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Abstract

This paper adopts an evolutionary perspective on the rent-extraction model with con-
jectural variations (CV) allowing for mixed-strategies. We analyze the dynamics of the
model with n CVs under the replicator equation. We find that the end points of the
evolutionary dynamics include the pure-strategy consistent CVs. However, there are also
mixed-strategy equilibria that occur: these are on the boundaries between the basins of
attraction of the pure-strategy sinks. Further, we develop a more general notion of con-
sistency which applies to mixed-strategy equilibria. In a three conjecture example, by
conducting a global dynamics analysis, we prove that in contrast to the pure-strategy
equilibria, the mixed-strategy equilibria are not ESS: under the replicator dynamics, there
are three or four mixed equilibria that may either be totally unstable (both eigenvalues
positive), or saddle-stable (one stable eigenvalue). There also exist heteroclinic orbits that
link equilibria together. Whilst only the pure-strategies can be fully consistent, we find a
lower bound for the probability that mixed strategy conjectures will be ex post consistent.
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1 Introduction.

In this paper, we adopt a dynamic approach to analyze the evolution of beliefs underlying
agents’ behavior in the context of a rent-extraction game a la Tullock (1980). The idea is that
the boundedly-rational agents employ decision rules, such as reaction functions, based on certain
beliefs about other players’ behavior. But how are these beliefs formed? Recently, some authors
have adopted an evolutionary approach to explaining such beliefs using Maynard-Smith’s notion
of evolutionary stable strategies (ESS)!. The idea is that the belief can be treated as a meme,
and that beliefs that result in higher profits become more common. ESS is however a local
stability condition: it considers the effects on payoffs of a small deviation in the make-up of the
population. In this paper we broaden the focus to consider the global dynamics of an explicit
evolutionary process - the replicator equation. We apply this dynamic evolutionary approach
to explain belief formation in the context of a rent-seeking game (Tullock (1967, 1980, 1987),
Posner (1975)) where agents spend resources to dispute over rents or some prizes. Agents’ beliefs
about other players’ behavior are particularly important in such models as it can directly impact
the magnitude of the rent extracted by altering the success function. Importantly, rent-seeking
models have many applications in economics and politics e.g. in elections where resources
allocated to campaigning directly affect the candidate’s probability of success and where the
allocation itself is done based on the agent’s belief about his opponent’s behavior. Menezes and
Quiggin (2010) have provided several different interpretations of such rent-extraction models
and have argued that they should be viewed as oligopsonistic markets for influence.

A decision rule in this context can be thought of as a reaction function (RF) which specifies
the choice of action as a function of other agents’ actions. Whilst there are various ways of
parametrizing such decision rules, the one we adopt in this paper is the concept of Conjectural
Variations. The notion of conjectures has maintained a long history in the Industrial Organi-
zation theory ever since the introduction of Conjectural Variations Equilibria by Bowley (1924)
and Frisch (1951 [1933])?. Not only are conjectural variations (henceforth CV) models able to
capture a range of behavioral outcomes - from competitive to cooperative, but also they have
one parameter which has a simple economic interpretation. CV models have also been found
quite useful in the empirical analysis of firm behavior in the sense that they provide a more
general description of firms’ behavior than the standard Nash equilibrium (Slade (1995)). The

concept of CVs has also been seen as useful in anti-trust policy?.

See, e.g. Dixon and Somma (2003), Miiller and Normann (2005), Possajennikov (2009). See Jean-Marie
and Tidball (2006) for a non-evolutionary approach to formation of conjectures in a dynamic context.

2See Giocoli (2005) for a detailed account of the role of conjectural variations in the history of oligopoly
games. Frisch paramterized the CV in terms of an elasticity rather than a derivative. Hicks (1935) survey is
probably responsible for making the concept of CVs well known.

3See for example the recent Office of Fair Trading (2011) report.



In this context, the concept of consistent conjectures was developed by a number of authors
in the 1980s (see Bresnahan (1981), Boyer and Moreaux (1983), Klemperer and Meyer (1988))
and has been widely applied ever since in a variety of circumstances such as public goods (Cornes
and Sandler (1984)*, Ttaya and Okamura (2003), strategic investment models (Dixon (1986)),
export subsidies (Tanaka (1991)), natural resource extraction (Quérou and Tidball (2009)). In
Public Economics, Michaels (1989) applied this concept in the context of Tullock’s rent-seeking
game to show that the fraction of rents dissipated by seekers depends upon the type of CV
assumed. In games with quadratic payoffs where the best-response functions with CVs are
linear, the natural formulation for consistent conjectures is that the CV of one player equals the
actual slope of the other player’s RF. However, in games where the payoffs are not quadratic
and therefore the RFs are non-linear (such as the ones in rent-seeking models with CVs), the
notion of consistency can accordingly be adapted: consistency should imply that CVs are equal
to the slopes of RFs at the equilibrium point.

Recently, the link between consistency and evolutionary stability has been made within the
CV framework. One can think of economic agents’ behavior being summarized by the CV term.
One can imagine a population consisting of firms with different CVs which will earn different
payoffs (on average) and a process of "natural selection” or social learning takes place (the CV
is a meme). Firms with particular CVs do better than those with others: a process of imitation
or adaption leads agents to switch from less successful CVs to more successful CVs. Dixon and
Somma (2003) established that in a standard oligopoly setting with a quadratic payoff function®,
the consistent conjectures are the unique Nash equilibrium in a hypothetical ”conjecture game”:
firms choose their CVs given the CVs of the other firms so as to maximize their payoffs in the
output game. This Nash equilibrium in the conjecture game was the consistent conjecture.
This enabled the link to be made with evolutionary stable strategies (ESS). In the case where
there is a strict-Nash equilibrium in the conjecture game, the resultant consistent conjecture
will be ESS. Miiller and Normann (2005) generalized this result to a wider class of oligopoly
models®. Both Dixon and Somma (2003) and Miiller and Normann (2005) were in the class of
quadratic payoff models. Possajennikov (2009) showed that the link between ESS models and
consistent conjectures extends to some non-quadratic payoff models, including the rent-seeking
model (such as the one considered by Michaels (1989)).

However, all of the above studies were limited in that they focussed exclusively on pure-
strategy equilibria and that they only studied local stability using the ESS condition. In contrast,

the main contribution of this paper is to extend the focus to analyze the global evolutionary

4See also Cornes and Sandler (1985) and Sugden (1985).
5Specifically, they consider a homogeneous good Cournot oligopoly with linear demand and quadratic costs.
6Specifically, differentiated oligopoly with linear demands.



dynamics in the context of mixed-strategies. We do indeed find that in addition to the pure-
strategy equilibria, mixed-strategy equilibria will exist in a finite version of the conjecture game
where we restrict the set of permissible CVs to a finite set of n distinct conjectures. We provide
a bifurcation analysis and show that in addition to the pure-strategy equilibria, there will in
general exist many mixed-strategy equilibria.

Further, we define a new concept of consistency that is applicable to the case of mixed-
strategy equilibria. This is the notion of the probability that the conjectures will be consistent
ex post. In the case of a pure-strategy equilibrium, the standard consistent conjectures are
100% consistent ez post. With mixed strategy equilibria, the conjectures will only be consistent
a certain proportion of the time. Hence, whilst the link between consistency and equilibrium in
the conjecture game still exists, it is weaker in the case of mixed-strategies than for pure-strategy
equilibria.

Our main results about the dynamics are as follows. We are first able to determine some
results which hold for the case where there are n conjectures. All n pure-strategy equilibria
(except the Bertrand) are sinks (Proposition 2). We were also able to characterize the properties
of mixed stationary points involving just two or three of the n strategies: some of these stationary
points will be mixed Nash equilibria, which will have an n—1 dimensional stable manifold; others
will not be Nash equilibria and will have stable manifolds with a lower dimension than n — 1
(Propositions 3 and 4).

We are able to determine fully the dynamics in the n = 3 conjecture case which can be
depicted on the two dimensional simplex. Proposition 5 and 6 summarize the local dynamics:
the pure strategy-equilibria are sinks (the eigenvalues of the Jacobian are all negative), whilst
the strictly-mixed stationary points can either be saddle-path stable (one negative and one
positive eigenvalue) or unstable sources (all eigenvalues are positive). For the global dynamics,
in Proposition 7 we find that there is a network of heteroclinic orbits” that connect equilibria.
The heteroclinic orbits connecting these mixed-strategy stationary points with each other and
the pure-strategy sinks constitute the boundaries of the basins of attraction for the pure-strategy
sinks. There are two generic phase diagrams which describe the exact pattern of equilibria: in
particular, if the most competitive conjecture is competitive enough we can have an internal
mixed-equilibrium (with all three conjectures with strictly positive shares) which is a source.
Otherwise, we have the more general case where there are three stationary points involving
only two conjectures with strictly positive probabilities: two of these stationary points are Nash
equilibria (and saddle-path stable) with the third being a non-Nash equilibrium unstable source.

We can use the global dynamics as a guide to equilibrium selection. The most cooperative

TAn heterclinic orbit is an equilibrium path that connects two (or more) stationary points. This contrasts
to homoclinic orbits which have only one stationary point at both end-points.



pure-strategy equilibrium is Pareto-dominant (from the point of view of the rent seekers) and
involves the least rent dissipation and highest payoff. However, we do not find that in general
the most cooperative conjecture has the biggest basin. Indeed, in the three conjecture case we
might expect the intermediate conjecture to have the bigger basin. The reason is that in the
rent-extraction model, the intermediate CV can do quite well against the two extremes, whilst
the two extremes do badly against each other. = Moderation can pay. This means that the
intermediate conjecture can end up with a share of 1 even if it starts from a share of almost zero.
In contrast, the two extreme conjectures require an initial base which is bounded well away from
zero if they are to be selected. Whilst we cannot in general rank the most cooperative and the
intermediate conjecture, we can in general say that the most competitive equilibrium will have
a smaller basin than the most cooperative. Indeed, in the extreme case of a ”Bertrand” CV of
—1, the basin of attraction shrinks to zero.

The notion of evolutionary dynamics (such as the replicator) is not unproblematic: if one
takes a literal view of the equations, they are based on random matching with the game played
repeatedly in continuous time. However, one can think of this more as an evolutionary metaphor:
over time, more successful strategies become more common. There are a variety of ways this
can happen in social learning models. However, to explore the dynamics without recourse to
simulating simple models we need to use a specific evolutionary process: the replicator equation
is a robust framework that can stand for a wider class of payoff-monotone dynamics.

The organization of the paper is as follows. In section 2, we outline the basic rent-seeking
model, which can also be thought of as a Cournot Oligopoly game, where we treat the conjectures
as given. In section 3, we consider the underlying conjecture game and pure-strategy equilibria
in the case where the strategy sets are a closed convex subset of the real line, and mixed-strategy
equilibria where the strategy sets are a finite subset of the pure-strategy case. In section 4, we
consider the relation between consistency and the equilibria in the conjecture game. In section
5, we analyze the evolutionary process of the model using the replicator equation. Section 6

concludes. All proofs are in the appendix.

2 The model.

We consider the following game where two firms X and Y choose actions (z, y) independently

with payoff functions given as follows:

UX(ZE,y) = J?+y_x
y
U (z,y) = vy Y



This can be thought of as a simple rent-seeking game a la Tullock (1980) where players
choose actions (e.g. effort or investment) to win a prize of fixed value (which is unity in the
above formulation), where the first term in the payoff function denotes the probability of player
7’s winning the contest, ¢ = X, Y, and the second term denotes constant unit cost of the action.
Alternatively, this game can also be thought of as a homogeneous good Cournot duopoly® with

unit elastic demand and constant unit cost where the market price is given by

1

P =
r+y

so that total revenue equals 1, each firm receives a share of that revenue equal to its share of
output?, and the total cost of player i equals player i’s output. For economically meaningful

outcomes, we can restrict our attention to the strategy-space:

S={(z,y):x>0,y>0and z +y <1}

The above payoff-function is strictly concave for (z,y) € SN (0,1)*>. The corresponding iso-

payoff sets for X are characterized by
U* = {(z,y) : U (w,y) = U}

and have slopes given by
dy _y—m2—2xy—y2

@ e X
For U € (0,1), the iso-payoff curve intersects the r— axis at (1 - U, O) . However, all iso-
payoff sets with U € (0, 1) originate from (0,0). The payoff function is undefined for x = y = 0.

However, in order to convert the joint profit supremum into a maximum, we adopt the definition
UX(0,0) = UY(0,0) = 0.5. In the event of neither player doing anything, the prize is split.

2.1 Conjectural variation (CV) output game.

Each firm has a conjecture about the response of the other firm to variations in its own output.
¢, = 0y/0zr and ¢, = Ox/0y denote such conjectures held by firms X and Y respectively
where ¢; € [—1,+1], i = x,y. This gives the reaction functions (RFs) defined by the following

81t has been shown that a standard Tullock contest of the above type is strategically equivalent to a Cournot
oligopoly game, and that the same strategic equivalence applies also with a more general success function in the
original Tullock game (see Okuguchi (1995), Szidarovsky and Okuguchi (1997).

9Henceforth, we will refer to = and y as ‘outputs’.



first-order conditions:

1 T
G Grgpl T
1 Yy

Gy gl T

From above, we get the reaction functions in the following form:

1 1

r o= R(y,¢s) = —5¢: —y+ 5 /02 + 40y + 4y (1)
1 1

y = R(w.¢,) = —36,— v+ {/6)+ 46,0 +4a (2)

For {(¢z, ¢y) € [-1,1]* and 1 — ¢,¢, > 0}, the equilibrium values of output are given by:

(1 + ¢y)<1 — (by@bx)
(2+ ¢y + ¢2)?
(1+ ¢2)(1 — dy¢a)

(G, y)

(3)

In the cases where ¢,¢, = 1, we set z(1,1) = 0 and z(—1,—1) = 1 and likewise for y,
these being the limiting values'?. In case of symmetric conjectures (¢, = ¢, = ¢), equilibrium
outputs will be given by

1-¢

We can consider the following special cases:
(i) Cournot-Nash conjectures: ¢, = ¢, =0

(1) and (2) then yield

r = —y+.y
y = —x+Vr

so that Cournot-Equilibrium values are

1
¢ = Y= 1 and
1
UX = UY = U‘Cournot = Z_l

10 Alternatively, one can restrict the strategy set to [—1+ ¢, 1 — ] for some arbitrarily small £ > 0.



(ii) Bertrand-Nash conjectures: ¢, = ¢, = —1
(1) and (2) then yield

r = 1l—y
y = 1l—z

which has the set of solutions z + y = 1, with the symmetric solution being at z =y = % with

corresponding equilibrium payoffs U|gertrana = 0.
(iii) Fully collusive conjectures: ¢, = ¢, =1

In this case, (3) and (4) imply = y = 0.This is the joint profit maximum.

3 The Conjecture Game.

In order to analyze the evolutionary properties of conjectures, following Dixon and Somma
(2003), we consider a further stage of the game where firms are choosing their conjectures.!!
We will first analyze this hypothetical ”conjecture game” in terms of pure-strategies, where the
strategy sets are intervals on the real line. We will then consider the case of finite strategy
sets in order to analyze the possible existence of mixed-strategy equilibria where more than one

strategy is played with a positive probability.

3.1 Pure-strategy equilibria.

Given the equilibrium outputs as a function of the conjectures, we can think of a reduced form
game of the equilibrium given conjectures with each firm choosing its conjecture. For ease of
notation and for the purpose of analysing the dynamics (see section 5), we will reparameterize
the conjectures as ¢; = (1 + ¢;) for i = z,y where ¢; € [0,2]. With this re-parameterisation
then ; = 1 implies Cournot-Nash conjectures; ¢; = 0 implies Bertrand-Nash conjectures; and
w; = 2 implies fully collusive conjeectures. The outputs and payoffs for the conjecture game,

after simplification, are respectively:

' The entire game can equivalently be considered ”as if” a two stage game where firms choose their conjectures
in the first stage, and then given their choice of conjectures in the first stage, they choose outputs in the second
stage.



(o) (s + @y — Vyu) (6)

rpn ) (o0 + P
Y (0ar0y) = (%)(ﬁ;jﬁ;gy@y%) 7)
and
PHpmi) = )
0 luv) = o)

Firms’ equilibrium choice of conjectures will then be obtained from the following first-order

conditions for X (and conversely for Y):
AU (pa, py) ‘Pz

do.  (py + o) (s = n) =0 (10)

This yields the following reaction functions in the conjecture game for X:

R¥(py) = ¢y

That is, the best-response of firm is to choose the same conjecture as the other firm'2. Thus,

we have the following proposition (stated without proof):
Proposition 1. Pure strateqy Nash equilibrium conjectures are symmetric.

Thus, there is a continuum of "strict” Nash equilibria, each parameterized by the symmetric

conjecture ¢ € [0, 2] with equilibrium output levels given by

9 _
z(p, ) = y(p, ) = TQO (11)
and symmetric payoffs given by:
¥
U(QD) = Z (12)

There is also a ”Bertrand” Nash equilibrium which is not strict: if one firm sets ¢ = 0, then
the other firm earns zero profits whatever conjecture it has. Clearly, the equilibria are Pareto-

ranked: the higher the conjecture, the higher the profits, with the limiting profit being half

the joint profit maximum U(2) =  and the minimum being the Bertrand case U(0) = 0. The

12The second order conditions are clearly satisfied from (10).

8



structure of the conjecture game is similar to a coordination game, except that the ”off-diagonal”

elements vary with the conjectures.

3.2 Mixed-strategy Equilibria.

Mixed-strategy equilibria will also exist if we take a finite subset of conjectures. In this sec-
tion, we provide an example, prior to a more general analysis when we model the evolutionary
dynamics in section 5.

Consider a finite subset of conjectures ¢ taken from [0,2], with #¢ = n, and index set
S1={1,2,...,n} so that ¢ = {¢;}

ies, - This then gives us an n x n payoff matrix A :

A = |:7Tij - UI(@i?@j)]ijeslxsl 7I - X7Y (13)

nxn
where the row 7 gives the payoff to the firm playing each strategy i (conjecture) against j and
the column j gives us the payoff of playing strategy j against each of the strategies i. Note
that since the game is payoff-symmetric, we can use either firm’s payoff function to define the
payoff matrix.

Let z = (21,...,2,) € A" where 2; is the probability that conjecture ¢ will be played.
Then, the expected payoff of strategy i is

ui(z) = (Az), = Y m;z, i €5, (14)

JES1

and the n-vector of expected payoffs for all strategies u is
u(z) = Az. (15)
If we consider the 3 x 3 payoff matrix generated by conjectures & = {1,1.5,2}, we have:

025  0.36 0.4444
A= 024 0375 0.4898 (16)
0.2222 0.3673 0.5

In addition to the 3 pure strategy equilibria, there are also 2 mixed equilibria. Adapting the
notation slightly, so that z() is the probability that conjecture ¢ is played, the 2 mixed equilibria

are given by:
o 2*(2) =0.4302, z*(%) =1-2%2), z* (1) = 0.

e 2*(2) =0, 2*(2) =

e
e
N

*
—~
—
~—
I
e
(@)



There is the following profile in which z*(2) = 0, and the two conjectures (2,1) earn equal

payoffs:

#2)=3, - (;) —0, (1) = g

This is not an equilibrium, because the expected payoff from playing 1.5 exceeds the payoffs of the
other two. Note that in this example, both mixed-equilibria involve only pairs of strategies being
played with strictly positive probabilities, there being no equilibrium with all three strategies
being played. As we show below, this is not a general property: strictly interior solutions in

which all three probabilities are strictly positive may also exist.

4 Consistency of conjectures.

There are several definitions of consistency of conjectures available!3. However, we use the
one in the sense of Bresnahan (1981), that in the output game each firm’s conjecture about
the slope of the other firm’s reaction function is correct at the equilibrium outputs. Unlike the
quadratic payoff framework considered by Dixon and Somma (2003) and Miiller and Normann
(2005), the CV reaction functions are not linear in this model, so that consistency-correctness
at equilibrium outputs does not imply correctness elsewhere. This has important implications
for the evolutionary stability of equilibria as we shall see.

From (1), the slopes of the reaction functions written in terms of ¢; are:

d x €T
R(g,sf)) _ 14 % (17)
Y \/(soz —1)% + 4,y
dR(z, py) Py
= -1 18
. + (18)

Ve, — 1%+ 40,

Now, we can set the outputs (x,y) at their equilibrium values given (¢, ¢,) using (6), (7),

and then consider whether or not the conjectures are consistent.

13See, e.g. Hahn (1977, 1978); Perry (1982); Kamien and Schwartz (1983); Boyer and Moreaux (1983).

10



4.1 Pure-strategy Equilibria and consistency.

From Proposition 1, we can focus attention only on the symmetric conjectures: ¢, = ¢, = ¢.

Equations (17) and (18) then simplify as:

ARy, ) _ dR(z.¢) _ | | %

% o V(e =17 +apy

Evaluating the above slopes at the equilibrium values of output given by (11) and simplifying,

(19)

we find:

T B (20)

Hence, all pure-strategy (symmetric) Nash equilibrium conjectures are consistent.'® This is

true for any ¢ € [0, 2] so that:

Observation 1 The set of consistent conjectures equilibria is equivalent to the set of pure-

strategy Nash equilibria in the conjecture game.
Further, we also observe that,
Observation 2 Unlike Bresnahan (1981), Cournot conjectures are consistent in this model.
To see that, note for ¢, =1 (¢, = 0), the slope of firm X’s RF from (19) is:

aR(y1) _ 1

dy 2\/y

which when evaluated at Cournot output level y = 1/4, yields % = 0. Likewise for ¢, = 1.
Y
However, if the conjectures are asymmetric i.e. ¢, # ¢, (as is the case in mixed-strategy)

then that will involve inconsistent conjectures (in the above sense) by one or both of the firms.

4.2 Mixed-strategy equilibria and consistency.

The existing definition of consistency has been developed purely for the pure-strategy case. Is

there any sense in which a mixed-strategy equilibrium in the conjecture game can consistent?

14 A similar result is also be found in Michaels (1989) who showed that there can be multiple equilibria in the
standard symmetric form of the game where any CV can be consistent. Michaels however does not consider a
conjecture stage of the game as we do in this paper.

11



In this paper, we develop the notion of ex post consistency!'®

Definition. Ex post consistency PC. In equilibrium, there is a probability that both players

will choose the same conjecture.

If both players choose the same conjecture, their conjectures are ”consistent” in the resultant
game ex post. If they choose different conjectures, they will not be consistent. Hence, we can

define the probability of ex post consistency:

n

PO =3 ()

7

For example, in the two mixed Nash equilibria identified in the 3 x 3 example, we have:

PC(0.4302, 0.5698,0) = (0.4302)* + ( 0.5698)* = 0.509 8
PC(0.6,0.4,0) = 0.36+0.16 = 0.52

In the case of pure-strategy equilibria, of course PC(1) = 1: the conjecture is correct in
equilibrium. However, when we have strictly mixed-strategies, the conjectures will only be
correct a certain proportion of the time: in the three mixed equilibria in our game they are
correct 51 — 52% of the time.

In general the isoquants for PC' are simply concentric circles measuring the distance from

the center of the simplex: the minimum is

1
in PC(z)=—,
L, POE) =5
which occurs the center point and the maximum is PC' = 1 which occurs at the vertices (pure
strategies).
This can be seen in the three dimensional case as depicted in Figure 1. The unit circle
touches the three vertices and represents PC' = 1. The equilibria on the edges satisfy'¢:
1
PCe -1
&
The PC' = 1/2 circle touches the three edges at their midpoint: PC'is increasing along the edges

in both directions. In the three conjecture case the minimum of PC = 1/3.

15In an earlier version of the paper, we also proposed a possible ez ante definition, that the average conjecture
equaled the expected slope. This is a more distant concept from the original consistency condition and therefore
we do not pursue it here.

6We can see that the two mixed equilibria in our example both lie in this range.

12



Insert figure 1 here

Hence in a mixed-strategy equilibrium there is a probability of consistency ex post which is
captured by PC. The interesting question is the link between stability (local and global) and

the probability of consistency. It is to this that we next turn.

5 Evolutionary Dynamics.

In this section, we analyze the dynamics of the model using the replicator equation. Previous
authors have focussed only on the local stability of consistent conjectures using Maynard Smith’s
notion of an evolutionary stable strategy (ESS). Analyzing global dynamics is important as it
will enable us to understand how the ”population” behaves from any given starting point, rather
than assuming a small deviation from a proposed equilibrium. Furthermore, this is particularly
important in our context because of the large number of equilibria and the possibility of the
dynamics providing a criterion for equilibrium selection as we show below. In this section we
derive some results on the number of equilibria for any finite number of strategies, n, and provide
a comprehensive global analysis of the replicator dynamics for the 3 conjecture case (the two
and the four coenjecture cases are described in the appendix).

From (15), the mean payoff across all strategies is:

u(z, p) = ZTA(SO)Z = Z Z 22T ().

i€S1 jEST

Whilst the payoff-matrix A is not symmetric'?, the following transformed symmetry relationships
hold for ¢;p; # 0,

Ty _ Mo s Ta_ L
vi i (pite)t e 4
If o =0 then m; =0for¢=1or j=1.
We let @ = {(0i);cg, € 10,2]" 10 < o1 < 2 < 95 < i1 < ... < @, < 2} be the set of
possible ordered strategies and assume, without loss of generality, that ¢ € ®.
The replicator dynamics (henceforth RD) is given by the n-dimensional ordinary differential

equation system '8

2= Fi(z, ) = 2 (ui(z, ) — U(z,9)), i € 51 (21)

where z € A", i.e., such that ;.o 2z =1and 0 < 2 <1, for all i € 5.

1"The asymmetry of A arises because when ¢; # ¢;, m;; # Tj;. as in our previous 3 conjecture example (16)
18See Hofbauer and Sigmund (2003) and Sandholm (2010) for recent accounts of the properties of this type of
evolutionary dynamics.
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Let us denote by Si the set of all combination of the indices of k strategy profiles where each
index is drawn from S;. The number of combinations without repetition of k£ strategies drawn

from the set of n strategies is

n!

Clnk) = i —r

k=1,...,n.

Then the set of pure strategies has the index set S; with cardinality C'(n,1) = n, the set of
combinations of two strategies has the index set Sy = { ij : 4,7 € S, j > i} with cardinality
C'(n, 2); the set of combinations of three strategies has the index set S3 = { ijk : i,7,k € Sy, k >
j > i} with cardinality C'(n,3), and so on. Set S,, has only one element.

We introduce the following notation for the elements of simplex A"~!. First, we denote
the boundary by 9(A™!) and the interior by int(A""!). In the boundary of the simplex we
distinguish further the elements of the boundary which are vertices e; = { z € A" : z; = 1}
for i € S, one-dimensional hyperplanes joining two vertices i and j, e; = { z € A" ! :
z; + z; = 1}, for ij € S, two-dimensional hyperplanes joining three vertices i, j and [, e;;, =
{z€dA™ " : z; + 2 + 2z, = 1}, for ijk € S3, and so on.

Whilst a Nash-equilibrium is a stationary distribution for the RD equation (21), not all
stationary distributions are Nash equilibria. A necessary condition for a stationary distribution
is that it should be a fixed points for equation (21). The set of all possible fixed points for
the RDis Z = { z € R" : F(z) = 0}. The set of fixed-points Z within the simplex A"~!
is Z* ={z e A"!: F(z) = 0}. A stationary distribution z* € Z*, is Nash equilibrium if
the condition u(z*) < u(z*) holds: Z%,, = {z € A" ! : F(z) = 0, u(z) < u(z)}. Hence

Z* C 2" C Z3,- The difference between Z* and Z};,,;, arises because of the "no return”

ash

feature of the RD: once a conjecture is extinct (z; = 0), it can never come back. Hence there
are stationary points for which all of the active conjectures earn equal profits, but for which the
"extinct” conjectures would earn above average profits were they to "return” and have a strictly
positive share. Clearly, stationary points which are not Nash equilibria will be fragile: they are

stationary only because the replicator dynamics we analyze are deterministic.

5.1 The model with n distinct conjectures.

This subsection gathers some results for the n-dimensional case. Although the dynamics gener-
ated by equation (21) cannot be completely characterized, we can derive some general results.
We then illustrate how this works in the case of three conjectures n = 3 (the 2 and 4 conjecture
cases are analyzed in the appendix).

The maximum number of stationary points for equation (21), F(z, ¢) = 0, for ¢ € ®, ruling
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out the trivial case z = 0, is
n

- n!
Cn, k) = ; e

This is the cardinality of set Z — {0} and gives an upper bound for the maximum number of

k=1

stationary distributions and for the number of Nash equilibria. Each term in the summation
refers to stationary points with only & conjectures having non-zero probabilities z; > 0. There
can only exist at most one stationary point with k& = n non-zero probabilities. Clearly there
are possibly a very large number of stationary points. For example, if n = 10 there are up to
252 equilibria with £ = 5, 210 each for £k =4 and k = 6, 120 for k =3 and k =7, 45 for k = 2
and k =8, 10 for k =1 and £k =9, and 1 for £ = 10. That is a total of up to 1023 stationary
equilibria, of which 10 are pure strategy profiles and the rest are mixed strategy profiles.

In order to characterize the set Z},,, we present and characterize the stationary profiles
which are in the vertices, in the edges joining two vertices, and in the hyperplane joining three
vertices. This allow us to make a conjecture on the existence of stationary mixed strategies in
the interior of the simplex A"~!.

First, we consider distributions in the vertices e; for i € Sy, corresponding to pure strategy
profiles. If the CV game starts from a mixed strategy sufficiently close to any pure strategy
distribution there will be asymptotic convergence to that pure strategy. The only exception
is the Bertrand conjecture which is a Nash equilibrium, but not ESS. The Bertrand vertex is

unstable and has no sink.

Proposition 2. For any ¢ € ® there are n pure strategy distribution profiles, z* = e; for all
1 €Sy, If ¢; > 0 e; is a Nash equilibrium and is locally a sink. If o1 = 0 then ey is a Nash

equilibrium and is a fold bifurcation point.

Second, we consider the mixed strategy stationary equilibria located over the boundary of

the simplex which is formed by the hyperplane (edges) joining any two vertices e; and e;:

e, =1z =—" Zz:i= ,zk:O,k#z,jES} € e;; forij € S,. 22
{ pite;l T pit ' ’ ’ (22)

For a given pair of strategies ij € S, define k;; = { number of k: ¢ < k < j holds for all k #
i,j € S1} and ke = { number of pairs ij : k;; # 0, forall ¢j € S;}. Clearly k;; < n and
kg < C(n, 2)

Proposition 3. Let p € ®. There are C(n,2) = n(n —1)/2 mized strategy stationary equilibria
in the edges joining two vertices of the simplex A™™1, z* = e;; € e;; for allij € Sy. Associated
with ¢ are the corresponding ky and k;; numbers. There is an associated multiplicity of stationary

equilibrium distributions in which there are { n(n —1)/2 — so} Nash equilibria and sy non-Nash
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equilibria, for some so € {0,...,ko}. Nash equilibria are generalized saddle points in which the
local saddle manifold is of dimension n — 1. Stationary profiles which are non Nash equilibria,
have local stable manifolds of dimensions {n — 1 — s;;}, for some s;; € {0,... k;;}.

:jv
Nash equilibria is s < kg, and have a local unstable manifold with dimension s;; +1 < k;; + 1.

The number of stationary mixed strategies combining two pure strategies, e}, that may not
We can briefly explain this result.
For a given conjecture profile ¢ € @, we define the transformed payoff difference from playing

strategy 7 against strategy j:

2

_ T — Ty 1 PiPj ( Pi — Pj ) :

mpy = ———= = — — = € (0,1/4], forij € Ss.
! Pi 4 (i +5)? 2(¢; + ¢))

It then follows immediately that m;; = m;; and m;; = 0. We can define the relative profitability

difference of two strategie, ¢ and 7, relative to a third strategy, k, by
Mijk) = Myj — My — Mg, 1j € So (23)

which is the difference between the profitability difference between strategies ¢ and j, myj,
relative to the sum of the profit differences of both strategies 7 and j against a third strategy k.
As the ordering of conjectures is the same as the indexes in Sy, e.g. ¢; < ¢; = @41, the signs

of my;x) depend on the order of k relative to i and j. In general we have:

<0 Jifi<j<kork<i<y
Mij (k)

N

0 ,ifi<k<y.

The equilibrium e; for ij € S is a Nash equilibrium only if all differences m;), for all k € Sy
excluding ¢ and j, are non-positive.

We can associate three types of counting to the number of m;;() differentials: (i) their total
number is the same as the number of combinations of 75k, that is C(n, 3) (which is the cardinality
of S3); (ii) kij is the maximum number of these differentials m;;) which may be non-negative,
for a given pair of strategies ij € Sy; and (iii) k2 is the maximum number of non-negative
differentials for all ij € S;. The key point here is that the last two numbers are just associated
with the ordering of indexes, but, nevertheless, give us a the maximum number of pairs 7 which
may have a non-negative relative differential and hence may not be Nash equilibria.

We denote further by s;; € {0, ..., k;;}, the actual number of differentials which are positive,
for a given edge of index ij € Sy and the total number of positive differentials by s € {0, ... ks },

for all indices ij € S5. That is, s, is the number of pairs ij which have at least one positive
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differential and so cannot be a Nash equilibrium, and an equilibrium in the edge e;; has unstable
manifold of dimension s;; + 1 if s;; < k;; this means that the equilibrium point e;*j is a local
bifurcation point where the center manifold has maximum dimension k;; — s;;.

Proposition 3 introduces, for any possible combination of two conjectures drawn from a set of
possible n conjectures ¢ € ®, two numbers, s and ks, and a partition over ®, {®F, ..., ®2 ... OF },
such that & = u’;;zoq>§2, associated to the number equilibria ej; which are not Nash equilib-
ria. Clearly, some subsets of the partition may be empty: ®32 is the subset of ® for which all
mija( @) are negative and hence all stationary distributions are Nash equilibria. If f = @
it means that s, = ko = 0, that is all the relative profitability differentials are negative; ®? is
the subset of ® such that sy = 1 and there is only one pair ij with at least one profitability
difference m;j( @) which is strictly positive, and all the others are non-positive, and there is
one stationary equilibria which is not Nash.

Proposition 3 also states that we can perform a further partition over every set @?2 which is
non-empty, and is related to the number of differentials which are non-negative and are counted
by s;;. This partition is related to the dimension of the local stable manifold.

The strategy space ® is partioned into subsets <I>§2 : depending on its location, ¢ will have an
associated sy and s;; which will determine the number of Nash equilibria and the dimension of
the local stable manifolds of the non-Nash stationary profiles locarted on the edges joinging the
verticese. Intuitively, if the initial population of CVs starts sufficiently closed to a mixed strategy
located at any one of the edges e;; it will converge to e7; only if is located exactly over the local
stable manifold passing through ej;. However, the local stable manifold is a set of measure zero.
Generically, if the CV game starts close to e;; the conjecture game solution will diverge away
and converge asymptotically to one of the two pure strategies e; or e;. Proposition 3 states that

there is a close association between the partition of the space of conjectures ®, which is related

ko

s> and a

to the number of probability profiles in which the Nash property does not hold, {@32
bifurcation analysis associated to the dimension of the local stable manifold. Local bifurcations
are associated to the boundaries of two subsets in which the number of distributions which verify
the Nash property varies.

Third, we can also derive some general results for the mixed strategy stationary equilibria
located on the boundary of the simplex which is formed by the hyperplane (edges) joining any
three vertices, €. C(n,3) is the number of combinations i < k < j: i # j # k. Then C(n, 3)
also counts the number, considering all the combinations, of relative profitability differences

mijk) that can be non-negative, for all coefficients ijk such that they are all different. A new
C(n,3)

ss—0 associated to the total number of ambiguously

partition over set ® can be performed, {®2,}
signed relative profitability differences. Observe that partition {®2 } involves unions of subsets

. o, . 2
in the partition {®7, }.
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We define a new magnitude involving relative profitability differences
Mgk = MM () Mt + MMy ()M MMy My + 2mgmgemy, 1 # 1,k 1 € Sy, (24)
and a new partition over set ®

% ={ ¢ € ®: there is at least one myu(p) >0, [ #£i#j € S}, s3€{0,C(n,3)}. (25)

Proposition 4. If there is a partition of ® by non-empty sets {@ig}fjﬁ(’f’) then there is an asso-

ciated multiplicity of stationary equilibrium distributions in which there are s3 € 0,...,C(n,3)

distributions of type z* = e on the edges e € A"t A stationary equilibrium distribution
e:jk
negative. If there is a partition of ® by non-empty sets {Cbg’g}
of Nash equilibria is {C(n,3) — s3}¢"%.

s3=0

is a Nash equilibrium if the associated coefficients m;; for 1 # i # j # k € Sy are all
C(n

73 N
33:0) then the mazimum number

In Propositions 3 and 4 we found that here is a close relationship between the number of
;jv
stable manifold for stationary distribution in e;; and the number of stationary distributions on

stationary distributions in the edges e;;, €, which are Nash equilibria, the dimension of the local

edges e;j;. This type of relationship holds further between the number of stationary distributions

on the edges e, which are Nash equilibria, the dimension of the local stable manifold at €], '
and the number of stationary distributions on edges e;j5. In this case a fixed point of F(z) =0

will be of type

o ( _ PiPEPIM kI _ PiPEPIM Gk D001y
Z2=\| =7, Z=—— =
dijkl dijkl dijkl
1P PR L.
2 = Pitj PRIMijk Jk,zp =0,p #1i,5,k, 1 € Sl> (26)
dijkl
where

Mk
dijr1 = PiP;PRMujk + LM + CiPrPIMig + O PRI y

ijl
for all ijkl € Sy, that has C(n,4) components. Again, z € e;;; if all the components of type
Mk, are negative.
Although we cannot go much beyond edges of type e;;, a similar reasoning applies for mem-
bers of the boundary of A"~! in which there are n — 4, n — 5, n — 1 zero components of z.
Since n is finite this suggests a conjecture over the existence of stationary distributions

belonging to the interior of A"

9This will be clear in the n = 4 case outlined in the appendix.
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Conjecture. There is one interior stationary distribution z only if there is a non-empty subset
of ® such that there are stationary distributions belonging to all the C'(n,n — 1) = n edges of

type €ia..i, i € S1, {€]y ;}j=; and they are all Nash equilibria.

An interior distribution, if it exists, is a Nash equilibrium because u(z) = u(2).

Then the set of stationary equilibria of the replicator dynamics is

Z' = {{ei}iESn {e;j}ijesza R {efjk}ijkES:w BRI {ey{23...i}123...i65n_17i}’

if n is finite and the sequences up until n — 1 have only Nash equilibria on all the edges. If
there is not an equilibrium point for every edge, or there is an equilibrium point which is not
a Nash equilibrium, for edges with indices S;, then there are no stationary distributions over

edges indexed S;,1, for : = 2,...,n — 1. In this case stationary equilibrium set is

zZr = {{ei}iESn SR {e;:lg...i]\f }i112-~-iNESN}’

where N is the maximum number of vertices which as connected by the edges in which there is
a fixed point {z € (A" ') : F(z) = 0}.

Therefore, stationary distributions are always multiple. Given an initial conjecture at time
t =0, z(0), the dynamics of the conjecture game will generate convergence to a unique asymp-
totic distribution, z* € Z*. If the initial conjecture does not belong to a particular set of measure
zero (i.e., if it is not a bifurcation point) there will be asymptotic convergence to one of the pure
strategy profiles e; depending on the specific value of vector . We also show there is a close
connection between the global dynamic properties (i.e., the basin of attraction of e;) and the

probability of asymptotic convergence to e;, for any given initial mixed conjecture z(0).

5.2 FEx post consistency in the n conjecture game

Propositions 3 and 4 describe the set of all possible Nash equilibria in the conjecture game.
Since most of these are mixed-strategy equilibria (for n larger than 3), what can we say about
the ex post consistency of these possible equilibria? The first point to note is that insofar as
mixed equilibria are on the edges of the simplex, they involve subsets of k& conjectures with
strictly positive probabilities and the complementary (n — k) conjectures being played with zero

probability. This enables us to place a lower bound on the probability of consistency:

Observation. With n distinct conjectures, if 2* is a Nash-equilibrium and there are are k

strategies with strictly positive probabilties, then
PC (=) € [7.1)
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Clearly, only the pure-strategy equilibria can be fully consistent with PC' = 1.

5.3 The 3 conjecture case.

In section 3 we considered a specific 3 conjecture example: here, we consider the general 3
conjecture case. It provides an example of the n conjecture case and is also sufficiently simple
for us to undertake a full characterization of all equilibria. With n = 3, the indices sets are
S1=1{1,2,3} and Sy = {12, 13,23}, and the conjecture space is ® = {1, 2, p3}, with 0 < 1 <
0y < 3 < 2. The candidate probability profiles are z = A% Probability profiles associated to
pure strategies belong to set {e;, es, e3}. The three boundary profiles located at one of the three
edges of the simplex, excluding the vertices, are {ejs, )3, €3}, where e;o = {z € A% : 23 =0},
e3={z¢€ A2z, = 0} and eg3 = {z € A2z = 0}, correspond to boundary mixed strategies
which are distinguished from the interior mixed strategies z € Int(A?).

Applying equation (23) we have relative profitability differences myg@3) < 0, Moy < 0 and

mi3(2) = Mis()(P1, P2, P3) = M1z — (Mg + Ma3), (27)

which has an ambiguous sign. Using the previous idea for the partition of ® into sets <I>§2,
we have the subset of ® in which all the three profitability differences are non-positive &5 =
{ ¢ € ®:myze)(e) <0}, and the subset in which there is one positive profitability difference

Oy ={ v € :my32)(¢) > 0}. Observe that

Mize) < 0 € @302 —p1) — i (93— 02) — 9010203 (1 +03) — 60103 (301 +05) — 5 (P +3) > 0

where the first term is positive and all the others are negative.
Function mq3() defined over (¢1, 2, ¢3), determines the number of stationary states and

whether or not they are Nash equilibria as given by the following proposition 2°

Proposition 5 (Stationary profiles). (a) If ¢ € Oy then there are siz stationary probability

profiles
* * * *
Z" = {91792793791279137923}7

x Y2 ¥1 . ¥3 ¥1 . Y3 o)
612 = < s 70) ,813 = ( ,O, ) ,623 = (0, y >
P11+ P2 Y1+ P2 Y1 +@s Y1+ Ps Y2+ Y3 P2+ @3

which are all Nash equilibria, except for e}s;

200bserve that 7 = 0 (i.e. the Bertrand case) implies my32) < 0.
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(b) if ¢ € int(®g) and 1 > 0 then there are seven stationary population profiles:
Z* ={ey,e9,e3,€],,€]5, €5, 2},

where

72" =17

Y

Ma3m my3m myam
(902903 23MM23(1)  P1¥P31M13 13(2)’ P1P2Mmi2 12(3)) c mt(Ag) (28)
d123 d123 d123

where dio3 = Q1PaM12M23) + P1P3M13M3(2) + P2P3MazMase) < 0. All stationary probability
profiles are Nash equilibria. If o1 = 0 then Z* = {ey, ey, €3, €5} and there are all Nash equilibria;
(c) if ¢ € O(Pg) then there are siz stationary profiles as described in (a) and they are all Nash

equilibria.

Figure 2 here

Clearly, the precise value of my3(9) is crucial in determining whether we have 1, 3 or 4 mixed
equilibria. We can take (31), and assume the three strategies are equally spaced, by setting
o = 1, and plot a bifurcation diagram in the space of conjectures (1, ¢3) in Figure 2. If we set
different values for ¢ the diagram will not change qualitatively. There are two bifurcation loci
{(p1,93) o1 = 0} and {(¢1,¢3) : mi32) (@1, ¢3) = 0}. The last set divides the conjecture space
into two: there is a small area where ¢, is less than 0.066, for which m32) < 0. Most of the
parameter space results in mi32) > 0. This means that in the 3 x 3 example the vast majority
of combinations of conjectures will yield only two boundary mixed equilibria with a third mixed
non-Nash boundary stationary point. In this sense, the interior mixed equilibrium is a rarity,
and requires one firm to have a very competitive conjecture (¢; < 0.066). We can now see that
the example in section 3.2 where ¢; = 1 and @3 = 2 is firmly in the region where m;3(2) > 0, so

that there are only three stationary points on the edges and no interior equilibria..
Figure 3 here

We can think about the strategy profiles in terms of the unit-simplexes, depicted in Figure
3 2! for the cases not corresponding to bifurcations. The pure-strategy equilibria are on the
vertices: the most competitive is in the bottom right corner (z; = 1), the least competitive at

the top (z3 = 1). All those equilibria are sinks.

2'We have used Dynamo by Sandholm et al. (2010), to draw the phase diagrams.

21



When mi3) > 0 we have the generic simplex as depicted in Figure 3(a).  There are
three partially mixed stationary states: one on each of the edges between the three vertices.
There are two stationary profiles e}, and e}, that involve conjecture ¢, with each of the other
two conjectures: these are both Nash equilibria and are saddle-points with the stable manifold
belonging to the interior of the simplex. Note that e}, is closer to e; than es : this follows
because to equate the payoffs, the more competitive conjecture needs a higher probability of
meeting itself. Likewise, e34 is closer to e; than e3. There is a third stationary state that is
not a Nash-equilibrium, which is a mixed profile with z3 = 0, and is a source.

When mq3(2) < 0 we have the simplex as depicted in Figure 3(b). In this case, there are two
differences: first, the stationary mixed profile with zo = 0 becomes a saddle-point stable Nash-
equilibrium, and secondly an additional interior mixed stationary state emerges, which is also a
Nash-equilibrium but is a source. Again the stable manifold associated to boundary equilibria
for zp = 0 belongs to the interior of the simplex. When m3) | 0, the mixed equilibria gets
closer to the interior mixed equilibrium in e;3, and when m;3(2) = 0 the two merge. In this case,
the boundary mixed equilibrium is a Nash-equilibrium. This property however does not show
up when m;3(2) 7 0. This corresponds to a local bifurcation point of the fold type.

The next proposition formally assert that the local dynamics at the stationary points dis-

played at the two phase diagrams hold generically:

Proposition 6 (Local dynamics). The pure strateqy Nash equilibria, e, ey and e, are always
sinks, and the two boundary mived Nash equilibria €], and €5; are always saddle points. In
addition:

(a) if maz)y > 0 then the boundary non-Nash stationary state e} is a saddle point with a one-
dimensional stable manifold.

(b) If myz2) < 0 two cases can occur: if o1 > 0 then the boundary mived Nash equilibrium €7,
is a saddle point and the interior mized Nash equilibrium z is a source. If o1 =0, then €],, €}
and z merge with e, which is a fold bifurcation;

(c) if mig2) = 0 then there is a local fold bifurcation at equilibrium point z* = ej3 = 2.

The dimension of the stable manifold reduces by one dimension if we consider the reduced
two-dimensional ODE equation.

Since a stationary point can only be an ESS if it is a sink, (Taylor and Jonker, 1978, p.
150), it follows that all of the mixed equilibria are not ESS and the probability of consistency
is strictly less than 1 : for the edge equilibria e}, and €33 and PC € [3,1). If ¢; > 0, then
all three pure equilbria are £SS and PC = 1. Hence we can conlcude that PC = 1 only for
equilibria with k£ = 1.
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5.4 Global dynamics in the 3 conjecture case.

Phase diagrams in Figure 3 displays not only local dynamics but also global dynamics, for the
two generic cases. It shows there is a heteroclinic network which is joining all the stationary
points of the replicator dynamics. Heteroclinic orbits exist in the intersection of the stable
manifold associated to one equilibrium point to the unstable manifold associated to another
equilibrium point. Therefore, there are heteroclinic orbits linking sinks to saddle points, in the
interior of the simplex, and saddle points to sinks, in the boundaries of the simplex. This implies
that the heteroclinic orbits in the interior of the simplex separate the basins of attractions of

the three pure strategy Nash equilibria
B, = { y € A?: tlim z(t,y) :el} ,1=1,2,3.
—00

Proposition 7 (Global dynamics). (a) Let my32) > 0. Then there is a heteroclinic network
composed of 8 heteroclinic orbits: six heteroclinic orbits join the boundary mized equilibria to
the pure strateqy equilibria, and two heteroclinic orbits join the steady state on edge ei3 to
the boundary mized equilibria on the edges e;s and es3. These two heteroclinics separate the
boundaries for the basins of attraction By, By and Bs associated to the three pure strategies
equilibria ey, e and es.

(b) Let myg2) < 0. If @1 > 0, then there is a heteroclinic network composed of 9 heteroclinic
orbits, siz heteroclinic orbits join the boundary mixed equilibria to the pure strategy equilibria, and
three heteroclinic orbits join the interior mized equilibrium, z to the boundary mized equilibrium
on the edges e13, €1o and es3. These three heteroclinics separate the basins of attraction By, By
and Bs associated to the three pure strateqy equilibria e, es and es. If o1 = 0, then there is a
heteroclinic network composed of 5 heteroclinic orbits, three heteroclinic orbits joining e, to es,
e3 and eqs3, and two heteroclinic orbits joining es3 to es and es. The heteroclinic orbit between

e1 and e separates the basins of attraction By and Bs. Basin By is empty.

From the above proposition, we can see that:

(a) Let 1 > 0. The three pure-strategy equilibria are asymptotically stable, have fully
consistent conjectures (PC' = 1) and are ESS. These properties hold for ¢, and (3 even when
p1=0
(b) None of the non-pure strategy fixed-points are asymptotically stable, ESS or have fully
consistent conjectures. The probability of consistency is at least 0.5 and strictly less than 1.
(c¢) The non-pure strategy fixed points are either unstable sources or saddle-stable with a stable
manifold of dimension 1.

We can see that the non-pure-strategy stationary states are on the borders of the basins of

attraction of the three pure-strategy equilibrium conjectures. The boundaries of the basins are
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heteroclinic orbits which connect the "mixed” stationary states with each other and with the
pure strategy equilibria. Hence, there is a sense in which the non-pure strategy stationary points
are "fragile”: the replicator dynamics on the two dimensional simplex results in a stable manifold
of at most one dimension. This means that these stationary states are not locally stable, since
a small deviation will almost always lead away to one of the three pure-strategy sinks. Whilst
they are fragile in this sense, they are also essential to the model, as with their heteroclinic

orbits they define the boundaries between the basins of attraction of the pure-strategy sinks.

5.4.1 Equilibrium Selection with three conjectures.

Clearly, the evolutionary dynamics imply that the initial position determines which equilibrium
comes about in the long-run. However, what can we say about the size of the basins of
attraction? In particular, what determines the size of the basins of attraction? Does the Pareto
dominant equilibrium have a larger basin of attraction? If we consider each point in the unit
simplex to be equally likely, we can interpret the size of the basin as the probability of the
corresponding equilibrium. In the general case of mi32) > 0, we are able to approximate each
basin under the assumption that the heteroclinic orbits are all linear, so that the three basins
can be broken down into triangles using Proposition 8 2. Let us call P(e;) the (approximate)

probability of asymptotic convergence to pure strategy e;. Our approximations are:

2
P(el) = !
(1 + @2)(p1 + ¢3)
P(ez) = ( ol L > )
<P1+903 P1+ p2 9024-903
2
Ples) = 5

(014 @3)(p2 + ¢3)

Since 3 > ¢ we can see that the basin of attraction of the Pareto dominant equilibrium
e; is larger than that of the most competitive equilibrium e; : P(e3)/P(e;) = ¢3/¢0? > 1 =
P(es) > P(e;). However, the relative size of P(ey) is more complicated to understand. To take

the simplest case, if p; = 0 (Bertrand), then the exact probabilities are

22We show in the proof of Proposition 8 that there is not an analytic first integral for the replicator dynamic
system and therefore the separatices of the basins of attraction cannot be determined analytically. However, we
also prove that they will be close to the straight lines connecting equilibria, which allows us to approximate of
the dimension of basins of attraction for the pure strategies.
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- ¥3
Ple) = v e

Ple) = — 12—
(2 + ¥3)
and so we have the unambiguous ranking P(e3) > P(ey). In general, however, it is more than
possible to have P(e3) < P(ey). In particular, as ¢ — @3, then P(e;) and P(e3) both tend to
1/4 whilst P(eq) tends to 1/2. If we take another example with ¢; = 1 (Cournot) and 3 = 2
(Joint profit maximization), then P(e2) > P(e3) for ¢y > 1.155.

Hence we cannot claim that the Pareto dominant equilibrium will have the largest basin. The
reason for this is due to the payoff function of the rent-extraction game. The most competitive
CV will do worst. The middle conjecture does better than the most cooperative when both
are played against the most competitive. Likewise, the middle conjecture does better than
the most competitive when both are played against the most cooperative. This was why (for
Mmag2) > 0) the stationary point with only the most and least cooperative conjectures is not
a Nash equilibrium and is an unstable source. The result is that the basin of attraction for
the intermediate conjecture o is often (although certainly not always) larger than the most
cooperative conjecture (3.

There is also a key difference between the intermediate conjecture and the most cooperative.
If we look at Figure 3(a), we can see that for myz) > 0, if the population starts close to es3
but in By, there are equilibrium paths that start with an almost zero share for s but tend
asymptotically to es where the share is 1. The cooperative conjecture @3 however requires a
minimum share to start off with. The lowest starting share for ¢3 occurs on the boundary of Bs
at stationary point e;s: its initial share must be just above that at e;3 for it to be able to get

to e;. So long as ¢ > 0, this is bounded away from zero.

6 Conclusion.

In this paper, we have taken the rent-extraction model with conjectural variations and applied
a social learning model to it in the form of the evolutionary replicator dynamics. CVs become
more (less) common as their average payoffs are above (below) average. The endpoints of
this evolutionary process can be both pure-strategy equilibria and mixed-strategy equilibria.
However, the mixed-equilibria are either unstable, or have limited saddle-path stability and
hence are not ESS. The pure-strategy equilibria have large basins of attraction, and their

boundaries are separated by heteroclinic orbits that connect the mixed-equilbria. Whilst all
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the pure-strategy equilibrium conjectures are consistent conjectures, the standard definition of
consistency does not apply to mixed equilibria.

We develop the concept of the ex post probability of consistency PC which generalizes the
conventional notion of consistency (PC = 1) to apply to mixed-strategies. Whilst only pure-
strategy equilibria can be consistent, we are able to find a simple lower bound for the ex-post
probability of consistency for mixed equilibria which is the reciprocal of the number of strategies
played with a strictly positive probability.

In our analysis of the rent-extraction game, we do not find a tendency for all of the rent
to be extracted in the evolutionary long-run. The rent is only fully dissipated when there are
competitive (Bertrand) conjectures, which are not ESS and will have no basin of attraction.
The Pareto-optimum of zero-rent dissipation is not only possible, but also has a significant basin
of attraction which in certain cases may be the biggest. However, in the three conjecture case
we have analyzed, the intermediate conjecture may well have the larger basin of attraction than
the Pareto-optimum. In the general n conjecture case, we find that there are two types if
stationary equilibria other than the pure-strategy ”corner” equilibria: there may be at most one
"interior” stationary point which will be a Nash-equilibrium in which all conjectures are played
with a strictly positive probability, which is a source. There are then many ”edge” stationary
points with less than n strategies played with a strictly positive probability. These can be either
Nash-equilibria with a stable manifold of dimension

There are very many shortcomings to using simple evolutionary dynamics: they certainly are
not a literal real-time representation of how agents behave. However, the long-run dynamics
give us a guide as to what social institutions and individual strategies might emerge over time.
In the case of the rent-extraction model they have given us an insight into what types of behavior
and associated beliefs will succeed in earning above average payoffs, and in so doing become

more cominon.
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A The 2 conjecture case

In this case z = (21,22) and ® = (p1,p2) for 0 < ¢ < o < 2. There ODE (21) has three
stationary equilibria, all belonging to the simplex A: two equilibria in the vertices z] = e; =
(1,0), and z5 = e = (0, 1) one interior equilibrium z} = z = (p2/(w1+p2), p1/(v1+p2)). They
all belong to the simplex A and verify the Nash property: u(e;) — @(e;) = (0, —p1mia) < 0,
u(ey) — u(ez) = (—pami2,0) < 0, and u(z) — u(z) = 0.

The spectra for the Jacobian F(z*), evaluated at the three stationary equilibria are:

U(el) = { - % 7_901m12} 5 0(62) = { - % 7_Q02m12}

) et o1+ (1
0(z) =¢——— myg,——— [z —ma2
P1P2 P12 2

Then equilibria e; and e, are sinks and equilibrium z is a saddle point.

and

Global dynamics properties are easier to obtain if we observe that, because the system should

lie on the manifold z; + z3 = 1, the planar ODE (21) has an equivalent dynamic behavior as a

reduced scalar ODE

4 =2 (u(z1, 1 —21) = (21,1 — 21)) = z1(1 — 21) (Zl N 901(12902) e

together with 2o = 1 — 2z;. We readily conclude that three types of dynamics can occur, if the
initial conjecture profile z(0) = (21(0), 22(0)) is a mixed conjecture: (1) if 1/2 < pa/(p1+ ¢2) <
21(0) < 1 then lim; o z(t) = €1, (2) if @2/ (1 + ¢2) < 21(0) < 1 then lim; , z(t) = e, and (3)
if 21(0) = w2/ (1 + p2) then z(t) = z for any ¢ € [0, 00). Then the relative dimensions of the the
basins of attraction of the two pure strategy profiles, allows us to determine the probabilities of
convergence to each one of them, given any initial conjecture: P(e;) = ¢1/(¢1 + ¢2) < 1/2 and
P(e2) = 2/ (1 + p2) < 1/2. As g > ¢y then P(e;) > P(e).

B The 4 conjecture case

Now the set of conjectures is four dimensional ¢ = {1, @9, @3, 04} where we assume that
0< @1 <o <3<y <4andz= (22,23 21)%.

In this case we have Sy = 6 profitability differentials of type m;; € [0,1/4) and 12 relative
differentials of type m;;x), which are negative, with the exception of four, my3(), mia2), Mi43)

and moy3). Then ky = 4. We also have S3 = 4 functions of type m;j, (see equation (24)) which

23We do not consider the case ¢ = 0, which should be obvious.
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have all ambiguous signs. We can define two partitions over ®, { ®2 ... ®2} and { ®3,..., P}
such that Ul _ @2 = Ui _ @3 = ® where @2, (P2)) is the set of values of ¢ such that there are
sy (s3) relative differentials m;;x) (M) which are positive. As we already saw, stationary equi-
librium profiles and their characteristics as regards the multiplicity of equilibria, Nash property
and local stability properties, depend on the local intersection of sets ®2, and &2, .

In this section we apply proposition 5 specifically we derive analytical conditions for the
existence of equilibria in edges e;;;, and present a bifurcation analysis for the case in which we

have Nash equilibria.

Proposition 8 (Stationary profiles). The conjecture space can be partitioned into as much
as 32 (possibly empty) subsets. For a given set of conjectures ¢ € ® there is a set of stationary
equilibrium distributions, Z*. Every Z* has the following general properties: (a) it contain
between 10 and 15 stationary elements, z*; (b) every Z* contains all Sy vertices e;, everyone
of each verifies the Nash property; (c) every Z* contains points in all Sy edges e;;; equilibria
e}y, €hs, €55 and €3, always verify the Nash property and ei,, €7, and €5, only verify the Nash
property if there are particular equilibria in edges e;j;: €i5 is a Nash equilibrium if equilibrium
€],y exists, e}, is a Nash equilibrium if equilibria €7y, and eis, exist, and €3, is a Nash equilibrium
if equilibrium €5, exists; (d) if Z* contains equilibria in any of the edges, e, € €;) then
this equilibrium verifies the Nash property; (e) half of the 32 steady state sets, if ¢ € @3 U &3,

contain the interior steady state z which is always a Nash. equilibrium

That is, we have 32 different combinations of multiple steady states, combining 10 to 15
stationary distributions. Just to illustrate we consider the two extreme cases 2. If ¢ € ®2 N
U3, @3, then Z* = { {e;}ics,,{€];}ijes, } has 10 elements which are Nash equilibria, with the
exception of ejy, e}, and e3,. If ¢ € ®F N BF U O} then Z* = { {e;}ics,, {€]; }ijes, 2} I
p €@ N dfU T then Z* = { {ei}ics,. {€]; }ijess, {€]jn }ijkes; 2} has 15 elements and they

are all Nash equilibria.
Figure 4 here

There is an very large number of combinations, therefore we took ¢; = —0.99 and ¢, = 0.9
and consider variations ¢y € (—0.99, ¢3) and ¢3 € (¢p2,0.9) just for illustration purposes, which
is depicted in Figure 4. This figure has three panels: the left diagram refers to partition {@i},
the center panel to partition {<I>§3} and in the right panel there is a superimposition of the other
two, with a legend indicating which stationary profiles would exist. As ¢o < ¢3 the top left part
of the graph is the only relevant.

24Gee the Appendix for a complete presentation of all the stationary distributions.
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On the left panel we observe that all sets ®2 to ®3 are non-empty. These sets are divided by
combinations of the parameters such that the ambiguously signed differences m;;() are equal
to zero. The subsets associated with the maximum and minimum number of stationary dis-
tributions on edges e;;; are smaller and are located in the extremes of the graph: subset ®3,
associated with four distributions on those edges is on the left, four values of ¢, very close to
—1 and subset ®2, associated with zero distributions on those edges is on the right, four values
of ¢y close to 1.

On the center panel we have subsets <I>§3. As, with the values of parameters in this example
we always have mjg3 < 0 and mazq < 0 then sets ®3 and @3 are empty. Set ®3 is again very
small and holds for values of ¢, close to —1.

Then, in the right panel we present the multiple stationary distributions Z* that exist: 2
, 24, Z11 (in this case e}, is Nash), 214 (e}, is Nash), 2y (e}, is Nash), Zo3 (e}; and e}, are
Nash), Z4 (€35 and ej, are Nash), Z5; (ef; and e}, are Nash), Z39 (e}; and e}, are Nash), Zs3,
(all Nash).

Proposition 9 (Local dynamics). We assume that @1 > 0. For any value of ¢ € ®, the pure
strateqy Nash equilibria, e1, e, ez and ey, are always sinks, with a four-dimensional local stable
manifold, and boundary mized Nash equilibria e, , €55 and e, are saddle points, in which the
local stable manifold is of dimension three. In addition:

(a) if ¢ € ®F then e};, e}, and eb, are also saddle points with three-dimensional local stable
manifolds; if ¢ € ®% then e};, and €5, have two-dimensional local stable manifolds and €}, has
a one-dimensional stable manifold; if p € ® U ®3 U ®2 the local stable manifolds of €35, and
e, can be three or two-dimensional and the local stable manifolds of €3,, can be three, two or
one-dimensional;

(b) if ¢ € B3 then €}ys, €1y, €134, and €hy, are also saddle points with two-dimensional local
stable manifolds; if o € ®3 their stable manifolds are all of dimension one; if ¢ € ®3 U @3 U &3
their local stable manifolds can be of dimension one or two. (c) if there is an interior distribution

profile, z, that is, if p € ®}, its local stable manifold is of dimension one.

Again there is a close connection between the Nash property and stability properties for

distributions ej; and existence of probabilities €], related to the signs of m;;), and Nash
property and stability properties for e;;; and existence of probabilities z related to the signs of
Mijik-

For example, if there is an equilibrium e}, profile in Z* if it is not Nash then the local stable
manifold is two-dimensional and there is not an equilibrium profile ej,;. However, if it is a
Nash equilibrium, then its local stable manifold is three-dimensional and there is an equilibrium

profile e}y, as well.
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Again equilibria in the edges or in the interior belong to the boundaries between the basins of
attraction for the equilibria in the vertices. There is a generic convergence for one pure strategy
equilibrium, depending on the initial guess z(0). As in the 3 x 3 case, the difference between
cases in which the set of steady states Z* does not contain equilibrium profiles in the edges e;;y,
as regards , cases in which it contains contains distributions in those edges or in the interior, is
that in the later case some vertices will become unreachable. In particular, the vertex associated
to the more competitive strategy e; will have a larger basin of attraction in the latter case. As
we see in Figure 3 this case occurs only if the value for ¢, is very close to —1 and ¢, is also very

close to ¢1..

C proofs.

C.1 Proof of Proposition 2

Proof. As F(e;) = 0 and e/1 = 1 then z* = e; € Z*, for any i € S;. As u;(e;) = u(e;) and
u;(e;) —u(e;) = —pym;; < 0 forany j #1i# 1€ S, and uj(e;) —u(e;) < 0. Then every e; is
a Nash equilibrium. The spectrum associated to the Jacobian F'(z) of equation (21), evaluated
locally at z = e;, is
ole) =o(F (&) = { — pimiles, , i € S,

where my; = 1/4. For every i #1 € S1 , or if i = 1 and ¢; > 0, all the eigenvalues are negative,
and if ¢ = 1 and ¢; = 0 then the spectrum o(e;) is equal to zero. This means that all stationary
distributions in the vertices of A"™! are locally sinks (the eigenvalues are real and the local
stable manifold has dimension n), except for the case in which ¢; = 0. In this case e; is a fold

bifurcation point. O

C.2 Proof of Proposition 3

Proof. By direct calculation, we determine the fixed points, located at hyperplanes e;; belonging

to OA™ L

* * Py Pi . ..
z"=e. =42z = , 2 = ,zk:O,k#z,]ESl} €e;iij €95,
{ eite;l T wit !

(22)
Their number is equal to the cardinality of Sy, C'(n,2).
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Every stationary equilibrium distribution ej; verifies:

. o 0, iftk=1,ork=75¢€5
uk(ez’j) - u(eij) Y e i o
%;;j mijy, fk#i,75 €57

The Nash property holds for a particular pair ij € S, if all differences m;j(), for k running
along Sy, are non-positive. Using our previous definitions and notations, we have potentially
ki; positive myj;y for every 15 € Sy and ky pairs 75 in which the Nash property does not hold
(i.e., there are ky pairs such that my;p) > 0). Consider our definition of sets {2, ’;;:0. It @y is
non-empty, then there is a subset of measure different from zero of ® such that all n(n — 1)/2
equilibria ej; are Nash. If ®; is non-empty then there is a subset of parameter values such that
there are n(n — 1)/2 — 1 Nash equilibria and one non-Nash equilibrium. If ®, is non-empty
then there is a subset of parameter values such that there are n(n — 1)/2 — 2 Nash equilibria
and two non-Nash equilibrium. Generally, if set ®,,, for so = 0,..., ks is non-empty there are
n(n—1)/2 — sy Nash equilibria and s non-Nash equilibrium. In the boundary between two sets
o2 N @? there is a profitability differential which is equal to zero.

The spectrum of the Jacobian of equation (21) evaluated at ej; is

. PDi; Dip; ( 1) i 0;
O-ei' = mij, mi; — =1, Mk,
(€5) {%ﬂoj T oi+ @ TT2) it W

k#i,5 €S}, forallij € Sy (29)

All the eigenvalues are real numbers, the first eigenvalue is always positive, the second is
always negative and among the other n — 2 eigenvalues there are k;; eigenvalues which may be
potentially positive for any ¢ € ®. Therefore ej; is locally a generalized saddle point in which
the dimension of the stable manifold is equal to n — 1 or is smaller. Observe that the expressions
for uy(ej;) —u(e;;) for k # 4, j € Sy and for the last n —2 eigenvalues are exactly the same. Then
the same partition {@i} is an unfolding of parameter space associated to the dimension of the
stable manifold: if ¢ € int(®?,) then the local stable manifold associated to €j; is of dimension
n—1—s; , for s;j € {0,...,kj}. In the boundary between two sets ®7 N ®? there is a fold

*

bifurcation and the spectrum o(ej;) contain at least one zero eigenvalue. O
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C.3 Proof of Proposition 4

Proof. If we set n—3 elements of the vector z equal to zero, there are fixed points n(n—1)(n—2)/6
of F(z) = 0 of the form

- ( _ PiPEM KT k(1) _ PiPETE Tk (5) PP (k)
z2=\ %= y R s T Rk

,za=0,1 #i,j,keSl)

dijk dijk dijk

where dijr = ©i0mi My + CiPrMmikMir) + @j0;mm e These vectors clearly verify the
summing up condition for a distribution z"1g, = 0. Another condition for z € ey, is that all
the three components of z are positive, which in this case holds if all m;;) have the same sign.
However, given the combinations of the indices involved, there is is always one term m;;(;) which
has an ambiguous sign, and all the other are always negative. This means that in general z is
not a distribution. As there are, overall C'(n, 3) relative differences in which the sign of m;;x,
are ambiguous (for all combinations without repetitions of k), then we can define a partition
{ @?3}53(263) over the set ® such that there ate s3 = 0,...C(n,3) profitability differences m;;)
which are non-positive. If the set <I>§3 is non-empty, then there are C(n,3) — s3 stationary

equilibrium distributions z* = ej;;, belonging to the edges linking vertices ¢, j and k.
For the stationary equilibrium distribution belonging to d(A"™1), z* = e;;, we can check if it

is a Nash-equilibria by evaluating the sign of vector u(e;j;;) —u(ej;;). For every ej; we obtain,

0, ifl=14,orl=j0orl=kes;

PiPiPL Mgl : <
——rrl —ul o f .
pitpiter diji’ L#1,].k €5

ul(e;‘kjk) - ﬂ(e:jk) =

where d;j, < 0if z* = e;*jk, (otherwise it will not be a distribution), and mjy, is given by equation
(24). This allows us to define a further partition over @, { @23}503(263) associated to the number of
functions m;;;, which are positive. Therefore stationary equilibrium distributions which have the
Nash property belong to the inclusions of related subsets ®2 and ®2  such that z* = e}, and
all the associated m;;j; are non-positive. That is, there is a maximum of C(n, 3) — s3 stationary

distributions , ej;;, which are Nash equilibria. O

C.4 Proof of Proposition 5

Proof. The ODE (21) has seven stationary equilibria where six equilibria are in the simplex
A?, for any value of the conjectures. There are three equilibria in the vertices of the simplex,
Z] = €1, Zy = €y, z3 = e3, and other three equilibria in the edges z, = e}, = (pa/(p1 +

©2), 1/ (1 + 2),0) € €12, 25 = €f5 = (p3/(p1 + ©3),0,01/(p1 + ¥3)) € €13, and zg = €}5 =
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(0, 03/ (@2 + ¢3), 02/ (P2 + ¢3)) € e93. There is another fixed point

7 — < P2$3 ( m23m23(1)> ©Y1P3 (m13m13(2)> P1P2 (m12m12(3)) )
7T — ~ 9 ~ 9 ~
Y2 + @3 d $1+ @3 d Y1+ P2 d

where

~

d = p1pamiamiaa) + P1P3M13M3(2) + P203M23Ma3(1)-

We readily see that z] 1 = 1. However, applying equation (23) we have, for any value of the

parameters in P,

Migz) = M1z — Maz — Moz <0 (30)
Mmize) = Mz — Mz — Moz 20 (31)
Mag(1) = Moz — M1z — Mz <0 (32)

then, in general this stationary equilibria may not belong to the simplex. A necessary and
sufficient condition for z7 to be in the unit simplex is that m;32) < 0. However, if my32) = 0
then z; = e;3 which means that this is a singularity. If my32) < 0 then z; = z € int(A?) and
z7 is a stationary equilibrium of the RD. If my32) > 0 then z; will not be a stationary RD
equilibrium point (although it is a fixed point of F(z) = 0).

The Nash property for equilibria can be assessed from the vectors u(z*) — u(z*) where
z* is an equilibrium of the RD. Then u(e;) — @(e;) = (0, —p1miz, —p1mas), u(es) — u(ez) =
(—pamia, 0, —pamaz), u(es)—u(es) = (—psmiz, —p3mas, 0) u(ejy)—tu(eiy) = (0,0, prpamaz)/(P1+
2)), u(elz) —ulefs) = (0,0103m1302)/ (1 + 3),0), u(es;) —uless) = (Papsmasn)/ (92 + ¢3)),
and u(z7) — u(z7) = 0. All the vectors are non-positive, except for the case of ejy: if mi32) <0
then it is Nash equilibrium, if m3(9) > 0 it is not.

Then if ¢ € int(Pg) then there are seven equilibrium points in the simplex, and all of
them are Nash equilibria. If ¢ € 9(®g) there are six equilibrium points all or them are Nash
equilibrium, although equilibria e]; and z; coalesce. ¢ € ®; then there are six equilibrium
points, all belonging to the edges and vertices of the simplex, in which all are Nash equilibria,

except for the case of e]. O

C.5 Proof of Proposition 6

Proof. The spectra of the Jacobian of 3-dimensional ODE, (21), F'(z*), evaluated at the equi-

librium points are:
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1. for the equilibria in the vertices, the Jacobian

o(er) = { - %7 —p1mia, —S01m13}

o(ey) = { - %, — P2y, —S02m23}

o(es) = { - %7 —3mi3, —80377123} .

are all negative and real, for every equilibria, then all the vertices are sinks;

2. for the equilibria located in the edges, the Jacobian has the eigenvalues
o(el,) = { i (m12 - 1 ) L mi2 b mi2(3 }
. o1+ ¢ 2) eiter gt 0
Uw*):{:<m¢3 (mﬁ__l) prps P19 mBQ}
. o1+ @3 2) eites gt 0O

o(ey) = { PP (m23 - 1 ) P2P5 Mas il Ma3(1 }
P2+ @3 2 ) oates 2 patps W

the first eigenvalue is negative and the second is positive for the three equilibria. How-

ever, while for for equilibria e}, and e3; the third eigenvalue is negative as well, the last
eigenvalue for ej; has the same sign as m,3). Then, all the equilibria in the edges are
generalized saddle points: at e}, and e}, the local stable manifold has dimension two and
at e}, the local stable manifold has dimension two if ¢ € int(®() and has dimension one
if ¢ € @y, at it is a fold bifurcation point if ¢ € 0Py;

3. the spectrum of the Jacobian for the last equilibria are:

4d
—90122503 mizmzmag (1+ AV?) —%mlzmwm% (1- A1/2)} (33)

o(z) = {_(,0&02}03 (m12m12(3) + Mi13Mmig(2) + MagMaes(1) + 2m12m13m23) )

where the discriminant is A = 1 + mlg(g)mlg(g)mgg)(l)/mlgmlgmgg. If Y e int(q)o), which
is the same condition for z; € int(A?2) then d < 0 and the discriminant is positive, then
all the three eigenvalues are real and and two are positive and one is negative, and the

interior point is a saddle with a one-dimensional stable manifold.
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C.6 Proof of Proposition 7.

Proof. Again, as in the 2 x 2 case it is convenient to study the 3-dimensional ODE, (21) on the
simplex by the equivalent 2-dimensional projection of the dynamic system (21) into, v.g., the

space (21, z3) by the relation zo = 1 — 2z — 23,

2 =21 [(1 — 21 — 23) (—pamaz + miz (w1 + p2)2z1 + mas(p2 + ¢3)23) +
+muzzz((p1 + w3)z1 — wa)] (34)

Z3 = 23 [(1 — 21 — 23) (—pamaz + mi2 (w1 + w2)2z1 + Mmas(p2 + ¢3)23) +
+muszi (1 + @3)zs — w1)] . (35)

We obtain equivalent results if we study the local dynamics from the ones we derived in the proof
of proposition 6 The steady states of this reduced system are obtained as z* = (2, 1 —2{ — 23, 23),
J(27, 25). The spectra for the Jacobian evaluated at the different steady states, as the system
is 2-dimensional, contains eigenvalues which are equal to the last two we have obtained in the
proof of proposition 6 .

In order to characterize global dynamics we have to completely describe phase diagram.
Zeeman (1980) presents a complete classification of the phase portraits of the replicator dynamics
(RD) for the 3 x 3 case. They include the phase portraits in Figure 3. These phase portraits
suggest there is a heteroclinic network which is not an heteroclinic cycle as in some RD games
(e.g., the rock - scissor -paper RD game). The heteroclinic network consists of six heteroclinic
orbits joining equilibria on the edges, e1», €13 and e»3, to equilibria on the vertices of the simplex,
e, e and e3, and two interior heteroclinic orbits joining steady state ej; to steady states ejs,
and e}, respectively. Those two heteroclinic orbits separate the boundaries of the basins of
attractions in the interior of A2. Next we prove that the phase diagram in Figure ??, for case
mas2) > 0, is generic. The proof for case my32) < 0 is similar.

Heteroclinic orbits lay along invariants of type {(z1, 22, 23) : F(21, 22, 23) = constant}. The
best way to prove that their layout as in Figure 3 is generic, is to determine a first integral
of the RD system (21) explicitly. If we transform the 3-dimensional RD system (21) into a
2-dimensional Lotka-Volterra (LV) system, using a well known transformation (see (Hofbauer
and Sigmund, 1998, p.77), and if we draw upon the relevant literature on the determination of
the first integrals of the LV equation, e.g. Llibre and Valls (2007), we find that there is not an
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analytic first integral for the associated LV equation.

Therefore we resort to a heuristic proof by using equations (34)-(35).

The orbits along the edges of the simplex lay along invariants {(z1, z3) : 21 = 0} , {(z1, 23) :
1 —2 —2z3=0}, and {(z1,23) : 23 =0} . In the first case the dynamics is given by 2; = 0 and
Z3 = 23(1 — z3) (23 — 23(€23))mas(p2 + ¢3), which means that z;(t) = 0, for any ¢t > 0 and if 0 <
23(0) < zz(e33) (1 > 23(0) > z3(e35)) then z3(t) will converge asymptotically to vertex e, (e3). In
the second case the dynamics is given by 23 = —Z; and 2; = 21 (1 — z1) (21 — z1(e13)m3 (w1 + ¢3),
which means that z3(t) = 1—21(¢), for any t > 0, and if 0 < 21(0) < z1(e}3) (1 > 21(0) > z1(e}3))
then the trajectory z;(t) will converge asymptotically to vertex e; (e3). In the last case, the
dynamics is given by Z3 = 0 and 2; = 21(1 — 21)(21 — 21(e12)m12(p1 + p2), which means that
23(t) =0, for t > 0, and if 0 < 2;(0) < z1(efy) (1 > 21(0) > z(e},)) then the trajectory z(t)
will converge asymptotically to vertex e; (ez).

Next, we prove that, if m;32) > 0 there are two heteroclinic orbits inside a closed trapping

area T which is bounded by equilibrium points ey, €],, €], and e3;:

—2 + (1 + @3)21 <, 902(1—21)+S01}

3
P3 — P2 Y2 + P3

IN

T:{ (21723): 21207 23207

As we already saw, all the points belonging to segments of the edges es-e15, and es-es3, converge
to the pure strategy steady state e;. By continuity, given any initial point close to the those
edges, the replicator dynamics will also imply asymptotic convergence to e;. However, all the
dynamics starting close to the straight line e;s — ej3, passing through points e}; and ej,, will
exit T and converge to vertex e;. Similarly, all the dynamics starting close to the straight line
e13 — €93, passing through points ej; and e}, will exit T and converge to vertex es;. This means
that there are two separatrices belonging to the interior of T: the first is in the intersection of the
stable manifold associated to the saddle point e}, with the unstable manifold associated with
the source e}, W#(ej,) N W*(e};); and the second is in the intersection of the stable manifold
associated to the saddle point e5; with the unstable manifold associated with the source ejs,
W (e33) N W"(els).

Those separatrices partition T in three subsets, where there will be asymptotic convergence
towards one and only one of the three vertices of the simplex. The subset associated to e; is the
basin os attraction of e; and the other subsets of T belong to the basins of attraction of e; or es.
The separatrices are invariants and contain all the heteroclinic orbits converging asymptotically
to either ej, or e3.

To prove this formally, observe that the formal expression of line e;3 — €15 is

V2 p1+ P3
- + z
Y3 — P2 Y3 — P2

23 = 1°: (Zl,Zg)GT
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which is positively sloped. Evaluating equations (34)-(35) along that line we get

(1 + p2)(p1 + 3)

=2 2 (21 — z1(e13)) (21 — 21(e1n)) ((p2m12(3) T (‘03m13(2)) >0
(3 — w2)
+ 2 + * * 2 m
5y = (g)_(g)g 25) (24— (i) (21— 21(el) | (pomiacy + pamia) 21 + Py

Then the vector field is negatively sloped along line e;3 — €15 and, locally, z; is increasing and
z3 is decreasing towards e;. Therefore, the global dynamics involves exit from trapping area T.

The formal expression of line e;3 — €93 is

©2 Y2 — Y1
— z

= : (21,23) €T
P2 + ©3 802—1‘9031 (21, 23)

z3

which is negatively sloped. Evaluating equations (34)-(35) along that line we get

(o1 + ¥3)

m z1— 1)+ om z1) <0
(cp2+cp3) (@2 23(1)( 1 ) P1113(2) 1)

4 =21 (21 — z1(efs))

and

(1 + 3)

(P2 + p3)? (p2(1 — 21) + p121) (802m23(1) + 90177113(2)) >0

3 = 21 (21 — 21(efy))
which implies that the slope of the vector field along the line e;3 — ey3 is also negative. But the
slope of the vector field is steeper than the slope of line ej3 — es3, because

_ 201022 <0

e13—e12 (2 + 3) (90277123(1)(1 —21) + 901m13(2)21)

dz
le

_dz
le

(%1,%3)

Then, locally, z; is decreasing and z3 is increasing towards es. Therefore, the global dynamics
also involves exit from trapping area T.

At last, we prove that the separatrices lay inside the trapping area T. First, recall that
the stable eigenspaces, E®(ef,) and E*®(ej;), are tangent to the stable manifolds associated to
the two boundary saddle points, e}, and e};. This means that the heteroclinic trajectories are
asymptotically tangent to the stable eigenspaces. The stable eigenspace associated to ej, has

slope
dzs B (1 + ©2) (M3 + mag3)

dz B3 (ef,) (mag — mas)ps — (Mg + ma3) P2

which is positive if (p? + p3)p2 — 20103 > 0, and is negative or vertical otherwise. In the

second case, the separatrix is clearly inside T. However, the separatrix is also inside T when it
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is positively sloped, because it is steeper than line e;3 — e9, as, in this case,

ng

dz1

_ pa(p1 +92) (01 + ©3)?
e, (P 03) 02 — 20103

d
_ﬁ > (

Boer,) 021
The stable eigenspace associated to e}, is also negatively sloped, because

dz
le

_ (m12 — maz)p1 + (Ma2 + mas) s <0

Poes) (2 + ¢3) (M2 + mag)

Again, it is inside T because it is steeper than line e;3 — ey3 as

dz
le

B dzs P1M12

=2 > 0.
(1 + p3)(maz + ma3)

Es (6;3) le e13—ea3

In the case of my32) < 0, the proof is similar in the case of p; > 0. If ¢; =0, we have the
additional factor of the merging of equilibria (Proposition 6) and resultant fold bifurcation and

disappearance of Bj. n

C.7 Proof of Proposition 8.

Proof. The ODE system (21) for the case in which both z and ¢ are four dimensional, has fifteen
stationary points, in which five may not be located in the simplex A3 for any value of ¢ € ®.
First, there are ten stationary points which are always located in the vertices of the simplex
Z1 = €1, Zy = €y, Z3 = e3, and z4 = e4 and six stationary points are located in the hyperplanes
belonging to OA* connecting two vertices, z5 = €, zg = €3, Z7 = €}, Zg = €33, Zg = €3, and

Z19 = €3, Where

% P2 ®1 * ¥3 ¥1

e, = , ,0,0 ) € eqq, ej; = , 0, ,0) € eys,
2 <901 + P2 1+ P2 ) 2 13 <<,01 + @3 Y1+ @3 ) b
* P4 Y1 * ¥3 P2

e, =|——,0,0,————— | € ey, en =10, , ,0] € eos,
H <901 + P4 w1+ 904) 14 2 ( Y2 + Y3 P2+ Y3 ) *
* 'z P2 * 'z ¥3

ey, = |0, ,0, € ey, ey, = 10,0, , ce
e ( Y2+ @y 2+ 904) # i ( Y3+ P4 3+ 904) 34

Second, the next five stationary points may not be belong to the simplex. Among them,

41



there are four that can be potentially located in A2, in hyperplanes joining three vertices:

Z11

I I

(902@377”&2377”23(1) P1P3mMi3, M13(2) P1P21M12, M12(3) 0)

d123 d123 d123

(@2@477”&247 TMa4(1) P1P4TI14, TT14(2) P1P2112, TMh12(4) )

Z12 = ) a07 )
di24 di24 di24

<803S04m34, M34(1) P1PaM14,M14(3) P1P3T13, 1T113(4) )

713 = ,0 ) )
d134 d134 di134

( P3P4MN34, M34(2) P2P4MM24, TTV24(3) 802903m23,m23(4)>

Z14 = 07 ) ) )
da34 da34 da34

where, using the expressions for mya(s), mi3(e) and mesy and signs already derived in (30), (31)

and (32), and the general rule presented in equation (23),

Mi2(4) = M2 — Mg — Mg < 0, Mig(2) = Mg — M2 — M4 20
Mag(1) = Mag — M1z — My < 0, Mmi3(4) = Mz — Mg — Mmzg < 0
Mig(3) = M1y — M3 — M34 2 0, M34(1) = M34 — M13 — Mg < 0
Ma3(4) = Moz — Moy — Mg < 0, May(3) = Maog — Mag — Mm3g 2 0

M34(2) = M34 — Mgz — Moy < 0,

and

dig3 = ©1p2m12Mig3) + ©1P3M13M13(2) + P20P3M23M93(1)
dios = ©1P2M12Mi204) + P1P4M14M14(2) + P2P4M24M24(1)
dizs = ©193M13M13(4) + P1P4M1aM14(3) + P3P4M34M34(1)
dzs = ©1P2M12M12(4) + P1P4M1AM14(2) + L2014 M24(1)

Then Z11 = e*{23 lf mlg(g) S 0, Z1o — GTQ4 lf m14(2) S O, Z13 = eT34 lf m14(3) S O, and Z1y — 8334 lf
may3) < 0.
The last fixed point is

I (902@3904771234 O1P3PaMI31 P1P2PaMI24 solsowamm)
15 — ~ ) ~ ) ~ ) ~

d d d d
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where

Ma34 = M23M23(4)M14 + M24M24(3)M13 + T34M34(2)M12 + 2M23M24M34
M134 = M13M13(4)Ma4 + M14M14(3)M23 + M34M34(1)M12 + 2M13M14M34
Mi24 = M12M12(4)M34 + M1aM14(2)Ma3 + MogMay1)M13 + 2M12M14May

M123 = M12M12(3)M34 + M13M13(2)Mag + Ma3Mag(1)Mi1g + 2M12M13Ma3

and

A~

d = Pap304Mazs + P1P3P4MI34 + P1P2PaMI24 + P1P2P3M23.

Then z15 = z if sign(mya3) = sign(miag) = sign(myzs) = sign(maszs).
The two partitions of ® have the following subsets. The first partition involves m;;a), in

which we only report the cases in which m;;(;) are ambiguous (all the other m;;() are negative):

(I)Z = {QO cd: m13(2) > 0, M14(2) > 0, M14(3) > O, M24(3) > O}

q)g = {QO c€d: mise) > 0, mig2) > 0, migs3) > 0, or mis2) > 0, mig2) > 0, Moy(3) > 0, or

or myze2) > 0,migs) > 0, Mo > 0, or myse) > 0,miys) > 0,maus >0} (36)

cbg = {QO € d: mi13(2) > 0, mi14(2) > O, Or 1M13(2) > 0, mM14(3) > O, Or 1M13(2) > 0, M24(3) > 0, or
Or Mi4(2) > 0, mi4(3) > 0, or mi4(2) > 0, mM24(3) > 0, or mMi4(3) > 0, M24(3) > 0} (37)
(I)% = {90 cd: mi3(2) > O, Or Mi4(2) > O, Or M4(3) > 0 or Moy(3) > O} .

and
@3:{@@1): mijy) < 0fori# j#ke Sy xS xSt}

The second partition involves myj;x), in which we only report the cases in which m;;a,) are

ambiguous (all the other m;j() are negative):

(I)i = {QO e o My93 > 0,771124 > O,TTL134 > 0,771234 > 0}
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3 _ .
o = {(,D € D :myaz < 0,Mmy94 > 0,my34 > 0,Ma3q >0, or
or mygg > 0,mq24 < 0,m134 > 0,934 > 0, or myo3 > 0,m124 > 0,my34 < 0,mg34 > 0, or

or migg > 0,mq24 > 0,my34 > 0,934 < 0}

3
Q5 = {p € ®:mygg <0,my24 < 0,my34 > 0,ma34 >0, or
or mygz < 0,my24 > 0,m34 < 0,934 > 0, or myoz < 0,my4 > 0,mq34 > 0,mo34 <0, or
or mygz > 0,m124 < 0,my34 < 0,m034 > 0,01 M3 > 0,m124 < 0,134 > 0,m034 <0,

or migz > 0,m124 > 0,m134 < 0,934 < 0}

3 _
Q7 ={p € P :mygg <0,my24 < 0,m134 < 0,934 >0, or
or myaz < 0,my24 < 0,my34 > 0,m034 <0, or myaz < 0,my24 > 0,my34 < 0,ma934 <0, or

or mygz > 0,my24 < 0,my34 < 0,ma34 < 0}

and

Py ={p €D :mygz < 0,94 < 0,my34 < 0,ma34 < 0}

44



Next we present all the possible 32 candidate steady states: Z* = {z € A?: F(z) = 0}:

Z {{eitiesi {€};}ijes, } -

Z {{ei}ies:, {ei; }ijess z},
Zy = {{eitiesi: {€];}ijessr €las}
zZ, = {{ez‘}z‘esp {efj}z‘jesza e>{24} )
Zs = {{ei}iESla {efj}z’jesp ef34} )

Zs = {{eitiesi: {€];}ijesnr €534 »

Z; = {{ei}i€S17 {e;'kj}ijesw €193, 2} )

Zy = {{ei}i6517 {efj}z’jesza €124, Z} )

Zy = {{ei}iGSU {ejj}ijésm €134, i} )
Zi = {{eitics,, {€];}ijessr €534, 2}
2u = {{ei}ieSlv {e; tijes, €1as, 9T24} )
21y = {{ei}ieSu {efj}ijeSm €193, e>{34} :
213 = {{ei}iGSn {e?j}ijesw €123, e§34} )
2 = {{ei}iGSu {e;'kj}ijesza €1a4; eT34} )
215 = {{ei}i651= {e:j}ij€s27 €14 e§34} .
215 = {{ei}iESu {e;bijess» €134, 9534} ;
Zi7 = {{e’i}’i6517 {efj}z‘jesy €193: €124, i} 5
Zis = {{ei}iesm {efj}ijesm €193, €134, i} )
Ziy = {{ei}iesi (€] }ijesss €3 €330, 2 )
2y = {{ei}ies {€];}ijessr €laas €150 2}
Zn = {{eities:, {e;bijess, €124, €334 2},
Zn = {{eities:, {e;;bijess, €134, €534 2},
2y = {{ei}ieSu {e;"j}ijésw €193: €124 e,{34} )
2o = {{ei}iesu {efj}z‘jeszv €193, €124, 9334} )
2y = {{ei}ieSu {efj}ijesza €193, €134, 9334} )
2o = {{ei}iesu {e;tijess, €1a4; €134, 3334} )
21 = {{ei}iGSU {e;'kj}ijesw €193, €124, €134 2} )
2o = {{ei}iGSU {e:j}ijesza €123, €1245 €534, i} )
2y = {{ei}iESU {e;}}z‘jesza €123, €1345 €534, i} )
23 = {{ei}iESu {efj}z‘jesza €124, €1345 €534, i} )

2y = {{ei}z‘esp{efjigiesza{efjk}ijkesg}7

Z3p = {{ei}ieSU{e;‘}ijESza{efjk}ijkESyi}'



Then, if the following subsets are non-empty then:
o if o € ®IN (U _ ®%) then Z* = Z;;

o if p € ®2N (P} U P?) then Z* = Zy;

o if o e ®IN (U2 _ @2 then Z* € {Z3,... Z6};

o if p € PN (DU DY) then Z* € {Z7,... Z10};

o if pe @3N (U _®3) then Z* € {Z11,... Zy6};
o if pe ®2N (DU DY) then Z* € {Z17,... 20 };
o if o e I N (U2 _ %) then Z* € {Z3,... Z6}:
o if o€ ®IN (DU DY) then Z* € {Za7,... Z30};
o € PN (U2 _ @3 ) then Z* = Zy;

o if p € ®2N(PFUDP?) then Z* = Z3y.

Next, we evaluate the verification of Nash conditions: First, the stationary states in the

vertices are all Nash equilibria, because u(e;) —u(e1) = (0, —p1mia, —p1m13, —p1m14), u(es) —

H(62) = (—90277112707—9027”237—8027”24), 11(93) - ﬂ(e:a) = (—9037”137—@3”12370,—80377134); and

u(ey) — u(ey) = (—pamag, —pamay, —pamay, 0). Also, if there is an interior steady state z it is

also a Nash equilibrium because u(z) = u(z).

Second, the stationary states in the edges e;; verify:

. P1P2M12(3) 90190277112(4))
u(e u(e 0,0, , <0
(e~ alefy) = (0.0, E1E2Tn PP

m m
(e13 913 ( P1P31M13(2 O P1P3 13(4))

o1+ o1+ s

901904m14 2) P1P4aT14(3)
u(ey,) — u(ey,) = , 0
P11+ ¢4 P1+ ¢4

* — % P2P31M23(1) P2P311123(4) >
ule —ule = 707 07 S 0
(o)~ alely) = (Z2EA0 0,0, P2

N s ©2PaM4(1) . P2PaMou(3) )
u(e;,) —uley,) = ,0, ,0
(e5) — aleg,) = (L2, 2P
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u(e*) (e ) (90390477134(1) P3%P411134(2)
34 34 (,03_’_@4 ) @3"‘(,04

As k1o = ksy = 0 then, e}, and €}, are always Nash equilibria , and the other equilibria may

0,0>§0

not be Nash, because ki3 = k3y = k3y = 1 and k4 = 2. However there is a close relationship
between the Nash property for the other equilibria ej; and the existence of equilibria in edges
e;ji: if 211 = e],; then e]; is a Nash equilibrium, if z;, = e}y, and z;35 = e}, then e], is a Nash
equilibrium and if z;4 = e}s, then €}, is a Nash equilibrium. This means that unless all the
the expressions m;j() are non-positive, there will always be at least one equilibrium of type e;;
which is not a Nash equilibrium.

For the equilibria e}, , because we need to impose conditions on the parameters that ensure

ijk>
that they belong to the simplex, we readily see that they are all Nash equilibria:

<P1S02<P3m123> <0

u(e{%) (9123) (0 0,0, — d
123

* P1P2P41M 124

u(ejy,) — u(ejy) (0 0,— d a0> <0
124

* P1P3P41M134

u(e134) e134 = (07 d 70,()) <0
134

% P2P3P41M234

u(e234) e234 ( T o 07070> <0
234

C.8 Proof of Proposition 9.

Proof. We evaluate the spectra for the Jacobian F'(z*) at the stationary strategy profiles, such

that z* € A3. For the equilibria in the vertices, we have

©1
0(91) = { R —@1Mi2, —P11M13, —S01m14}

©2
0(62) = { - I’ — P2z, —P2TMa3, —802m24}

¥3
0(93) = { R —P3M13, —P3M23, —90377124}
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P4
0(94) = { - Z’ —P4M14, —P4aMo4, —9047”34} .

They are all negative, therefore e; are sinks, and the local stable manifold is four-dimensional.

For the equilibria in the edges e}; we have

* PY1p2 P172 1 P1P2 PY1P2
olel,) = mia, mis — = |, m , m
(€12) {@1 + 2 2 P1+ P2 < 2 2) Y1+ P2 12(8) P1+ P2 12(4)}

o(els) :{ . mis L <m13—1) AL mi3(2 L m134}
b ©r+es o1+ s 2) 7 o1+ s ()7901+903 @

{ ©1P4 m P14 (m 1) ©1¥P4 m P1P4 m }
14, 14— 35> 14(2)5 14(3
©1 + P4 ©1+ Q4 2) @1+ @4 ()<p1+s04 )

o(ely)

d&):{¢W3m% P23 G@y}) 208 w%7m“}
S N 2) ooty W oty

{ £ LY w2 <m24—1) P2 M24(1 w2 m243}
prter pat e 2) o2 tos W gyt M

‘7(3* ) = { il m3q Ll (m34 - 1) P3P msq1 Ll m3y4(2 }
s 3 +Q4 3+ P 2) st ps Dot g, )

Then they are all generalized saddles. However the local stable manifolds dimensions may differ:

o(ey)

el,, €55 and e, are three-dimensional, e]; and €3, may be three-dimensional or two dimensional
(if mig2) > 0, in the first case, or masg) > 0) and e}, may be three-, two, o one dimensional. If
¢ € 2 the least-dimensional case and if ¢ € ®3 the higher-dimensional case holds.

For the equilibria €], the spectra are:

_ P1papP3iiiog

d123

I

o(ers) = {_901(192203 (m12m12(3) + M13Mag2) + MagMaeg(1) + 2m12m13m23) )

_ P1P2P3Mi21M31023 (1 i (A123)1/2) 7_9019029037”'”6127”'”6137”'”623 (1 _ (A123)1/2)}
d123 d123

where

A123 = 1 + m12(3)m13(2)m23(1)’
M121M137M23

as myze < 0 and dia3 < 0, €]y it is a generalized saddle with a one-dimensional, if m;23 > 0 or
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two dimensional saddle manifold, if mq93 < 0O;

_ P1P2PaTi24

d124

P1P2@
o(er) = {— Lz (m12m12(4) + ma1gMmaaez) + MagMay) + 2m12m14m24) ) ;

d124

_ P1P2apaNioMygMiyy (1 4 (A124)1/2) ,_901902S04m12m14m24 (1 _ (A124)1/2)}
d124 d124

where
M12(4)MM14(2)M24(1)

M121M14M24

A124 = 1+

as myge < 0 and dip4 < 0, €]y, it is a generalized saddle with a one-dimensional, if m194 > 0 or

two dimensional saddle manifold, if mq94 < 0;

_ P1P3Palizg

d134

9

o(ess) = {—@10;[1);:04 (m13m13(4) + M1gMay ) + M3aaMaer) + 2m13m14m34) )

_ P1P3P4T13TT14TT034 (1 4 (A134)1/2) ’ _ P1P3P4TII3TT14TT034 (1 _ (A134)1/2) ’ }
di34 di34

where
TN13(4)1014(3)T1034(1)

m13M14M34

A134 = ].+

as myyz < 0 and dy34 <0, €]y, it is a generalized saddle with a one-dimensional, if m,34 > 0 or

two dimensional saddle manifold, if mq34 < 0;

_ P2p3P4M234

d234

9

o(ess) = {—@2:):04 (m23m23(4) + MogMoy(3) + M3aMa3ya2) + 2m23mg4m34) )

_ P21P3PaM231M24 M3y (1+ (A234)1/2)

P2P3P41M231M24 34 1/2
- 1-(A
s (1 @), }

)
d234

where
T23(4)1M024(3)T1034(2)

Mo3Miog M3y

A234 =1+

as maoy3z < 0 and dazy < 0, €33, it is a generalized saddle with a one-dimensional, if mg34 > 0 or
two dimensional saddle manifold, if mo34 < 0.
The expressions for the eigenvalues at the interior equilibria are too large to report., however

if it exists the local stable manifold at z should be one-dimensional. O]
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Figure 1: Consistency
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Figure 2: Bifurcation diagram in the space (1, ¢3), for equally spaced conjectures ps = (1 +
©3)/2.
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Figure 3: Phase diagrams over the simplex for equally spaced conjectures: the top panel is for
case I' > 0 where (¢1, ¢3) = (1,2) and the bottom panel for I' < 0 where (1, ¢3) = (0.01,1.9).
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Figure 4: Bifurcation diagram in the space (¢q, ¢3)for ¢1 = —0.99 and ¢4 = 0.9. The top left
graph refers to set @32 and the top right graph refers to ®3. In the bottom graph the areas
correspond to eleven multiple steady states distributions: Z4, Z; , Z1; (in this case e} is Nash),
Zy4 (e}, is Nash), Zy (e}, is Nash), 253 (e]; and e}, are Nash), Zy (el; and e}, are Nash), Zo;
(ej; and e}, are Nash), Z3y (e}; and e}, are Nash), Z35 (all Nash).
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