

k, j
{v({ j, k}) − v({ j}),M j,k}},

where, for k , j,
M j,k = max

i, j,k
{v({i, k}) − v({i, j}) + v({ j})}.

Suppose at step t it holds that pt
k = M for for some k ∈ N. Let i ∈ N be such that pt

i = v({i}). By
definition of M it holds that i , k. Moreover, P( j, k, pt) < P( j, i, pt) for any j , k, and therefore
k < D j(pt) for j , k. This implies that k cannot be an element of any minimal overdemanded set at
pt and therefore either the process terminates at pt or pt+1

k = pt
k. This proves that the process cannot

generate payoff vectors pt with pt
i > M and since payoffs increase monotonically the process must

terminate in a finite number of iterations with some payoff vector inH .

As established next, the setH is a lower semilattice, i.e., it always contains a unique minimum
payoff vector. This minimum payoff vector can be identified using Process 1, it is integer valued
and the payoff for at least one agent equals her stand-alone value.

Theorem 2. There exists a payoff vector pmin ∈ H such that pmin ≤ p for any p ∈ H . Moreover

(i) pmin is identified in Process 1,

(ii) pmin is integer valued,

(iii) pmin
i = v({i}) for some i ∈ N.

As already described in Section 1, an equilibrium may not always exist. However, several nec-
essary and sufficient conditions for the equilibrium existence have been introduced in the literature
as mentioned in Section 1. Here we provide a quite different characterization that makes use of
the minimum payoff vector.

Theorem 3. There exists an equilibrium (µ, p∗) if and only if µ is demanded by N at pmin.

The main innovation of this paper is a dynamic adjustment procedure, called the Partnership
Formation Process, that identifies an equilibrium whenever one exists, and otherwise proves the
non-existence of any equilibrium. This procedure is formally described next.

8



The Partnership Formation Process.

1. Find pmin using Process 1.
2. If no matching µ is demanded by N at pmin, there exists no equilibrium and terminate the

process. Otherwise take any such matching, ask agents i = µ( j) and j = µ(i) to report
v({i, j}). Define p∗ by

p∗i =

P(i, µ(i), pmin) if µ(i) , i
pmin

i otherwise,

and terminate the process.

We remark that Step 2 of the Partnership Formation Process may be written differently. As is
apparent from Theorem 3, the Partnership Formation Problem identifies an equilibrium matching
µ (or prove that no such matching exists) in Step 2. Thus, to find an equilibrium, only the payoff
vector needs to be determined. This task can also be achieved by splitting the process into k
different processes where k represents the number of partnerships at µ. In each process, the payoff
of two partners i and j = µ(i) is then increased by 1/2 until pi + p j = v({i, j}). Because this is
equivalent to asking agents i and j to report v({i, j}) whenever i = µ( j) and j = µ(i) at Step 2, we
adopt the above more straightforward specification of the Partnership Formation Process to avoid
introducing unnecessary notation.

Theorem 4. The Partnership Formation Process either finds an equilibrium or proves the nonex-
istence of an equilibrium in finitely many iterations.

Example 2. Recall from Example 1 that p5 = (3, 1, 3, 3, 2). By Theorem 2(i), p5 = pmin. This
payoff vector is identified in Step 1 of the Partnership Formation Process using Process 1. The
Partnership Formation Process then continues to Step 2 where it is possible to find a matching µ
such that µ(1) = 4, µ(2) = 2, and µ(3) = 5 that is demanded by N. Applying the formulas specified
in Step 2 of the Partnership Formation Process yields

p∗1 = pmin
1 +

v({1, 4}) − pmin
1 − pmin

4

2
= 3 +

8 − 3 − 3
2

= 4,

p∗2 = pmin
2 = 1,

p∗3 = pmin
3 +

v({3, 5}) − pmin
3 − pmin

5

2
= 3 +

7 − 3 − 2
2

= 4,

p∗4 = pmin
4 +

v({1, 4}) − pmin
1 − pmin

4

2
= 3 +

8 − 3 − 3
2

= 4,

p∗5 = pmin
5 +

v({3, 5}) − pmin
3 − pmin

5

2
= 2 +

7 − 3 − 2
2

= 3.

By Theorem 4, (µ, p∗) is an equilibrium.
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4. Relation to the Assignment Markets

This section relates the findings from the current paper to some results previously established
for the classical assignment markets (e.g. Koopmans and Beckmann, 1957; Shapley and Shubik,
1971). We start by describing how the latter type of market is related to the partnership formation
problem and, in particular, what role Process 1 plays in this relationship.

In the assignment market, the role of agents is exogenously given, and all agents in N are
exogenously split into two disjoint groups, N1 and N2 (with N1 ∪ N2 = N) where agents in the
same group cannot be partners. For example, the agents on one side of the market may be buyers
or workers whereas the agents on the other side may be sellers or firms. As observed by Talman
and Yang (2011), an equilibrium in the assignment market models resembles the one described
in Definition 1 but it is often described in terms of demand. However, Definition 1 can be easily
interpreted in terms of demand. Thus, it is not difficult to see that the assignment market model
is a special case of the partnership formation problem. Moreover, the assignment market model
automatically satisfies the oddness condition in Talman and Yang (2011, Theorem 1) and thus al-
ways has an equilibrium (see Talman and Yang, ibid., Theorem 3). In fact, an equilibrium exists
in the assignment market at a payoff vector p if and only if there are neither overdemanded sets
nor underdemanded sets at p as established by Mishra and Talman (2010, Theorem 1). However,
this result does not carry over to the Partnership Formation Problem as illustrated in the follow-
ing example and as a result shows another fundamental and inherent difference between the two
models.

Example 3. Let v({1}) = v({2}) = v({3}) = 0 and v({1, 2}) = v({1, 3}) = v({2, 3}) = 3. For payoff
vector p = (r, r, r) where r is an arbitrary real number, the demand sets are given by D1(p) = {2, 3},
D2(p) = {1, 3}, D3(p) = {1, 2}. There are neither overdemanded nor underdemanded sets of agents
at payoff p. However, there is no equilibrium either.

Given that an equilibrium always exists at the assignment market, a number of constructive
existence proofs has been introduced. For example Crawford and Knoer (1981), Demange, Gale,
and Sotomayor (1986), Andersson, Andersson, and Talman (2012), and Andersson and Erlanson
(2012) have proposed convergent dynamic processes. In particular, the auction mechanism of
Demange, Gale, and Sotomayor (1986) can be seen as a special case of our Process 1 by specifying
the corresponding parameters as follows:

(a) the payoff vector at t = 0 represents the reservation payoffs for the agents in N2,

(b) the demand sets are collected only for the agents in N1 at any step,

(c) the demand set for an arbitrary agent i ∈ N1 must be a subset of N2 ∪ {i}.

Demange, Gale, and Sotomayor (1986) prove that their mechanism always converges to the unique
minimum equilibrium price vector qmin. Because of restrictions (a)–(c), these findings can be
regarded as a corollary to the more general results presented in Theorem 1 and cases (i) and (ii)
of Theorem 2. Furthermore, in the case when #N1 = #N2, it is known that qmin

i = v({i}) for some
i ∈ N2 (see e.g. Sun and Yang, 2003, Theorem 2.5). This result can be regarded as a special case
of Theorem 2(iii).
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5. Concluding Remarks

This paper has provided several fundamental properties of the partnership formation problem.
Based on these properties, a dynamic competitive adjustment process is proposed, which offers
a natural process for agents to form partnerships. It is shown that this process always either
converges to an equilibrium or refutes the existence of any equilibrium. When an equilibrium is
found, partnerships and payoff distribution will be endogenously determined.

We assume that all agents are well informed as often is the case in the literature on the assign-
ment markets. It will be significantly important but also difficult to study the case of imperfect
information in which agents do not have precise knowledge about their joint revenues. We be-
lieve that our study provides a first necessary and important step to examine the possible effects
of imperfect information. A second question closely relates to Kelso and Crawford (1982). They
examine a job assignment model in which each firm can hire many workers and every worker can
have at most one job. They propose a salary adjustment process that always converges to an equi-
librium, provided that every firm views all workers as substitutes (see also Hart and Kurz, 1983;
Qin, 1996). A challenging open question is whether it is possible to develop a similar process that
always either finds an equilibrium or disproves the existence of equilibrium in a general setting
where coalitions allow any number of agents in a way as we move from the assignment market to
the partnership formation model.

Appendix: Proofs

This Appendix gives all the remaining proofs and contains three additional technical lemmas
which will be used for proving Theorems 2 and 3.

Lemma 3. Let p, q ∈ Rn and let

Cm = Cm−1 ∪ { j ∈ N | p j − q j ≥ pk − qk for all k ∈ N \Cm−1},

for m = 1, . . . , h, where C0 = ∅ and h ∈ {1, . . . , n} is such that Ch = N. Then

(i) U(A ∩C1, p) ∩ O(A, p) ⊆ O(A ∩C1, q) for all A ⊆ N,
(ii) U(Cm, p) = O(Cm, q) for m = 1, . . . , h if p, q ∈ H .

Proof. Note first that if P(i, j, p) ≥ P(i, k, p) and p j − q j ≥ pk − qk hold with at least one strict
inequality, then P(i, j, q) > P(i, k, q). This follows as p j − q j ≥ pk − qk implies

(p j − pi + qi − q j)/2 ≥ (pk − pi + qi − qk)/2.

Adding this inequality to P(i, j, p) ≥ P(i, k, p) gives P(i, j, q) > P(i, k, q) if one of the above two
inequalities is strict.

Part (i). Let i ∈ U(A ∩ C1, p) ∩ O(A, p). Then Di(p) ⊆ A and there exists j ∈ Di(p) ∩ A ∩ C1.
Take any k < A ∩ C1. Suppose first that k < A. Then Di(p) ⊆ A implies k < Di(p). Consequently,
P(i, j, p) > P(i, k, p). From j ∈ C1 it follows that p j − q j ≥ pk − qk. Hence, P(i, j, q) > P(i, k, q)
by the above conclusion, which means that k < Di(q). Suppose next that k ∈ A \ C1. Then
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j ∈ Di(p) implies P(i, j, p) ≥ P(i, k, p), and p j − q j > pk − qk as j ∈ C1 and k < C1. Hence, again
P(i, j, q) > P(i, k, q) and k < Di(q). Therefore, k < Di(q) whenever k < A ∩ C1, which implies
i ∈ O(A ∩C1, q).

Part (ii). Let p, q ∈ H and take i ∈ U(Cm, p). Then there exists j ∈ Di(p) ∩ Cm. Take any
k < Cm. Then j ∈ Di(p) implies P(i, j, p) ≥ P(i, k, p), and p j − q j > pk − qk as j ∈ Cm and
k < Cm. Hence, P(i, j, q) > P(i, k, q), and so k < Di(q). Therefore, i ∈ O(Cm, q). Consequently,
U(Cm, p) ⊆ O(Cm, q). As p, q ∈ H , Cm is neither underdemanded at p nor overdemanded at
q. Thus #O(Cm, q) ≤ #Cm ≤ #U(Cm, p). Since U(Cm, p) ⊆ O(Cm, q), this implies U(Cm, p) =
O(Cm, q).

Theorem 2. There exists a payoff vector pmin ∈ H such that pmin ≤ p for any p ∈ H . Moreover

(i) pmin is identified in Process 1,

(ii) pmin is integer valued,

(iii) pmin
i = v({i}) for some i ∈ N.

Proof. Before proving parts (i)–(iii) of the theorem, we first demonstrate that there exists a payoff
vector pmin ∈ H such that pmin ≤ p for any p ∈ H . To prove this, we show that for any two vectors
p, q ∈ H the vector r defined by ri = min{pi, qi} for all i ∈ N is an element ofH .

Suppose that r < H . Then there exists a minimal overdemanded set A at r. Hence, #O(A, r) >
#A. Let now

Cp
1 = {i ∈ N | ri − pi ≥ r j − p j for all j ∈ N},

Cq
1 = {i ∈ N | ri − qi ≥ r j − q j for all j ∈ N}.

Note the similarity to the construction of C1 in Lemma 3. Since, by the construction of r, Cp
1∪Cq

1 =

N, it holds that among the agents that demand only in A at r, some demand only in Cp
1 , some only

in Cq
1, and the others in both, i.e.

O(A, r) =
[
U(A ∩Cp

1 , r) ∩ O(A, r)
] ∪ [U(A ∩Cq

1, r) ∩ O(A, r)
]
.

It follows that

#O(A, r) =#
[
U(A ∩Cp

1 , r) ∩ O(A, r)
]
+ #
[
U(A ∩Cq

1, r) ∩ O(A, r)
]

(7)
− #[U(A ∩Cp

1 , r) ∩ U(A ∩Cq
1, r) ∩ O(A, r)]. (8)

Note that if i ∈ U(A∩Cp
1 ∩Cq

1, r)∩O(A, r), then i ∈ U(A∩Cp
1 , r)∩U(A∩Cq

1, r)∩O(A, r). Therefore

#[U(A ∩Cp
1 , r) ∩ U(A ∩Cq

1, r) ∩ O(A, r)] ≥ #[U(A ∩Cp
1 ∩Cq

1, r) ∩ O(A, r)].

Moreover, by Lemma 1 and as A is a minimal overdemanded set at r

#[U(A ∩Cp
1 ∩Cq

1, r) ∩ O(A, r)] ≥ #(A ∩Cp
1 ∩Cq

1).
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In conclusion

#O(A, r) ≤ #
[
U(A ∩Cp

1 , r) ∩ O(A, r)
]
+ #
[
U(A ∩Cq

1, r) ∩ O(A, r)
] − #(A ∩Cp

1 ∩Cq
1).

By Lemma 3(i), we get U(A ∩ Cp
1 , r) ∩ O(A, r) ⊆ O(A ∩ Cp

1 , p). As p ∈ H , the set A ∩ Cp
1 is not

overdemanded at p. Hence #O(A ∩Cp
1 , p) ≤ #(A ∩Cp

1 ). In conclusion

#
[
U(A ∩Cp

1 , r) ∩ O(A, r)
] ≤ #O(A ∩Cp

1 , p) ≤ #(A ∩Cp
1 ).

By similar arguments, we obtain

#
[
U(A ∩Cq

1, r) ∩ O(A, r)
] ≤ #O(A ∩Cq

1, q) ≤ #(A ∩Cq
1).

Note next that

#(A ∩Cp
1 ) + #(A ∩Cq

1) = #
[
A ∩ (Cp

1 ∪Cq
1)
]
+ #(A ∩Cp

1 ∩Cq
1).

As Cp
1 ∪Cq

1 = N and A ⊆ N, this can be simplified to

#(A ∩Cp
1 ) + #(A ∩Cq

1) = #A + #(A ∩Cp
1 ∩Cq

1).

Hence
#O(A, r) ≤ #A + #(A ∩Cp

1 ∩Cq
1) − #(A ∩Cp

1 ∩Cq
1) = #A.

This contradicts A being overdemanded at r. Therefore, there exists no overdemanded set at r. It
follows that r ∈ H .
Part (i): The payoff vector pmin is the unique minimum payoff vector in H by the above conclu-
sions. Because Process 1 terminates in a finite number it iterations (see the proof of Theorem 1),
it is henceforth assumed that it converges at iteration τ. Moreover, Process 1 cannot terminate at
iteration τ if pτ ≤ pmin and pτi < pmin

i for some i ∈ N because this would contradict that pmin is
minimum in H and the process only terminates when there are no overdemanded sets. Thus, it
needs to be established that pt ≤ pmin for t = 0, . . . , τ, as this then implies that pτ = pmin.

Suppose now, in order to obtain a contradiction, that there is an iteration t ≥ 0 such that
pt ≤ pmin but pt+1

i > pmin
i for some i ∈ N. Note that p0 ≤ pmin. Let A be the minimal overdemanded

set selected in Step 2 of iteration t and define

C1 = { j ∈ N | pt
j − pmin

j ≥ pt
k − pmin

k for all k ∈ N}.

As pt+1
i > pmin

i can only occur if pt
i = pmin

i and i ∈ A ∩ C1, this implies A ∩ C1 , ∅. By Lemma
3(i), U(A ∩ C1, pt) ∩ O(A, pt) ⊆ O(A ∩ C1, pmin). Now, as pmin ∈ H , A ∩ C1 is not overdemanded
at pmin. That is, #O(A ∩C1, pmin) ≤ #(A ∩C1). It follows that

#
[
U(A ∩C1, pt) ∩ O(A, pt)

] ≤ #O(A ∩C1, pmin) ≤ #(A ∩C1). (9)

If A ⊆ C1, this reduces to #O(A, pt) ≤ #A, contradicting that A is overdemanded at pt. If A * C1,
then A \C1 is a nonempty proper subset of A and we will show that A \C1 is overdemanded at pt.
Since A \C1 = A \ (A ∩C1) and A ∩C1 ⊂ A, it holds that

#O(A \C1, pt) = #O(A, pt) − #
[
U(A ∩C1, pt) ∩ O(A, pt)

]
.
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As A is overdemanded, #O(A, pt) > #A. Thus

#O(A \C1, pt) > #A − #
[
U(A ∩C1, pt) ∩ O(A, pt)

]
. (10)

From (9) and (10) and the fact that A \ (A ∩C1) = A \C1, it follows that

#O(A \C1, pt) > #A − #(A ∩C1) = #(A \C1),

implying that A \ C1 is overdemanded at pt, which contradicts that A is a minimal overdemanded
set at pt.
Part (ii): To prove this part of the theorem, it suffices to demonstrate that if p ∈ H and qi = ⌊pi⌋
for i ∈ N, where ⌊pi⌋ is the largest integer less than or equal to pi, then q ∈ H . Note first that for
all l ∈ N it holds that pl = ⌊pl⌋ + yl for some 0 ≤ yl < 1. Hence, for i ∈ N and k , i

P(i, k, p) = (v({i, k}) + pi − pk)/2 = (v({i, k}) + ⌊pi⌋ − ⌊pk⌋ + yi − yk)/2
= (v({i, k}) + qi − qk + yi − yk)/2
= P(i, k, q) + (yi − yk)/2
= P(i, k, q) + xi

k,

for some −1/2 < xi
k < 1/2. Note next that P(i, k, p) = v({i}) = P(i, k, q) if i = k. Thus, P(i, k, p) =

P(i, k, q) + xi
k for all i, k ∈ N and some −1/2 < xi

k < 1/2. It is next proved that Di(p) ⊆ Di(q) for
all i ∈ N. Let j ∈ Di(p) and k ∈ N. Then P(i, j, p) ≥ P(i, k, p) or equivalently

P(i, j, q) + xi
j ≥ P(i, k, q) + xi

k. (11)

Suppose that P(i, j, q) < P(i, k, q). Because P(i, j, q) and P(i, k, q) are integers, this means that
P(i, k, q) − P(i, j, q) ≥ 1, and so P(i, j, q) + xi

j < P(i, k, q) + xi
k as −1/2 < xi

l < 1/2 for l = j, k. But
this contradicts (11). Hence, j ∈ Di(p) implies P(i, j, q) ≥ P(i, k, q) for all k ∈ N, i.e., j ∈ Di(q).
Consequently, Di(p) ⊆ Di(q) for all i ∈ N.

Consider now an arbitrary A ⊆ N and let i ∈ O(A, q). Then Di(p) ⊆ Di(q) ⊆ A by construction
and the above conclusion. Hence, i ∈ O(A, p), and consequently O(A, q) ⊆ O(A, p). Therefore,
#O(A, q) ≤ #O(A, p) ≤ #A as p ∈ H . Because A is arbitrary and is not overdemanded at q, it
follows that q ∈ H .
Part (iii): It has been shown in the proof of Theorem 1.

Lemma 4. If (µ, p) is an equilibrium of the partnership formation problem (N, v), then µ is de-
manded by N at p and p ∈ H .

Proof. Suppose that (µ, p) is an equilibrium. We first demonstrate that µ is demanded by N at p,
i.e., µ(i) ∈ Di(p) for all i ∈ N.

Let first i ∈ N be such that µ(i) = i. Feasibility and stability means that pi = v({i}) and
pi ≥ v({i, k}) − pk for all k , i. By combining these two conditions and using the fact that
P(i, i, p) = v({i}), we obtain P(i, k, p) ≥ P(i, l, p) for all k , i. Thus i ∈ Di(p) if µ(i) = i.
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Let now i ∈ N be such that µ(i) , i and let j = µ(i). Feasibility, individual rationality and
stability imply

2pi = v({i, j}) + pi − p j = 2P(i, j, p), (12)
2pi ≥ 2v({i}) = 2P(i, i, p), (13)
2pi ≥ v({i, k}) + pi − pk = 2P(i, k, p) for all k , i, (14)

respectively. Conditions (12) and (13) give P(i, j, p) ≥ P(i, i, p), and conditions (12) and (14)
yield P(i, j, p) ≥ P(i, k, p) for all k , i. Consequently, P(i, j, p) ≥ P(i, k, p) for all k ∈ N, and thus
j ∈ Di(p). Therefore, µ(i) ∈ Di(p) for all i ∈ N.

We will show that there are no overdemanded sets at p. Pick an arbitrary nonempty S ⊂ N.
For any i ∈ µ(S ) it holds that µ(i) ∈ S and, by the above conclusion that µ is demanded by N at
p, µ(i) ∈ Di(p). Consequently, i ∈ U(S , p). Hence, µ(S ) ⊆ U(S , p). Therefore, #S = #µ(S ) ≤
#U(S , p). This implies that S is not underdemanded at p. From Lemma 2 it then follows that
N \ S is not overdemanded at p. Because S is arbitrary, there is no overdemanded set at p. Hence,
p ∈ H .

Lemma 5. Let p, q ∈ H . If µ is demanded by N at p, then µ is demanded by N at q.

Proof. Construct C0,C1, . . . ,Ch as in Lemma 3. Take i ∈ N and let m ∈ {1, . . . , h} be such that
i ∈ µ(Cm) and i < Cm−1. As µ is demanded by N at p, µ(i) ∈ Di(p). Hence, i ∈ U(Cm, p). Therefore,
µ(Cm) ⊆ U(Cm, p). By Lemma 3(ii), U(Cm, p) = O(Cm, q). As q ∈ H , Cm is not overdemanded at
q, i.e., #O(Cm, q) ≤ #Cm. In conclusion

#Cm = #µ(Cm) ≤ #U(Cm, p) = #O(Cm, q) ≤ #Cm.

Hence µ(Cm) = O(Cm, q), and, in particular, i < O(Cm−1, q) as i < µ(Cm−1). Then there must exist
an agent k ∈ Di(q) such that k < Cm−1. Now, as j = µ(i) ∈ Di(p)

P(i, j, p) = (v({i, j}) + pi − p j)/2 ≥ (v({i, k}) + pi − pk)/2 = P(i, k, p). (15)

Moreover, p j − q j ≥ pk − qk because j ∈ Cm and k < Cm−1. But the latter inequality implies

(p j − pi + qi − q j)/2 ≥ (pk − pi + qi − qk)/2. (16)

Adding inequalities (15) and (16) yields P(i, j, q) ≥ P(i, k, q). So j ∈ Di(q). Repeating for all
i ∈ N, we find that µ is demanded by N at q.

Theorem 3. There exists an equilibrium (µ, p∗) if and only if µ is demanded by N at pmin.

Proof. Suppose that there exists an equilibrium (µ, p∗). By Lemma 4, µ is demanded by N at
p∗ and p∗ ∈ H . Also, there exists a minimum payoff vector pmin by Theorem 2. But then µ is
demanded by N at pmin by Lemma 5.

To complete the proof, we need to demonstrate that there exists an equilibrium if µ is demanded
by N at pmin. For this purpose, let i = µ( j) and j = µ(i), and define p∗ as

p∗i = (v({i, j}) + pmin
i − pmin

j )/2 if i , j, (17)

p∗i = pmin
i = v({i}) if i = j. (18)
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We will demonstrate that (µ, p∗) is an equilibrium, i.e., that all three requirements from Definition
1 are satisfied at (µ, p∗).

Individual rationality. If agent i is single, individual rationality follows directly from condition
(18). Suppose instead that agent i is matched with some distinct agent j at µ. Because µ is
demanded by N at pmin, it is clear that P(i, j, pmin) ≥ P(i, i, pmin). Using the above specification of
p∗i and the identity P(i, i, pmin) = v({i}), it follows that p∗i = P(i, j, pmin) ≥ v({i}). Hence, individual
rationality is satisfied also in this case.

Stability. Note first that for any two distinct agents i and k it holds that P(i, k, pmin)+P(k, i, pmin) =
v({i, k}) by construction of the expected payoffs. Suppose now that µ(i) = j and µ(k) = l. As µ is
demanded by N at pmin, it follows that P(i, j, pmin) ≥ P(i, k, pmin) and P(k, l, pmin) ≥ P(k, i, pmin).
Adding these two inequalities and using the above identity yields

P(i, j, pmin) + P(k, l, pmin) ≥ P(i, k, pmin) + P(k, i, pmin) = v({i, k}).

Now the conclusion follows directly from the above inequality and the observation that p∗i =
P(i, j, pmin) and p∗k = P(i, k, pmin).

Feasibility. This follows directly from conditions (17) and (18).
In summary, because (µ, p∗) satisfies all requirements of Definition 1, it must be an equilibrium.

Theorem 4. The Partnership Formation Process either finds an equilibrium or proves the nonex-
istence of an equilibrium in finitely many iterations.

Proof. From Theorem 1 we know that Process 1 converges after finitely many iterations. Then
because Step 2 of the Partnership Formation Process requires only one additional iteration, the
Partnership Formation Process converges after a finite number of iterations. If an equilibrium
exists, there is a matching µ that is demanded by N at pmin by Theorem 3. Because Step 2 of
the Partnership Formation Process identifies a payoff vector identical to p∗ specified in the proof
of Theorem 3 it is clear that the Partnership Formation Process finds an equilibrium whenever it
exists. In the case when there exists no matching µ that is demanded by N in Step 2, the Partnership
Formation Process will prove the non-existence of an equilibrium by Theorem 3.
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