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1 Introduction

The standard way to describe economic situations with aandafly open-ended time-line
is by using an infinite-dimensional commodity-price duyalithis is then usually followed
by specifying objective functions for the agents, who asuased to discount future utility.
In applied work on, for example, environmental policy themdead to debates about the
appropriate discount rate of a social planner. Indeed, wherStern report on climate
change was published in the UK in 2006 many commentagmgued that discounting the
utility of future generations at all is undesiraBle.

Discounting future utility is a mathematical necessity told coherent models in the
vein of the seminal contribution by Bewley (1972). For thaa@ical model of an exchange
economy with one perishable consumption good, the work ofvBrand Lewis (1981)
and Araujo (1985) shows that existence of equilibrium inhsan economy can only be
guaranteed when all consumers discount the future. In faetjjo (1985) shows that in
an economy with a discounting and a non-discounting congUPageeto optimal allocations
are not attainable. This leads to the paradoxical situdhahin order to build a model in
which the long-run matters, the agents should not care aheubng-run.

In this paper we wish to build a model of an infinite-dimensibaxchange economy
where agents are allowed to value the indefinite future. htiqudar, we are interested in
conditions under which the Pareto optimal allocations #@reable. This ensures the ex-
istence of a quasi-equilibrium, as has been shown by, fanplea Mas—Colell and Zame
(1991). Inlight of the Brown and Lewis (1981) and Araujo (598sults this means that we
cannot use the basic Bewley (1972) infinite horizon modetrtter to allow agents to value
the indefinite future, we need a mathematical structureah@at/s us to measure consump-
tion at infinity. The simplest such structure is the spacellof@vergent sequences. Al-
though this space is smaller than the conventionally usadespf bounded sequences, from
the point of view of the utility function it makes little défence: a conventional Bewley-
type model allows, for example, for bounded fluctuations ihie indefinite future, but a
discounting utility function assigns little value to thetime periods. In fact, one could
argue that the model is in some sense richer than the BewleigeimBewley (1972) ap-
proximates bounded consumption streams by sequencesr¢éhaventually zero; we, on
the other hand, approximate by sequences which are evigntoaktant This amounts to
a finite dimensional approximation to an infinite sequendeickvcan achieve any degree
of precision. Such approximations do not, in general, dgisbounded sequences. This

!See, for example, the Wikipedia entry on the Stern reguirt, p: / / en. wi ki pedi a. or g/ wi ki /
Stern_Revi ew.

2The Stern report itself used a small but positive discouiet ra

3This constant could be thought of as a long-run average.



is important for applied (computational) work. Another adtage of using convergent se-
guences is that the mathematical apparatus that we useil@fdnom finite-dimensional
analysis: the implicit function theorem and the theorem afilange. The only difference
between their use in finite-dimensional analysis and thedr here is in some additional
technical conditions that need to be checked before thepeapplied.

Our main result is to provide a necessary and sufficient ¢iomdior the attainability of
the Pareto frontier for a fairly large class of utility furmis. This class consists of those
utility functions where consumers put a non-zero weight onsamption at infinity, but
where the utility weights placed on consumption at indigildpoints in time vanishes far
into the future. Such preferences can be interpreted asvame® a consumer values long-
run average consumption, but does not care about devidtimmsthis average far into the
future.

This necessary and sufficient condition, which we taike value consistencyequires
that for each pair of consumers their ratio of utility welgltn consumption far into the
future is consistent with the ratio of the weights they putconsumption at infinity. So,
there must be a strong agreement among all consumers abo@tie of time. This is very
different from the analysis of finite-dimensional econagni@here consumers can be truly
atomistic and an economy is just a collection of individwal® live their separate lives, but
are guided by the invisible hand to social optimum. In our edad an infinite-dimensional
economy with consumption at infinity, there must be some fofragreement about the
value of time for the market to work efficiently. In other werdAdam Smith’s butcher,
brewer, and baker do not have to be altruists, but they shagiide to some extent about
the value of time. The main result can be extended to ecorsowii®re some consumers
have Rawlsian preferences. It turns out that their presdoes not affect the attainability
of Pareto optimal allocations.

This paper fits in arenewed interest in the fundamentaldioite-dimensional economies.
The papers most closely related to our work are Araujo et28l11) and Chichilnisky
(2012a,b). Araujo et al. (2011) allow for “wariness” in cangers’ preferences. This means
that consumers can be ambiguity-averse. Such consumelgaaiting to act as creditors
at infinity, which can only occur if there is an asset bubbleahe kind. This implies that
equilibrium may fail to exist, unless wary consumers aresuitjected to a transversality
condition.

Chichilnisky (2012a,b) extends the price space to the spaéboundedly additive se-
guences. That way she can allow for preferences that valinétynand ensure equilibrium
existence. A disadvantage of this approach, however, isittasummable price sequences
are very difficult to interpret economically. For exampleere is no algorithm that allows
a social planner or a Walrasian auctioneer to construct ptichs. In fact, the existence
of such price functionals depends crucially on the axiomhadice, i.e. such prices can

3



only exist by making an uncountable number of arbitrary cé®i In our approach, the use
of convergent sequences to represent commodity bundlédsatiis problem, because the
dual space of prices consists of summable sequences.

The paper is organized as follows. Section 2 provides aodntition to the main mathe-
matical differences between the Bewley (1972) world andapproach. Section 3 describes
the main ingredients of infinite-dimensional models of exue economies, followed by a
description of the Bewley (1972) set-up and the role of mygpeferences in that model.
Readers who are interested mainly in the economic contehegfaper can skip these sec-
tions. Section 4 describes an exchange economy with thee sfatonvergent sequences
as the commodity space. The notion of time value consistenieyroduced and discussed
here as well. We prove that time value consistency is a nageaad sufficient condition for
attainability of the Pareto frontier when consumers hamgdmn concerns. Some examples
and remarks, which give some insight in the economic inetgpion of the main theorem
can be found in Section 5. In Section 6 we discuss the casesvglegeral consumers have
Rawlsian preferences and Section 7 provides some conglueimarks.

2 An Introduction to the Main Mathematical Structures

The simplest case of a Bewley (1972) economy is an excharg@ety over an infinite

time horizon with one consumption good. At the heart of thevBg (1972) approach lies
a specific commaodity-price duality. A consumption bundldhis set-up is any bounded
sequence and price functionals are represented by sumsedpkences. Unlike in finite-
dimensional economies, one has to be careful in choosingampriate topology on the
commodity space. This topology should tensistentwith the commodity-price duality,

which means that the price functionals are exactly the nantis functionals. In general,
there are many topologies consistent with any given dyalibjch are, unlike in the finite-

dimensional case, genuinely differént.

Bewley (1972) chooses the strongest topology (in the sehseking as many func-
tions continuous as possible) that is consistent with(#ie, ¢! ) duality. This topology is
called theMackey topology However, in this topology many potentially interestingityt
functions are not continuous. Brown and Lewis (1981) shattte topology generated by
myopic preferences (i.e. discounted utility) coincideshvithe Mackey topology, whereas
Araujo (1985) shows that attainability of Pareto optimddedhtions can not be guaranteed
in topologies stronger than the Mackey topology. This tteisuh clear consequence of the
choice of commodity-price duality. If, namely, the pricéétional is a summable sequence,
then a necessary condition is that it converges to zero. Aililedum price converges to

“In finite-dimensional Euclidean space, the topologies gaad by|| - |1, || - ||2, || - ||, etc. are all the
same. In infinitely many dimensions, this is not the case.
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zero only if the good is not desirable to any consumer. Untlerdard monotonicity as-
sumptions on preferences this can happen only if consunsrsuaht the future sufficiently.

Our approach is to keef} as the price space (augmented with a price at infinity), but
to restrict the commodity space to the set of all convergegtiences¢. The advantage
of this is that the norm topology onis consistent with théc, /') duality, which gives us
many more continuous preferences, including non-myopaven Rawlsian ones. The cost
of this is that we lose a lot of the mathematical machinery thakes the Bewley (1972)
approach work. Our analysis, therefore, differs subsaiptirom the standard literature. In
particular, in the Bewley world, closedness of the utiligspibility set (i.e. attainability of
the Pareto frontier) follows from continuity of utility futions and compactness of the set
of attainable allocations. This latter property, in turalldws from the Alaoglu theorem,
which can be applied becauge® is the (topological) dual of' (even though/! is not
the dual of¢*°). So, in the Bewley (1972) set-up continuity in the Mackepdiogy is
not always easily verified, but closedness almost comegder, fvhereas in our set-up it
is just the other way around. This is a well-known phenomeinoimfinite-dimensional
analysis: there is a trade-off between continuity and cartmess that does not exist in the
finite-dimensional case.

This means that we have to prove closedness of the utilitgipiisy set directly, rather
than using the Alaoglu theorem. We do this by appealing tmitefidimensional versions
of the implicit function theorem and the theorem of Lagranfieis has several advantages.
First, it allows us to understand the social planner prohitegreat detail. Second, the meth-
ods that we use are very similar to methods one would use te-iltnensional settings.
The main difference is that the infinite-dimensional vemsiof these theorems require a bit
more care than in the finite-dimensional case. First, déves are in the sense of Fréchet
and, second, in order to show that a linear mapping is a lmje¢the full-rank condition on
the Jacobian in the finite-dimensional case) one needs to Bath injectivity and surjec-
tivity, whereas in the finite-dimensional case only one ekthproperties sufficés.

Finally, a word about the different view on the “long-run‘atreeparates Bewley (1972)
from our approach. In the traditional literature many psoafe based on a truncation ar-
gument: a certain property is proved for sequences trudedttmeT” and zero afterwards
(these are calletbrminating sequencgsafter which one uses the fact that the space of ter-
minating sequences is weakllense in>. In our approach we use the fact that sequences
which are eventually constant dfe||..-dense irc. Note that the closure of the set of even-
tually constant sequences is exaat]yso that approximations of this type cannot be used
in any larger space. In fadt$® is inseparable, so no such finite dimensional approximation
scheme is possible in the whole &6F.

SAn injective linear map ofR™ is automatically surjective and vice versa.



3 Infinite-Dimensional Economies, Pareto Optimality, and Ejui-
librium

Let X be a locally convex topological vector space representicgramodity space. A
decentralized market systeior X consists of a spac®, interpreted as therice system
and a mappindz,p) — (z,p), for allx € X andp € P, interpreted as thealue of
consumption bundle at pricesp, such that (i)-, -) is a bilinear form and (i), -) puts X
andP in a duality (X, P).

We define an economy consisting Sfconsumers as a collection

&= ((X,P),r, (X", =" w)X)). (1)

where (X, P) is a decentralized market systemis a topology that is consistent with the
duality (X, P), andX* C X,, =" andw’ € X are the consumption set, preference relation
on X and initial endowments of consuméri = 1,..., N, respectively. Here(, denotes
the positive cone of the commodity spa&e i.e. x < y impliesy — x € X, for all
z,y € X.

Throughout this paper we will assume that the preferencgioel of each consumer
satisfies the standard axioms of ¢)mplete pre-orde(>‘ is complete and transitive), (ii)
continuity (> is continuous inr), (i) strong monotonicityfor all z € X* and alla > 0,
there existsg € X, \ {0}, such thatr + ax =* x), and (iv)convexity(for everyz € X?,
the set{y € X* | y = z} is convex). Under these assumptionscan be represented by
a continuous and monotonic utility functiard : X* — R. In the remainder we will work
directly from such a utility function.

Let

N
Z:{w:(wl,...,xN)GXlx---xXN‘ingw},
i=1

wherew = -V | ' is the set ofattainable allocations It is assumed here that consumers

can freely dispose of goods. Thélity possibility setof the economys’ is then given by

U={ueR" |u<u(z)=(u'(z!),..., v (")), for somer € Z}
=u(Z) - RY.
The utility vectoru € U is aweak (Pareto) optimurif there is noi € U such thati’ > v’

for all 4 with strict inequality for at least ongé The set of Pareto optimal allocations is
essentially the positive boundary of the utility posstiiket,0U N Rf .

®A dual systen{see Schaefer, 1999) is a tugl&, P, (-, -)), where(X, P) is a pair of vector spaces and
(-,-) is a bilinear form onX x P, which satisfies the properties: (i){#o,p) = 0, for all p € P, thenzo = 0,
and (ii) if (x, po) = 0, for all z € X, thenpy = 0.



Assuming that is in the interior ofX ;. , Mas—Colell and Zame (1991) show that closed-
ness ofU is sufficient for the existence of a quasi-equilibrium. @dgess of the utility
possibility set also means that every Pareto optimum isnattée. Given that the rhetoric
of market-based economics is firmly based on the Pareto alitynof Walrasian equilibria,
the first test of an economic model based on decentralizeleatsas to investigate whether
the Pareto frontier is attainable. So, closedneds & of interest in its own right and it is
the focus of the remainder of the paper.

In the approach of Bewley (1972), closednessloffollows immediately from the
Alaoglu Theorem, via compactness Bfin the Mackey topology onX = (*, P = (!
and(z,p) = > ;2 z:p:. However, Brown and Lewis (1981) show that the only prefeesn
that are continuous in this topology are those that are glyanyopic: roughly, if the tail of
a consumption sequence does not change the preferencerwaeatter what that tail is

In addition, Araujo (1985) showed in a seminal paper thaiterice of equilibrium can
only be ensured in topologies that are no stronger than thek&jatopology. Combining
these two results implies that for an equilibrium to exisaiminfinite-dimensional economy
with commaodity spacé> and price spacé', all consumers must have strongly myopic
preferences. The canonical example of such preferencagiigyafunction which is time-
separable and exhibits discounting:

o0

u(z) = Z 6o (xy),

t=1
for some continuous, monotonic, and quasi-concave fumetioR, — R and a discount
rated € (0,1).

To see what problems can arise with non-myopic preferemeegonsider an example
from Araujo (1985). There are two agents with consumptide 38 = X? = ¢°°, initial
endowments)! = w? = (1,1,...), and preferences

t
ut(z!) = Z <%> zt, and u*(2?) = liminf(z?),
respectively. So,

Z={(a"2?) el x 4T |0<az}+a27 <2 allte N}, and
U={@u"v?) eR?|u! <2,u?><20ru! <24 <0}.
As Araujo (1985) observes/ is not closed and? is not Mackey continuous. Exactly the

same example can be set up in the space of convergent segwetitéhe norm topology:
after all,w! = w? is a convergent sequence. In this setigs still not closed, despite the

So, even if a bundle has extremely high levels of consumption far into the fuaseompared to a bundle
y, then a myopic consumer still prefeygo z if early consumption iry is high enough relative to.



utility function u?(2?) = lim;_,~, 7 being norm continuous. This is due to the fact that
we can give consumer 2 his highest possible utility by makimgsumer 1 only marginally
worse off. This in turn is because consumer 2 cares only gheundefinite future and not
about what happens in the short-run. We will show in Sectitimed in order for the utility
possibility set to be closed, consumers must have closigiyed valuations of the indefinite
future.

4  An Infinite-Dimensional Exchange Economy with Convergent
Endowments

As we have seen, putting in duality with /> implies shrinking the set of continuous
functionals. Increasing the set of continuous functions loa achieved by strengthening
the topology. Since the topology must be consistent withctiesen duality, that means
extending the price space or restricting the commodity sp¥e choose to base our price
space orf! because the topological dual&¥f, ba, is a very complicated space and, because
of Axiom of Choice issues, is very difficult to interpret econically. Rather than expanding
the price space, we choose to shrink the commodity space &etlof convergent sequences

C.

4.1 The Commodity-Price Duality, Preferences, and Endownrés

The commodity spac& = cis a Banach space with norm

[2]loo = sup [a].
telN

The price space that we associate with this commodity sjgaée= ¢! x R, and the bilinear
form that putsX and P in duality is

o0
(2,0) =Y Pt + Poooo,
t=1
wherep € R andzoo = limy_ o0 4.8
Our interest is in the study of preferences that reflect amscabout the indefinite fu-
ture. In order to stay close to the Bewley world and the relifemature, in particular Araujo
et al. (2011), we consider utility functions of the form

u'(at) =) 8t (af) + ¢ lim o'(af), @' e X' =c, @
t=1

8Note thatp is not a limit. It is the price of limit consumption.



defined on the positive cone of the spaceHere, for each, (6!);cv is a strictly positive,
summable sequence! > 0 is the weight that the consumer places on consumption at
infinity (see Section 4.4 for some observations about thes#s= 0 for somet and(? = 0)
andv’ is defined on an open set containifigoo), i.e. on(—¢, co) for somes > 0, and is
twice continuously differentiable. We also assume té&b) = 0 and that forr € [0, c0),
(v")(x) > 0, and(v?)"(x) < 0.

Preferences of the form (2) value both individual time pasiand the indefinite future.
One way to think about such preferences is to reinterpreét iamsumptionz, as long-run
averageconsumption. The paramet¢rmeasures the weight consunigaiaces on average
consumption relative to deviations from the average at eatitidual point in time. These
deviations are discounted over time.

The total endowment at timeis denoted byw;; we assume that this converges to a
strictly positive limitw,, ast — oo (the casev,, = 0 is different in character, and con-
siderably simpler; see Section 4.4). Also note that distingrin the utility function of the
form (2) is not necessarily geometric. In fact, it may wellthat the sequence;):ci is
increasing for several The only requirement is that — 0 fast enough for the sum in (2)
to be finite, i.e. thap 2, &/ < oo for all 4.

4.2 Time Value Consistency, Pareto Optimality and the Main heorem

We begin with some terminology and notation about the ytpivssibility set/ and some
ways in which it can be decomposed. As defin€d;ontains non-positive vectors which,
because of our normalizatiari(0) = 0, do not represent feasible allocations. Since we are
more concerned with allocatable, i.e. non-negative, etesnaf U and of its boundary, we
make the following definition.

Definition 1. Thepositive partof the utility possibility set is defined by + = U N ]Rﬂf or,
more constructively,

Ut ={(u' @)Ly [} 20,2+ +a) <w (L<i<NteN)}.
Similarly, thepositive boundaryf U is defined byotU = (0U) N Rﬁ.

Recall that thepointwiseor Minkowskisum of sets of vectors iiRY is defined by
A+ B ={a+bla€ Abec B}. Because of the time-separable nature of our utility
functions, there are various ways of decompodifig into Minkowski sums. The most



important is, for som& € IN,

T N

Ur— = (Z 52“(”«"%))
t=1

N
xiZO,inéwt(lﬁiSleﬁtﬁT)
i=1 i=1

00 N N
Ury = < Z Sivt(x) + C’v’(m&)) x>0, in <w (1<i<N,t>T)
t=T+1 ie1 i=1
Ut =Ur_ +Ury.
3)
Here we decomposE* into the utilities attained up to time pericl — an essentially
finite-dimensional object — plus the utilities attainedrfréime 7" 4+ 1 onwards, including

utility attained at>o. Another occasionally useful decomposition is

) N N
Ur = (Z(Siﬁ(&ﬂi)) wiZO,inﬁwt(lﬁiﬁNJE]N)

t=1 i=1 i=1

Use = { (¢,

Ut =Ur+Ux

‘ N 4
20 >0, af <w (1<i<N,teN)
=1

which we can think of a decomposition &f* into the utilities attained over all finite time
times, plus the utilities attained a. HereU, is essentially finite-dimensional.

At this point, it is helpful to give a concrete description tbe closure ofyU* as an
infinite Minkowski sum, and to mention an important stricheexity property.

Lemmal. Fort € IN, let

N
Up = {(0j0" (@)))iLy | 25 > 0, @} < wi},
i=1

and let
N

U ={ (V@)L
Then the closure of the positive part of the utility posgipset is given by

{5

If y € 01U, then any supporting hyperplane forthroughy has no other points of inter-
section withl, i.e. y is anexposed poinof U.

iiZO,i1+"'+iN§wm}.

yr € Uy (tGIN),gEU}.

The proof of this lemma is in Appendix A. In the finite-dimemsal setting, the hy-
perplane property follows directly from strict convexitf the utility functions but, in the
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Consumer 2's utility

Ut - Ef--__
Uy - F \‘b_D
Us--- G

Consumer 1’s utility

Figure 1:U ™, U,, andUF in a two-consumer case.

infinite-dimensional setting, it is a little more delicaten thoughv*)” is bounded away
from zero,5: (v*)"” becomes arbitrarily small for large enoughmaking it more difficult to
deduce strict convexity results about the closure.

To illustrate whyU+ might not be closed, consider the following example.

Example 1. Here we consider two consumers who value time in differengswaCon-
sumer 1 values finite time periods more highly than the indtefinture; Consumer 2 has
exactly the opposite view. For a concrete example, supppgeconstant and that the two
utility functions are

2,2 Il o 20
u”(x”) = 3 ; ?U(xt) + g“(%o)

Then the possible utilities can be represented on a diagsaim Bigure 1, where we are
using the decomposition described in (4). The convex re@B O representSg, the pos-
sible utilities summed over all finite time periods, while B@ represent&/., the possible
utilities at infinity. According to Lemma 1, the closure ofetipositive part of the utility
possibility set is the sum of these two regions, shown as OQDIthe positive boundary,
OtU, isintwo parts: CD is parallel to AF, while DE is parallel t&BWe can see from this
diagram, without any calculation, that the utility poskipiset is not closed. The simplest
observation is that point D is not included: this point carrdggresented as the sum of an
element ofUr (OBGO) and an element &f,, (OAFO) in only one way, namely as the sum
of B and F. This represents an allocation where all endowsnairg given to Consumer 1
in all finite time periods (B), and all endowments are giverCtnsumer 2 at infinity (F);
because allocations are convergent sequences, this iesgibfe and the utility possibility
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set is not closed. The crucial point is that we cannot trdatitg as just another time period:
consumption at infinity is determined by consumption in e lbut finite, future.

More generally, any point on the open arc CD can be repres@mtanly one way as the
sum of an element dfr (OBGO) and an element éf,, (OAFO): namely, the point B plus
a point on the open arc AF. But point B represents the allooatf all endowments in all
time periods to Consumer 1; in such a case, Consumer 2 hadlityintany time period,
and hence no utility in the limit at infinity. The consumergilities at infinity thus lie on
OA, not on AF. Points on the open arc CD thus do not represttaghble utilities.

In fact, in an example of this type, we should expect the wioblne open arc from C
through D to E to be missing from the utility possibility sledit this cannot so easily be seen
from the diagram. We return to this point in Example 2 in Satb.

In contrast, if both consumers placed the same relative hviign finite and infinite
times, say
1 1

o(ad) + Su(ak)

I

-
8

\:
Il
DO =
[]e
2|

t=1

1 1
gv(x?) + 5”(9520)

I

no
8

\_5)
Il
N =
[z

t=1

then the sets of utilities at finite time and at infinite timeulebbe (because; is constant)
exactly the same closed, convex set; the sum of this set tgilf ivould be the same set,
scaled by a factor of 2, and therefore closed. <

In the first part of this example, the problem is an inconaisgebetween the values
placed by the consumers on the far, but finite, future, andnithefinite future. This leads
us towards an important concept related to attainabilitiPafeto optimal allocationdime
value consistency

Definition 2. Letw! andu’ be utility functions of the form (2). The preferences represd
by v andw’ aretime value consisterit
5—2—><—Z,, as t — oo. (5)
5
This condition holds if a pair of consumers value consunmptiothe far future consis-
tently with consumption in the indefinite future. This cadiwh is very strong: requiring
the ratio of these sequences to be convergent means thatdheohsumers’ time value
weighting sequences have very similar decay rates.
Note that in the case of geometric discountiny,= (%)%, time value consistency is
equivalent to5° = 67 and(® = ¢/, for all i andj. In addition, by rescaling the’, the same

®Note that since botty;):cn and (7 ) are summable sequences, they converge to zero.
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consistent functions’ can be represented with weights such tfjaﬁf — last — oo and
¢t = ¢7. Finally, if we haveN consumers, then they are all time value consistent if ang onl
if they are all consistent with some chosen one: for exaniplg,/67 — ¢'/¢7 ast — oo
for all j, thenéi /67 — ¢?/¢7 ast — oo for all i and}j.

It turns out that time value consistency is a necessary affidisat condition for the
attainability of Pareto efficient allocations. This is ouaimtheorem:

Theorem. Suppose there a®¥ consumers with utility functions of the form (2) with> 0,

5 > 0,t € IN, with Y72, 8 < oo, for eachi = 1,..., N. Assume that the sequence of
total endowments lies in the interior of the cang sow; > 0 for all t andw., > 0. Then
the utility possibility set is closed if and only if for eachnd j, the utility functions:® and

w’ are time value consistent.

4.3 Proof of the main Theorem

Before we prove the Theorem, we introduce some notation estthical results needed in
the proof. Let represent the constant sequefitgc. The constant sequencg€);cv can
thus be denoted.. If (z;):cv IS @ convergent sequence, its limit will be denotedzy.
The norm orR™Y with which we work is thexo-norm

_ 7
ylloo = max, ly'|.

Throughout the proof, we are working in a Banach space whiellenote-"Y. An element
x of this space is defined by the real numbefr,SNherel < ¢ < N andt € N, representing
an allocation ofr! to consumei at timet. We requirez’ to converge to a limit ag — oo,
and denote this limit by’ . The norm on this space is given fy||oc = sup;<;<y e |%}-
There are natural projections of this space ansmdRR”: for any giveni, 2* will denote
the convergent real sequende:);cn; for any givent, z; will denote the vector ilR”,
(xi)i]\il-

An element of the dual spade’)* can be represented as a sequefté;cw 1<i<n
and a vectofv?)¥ |, where for each, >"i°, ui converges, i.e(u})iew € ¢*. The bilinear
form expressing the duality is

N T oo
(@, (1, 0)) = 3 [ pia + V' lim fﬂi] : (6)
i=1 Lt=1

In proving that the utility possibility set generated bylitytifunctions of the form (2) is
closed, our basic technical tool is the following resultjethis proved in Appendix A.

Lemma 2. The utility possibility set is closed if and only if for anyaaationz € ¢V, with
w(xl) =9 > 0( < j < N)and foranyi (1 < i < N), we can find an allocation
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which maximizes:’ subject to the constraints/(v/) = 3/ (1 < j < N,j # i), 27 > 0
(1<j<N)andz! + -+ 2] =w; (t € N).

The following result, also proved in Appendix A, essengiailates that, in showing that
the utility possibility set is closed, we can discard thetfirstime periods and work only
with the tail of the economy.

Lemma 3. Consider the positive paft/ + of the utility possibility set and, fdf' € IN, the
setsUr_ and Uy, described in(3), soUt = Ur_ + Ur,. ThenU™ is closed if and only
if U, is closed; equivalentlyl/ is closed.

The proof of the Theorem proceeds in four stages: we show(ijhtne value con-
sistency is necessary, then (ii) that it is sufficient in s@pecial cases, then (iii) that it is
sufficient in a neighbourhood of these special cases, anliyfiing that it is sufficient in
general.

(i) Proof of necessity. Suppose the utility possibility set is closed and chabse IN so
that for alls,

Z Sivt(wy) < C' (woo/N). (7)

t=T+1
By Lemma 3, the set

N N
Ury = (Zé (z}) + ¢ (a )) v >0, af <w
i=1

t=T+1 i=1
is closed. Foill <¢ < N, let
y'= Y 50 (wi/N) + (0 (weo/N).
t=T+1
Clearly,y € Ur,. Now consider the maximization problem

max Z Stot(xy) + ol (k)

t=T+1

N
stt.al >0, in =w (t>T), (8)

Z 5o’ (xy) + C'(aly) =y' (2<i < N),
t=T+1

which, by Lemma 2, has a solution. Inequality (7) shows timgtallocation withz!_ = 0
for somei > 2 cannot meet these constraints, so we must hdye> 0 for all i > 2.
Moreover,

Z 5 xt +C1 1( )Zylv

t=T+1
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so (7) shows thatl > 0. It follows that there existd” such thatr! > 0 for all i with

1 < ¢ < N andallt > T'". Now fix z; for ¢t < 7" and consider the same maximization
problem (8) as a function only dfx; | ¢ > 7"}. Of course, we have the same solution;
but, aszi > 0 for t > 7" andz’, > 0, the solution as a function dfr; | t > T’} is in
the interior of the con€ (z;);~7v | 2: > 0}. The Lagrangiarl : ¢V x R¥=1 x ¢ - R
associated with this maximization problem is given by (sppexdix C)

L(w,)\z,...,)\N,M,l/):

N 00 N N
)= 0 )3 (ot ) o (L] @
=2 t=1 =1 =1
Note that the constraints can be written@g:) = (y2,43,...,y",w), whereG : ¢V —

RN-! x cis defined by
G(x) = (u(z?),u3(2®), ..., uN (@), 2 + 22 + - + ).

Differentiating equation (9) with respect ta,);~r (see Lemma 5 in Appendix B) gives
the following first-order conditions, which must be satidfeg an interior maximum (see
Appendix C; surjectivity of the derivative is easy to check)

Z 0t (01)' (2 b ¢ (01) (50 o Z A Z 0 (") (2p)hy + ¢'(v) (2 éo)héo]—

t=T"+1 i=2 L =141
Z ,ucht—yZh’ (h € ).
t=T"+1  i=1

wherec% is the space of all sequenc@sg );—1.._n+~7+ Which converge for all ast — oo.
Writing these in the same form as (6) we have

S| Y (A0 - m i+ (A —uwlzo e

where{ ';}is1if i = 1 or —A%if i > 1. For this to be zero for alhk € C¥, all the
coefficients of thex! must be zero. This gives the equations

8¢ (') () — e =0 (t>1T) (10)
=N (0') () — e = 0 (2<i<N) (11)
¢ (25) —v =0 (t>1T) (12)

N (Y (2l,) —v =0 (2 <i<N). (13)

We can now eliminate,; from the first two equations andfrom the second two (note that
this step is reversiblgj; = d; (v!)’(x}) defines a summable series becatfsis summable
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and(v!')’(x}) converges to a non-zero limit):
3 (1) () = =X'(v )(%)52 (t>1) (14)
¢ (i) = =N ¢ (") (k) (2<i<N). (15)

Because(’, ¢, (v') > 0, it follows from these equations that < 0 for all i. We can
rearrange to give

5 ) () ,

o N Eh (t>1)
AL Z-

&= L) B=r=

Lettingt — oc in the first equation and comparing with the second, we Bay& — ¢1/¢
ast — oo. Taking two different values afand dividing, we must have for all j:

CZ
@
as claimed (this could also be established by maximizihgubject to the other’ being

fixed).
We also note at this point that any solution of the Lagrangmtigns (14) and (15) with

(t = 00),

T' =0, i.e. forallt € IN, leads to a global maximum af, subject to the given constraints.
To see this, suppose ), 1 andv are a solution. Suppressing the dependency,on v,
which are now fixed, ift 4+ h satisfies the constraints, then

ul(a+h) = La-+h) = L)+ L (@)t 5L (a-+00)(h, ) = ' (2)+ L L" (- 08) (h, ),

for somef € (0, 1), because satisfies the constraints afd(z) = 0. Itis therefore enough
to show thatl” (x + 6h)(h,h) < 0. This follows easily from Lemma 5 in Appendix B:

L"(z +0h)(h,h) =Y 6} ()" (af + 0h{)(hi)* + ¢ (0")"(wd, + 0L) (B)? —
t=1

szfv V! (2 + ORE) () + €' () (w, + OB ()%, (26)

which is negative becauge’)” < 0, \' < 0,6 > 0and¢’ > 0. m

(i) Proof of sufficiency: constant total allocations and egal weighting. We now
consider the special case wheras constant, say = wqt, and for each andj, 5%/5{ is
constant int. By rescaling the)!, we can assume that all tli¢ are equal, say: = &; in
accordance with time value consistency, all {henust also be equal, sgy = ¢. We shall
show that the Lagrange equations derived in stage (i) havegai@ solution in this case; it
will then follow from Lemma 2 that the utility possibility sé&s closed. In fact, apart from
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the original constraint equations, we need only solve egudfi4): equation (15) follows
from that and the hypotheses that= &/ and¢’ = ¢/; equations (10)—(13) then follow
from these, as remarked in stage (i). After cancellingequation (14) reads

(1) (27) = =A"(v")'(a)- (17)

Notice that this is independent of eachz; ¢ R" satisfies the same system of equations.
The same is true of the constrairjt + - - - + z¥ = wp. We know from the previous stage
that in any solution to these equations we havec 0 for all i, so—\(v?)/(z1) is a strictly
decreasing function of?; similarly, (v!')'(z}) is a strictly decreasing function of!. It
follows from Lemma 6 in Appendix B that, for any fixéd?)}¥ ,, these equations have at
most one solution; because eachsatisfies them, any solution to equation (17) must be
constant irt.

We may therefore consider a reduced problem involving oahstant sequences: max-
imizeu! (¢11) (¢! € R,) subject tou!(¢1) = ¢ (¢ € Ry) andé! + - + &N = wy. If we
let A = Y0, & + ¢, then we wish to maximizé\v! (¢!) subject toAv!(¢%) = y*. This
is essentially trivial: becausé is strictly increasing, the equatiahv?(£%) = ' uniquely
determinest? for 2 < i < N; &' is then uniquely determined k! + --- + ¢V = wy
(0 < ¢! < wg because thg' can be allocated). Finally, we lat = —(v!)/(€1)/(v?)(£9).

The constant sequences now satisfy the constraints(¢%) = y* (2 < i < N),
€0 >0, 8%+ -+ &Ny = woe and the Lagrange equation (17); that is, we have a critical
point of the Lagrangian which is allocatable and satisfibsastraints. As observed at the
end of stage (i), this is a global maximumof.

We chose to maximize' for notational convenience; we could equally have maxichize
any otheru’. It now follows from Lemma 2 that the utility possibility sistclosed.m
(i) Proof of sufficiency: near-constant total allocatiors and near-equal weighting.
Suppose the consumers are time value consistenf; /gp — (*/¢! ast — co. As be-
fore, by rescaling’, we can assume tha}/s; — 1 and that(? = ¢!.

We shall now perturb the solution from the previous resalsHow that itw is close to a
constant sequence and eaéls close to a constant multiple 6f then the utility possibility
set is closed. More precisely, we shall show that, givgrands!, there exists: > 0 such
that if for all ¢, |w; — wo| < r and for allt andi, |5:/6} — 1| < r, then the utility possibility
set is closed.

For notational convenience, we shall write= &;, 6 = (1 + ¢i)d; for2 < i < N (so
el — 0 ast — co) and(* = ¢ for all i. Equation (14) now has the form

@) (@1) = =N +e)() (=)  (teN),

and equation (15) follows on letting— oco. Givenw ande’ (2 < i < N), we need to solve

17



this for x and A in combination with the original constraint equations
Yol +epvi(ah) + (viak) =y (2<i<N),
t=1

and
N .
Zmi = Wy (t € IN).
i=1

We know from the above that we can do thisifs constant, say = wqt, ande’ = 0 for
all ¢; the solution is of the formx® = ¢%, and each\’ some negative real number. We now
start from these solutions and use the Implicit Functionofém in a Banach space context
to show that for any sequenc¢e; ).ci Which is sufficiently close to being constant, and any
sequenceg:! ) Which are sufficiently small, we can solve the Lagrange eqost

The Banach spaces are set up as follows:

G:c><cév_1 xRV x eV 5 RV xex VL

wherec) ! is the space of all sequencesHA —! converging to zero, and for eagh, €2, ..., eV A%, ..

c><cév_1 x RV-1 x N,

Gw,e?,...,eN N2\ 2) =
((W?(2?),...,uN (@), 2"+ + 2 —w, (0" (27) + X (0" (2}))2<i<nten )-
cRN-1 €c ceN-1

(18)

It follows from Lemma 4 in Appendix B thatr is continuously differentiable. We wish to
solve (givernw ande, find A andx) the equation

G(wv g, /\7 l‘) = (y27 s 7yN7 (0)t€]N7 (0)2§iSN,t€H\I)'

We know that we have a solution when= wq: is a constant sequence, = 0 for all
i andy?, ...,y are allocatable. According to the Implicit Function ThearéDeimling,
1985, Theorem 15.2), there will be a balldrx ¢)’~* centred aroundwo, 0) in which the
problem has a unique solution, provided the partial devigadf G with respect td ), ) at
the established solution defines an invertible mapping fROAT! x ¢V to RVt xexeN 1,
The radius of this ball gives us the required 0. We calculate the derivative as follows:

1=2

G (0,6, 0,) (1, ) = ((Z oL+ <D (Y (e + COY (@)
t=1

hl + h2 + e+ hN7 ((’Ul)”(l'%)h% + (Ui),(mf‘:)lu’i =+ )\i(’Ui)”(l'i)hi)2gi§]v’tem> . (19)
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The essential structure of this operator frlR~* x ¢ x <N "Tto RN~ x ¢V is
T2, ... uN h) = (8*(h%), ..., o™ (W), b -+ BN (MR + MR + pla)]y)

where¢! € ¢* is a strictly positive functional)/! is an operator of multiplication by a
negative sequence, bounded and bounded away from ZErégr 2 < i < N is (because
! < 0), an operator of multiplication by a positive sequence,romd and bounded away
from zero, and: is a fixed, positive element ef We can explicitly calculate the inverse of
T by solving the equations:

¢'(h') = k' (k" €R,2<i<N) (20)
ALy hV =5 (s €c) (21)
MR 4+ MK+ pla = b (b € ¢,2<i<N). (22)

We first findh'. Because the multiplier sequences are bounded away fram ther mul-
tiplication operatorsM’ are all invertible. We can therefore multiply (22) lgy/?)~!,
2 <4 < N, and sum to give

(M) (M) MR (R4 0N) = (MP) (0P —pPa)+ -+ (M) TN —pNa).
Using (21), this becomes

(M) (M) MR 4 (s=h1) = (M) 707 —pa)+ -+ (M) (0N —pa),

or, with I representing the identity operator,

() (M) M =TI = (M) 7O = )+ 4+ (M) TN — i a) s,

Now, M represents multiplication by a negative sequence and tier 81’ multiplica-
tion by positive sequences, all bounded away from zerojlitvis that[((M2)~! + .- +
(MN)~Y) M — I] represents multiplication by a negative sequence, bouadey from
zero, and hence invertible. This gives us an explicit foarfor A'. Next, we findy® by
applying (M%)~ followed by ¢ to (22) and substituting from (20):

G IMURY) K 4 i (M) a) = 6 (M) )

This gives us an explicit formula fqr, provided®((M*)~ta) # 0, which holds because
a is a strictly positive sequencé/’ is a strictly positive multiplier, and’ is a strictly
positive functional. Finally, we can find all the remainihyby applying (M%)~! to (22)
and rearranging.

This shows that, ifu is sufficiently close to being constant agidis sufficiently small
then the Lagrange equations have a unigue solution. Asasseark the end of stage (i), this
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gives us a global maximum. We also need to check that theaaibos in the solution are
positive: this is true for sufficiently small — wy¢ ande, because the unperturbed solution
¢% lies in the interior of the positive cone and the perturbddtim depends continuously
onw ande.

We chose to maximize' for notational convenience; we could equally have maxichize
any otheru’. It now follows from Lemma 2 that the utility possibility sistclosed.m
(iv) Proof of sufficiency: general case. From Lemma 1, we know that any poigton
the positive boundarg™U = oU N Rf is an exposed point df: that is, any supporting
hyperplane fol/ which passes througihdoes not intersedt’ at any other point. Consider
arbitraryw € ¢y \ dcy (i.e., such thaty; > 0 andw; — ws > 0) and arbitrary utility
functions of the form (2), satisfying the time value coreigty condition (5), i.edi /5! —
¢t/¢t. As in the earlier stages, rescale thieso thats!/6; — 1 and¢? = ¢ for all i.
ChooseT € N such that for2 < i < N andt > T we have|§{/5; — 1| < r and
lwr — weo| < 7, Wherer is the radius obtained in stage (iii). Consider a perturtmhemy
with total endowments and utility functions

- woo (t<T)
Wt =
Wi (t > T),
. . T . . 0 . . . . .
i@’y =Dt (a) + Y i(af) + (u'(al,).
t=1 t=T+1

In this economy, by the results of the previous stage, thigyuypossibility setl is closed.
To establish the corresponding result for the unperturloecth@my, we consider three
different sets of partial utility allocations:

Ui = {(ZTI i)
t=1

v ={(3 s+ o),

i=1
t=T+1

Us = {(ET: S (a))

t=1

N
x;'zo,zxigwm(lgth,lgz‘gN)}
=1

N
xizo,zmigwt(t>T,1§z‘§N)}
=1

N
x;‘zo,insm1§t§T,1§isN)}-
=1

Note thatU+ = U; + U, andU™ = U, + Us. By Lemma 3,
Ui + Usisclosed < U, is closed < U; + U, is closed

The property of closedness of the utility possibility sehiss equivalent in the two economies;
since it is closed in the perturbed economy, it is closed énutperturbed economy
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4.4 Some Extensions and Variations

In this section we discuss some extensions and variatiottseathheorem that were hinted at
earlier in the paper, to show that similar results hold in sanore general contexts. Some
of these extensions are needed in Section 6, where Rawklignfunctions are introduced.

Endowments Equalling or Tending to Zero

The case where; — 0 ast — oo is somewhat different in character. Here, because
0< xi < wy, the set of possible allocations forms a closed, boundecegnatonvergent
family of sequences, and is, hence, compact in the norm dggobn ¢V (see Dunford
and Schwartz (1957), 1V.13.9). Any norm continuous utifiijmctions therefore lead to a
closed utility possibility set. Utility functions of the fim (2) reduce to a myopic form: we
necessarily have! — 0, so the values of’ are irrelevant.

We can also consider the case whege= 0 for some values of. Such time periods
make no contribution to any utility function, so they can benoved to give an economy
with the same utility possibility set and total endowmefits> 0 for all . Assuming
this economy has infinitely many time periods, the time valomrsistency condition works
much as above: i, = 0, no further condition is needed for the utility possibilggt to
be closed, and ifss, > 0 then we require! /6! — (?/¢7 ast — oo through those for
whichw; # 0. In the extreme case whexg > 0 for only finitely manyt, the economy is
essentially finite-dimensional and closedness followsftbe Heine-Borel Theorem.

Purely Myopic Preferences

Suppose some of th@ are zero and some non-zero; for definiteness¢$ay 0 and(? = 0

for somei. Then (15) cannot be satisfied, so the utility possibility isenot closed. If,
however, we have’ = 0 for all i then (15) is trivially satisfied. The consistency condition
81/87 — ¢'/¢7 is needed precisely to ensure that (15) holds; in the evant th= 0 for all

1 it can therefore be abandoned, with the rest of the proofefithin theorem showing that
the utility possibility set is closed. This is reminiscefBewley (1972), where we have an
equilibrium provided all consumers are myopic.

5 Some examples and further remarks

In this section we discuss some further examples to illtesttae concept of time value
consistency and its implications for the attainability &fr€o optimal allocations. The
following example revisits Example 1 in somewhat more detai
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Example 2. We begin by revisiting Example 1, in which total endowments @nstant at
wo and the two consumers’ utility functions are of the form

21 1
ut(z') = 3 Z 5’0(95%) + g”(wclm)

2(,.2 Ignl 5 2
uF(a) = 5 ) spu(ad) + So(ad).
32 3
We saw earlier that, in this cas¥, is not closed. We now give a more detailed analysis,
which exactly describeg. Let

2 1
o = { 2006 3 | .2 20,6 + 2 < }.
The set of possible utilities at any finite timés given by2~tUj, and the setr of possible
utilities at all finite times, OBGO in Figure 1 is (see (4)):

oo

Ur =Y 27Uy = Up.

t=1

Supposey, lies in the positive boundary d¥;. Then there is a supporting hyperplane
of Uy passing throughyy; that is, a linear functiona$ whose maximum value ovév
is attained atyy and, because of the strict concavity «@of at no other point ol/,. We
can writeyy = > 1o, 2 'yp, and this is the only way of decomposing as the sum over
t € IN of elements o2~ ‘Uj: any other decompositiopy = >_,°; 2~ 'y, would lead to the
contradiction

Byo) =D 27d(ye) < D> 27" d(y0) = d(vo).
t=1 t=1

Moreover, the strict monotonicity af shows that there is only one allocati¢fy wy — &)
such that((2/3)v(§), (1/3)v(we — &)) = yo. This shows that the only allocations leading
to utilities on the arc BG in Figure 1 are constant. Now, anypon the open arc DE must
be the sum of the point F with a point on the open arc BG; thisesponds to constant
allocations in which Consumer 2 receives all the endowmante. Consumer 2 thus
receives all endowments in all time periods, leading to fpgirPoints on the open arc DE
therefore cannot be allocated.

We can now see thdf ™ consists of the figure OCEO, including the closed lines OC
and EO but excluding the open arc CE. <

The next example illustrates how the time value weights jrdé2ermine which parts of
07U can or cannot be allocated.
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Uut...

Up_ -

Upg -

Figure 2: Utility possibility set for two inconsistent camaers

Example 3. In Example 2, all strictly positive points on the boundantto utility possi-
bility set are excluded. To illustrate the fact that thisd$ always the case, consider a slight
modification of the example, in which we have

t=2
sy | 2
(@) = v(at) + 3 Y grolad) + gu(d)
t=2
and total endowments
w1 ift=1
Wt =
wo ift>1.

We can decompose the utility possibility setinto two paitsys Ur_+Upy, withT = 1 (so
Ur— represents utilities at time= 1 andUr4. represents utilities at times> 2, including
t = oo). Apart from a scale factor, the sEt, is exactly as described in Example 2. The
gradients of the boundary curve bf-_ as it crosses the vertical and horizontal axes are
respectively—v'(w1)/v'(0) and —v(0) /v’ (w1 ); the corresponding gradients fok-,. are
—v'(wp)/(20'(0)) and —20/(0) /v’ (wp). Under the additional hypothesis th&f{z) — 0
asx — oo, we can choose; to be large enough that we havgw;) < v'(wp)/2. The
boundary ofUr_ therefore meets the vertical axis at a shallower angle tharboundary
of Ury, and the horizontal axis at a steeper angle. The possibligestare illustrated in
Figure 2. Here, the positive boundariesléf_, Ur, andU are the arcs BG, AD and CJ,
respectively. Points E and F are those at which the positvmdiary ofU7_ is parallel to
the positive boundary dfi;, at A and D, respectively. The arcs CH and 1J are parallel to
BE and FG.

Now, CH is the sum of the point A, which is includedifr.., with the arc BE, which
is included inU7_. All of these points are therefore includediin Similarly, 1J is the sum
of FG with D, and is included i/ ™. However, the points on the open arc HI can only be
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represented as sums of points from the open arcs AD and Efe BiR is excluded, these
points are excluded.

In summary, the positive boundary of the utility possigiket is the arc CJ; the closed
arcs CH and IJ can be allocated, but the open arc HI cannot.

Note that this example is not “less serious” than Exampletere the entire boundary
is not allocatable. Even though it is true that certain RPeedficient utility allocations can
be attained through redistributing initial endowmentgréhis no guarantee that the other
boundary (utility) allocations can be allocated consifyeto any degree of precision. In
addition, there is no guarantee that equilibria or “neariéiia” exist. <

The next example illustrates what happens in an economy mife than two con-
sumers, where some consumers are time value consistenviaredase not.

Example 4. With the help of the main theorem, we can extend Examples 12andany
number of consumers, with different utility functions, pided we retain constant total
endowments and identical sequen¢&s;cv. Specifically, suppose we haveé consumers
with utility functions

u'(z') =3 o' (a}) + ¢ (al,)
t=1

which have the same weights at each finite time, but possiffigreht weights abo, and
that total endowments are constant with= wg. As in (4), we can decompose the utility
possibility set into the sum of the utilities obtained atténiimes, and utilities obtained
atoo: UT = Ug + Us. Any strictly positive point in the boundary & ™ decomposes
uniquely into the sum of two strictly positive points in theumdaries ofUr and U, (in
general, an extreme point of a Minkowski sum is the sum of weliggdetermined extreme
points of the summands). In the same way as Example 2, we traduice the set

UO:{(vi(fi))i]il‘fiZO(lﬁiSN), §1+...+§N§w0}

so the set of possible utilities at any finite timés given byd, Uy, and the set of possible
utilities summed over all finite times is

Ur = (Z 5t> Uo.
t=1

For exactly the same reasons as in Example 2, any strictiji@pointy in the boundary
of Ur can be written as

o
Z dtYo
=1

and in no other way as a sum of elements)dfy. There is a unique (Lemma 6 in Ap-
pendix B) allocation(¢?, . .., £V) such thaw?(¢%) = ¢, £ > 0 andé! + -+ 4 €NV = wy,
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so any allocation leading to a strictly positive boundarinpof U, and hence ot/;, must
be constant.

If all these constant sequences are positive, then we hai@eaor maximum in the
proof of the main Theorem, so the consistency conditionsh(ifie¢’ are all equal) and the
utility possibility set is closed. In other words, the attability of one strictly positive point
implies the attainability of the whole positive boundarpri@rapositive, if the” are not all
equal then any positive boundary point must be associatédasi allocation in which at
least one consumer has zero allocation in every time pefitis can be thought of as a
separate, smaller economy, excluding the consumers witlllocations; the above result
can then be applied iteratively, to give a kind of simplidillcomposition of the positive
boundary, in which some simplices are included and somaid&dl In the most extreme
case, the points representing the allocation of all endawsria all time periods to the same
consumer are always attainable.

For example, suppose we have three consumers, where Casslraed 2 are com-
patible with each other but Consumer 3 is not. Then the ytdassibility set will look
something like Figure 3. Because the three consumers anyiatible with each other,
the open face on the positive boundary cannot be allocategk dinension down, Con-
sumers 1 and 2 are compatible, so the arc joining their axebeallocated. Consumer 3,
on the other hand, is not compatible with either of the otkar tonsumers, so the two
boundary arcs from Consumer 3's axis cannot be allocatedallfzi each consumer can
be allocated all endowments at all time, so the three boynplaints on the axes can be
allocated. <

Remark.Our final observation concerns the scale of the omitted fatteoboundary, in
the case that consumers have inconsistent utility funstiohhe message of stage (i) of
the proof of the main theorem (section 4.3) is that if an atmn = such thatzl, > 0
for all 7 gives rise to a strictly positive element 61/, then the time value consistency
condition (5) is satisfied. Contrapositive, if the congiste condition is not satisfied then
any strictly positive element @gfU which is attained, is attained in such a way that at least
one consumer’s allocation tends to zeroxat

Suppose we hav®& consumers, who do not satisfy the consistency condition.cafle
decompose the economy into two parts: a finite-dimensioadlrppresenting time periods
1,...,T and an infinite-dimensional part representing time periodd., . .. , oo, inclusive.
This corresponds to the decomposition of the utility pdsibset Ut = Upr_ + Upry
described in (3).

In the infinite-dimensional part of the decomposition, wedtguncated utility functions

upy(a') = Y ol (af) + ¢l (aly).
t=T+1
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Consumer 1

Consumer 2 Consumer 3

Figure 3: Utility possibility set, when consumers 1 and 2 tmee value consistent, but
consumer 3 is not.
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Figure 4: Utility possibility set beyond some lar@é when time value consistency not
satisfied.

As T increases, for alf, Y-;°;..; 0iv'(wy) — 0. In the infinite-dimensional part of the
decomposition, for larg@’, the utility which can be assigned to any consumer in finiteti
periods is thus much smaller than can be assignes.atAny strictly positive boundary
point is attained by an assignmentn which 2%, = 0 for at least on€, sou?. (z) must
be small for at least one The attainable boundary points are therefore confined topa s
around the edge of the positive boundary of the utility guBgi set; see Figure 4. In this
diagram, the strig’’ represents small utility to consumgrconsistent with zero allocation
atoo. The boundary region enclosed by the strips cannot be édldca

AsT — oo, the closure of the utility possibility set in the infinitéekensional part of the
decomposition converges to the set of utilities which caattsined ato. Relative to this,
the size of the potentially allocatable strip tends to zercasT — oo, in some sense the
boundary utilities available at cannot (because of the lack of consistency) be allocated.
Interpreting this in the original economy requires somecassentially, it means that there
is a “hole” on the boundary of the utility possibility set,romsponding to the utilities at.
We can see this in Example 1: the positive boundary of thefsdilities at oo is the arc AF,
which corresponds to the unallocatable arc CD in the ufildgsibility set. As that example
shows, this need not describe all of the unallocatable gpaintthe boundary: the arc DE is
missing for different reasons.
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6 Rawlsian Preferences

In this section we present a corollary to the main theorerwhith we consider a mixture
of time-separable utility functions of the form (2) and Raiah utility functions, in which
utility depends only on the infimum of allocation. Preciselye consider utility functions
u’ where
wii) - | E @) £ V) i< N)
v (infiey 2%) = infrey v'(2) (N +1<4i < M)

andd?, ¢t andv® satisfy the conditions stated after (2). As in the main teegrwe assume
that the total allocationéw; );cv satisfyw; > 0 andws, > 0. Let wyin = infien wy, SO

Winin > 0.

Corollary. For the economy described above, the utility possibilitiselosed if and only
if the time-separable utility functions satisfy the timéueaconsistency conditiofb).

Given the main theorem, the proof that this condition is seagy is straightforward. We
prove sufficiency in the same way as in the main theorem, stgpthiat if we fix the utilities
of all but one consumer, then we can maximize the utility af thmaining consumer;
closedness then follows from Lemma 2. Because there aredmusfof utility function,
there are two maximization arguments: one for a time-sépauatility function, one for a
Rawilsian utility function.

Proof of necessity. Suppose the utility possibility séf is closed. Then its positive part
U™ is also closed and hence so is

U/:{(yly,..,YN) 3y€U+andyN+1:---:yM:0},

But this is the positive part of the utility possibility seftthhe reduced economy consisting
only of consumerg, ..., N. This economy has only time-separable utility functionsolth
by the main theorem, must satisfy the time value consistenngition. m
Proof of sufficiency: maximizing a time-separable utility function. Suppose the time-
separable consumers satisfy the time value consistendijtimon We wish to maximize one
of the time-separable utilities, say (x!), subject to the attainable constraintgz’) = v
for2 << M.

For N +1 < i < M (the Rawlsian consumers), lgt = (v*)~'(3%). Any allocation
meeting the constraintg (x?) = ¢’ for N + 1 <4 < M must satisfyz! > ¢ for N +1 <
i < M and allt € IN; it follows that éV+1 4 ... + ¢M < w4, otherwise no feasible
allocation would meet these constraints.

Now consider the reduced economy consistingvo€onsumers with utility functions
u!, ..., v and total endowment®; = w; — x4 — --- — &y, Note thaty; > 0 because
N 4+ M < win < wy
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There is an allocatiom in the original economy which satisfies the constrairits*) =
y* (2 < i < M); in this allocation, we have, faV +1 < i < M andt € IN, 2 > ¢ and
hencez¥ ™ 4 .- + oM < w; — Eny1 — - — Ear = &y it follows that (z1,..., V) is a
feasible allocation in the reduced economy, satisfying*) =y’ for 2 < i < N. Because
the consumers in the reduced economy satisfy the time valosistency condition, it is
possible to maximize!' (') subject to the constraintg (%) =y for2 <i < N.

If we now letzi = ¢ for N+1 <4 < M and allt € IN, then(z!, ..., 2M) is a feasible
allocation in the original economy and satisfies the comga’(x?) = 3 for 2 < i < M.
We shall now show that this allocation maximize€gz!) subject to the given constraints.

Supposev is any other feasible allocation such thétw’) = y* for 2 < i < M. Then,

for N +1 <i < M, u'(w') =y’ soinf,ey wi = £°. Define a new allocation by

wi+ (W — N o (M — €M) ifi=1

2 = w! if2<i<N

3 if N+1<i<M.
This preserves the total allocation in each time periodt #a feasible allocation, and it
satisfiesu’(z*) = ' for 2 < i < M; we also have;} > w;} for all ¢, sou!(z!) > u!(wh).
NOW,ztl—l—---—l—ng :wtl+"'+wiM_£N+1—“‘—£M §Wt—£N+1_"'_£M = &y,
so(zh. .. ,zN) is a feasible allocation in the reduced economy, an®fef i < N we
haveu(z%) = u(w') = y*. By construction ofc, u!(z!) < u!(x!). We already know that
ul(wh) < ul(z!), so we haveu! (w') < u!(x!), showing thatr does indeed maximize
u!(x!) subject to the given constrainta
Proof of sufficiency: maximizing a Rawlsian utility function. Assuming again that time-
separable consumers satisfy the time value consistendjitmon we wish to maximize a
Rawlsian utility, sayu (™), subject to the attainable constrainfxz?) = 3 for 1 < i <
M — 1. Let S be the set of all non-negative real numbgrsuch that there is a feasible
allocationz with u(z%) = y* for 1 <i < N andz} +--- +z¥ < w; — ¢ forall t.

ForN +1<i<M—1,leté = (v*)~1(y"). Because the constraints are attainable,
there is a feasible allocatian such thatu’(z?) = ¢y’ for N +1 < i < M — 1. In this
allocation,infey i = € for N4+1 < i < M—1,80z} +- - -+aN &Nty M1 <,
for all ¢; this shows thag 11+ - -+&p—1 € S. Also,wmiy IS an upper bound faf, because
if &> wnin thenw; — ¢ < 0 for somet. We can therefore I€E = sup(.S); necessarily,
ENFL o M <2 < i, and[0,E) C S.

We shall now show thaE € S. If = = 0 then this is trivial, so assume not.

Let U be the positive part of the utility possibility set in the veed economy compris-
ing N consumers with utility functions:’, ..., «" and total endowments;, = w; — =.
This involves only weighted consumers satisfying the tiraki@ consistency condition, so
U is closed.

29



Suppose: > 0. It follows from the differentiability hypotheses on théthat each’
is uniformly continuous on any bounded subset{f)f Hence, there exists > 0 such that
if z andz are feasible allocations (in the original economy) such fha— z||., < ¢ (i.e.
|zt — 2% < ¢ for all i andt) then, for alli, |[u’(z?) — ui(2?)| < . Without loss of generality,
we may assume that< =, so= — ¢ € S. By definition of .S, there exists an allocatiomn
such thatu!(w') = 3 (1 <i < N)andw} +--- + w) <w; — =+ 6. Let

wr—=

wt—E2+0
wi (N+1<i<M)

wi (1<i<N)

Clearly, this is a feasible allocation angl + --- + z¥ < w; — E for all t. Moreover, if
N +1<i< M then|wi — 2! =0andifl <i < N then

i — 2] = (1—

becausev! < w} +--- +w) <wy — =+
i.e. |yt —ul(z)| <e.

Now, (z1, ..., z")is afeasible allocation in the reduced economyu86z!), ..., u™ (zV)) €
U. We have therefore shown that for any> 0 there is an element df closer thare to
(y',...,yN). BecausdJ is closed, we havéy',...,y") € U, so there is an allocation
(z',...,2N) > 0such that/(z') = y* (1 <i < N)andz} +--- + 2 < w;, — = forall
t;thatis,Z € S.

Now letéM == —¢N+l ... _¢M-lagndfort € NandN +1 <i < M leta} = &,
so(z!, ..., zM)is a feasible allocation in the original economy and satigfie constraints
u'(z') =y (1 <3 < M —1). We claim that this allocation maximizes? (z*!) subject to
the constraints on’(z?). To see this, notice that any larger valueuf (=) would require
a value ofz™ with a larger infimum, so we would have> 0 such that: > ¢M + h for
allt. ForN+1 < i < M — 1, to meet the constraintg (z%) = 5 we must have:! > ¢ for
all t; we therefore haveN ™1 +. .. 4-2M > ¢N+1 ... 1 ¢M 4 — =4 h; correspondingly,
i+ +a) <w — (E+h)forallt. ButZ + h > = = sup(S), S0= + h ¢ S and by
definition of S no suchz?, ..., 2" can satisfyu’(2?) = 4*. This shows that no allocation
with largeru™ () can meet all the constraints, so we have indeed maximizég:).

Wi — i Y i
e — <4
5>wt wt—E—Féwt_

. It follows that, for alli, [u’(w) — u’(2)| < e,

(1]
+ ([

Wt —

[«

[ ]
Note that the reduced economies used in the maximizatiamagts could specialize
into various non-generic forms: specifically, we could haye = 0, or &, = 0 for somet.
As discussed in Section 4.4, this does not cause any diféisult
If all consumers are Rawlsian, we can easily adapt the Ramisaximization argument
to show that the utility possibility set is closed: replabe tonstruction oE with the
definition = = wpi, definec?, . .., ¢V in exactly the same way and allocate= ¢¢ for all
i andt. Any larger value of:' (') would lead tax] + - - - + z}¥ > w, for somet.
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7 Concluding Remarks

In this paper we have built a model of an infinite-dimensiomethange economy where
consumers care about the indefinite future. We restrichtiie to consumption bundles
that are convergent. These can be interpreted as bundles whinsist of a long-run av-
erage component and, for each individual period of time,\aatien from that average.
The novelty of this paper is that this long-term average gomngion, or “consumption at
infinity”, needs to be priced. Since limit consumption degenn the tail of the consump-
tion sequence, this “price at infinity” is related to the psat finite time periods. We find
that closedness of the utility possibility set (a sufficieadition for the existence of quasi-
equilibrium) can be guaranteed if and only if the preferencgall consumers are time
value consistent. This implies that consumers’ (utilitgluation of the indefinite future
should be closely aligned, which, in turn, means that a cetalyl atomistic view of decen-
tralized market economies can not be combined with clairmsgthich market interactions
necessarily lead to efficient allocations.

From a mathematical point of view, the paper shows that tefidimensional economic
models can be analyzed using the infinite-dimensional messbf techniques that are well-
known to economists schooled in finite-dimensional anajysiparticular the implicit func-
tion theorem and the theorem of Lagrange. The advantagergf thss toolbox as opposed
to the more abstract and indirect route that is usually tdkenAlaoglu’s theorem) is that
the model presented here opens up the possibility of deivg@computational variant that
can be used in applied economic analysis.

In addition, the model presented here may open up an avenwdtéonative general
equilibrium approaches, not requiring myopic preferencésranches of economics that
are naturally formulated in the language of the indefinitiirie. We think, in particular,
about possible applications in environmental economius,theory of economic growth,
and financial economics.

Appendix

A Proofs of Lemmas

Lemmal. Fort € IN, let

and let




Then the closure of the positive part of the utility posgipset is given by

{5

If y € 01U, then any supporting hyperplane forthroughy has no other points of inter-
section withl, i.e. y is anexposed poinof U.

yr € Uy (tGIN),gEU}.

Proof of Lemma 1. Becausdv®)” < 0 and{z; | = > 0,2} +---+ 2z < w;} is compact,
eachU; has the property that a supporting hyperplane interseéfingt a strictly positive
point intersectd/; at no other point.

Let o, = sup{||y|| | v € U:}; because thé; are summable and the are bounded, the
o are summable. Let

{5

(these series all converge becauseahare summable). Any element b certainly lies
in U’; however, elements df’ do not obviously lie inU": roughly speaking, because the
associated sequentg ).cv might not converge to the associatizdWe shall show that, in
fact,U’ is the closure ot/ ™. We begin by showing thdf’ is compact. Consider a sequence

((E) o).,

in U’. By a Cantor diagonal argument, we can extract subsequencbsthat ag — oo,

y € Uy (te]N),geU}

yen, — ye forallt € N andy,, — y. Sincey,,, € U; andU, is compacty; € Uy,
similarly, § € U. We also have for ath andt, that||y; ., | < oy and_ 52, oy < co. It now
follows from the Dominated Convergence Theorem (often kmaw Tannery’s Theorem in
the case of infinite sums, rather than more general int§gthks

o0 o0
(Zyt,nk> + Oy, — (Z%) +yel
t=1 t=1

ask — oo, showing that/’ is compact.
We now show that/ ™ is dense inJ’. Fix somez € U’, say

z= <§;zt> + 2.

Givene > 0, choosel” such thad >;° .. | oy < /2. Now definey; = z; for 1 <t < T and
77 = 2. Choose any allocation ab giving rise to utilityy and any allocations at timeésvith
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t > T which do not exceed the total endowments and converge tchiteen allocation at
oo; these will give rise to utilitieg; for t > T such thaty,, = 7, so we have

y= <Zyt> +yoo € UT.

t=1

Now, . .
ly =z < > ly—=zl< Y 20 <e.
t=T+1 t=T+1
This shows that/ * is dense ifJ’; sinceU’ is closed U’ is the closure ot/ .

Suppose lies in the positive boundary @f’. Then, becausg’ is compact and convex,
there is a supporting functional such thatp(y) < ¢(z) for all y € U. The problem
of maximizing ¢(y) over U’ has a unique solution, namety= (>, z;) + Z wherez
(t € IN) is the unique point of/; at which ¢ attains its maximum ovelt/;, and z is the
corresponding point fol7. There is thus no other poigtc U’ for which ¢(y) = #(z), so
z is an exposed pointdf’ = U. =

Lemma 2. The utility possibility set is closed if and only if for anyaaationz € ¢V, with
w(x?) =9 > 0( < j < N)and foranyi (1 < i < N), we can find an allocation
which maximizes:’ subject to the constraints’/ (v/) = 3/ (1 < j < N,j # i), 27 > 0
(1<j<N)andz] + -+ z) = w; (t € N).

The proof of Lemma 2 depends on the following result abouvewrrsets. The crucial
property (*) means, essentially, that any line parallel tmardinate axis intersects the set
K in a closed line segment.

Lemma. Supposek C Rﬁ is a non-empty and comprehensive set (i.ey, € K and
0 < z <y, thenz € K). ThenK is closed if and only if:
(*) foreachy e Kand1 <i < N,KN{zeRY |2/ =y (j #1i) } is closed.

Proof. One direction is trivial: ifK is closed then its intersection with any closed set, in
particular any line, is closed. Suppose, then, that (*) fialdd thaty lies in the closure of
K ; we need to show that € K. This is trivial if y = 0, so assumeg # 0.

Suppose: € RY is such that

<y ifyt>0
=0 ify'=0.

Zi

Letr = min; 4 y' — 2%, so for eachi we have eithet’ = y* = 0 or 2* < y*—r. Now, since
y lies in the closure of<, we can choose € K such thatly —w| . < r,i.e. |y —w| <7
for all i. We can assume that' = 0 whenevery’ = 0 (this will makew smaller, so still
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in K, and will if anything make|y — w||« smaller). The inequalityy’ — w’| < r can be
rewritten asy’ — r < w® < 3 + r, which leads ta:* < w’ for all i such thaty’ # 0 and
2 = w' = 0 for all i such thaty’ = 0. We now have) < z < w € K,so0z € K.

For simplicity, we initially consider the case wheye> 0 for all i, so if 0 < h? < 3/
for all i theny — h = (y' — ht,y2 — h2,...,y"Y — A"Y) € K. Since this lies ink for all
h € (0,4"), it follows from (*) with i = 1 that (y', 3% — h2,5% — h3,..., 4y~ — V) € K.
Since this lies inkK for all k2 € (0,y?), it follows from (*) with + = 2 that (', 4%,y —
R3,...,yN —AN) € K. Continuing in this way, we see thatc K. For a pointy with
y* = 0 for somei, chooseh such thath! = 0 if y* = 0 and0 < A’ < ¢ if 4* > 0, and
argue in the same way for eatbuch that)’ # 0. m
Proof of Lemma 2. The utility possibility set is, by definitior/ ™ — ]Rﬂ\r’, where

N
Ut = {(! @), u @) s af 20, af <wid
=1

It is clear from this that closedness of the utility posstpiset and ofU ™ are equivalent.

The setU ™ has, by continuity and monotonicity of the utility functmand the normal-
ization v*(0) = 0, the property that ify € U and0 < z < y thenz € U*. For any
pointy € U™, the line throughy parallel to theith coordinate axis intersecté™ in a line
segment. One end of this has thie coordinate equal to zero; this lieslift because it is
less than or equal tg. The intersection is therefore closed if and only if the ottvad point
lies inU™. This corresponds to maximizing (z*) subject to the constraintg/ (z7) =
(1<j<Nj#i)yal >0(1<j<N,teNandz!+ -4z <w (t € N). By
strict monotonicity, a maximum cannot occurrﬁ + e+ xiv < w; for somet, so we can
replace the constraintf +- - - +2z¥ < w; withx} +- -+ = w,, as claimed. Closedness
now follows from the preceding lemma.

We need only considey’ > 0, because/’ = 0 is exactly equivalent to an allocation
of 0 to consumer; in all time periods; we can therefore consider the loweratdisional
problem involving only those consumers for whigh> 0 and then, wherg’ = 0, assign
mi = 0 for all . The resulting set of utility values is closed if and onlyhetset of utility
values in the lower-dimensional problem is closad.

Lemma 3. Consider the positive paf/ * of the utility possibility set and, fdf' € IN, the
setsUr_ and Uy described in3), soU+ = Up_ + Ur.. ThenU™ is closed if and only
if Up. is closed; equivalentlyl/ is closed.

Proof of Lemma 3. Note first thatU_ is compact, because it is the image of a compact
set under a continuous mappinglif. is closed, then (Heine-Borel) it is compact, and the
sum of two compact sets is easily seen to be compact, and blrsesl.
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Now suppose that/ " is closed, and hence compact, and for a contradictionifhat
is not closed. Then there is a poipf in the positive boundary df;, which does not lie
in Uz itself. By Lemma 1y, is an exposed point of the closutg-, of Ur., so there is
functional ¢ such thatp(y) < ¢(yo) for all y € Ur, andé(y) < é(yo) for ally € Upy
with y # yo; in particular,¢(y) < ¢(yo) forally € Upy.

Choosezy € Ur— such thatp(zp) = max.cp,_ ¢(z) (Suchz, exists becaus&r_ is
compact), and note that for agye U™ we havey = 3 + g for somey € Ur_, 3 € Uy,
SO

o(y) = ¢(9) + () < ¢(20) + ¢(yo) (23)

Becausey, € Ur., there is a sequend®,, ). in Ury converging tayy. The sequence
(20 + Yn)nen liesinU™ = Ur_ + Ur, and converges tey + 3o SO, becaus& T is closed,
we havezy + yo € UT. Butg(z0 + yo) = ¢(20) + #(y0), contradicting (23).m

B Some Supporting Technical Material

For a map between Banach spaces, there are various noraeqtiveas of differentiabil-
ity. We need only the idea of differentiability in the sendeFoéchet: briefly, ifA is an

open subset of a Banach spakethenF : A — Y is differentiable atr € A if there is a
continuous linear mapping frod¥ to Y, denotedF” (z), with the property

F(z+h)=F(x) + F'(z)h +ry(h)

where||r;(h)||/||k|| — 0 ash — 0. We say that is continuously differentiable oA if it
is differentiable at each point of and the mapping — F’(x) is continuous. See, for ex-
ample, (Deimling (1985), Section 7.7) for a much fuller dggt@mn. For completeness, we
now find the Fréchet derivatives of the functions used nresfufently in our calculations.

Lemma 4. LetcY be the space of all convergent sequenceRi Supposed is an open
subset ofRY and f : A — RM is k times differentiable, and therefore has a Taylor
expansion

E

-1

FE+m =Y =f9E) ..., B) +re(n).

==

1
(Here fU) is aj-linear map from(RN)’ to RM andr,(h) = o(|h|*~!) ash — 0). Define
a subsetd of N by A = {z € ¢V | 2; € Aforall t}, and a mapping® : A — cM by
[F'(z)]: = f(x). ThenF is k times differentiable and has a Taylor expansion

.
Il

E

-1
LD @)y he) + 7oy (). (24)

[F(x+h)]y = - 13!

<
Il
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If £*) is bounded in some neighbourhoodiafi; ., z;, then the error term i (||4||*) as
h — 0. If f*) is bounded om, then the error isO(||h||*) uniformly forz € A.

Proof. Although it is clear that (24) is a valid identity, we need tweck that its elements
correspond to bounded multilinear forms betweénand ¢ and that the error term has
the correct decay, in the norm eff. For simplicity, we work with the cas&/ = 1; the
M-dimensional case is then a direct sumMf 1-dimensional cases. Fix € A. For

1 < j <k — 1, define a mapping fror:"V )/ to the space of all real sequences by

[(FO @) ()]s = (f9(20))(=2).

Itis clear that this ig-linear. Becausg ) is continuous and < ¢V, ) (z;) converges as
t — oo; we also know that; converges as— oo. It is now a straightforward consequence
of multilinearity that(f)(x;))(z) converges as— oo, so ') maps(cV )7 to c. We also
see that] F)|| < sup;e |IfY) (2)]]; this is finite becaus¢ ) (x;) converges as — cc.
This shows that the multilinear forms in (24) map contindpl&tween the correct spaces.

It remains to show that the error term has the correct orderh&Ve for somé < (0,1),

1
Ty (ht) = E (k)(xt)(ﬁht, e ,Hht)7
from which we have .
[ra, (he)| < EHf(k)(xt)”Hh”k' (25)

If #(*) is bounded in a neighbourhood Bfn;_, 2, then clearly there is an upper bound
for all the || f*) ()| terms, showing that the error@(|||*) ash — 0. If there is a bound
for || f*)|| on A, then this gives a uniforr®(||h|*) estimate for the whole ofl. m

Note that the Taylor approximation to the original functifrhas a remainder which
is O(|h|*) at each point ofA, provided f(*) exists onA. For the infinite-dimensional
remainder to be&(||h||*), we also require local boundednessféf). This is because the
remainder involveg (%) () at every pointz; of a convergent sequence, not just at a single
pointz. This boundedness hypothesis is not redundant: even iniorendion, everywhere
differentiable functions can have locally unbounded dsives, e.gx? sin(1/22).

Lemma 5. Supposed is an open subset &Y, v : A — R is twice differentiable with
bounded second derivativg); )<y is a positive, summable sequence gnd R. Define
A C casinLemma 4 and a mapping fram A4 — R by

u(z) = Zétv(wt) + Ctinolov(wt).

t=1

Thenu is continuously differentiable ad and

(F'(z))h = tz_;&v/(xt)ht + (tli)ngo e tliglo hy.
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Proof. DefineV in the same way a8’ in Lemma 4:[V (z)]; = v(xy), and let
d(x) = ;m + ¢ lim @,

s0¢ € ¢* andu = ¢ o V. Becausep is linear,¢’(x) = ¢ for all z. By the chain rule and
Lemma 4, is differentiable ond andv’(z) = ¢ o V/(x), i.e.

(F'(z))h = ; 0/ (we) e + € lim (v () ).
This is the result claimed, except that; . (v'(x;)h:) has been rewritten asn;_, oo v/ (¢) limy— o0 (hy),
to fit with the usual way of describing elementscdf m

Lemma 6. Supposef!, ..., fV are strictly decreasing functions on an interyajw] C R.
Then the equations

) =) == @) ottt e =,
(z° € [0,w]) have at most one solution.

Proof. Let R* = f([0,w]). Becausef® is strictly decreasing, there is a well-defined, strictly
decreasing inverse mappirig)~' : R® — [0,w]. Let R = NI, R, so each(f!)~!is
defined onk. Suppose we have two solutions to the stated equations, itimg'y{z*) = a

for all i and one withf?(y’) = b for all i. Thena,b € R and we have f1)~1(a) +--- +
(F)Ha) = (F750) + -+ (FN) 71 0) = w. But(fY)~L 4 -+« + (fY) L is strictly
decreasing, so we must hawe= b. This givesfi(y') = fi(2*) for all i; becausef is
strictly decreasingy’ = 3 for all i. m

C Lagrange multipliers in Banach spaces

The well-known method of Lagrange multipliers generalimgthout great difficulty from
the finite-dimensional to the infinite-dimensional worlde\glve here a brief description of
the main result; for details see, for example, (Deimling88) Theorem 26.1).

Supposed is an open subset of a real Banach spdcand that we wish to maximize
or minimize F' : A — R, subject to the constrai¥(z) = yo, wherey, is an element of
another real Banach spateandG : A — Y.

As in the finite-dimensional case, we assume tHand G are continuously differen-
tiable; this is in the sense of Frethet, B6z) € B(X,R) = X* andG'(z) € B(X,Y)
(hereB(X,Y) denotes the space of continuous linear mappings kotmY"). The infinite-
dimensional Lagrange theorem now states thatyife A is a constrained maximum or
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minimum andG’(x) is surjective (the analogue of the full-rank condition ir thnite-
dimensional setting), then there is a Lagrange multiplier Y* such that

F'(zo) + (G'(20))"A = 0. (26)

Here(G'(z9))* : Y* — X* is the Banach space adjoint operator of the derivaiie:).
The multiplier equation can be rewritten by expanding ot definition of the adjoint,
leading to the alternative and often more directly usefuinfo

F'(z0)h + MG (z9)h) =0  (h € X). (27)

The main difference from the finite-dimensional settindhistthe multiplier is now a vector
in Y*. This effectively allows us to work with infinitely many sealconstraints, something
which is meaningless in the finite-dimensional world butf@etty sensible in infinitely
many dimensions. [¥" is finite-dimensional then so *, and we can think of as a finite
vector of multipliers, just as in the finite-dimensional €as

Although the theorem has been stated with a single constis@asily accommodates
more. For example, if we hav®& constraint functions, sag, : A — Y, then we let
Y =Y x--- xYyN,80Y" = Y[ x--- x Yy and combine the functions into a single
mappingG : A — Y given byG(z) = (G1(x),...,Gn(z)). The derivative of this map
is given byG' (zo)h = (G (zo)h, ..., G\ (x0)h), and a Lagrange multiplier is an element
of Y*, i.e. avector(\,...,\y) where),, € Y;*. The Lagrange equation because (in the
formulation of (27))

N
Fl(zo)h+ > Mn(Gr(zo)h) =0 (h € X).

n=1
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