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Abstract

We adapt the Meiselman (1962) OLS forward rate revision framework to

obtain the discrete time analogue of the Heath, Jarrow and Morton (1992)

specification and use it for estimating and testing term structure models. Our

framework is based upon the Wold representation of the factor dynamics and

combines the flexibility of the ‘no arbitrage’ approach used by practitioners

for pricing with the time series domain econometrics used in the ‘equilibrium

approach’by academic researchers. It allows us to estimate the no-arbitrage

term structure under the risk-neutral measure without adopting any specific

model of the factor dynamics. Using three different datasets we find that our

discrete time Heath et al (1992) no-arbitrage model is not rejected against the

unrestricted OLS model of Meiselman (1962). We then develop a dynamic

term structure model by specifying a model of a risk premium to link the risk

neutral dynamics of the cross section to the real-world factor dynamics. We

analyse several different models of the dynamics from the ARFIMA class and
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find that the more flexible models allowing for long memory outperform short

memory models and are not rejected against the Heath et al and Meiselman

specifications.

Keywords: term structure, Meiselman regression, forward rate revision, Wold

representation, long memory.

JEL codes: G12, C58.

1 Introduction

The Affi ne Term Structure Model (ATSM) has greatly enhanced our understanding

of the behavior of financial markets and the economy, yielding rich insights into the

role of macroeconomic policy and financial factors. Its theoretical structure provides

a relatively simple dynamic description of the way that investor expectations and

risk aversion affect bond yields, one that generates recursive linear relationships that

can readily be taken to the data. The econometric test bench has now given us

a multi-factor model that pays careful attention to the effect of risk, reducing the

pricing errors implied by the model to very small proportions. The ATSM gives

finance teachers a nice way of illustrating important concepts like risk-neutral pricing

and change of measure. It gives practitioners a flexible way of fitting arbitrage-free

relationships to financial data and pricing new securities and central banks a way of

extracting market expectations of inflation from yield data..

The ATSM represents the cross section of yields or forward rates under the

risk neutral (or equivalent martingale) probability measure and is very popular with

practitioners. Academic studies usually employ the Dynamic Term Structure Model

(DTSM) which incorporates a dynamic factor model and allows the factors to evolve

over time under the real world (or historical) probability measure. Researchers have

in the main adopted short memory or autoregressive (AR) structures to represent
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the dynamics under these measures, which allow the model to adjust exponentially

to shocks. Empirically, multi-factor or vector autoregressive (V AR) models usually

do a good job in capturing such behavior. These V AR models can be used under

both the real world (or historical) probability measure to capture the time series

behavior of the explanatory variables and the risk neutral measure to capture the

dynamics of investor expectations implicit in the cross-section of yields. However

recent studies using the more general Autoregressive Fractionally Integrated Moving

Average (ARFIMA) specification have suggested that the long run adjustment im-

plicit in long series of interest rate data may not be exponential, but may exhibit long

memory (or slower decay than the exponential)1 . It appears that the very small mea-

surement and misspecification and mispricing errors in the cross-section can allow us

to distinguish these from short memory processes.

This paper shows that these AR and ARFIMA representations can be replaced

by the more general Wold or moving average (MA) representation2 , in a way that

preserves the simple recursive ATSM parameter structure. This representation is

normally used in econometrics to describe the behavior of a times series under the real

world probability measure in terms of real world shocks. But we also use this to de-

scribe its behavior under the risk-neutral measure, as a moving average of risk-neutral

shocks. The parameters of the MA representation can be estimated as the slope co-

effi cients of simple OLS forward rate revision equations of the type first estimated by

Meiselman (1962). The ATSM can be made arbitrage-free using Jensen restrictions

1Shea (1991) found long memory in Treasury bill rates. Connolly and Guner (1999) found
evidence of long memory in Treasury bond returns. Tkacz (2001) found a significant long memory
parameter for several US and Canadian interest rates. Also, Gil-Alana (2004a and 2004b) found
evidence of long memory US rates. Using a semiparametric approach, Iacone (2009) confirmed
the presence of long memory in the short maturity nominal interest rates and rejected both short
memory and unit root hypotheses.

2The moving average (or Wold) representation describes any time series as a moving average of
lagged stochastic shocks as in an impulse response function (see Hamilton (1994) for example). It
can be used to represent any time series and should not be confused with an MA time series model
which describes a time series in terms of a finite number of lagged shocks.
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across the intercept and slope coeffi cients, analogous to those of the Heath, Jarrow

and Morton (1992) (henceforth HJM) continuous time model. We call this the no-

arbitrage (NA) model. This procedure offers a simple way of developing an ATSM

without restricting the dynamics. Models using AR or ARFIMA restrictions can be

tested against this model. Remarkably, David Meiselman’s revision regression frame-

work has received scant attention in the finance literature since his original Coles

monograph was published fifty years ago and yet it encompasses all of the ATSMs

that have been proposed since then.

Because it does not restrict the factor dynamics, the HJM model is quite flexible

and is extensively used by practitioners who need such functional forms to fit the

cross-section accurately at any moment of time to price derivative securities ‘off the

curve’. In practice, they use a snapshot of the forward rate structure to back out the

volatility function, which is allowed to move in an unconstrained manner over time3 .

However, by recasting the HJM model in discrete time we obtain an NA model that

is more flexible. We can extend the arbitrage free framework to handle long memory

processes4 . We can incorporate a dynamic factor model with the flexibility over the

change of measure allowed by the discrete time approach5 , exploiting time-series data

for forward rates rather than single snapshots of volatility in a time-consistent way6 .

To our knowledge this is the first time that the HJM has been specified in discrete

time without restricting the factor dynamics7 .

3The connection with our Wold-Meiselman model follows from the well-known relationship be-
tween the MA representation of any time series and its volatility structure.

4Comte and Renault (1996) proposed a term structure model in continuous time based on frac-
tional Brownian motion. However, Rogers (1997) and Cheridito (2003) show that fractional Brown-
ian motion allows arbitrage in continuous time.

5Le et al (2010) note that to obtain a continuous time affi ne yield model, the price of risk must
be exponential-affi ne in the factors, but that this restriction can be relaxed in a discrete time model.

6As Dybvig (1997), Lochoff (1993) Backus, Foresi and Zin (1998) and many others have pointed
out, these so-called arbitrage free models allow arbitrary shifts in the parameters (and in the case
of HJM type models the volatility function) which should in principle be modeled consistently over
time.

7An early paper by Heath, Jarrow and Morton (1990) uses a binomial pricing model. The LIBOR
model (Jamshidian (1997) uses forward neutral measures, which differ with maturity and require
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To specify this framework we generalize the univariate Wold-Meiselman approach

to allow for three correlated factors8 , which are normally suffi cient to characterize

the cross-section of yields or forward rates. We modify the standard yield factor

approach (Duffi e and Kan (1992), Chen and Scott (1993)) by assuming that three

forward rate revisions are measured without error, allowing us to back out the three

underlying factor revisions. These are then used as risk neutral shocks to model the

other forward revisions in the contemporaneous cross-section using the risk-neutral

factor dynamics. We start by testing the NA model against the unrestricted OLS

model using several cross-section data sets. We find that the NA restrictions are

accepted by the data: to our knowledge this is the first time that this test has been

passed by a term structure model. We then develop a Dynamic Term Structure Model

(DTSM) that models the cross section and time series behavior simultaneously. At

this stage, we augment the risk-neutral model of the cross section with a Cochrane-

Piazzesi (2005) style return forecasting model. This provides estimates of the price

of risk which allow us to change from the risk-neutral probability measure used in

the cross section to the real world measure used to handle the time series dynamics.

We apply this specification to a monthly data set provided by Gurkaynak, Sack and

Wright (2007) and test restrictions on the coeffi cients of theMA representation. The

unrestricted (OLS) specification encompasses the NA model as well as models with

AR, MA and ARFIMA restrictions on the risk-neutral dynamics. AR models are

the workhorse of the term structure literature, but we find that the more general

ARFIMA model is superior statistically. Recently, long memory processes have

been employed but these are very time consuming when fitted to time series of bond

yields rather than forward revisions9 . The Meiselman regression approach offers a

Monte Carlo or other numerical techniques for their solution.
8Multi-factor versions of the HJM model require these factors to be independent.
9Backus and Zin (1993) were the first to consider a term structure model with long memory in the
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model that is more general theoretically while much simpler to use in practice.

We believe that this new framework, which combines the flexibility of the no-

arbitrage approach with the advantages of discrete time series econometrics, will

appeal to a wide range of economists, econometricians and finance professionals.

It provides a very general framework for testing no-arbitrage, time series and other

restrictions using linear-recursive parameter techniques similar to those of the discrete

time equilibrium approach, but without the restrictive autoregressive dynamics. It

can be used to extracting the expectations and other information needed by central

banks as well as for pricing interest rates derivatives.

The paper is set out as follows. The next section sets out the basic theoretical

framework of the model, showing how the MA representation of the spot rate can

be used to obtain a general ATSM . Section 3 sets out the three factor version of

the model that is used for testing the no-arbitrage restrictions under the measure Q.

It then specifies the model of the price of risk which is used to change to the real

world measure used to represent the time series dynamics in the DSTM . Section 4

reports the empirical results, starting with the cross-section regression models used

to check the validity of the Jensen restrictions on the parameters of the NA model

and then the DSTM is used to test the validity of AR and ARFIMA restrictions

on the slope parameters. Finally, section 5 offers a brief summary and suggestions

for future research in this area.

spot rate. Duan and Jacobs (1996) proposed an equilibrium model in which long memory in interest
rates arises as a consequence of fractional integration in aggregate consumption growth. They
showed that the long memory component can have implications not only for the time series behavior
but also for the cross-section, which cannot be compensated by richer short memory dynamics. More
recently Golinski and Zaffaroni (2012) considered a 2 factor term structure model with inflation.
They found that allowing for long memory in the expected inflation factor significantly improves
model performance. Osterrieder and Schotman (2012) proposed a model with long memory process
in the short rate and risk premium that can account for predictability of excess bond returns and
the strong correlation of long rates with the level factor.
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2 The risk neutral dynamics of the forward structure

This section sets out the basic theoretical framework of the model. We start with

some basic results from the theory of bond pricing under the risk free measure and

then show how theMA representation of the spot rate can be used to obtain a general

ATSM . This sets out a multi-factor model, which is then specialized in Section 2.4

to a single factor example, to show the relationship with the Meiselman regression.

Section 2.5 shows he relationship with the HJM model.

2.1 Discount prices and forward rates under Q

Let the price at time t of a discount bond paying $1 at period t+n be Pn,t. Finance

theory tells us that asset prices all have the same drift under the risk neutral (or

equivalent martingale) measure Q. In the case of a discount bond this implies:

Pn,t = Et

[
exp

[
−
∑n−1

i=0
rt+i

]]
. (1)

where rt is the spot rate. We use u and the operator E to denote shocks and

expectations under the risk neutral measure Q and later use uP and E to represent

them under the real world measure P.

Assuming that this is conditionally Gaussian, the value of a discount bond may

be expressed using the well known formula for the expected value of a lognormally

distributed variable:

pn,t = −rt − Et
[∑n−1

i=1
rt+i

]
+

1

2
V ar

[∑n−1

i=1
rt+i

]
, (2)

where: pn,t = log[Pn,t].We define the forward rate for period t+n as the logarithmic

rollover rate fn,t obtained by investing in a bond maturing at t+ n+ 1 rather than
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one maturing at t+ n:

fnt = pnt − pn+1,t (3)

=Et[rt+n]− 1

2
V ar

[∑n

i=1
rt+i

]
+

1

2
V ar

[∑n−1

i=1
rt+i

]
.

It is well known that an AR specification of the risk neutral dynamics gives a

convenient recursive solution to bond prices under the assumption that bond prices

are exponential affi ne in the factors driving the interest rate. Because an n maturity

discount bond becomes an (n− 1) maturity bond in the next period, the parameters

of this function, known as factor loadings, are recursive in maturity. They also follow

an AR restriction (Campbell et al (1997)). We now show that theMA representation

preserves the recursive property, but relaxes the AR restriction.

2.2 The Moving Average representation of the spot rate

To estimate the model we use the discrete time MA representation. This can be

used to represent the behavior of any mean reverting random variable as an initial

value plus an MA of subsequent i.i.d. innovations. We assume in this paper that

these are Gaussian.

Suppose that the spot rate rt and the term structure is driven byK homoscedastic

factors and that each has a univariate MA representation under the risk-neutral

measure:

rt = r0 +

K∑
k=1

t−1∑
i=0

βk,iuk,t−i = r0 +

t−1∑
i=0

β′iut−i, (4)

with:

ut ∼ N (0,Ω) (5)

where r0 = E0[rt] is the initial risk-neutral expectation of the spot rate, Ω ={σij};
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σij = σji and σjj > 0. Ω = Σ′Σ and where Σ is upper (or lower) triangular with

positive diagonal entries.

Any future interest rate can be written as the sum of components, known and

unknown at t:

rt+n =
∑t+n−1

i=0
β′iut+n−i + r0 (6)

=
∑n−1

i=0
β′iut+n−i +

∑t+n−1

i=n
β′iut+n−i + r0 (7)

=
{
β′0ut+n + ...+ β′n−1ut+1

}
+ {β′nut + ...+ β′t+n−1u1 + r0}

= {unknown at t } + {known at t }

Taking expectations under Q removes the unknowns and leaves:

Et[rt+n] =
∑t+n−1

i=n
β′iut+n−i + r0. (8)

This revises the previous expectation for that period by adding the innovation β′nut:

Et[rt+n] = Et−1 [rt+n] + β′nut. (9)

Its variance depends upon the unknown part of (6). Given the i.i.d. assumption, this

is given by the well-known formula:

V ar[rt+n] = V ar

[∑n−1

i=0
β′iut+n−i

]
(10)

=
∑n−1

i=0
β′iΩβi

Similarly the variance of the sum in (2) is:
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V ar
[∑n

i=1
rt+i

]
= V ar

[∑n

i=1

∑i−1

j=0
β′jut+i−j

]
(11)

=
∑n

i=1

(∑i−1

j=0
β′j

)
Ω

(∑i−1

j=0
βj

)
(12)

The maturity can be increased using the recursion:

V ar
[∑n

i=1
rt+i

]
= V ar

[∑n−1

i=1
rt+i

]
+

(∑n−1

i=0
β′i

)
Ω

(∑n−1

i=0
βi

)
. (13)

Putting this into (3) shows that the forward rate for any future period t+ n can be

written as the risk neutral expectation minus a Jensen term:

fnt = Et[rt+n] − 1

2

(∑n−1

i=0
βi

)′
Ω

(∑n−1

i=0
βi

)
.

=Expectation − Jensen term

and the revision in period t for period t+ n can be written as:

fn,t − fn+1,t−1 = an + β′nut; n ≥ 1,(14)

= Jensen maturity shortening + Innovation

subject to the no-arbitrage (NA) condition:

where: an =
1

2

[(∑n

i=0
β′i

)
Ω
(∑n

i=0
βi

)
−
(∑n−1

i=0
βi

)′
Ω

(∑n−1

i=0
βi

)]
(15)

Under this measure, the forward rate for any specific period follows a random walk

with a drift due to the Jensen maturity shortening effect. The forward rate for any

fixed maturity can nevertheless be mean reverting.
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2.3 The Hicksian decomposition

The risk neutral innovation can be represented as the sum of a real world innovation

plus a risk premium or expected excess return. This reflects the change of measure

from Q to P which as appendix A explains, respecifies both the drift and the error

terms of the revision process, adding the risk factor Σ′Λt to the drift and compen-

sating for this by subtracting it from the innovation under Q to get the innovation

under P:

uPt = ut −Σ′λt−1 where: Et−1[uPt ] = 0; Et−1[ut] = Σ′λt−1. (16)

The risk factor is the product of the volatilities (Σ) and the vector of prices of risk

(λt) . Substituting ut = uPt + Σ′λt−1 into (14) gives the Hicksian decomposition of

the forward rate.

2.4 A single factor Meiselman (1962) regression model

Suppose for a moment that K = 1 and that the spot rate rt and the short forward

f1,t−1 are measured without error so that we can use the short rate revision as a

proxy for the innovation. Recall that if β0 = 1, (3) specializes to:

f1,t−1 = Et−1[rt]−
1

2
σ2.

Similarly (14) with f0,t = rt gives the short revision:

rt − f1,t−1 = ut +
1

2
σ2. (17)
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allowing us to infer the innovation:

ut = rt − f1,t −
1

2
σ2. (18)

and substitute back into (14) to get:

fnt − fn+1,t−1 = αn + βn (rt − f1,t) , n = 1, ..., N (19)

where:

αn =
1

2
σ2

( n∑
i=0

βi

)2
−
(
n−1∑
i=0

βi

)2
− βn


and N is the largest maturity in the sample. Adding residuals to allow for measure-

ment error gives a linear model of the cross-section that we recognize as a Meiselman

(1962) regression. The single equation model is just-identified for n = 1: it yields

two reduced form regression coeffi cients (α1, β1) that can be solved for (σ
2, β1). If

additional revisions are added the model is over-identified, imposing no-arbitrage

restrictions across the volatility and the Jensen drift term. These take the form of

recursion relationships, as in the AR model and section 4.1 gives some empirical

examples for a three factor model. This slope-intercept restriction is similar to that

implied by the model of HJM.

2.5 Heath Jarrow Morton (1992)

HJM develop a similar arbitrage-free pricing model underQ in continuous time. They

note that absent arbitrage, the drift in all asset prices must be the same. This implies

that the instantaneous forward rate f(t, T,X(t)) for period t + n at time t follows

a Stochastic Differential Equation with its well known restriction across volatility v

12



and Jensen-drift α:

df(t, t+ n,X(t)) = α(t, t+ n,X(t))dt+ v(t, t+ n,X(t))dw(t) (20)

where:

α(t, t+ n,X(t)) = v(t, t+ n,X(t))

∫ t+n

t

v(t, s,X(s))ds

allowing v to be ‘backed out’ from the cross-section forward curve. This model is

very popular with practitioners, who fit a different snapshot of the cross-section for-

ward/volatility curve every day. It is one of a range of arbitrage-free models that

specify the yield curve in a way that is suffi ciently flexible to provide an accurate rep-

resentation of bonds or option prices at any given instant. Practitioners argue that

this type of model is more appropriate than ‘equilibrium’models like Vasicek (1979)

and Cox, Ingersoll and Ross(1985) which have a small number of parameters. How-

ever, these models can be extended using multiple factors and richer specifications of

the price of risk, reducing the pricing errors to very small proportions. As noted in

the introduction, their use of time series data for the cross-section rather than just

a snapshot helps resolve the problem of dynamic inconsistency. Theoretically, there

is no difference between time series and volatility modelling since these are uniquely

related (by relationships like (10)).

By using a carefully-specified time series model to extract information from both

the cross-section and the dynamics of the time series data as we do in section 4.2

of this paper we can potentially get the best of both worlds. Unlike HJM and

other arbitrage-free models that only model the cross-section under Q, we can make

inferences about the dynamics and the risk premia as well as the cross-section. The

so-called arbitrage-free models are silent on these issues. On the other hand, we do
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not need to use the very long estimation periods used by time series econometricians

to extract information about long memory and other low frequency phenomena since

we can instead extract this information from the long maturities in the cross-section.

Although this only tells us about the risk neutral process, we can make inferences

about the real world dynamics given suffi cient time series observations to model the

price of risk. In practice, the choice of estimation period and cross-section can be

flexible, allowing for likely structural breaks through the choice of estimation period,

maturity structure and the number and type of model factors and parameters. We

return to this subject in section 4.

3 The empirical models

This section sets out the three factor version of the model that is used for testing

the no-arbitrage restrictions under the measure Q. We briefly discuss some of the

ARFIMA models that can be used to restrict the dynamics under Q. We then

specify the model of the price of risk which is used to change to the P measure used

to represent the real world dynamics.

3.1 A three factor model and the risk neutral dynamics

Following the yield factor literature (Duffi e and Kan (1996)) we assume that three

factors are suffi cient to model the yield curve (K = 3) and that three revisions,

respectively short (s), medium (m) and long term (l), are observed without error.

For this reason we call them ‘noiseless’or ‘noise-free’revisions, distinguishing them

from the remaining ‘noisy’revisions. The specific maturities depend upon the data set

being tested. Collecting these three observations in a vector Xt gives the relationship
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between these three revisions and the three shocks that drive the system under Q:

Xt =


fst − fs+1,t−1

fmt − fm+1,t−1

flt − fl+1,t−1

 =


as

am

al

+


β1s β2s β3s

β1m β2m β3m

β1l β2l β3l




u1t

u2t

u3t


which we can write as:

Xt = ax + Bxut. (21)

We then back out the vector of shocks as:

ut = B−1x Xt −B−1x ax, (22)

and use this to specify the remaining ‘noisy’revisions. These are measured with error

and stacked into an N − 3 column vector Y t :

Yt = ay + Byut + vt (23)

=
(
ay −ByB

−1
x ax

)
+ ByB

−1
x Xt + vt,

where vt is an N − 3−dimensional vector of measurement errors, vt ∼ N(0,Ξ).

The intercept coeffi cients ax and ay in this system follow from the (unrestricted)

slope coeffi cients and the variance structure using (14). Comparing this with an

unrestricted OLS regression model of the cross-section then gives a test of the no-

arbitrage restrictions reported in section 5.1.

3.2 Restricting the risk neutral dynamics

The dynamics of the factors under Q can be restricted by using models developed

by time series econometricians to restrict the βs in (4). For expositional simplicity
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we present the single factor model here. The traditional assumption about the short

rate risk neutral dynamics is that it follows a first order autoregressive (AR(1))

process, for which β0 = 1 and βi = φi for i ≥ 1. We consider a broader specification

that allows for autoregressive, moving average and fractionally integrated component

in the dynamics, i.e. ARFIMA(p, d, q) (see Granger and Joyoux (1980), Hosking

(1981)), where p denotes the number of autoregressive lags, q is the number of moving

average lags and d is the long memory parameter. In general, the ARFIMA class

can be represented as

Φ(L) (1− L)
d
xt = Θ(L)et,

where et is white noise and Φ(L) and Θ(L) are autoregressive and moving average

polynomials, respectively. The process is stationary if the autoregressive roots lie

outside the unit circle and the long memory parameter is smaller than 1/2. For

example, the ARFIMA(2, d, 2) xt process with zero mean is given by

(1− φ1L) (1− φ2L) (1− L)
d
xt = (1 + θ1L) (1 + θ2L) et,

The Wold theorem states that any covariance stationary process has a unique moving

average representation, i.e.

xt =

∞∑
i=0

βiet−i = Φ(L)−1 (1− L)
−d

Θ(L)et..

By noting that

(1− L)−d = 1 + dL+ d (d+ 1)L2/2! + d (d+ 2) (d+ 3) /3! + . . .

=

∞∑
i=0

ψiL, where ψi = Γ (i+ d) / [Γ (d) Γ (i+ 1)] ,
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and where Γ is the gamma function, we can find the β′s by matching the coeffi cients

at each lag.

3.3 The price of risk and the real world dynamics

System (23) is the ATSM : the model of the cross-section under Q which relates

the noisy revisions Yt to the errors backed out from the contemporaneous noise-

free revisions Xt. The joint likelihood of the DTSM is a function of the system

innovations ut and measurement errors vt, which incorporates a dynamic time series

model of Xt. This is informative about the risk premia as well as the dynamics and

employs the relationship between the real world and risk neutral innovations (16)

where the vector λt contains the ‘prices of risk’. To specify these we follow Duffee

(2002):

Σ′λt = λ0 + Λ′1Zt, (24)

where Zt is an M−vector of variables that drive the risk premia.

Substituting these (16) and (24) into (21) and (23) gives the real world dynamics:

Xt = ax + Bxλ0 + BxΛ
′
1Zt−1 + Bxu

P
t , (25)

Yt = ay + Byλ0 + ByΛ
′
1Zt−1 + Byu

P
t + vt. (26)

These resemble Cochrane and Piazzesi (2005) return forecasting equations, although

we model the monthly return to a forward rather than the annual return to a

discount bond position. The return on an n−period bond bought at time t is

rn,t+1 = pn−1,t+1 − pn,t, which, from the definition of forward rate (3), is:

rn,t+1 = (fn−1,t+1 + pn,t+1)− (fn,t + pn+1,t)

= (fn−1,t+1 − fn,t) + rn+1,t+1.
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Thus the forward rate revision is related to the discount bond return by: fn−1,t+1 −

fn,t = rn,t+1 − rn+1,t+1. The variables Zt driving the price of risk can include spot

and forward rates (represented by the 3 dimensional vector Xt) that are spanned as

well as macroeconomic and other variables (Mt), that are not spanned by the term

structure.

3.4 Estimation procedure

System (23) allows us to estimate the ATSM without restricting the β coeffi cients.

Because we can rotate the factors in such a way that Bx is an identity matrix, we can

use the initial OLS estimates of β’s as the starting values in the MLE procedure.

To estimate the DTSM ((25) and (26)), we note that the measurement errors

are independent of the state variables. This allows us to write the joint conditional

density of the Meiselman revisions under P as:

fP(Xt,Yt|Zt−1) = |det(J)|−1fP(uPt ; 0,Ω)fP(vt; 0,Ξ), (27)

where det(J) is the determinant of the Jacobian:

J =

Bx 0

By I

 ,

and:

uPt = B−1x Xt −B−1x ax − λ0 −Λ′1Zt−1, (28)

vt = Yt − (ay −ByB
−1
x ax)−ByB

−1
x Xt. (29)
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Maximizing the function (27) w.r.t. the parameters gives theirML estimates. We

first estimate a linear model with unrestricted intercept and slope parameters by OLS

and then test (i) the recursive Jensen NA restrictions and (ii) ARFIMA restrictions

on the slope parameters against this. In the restricted models the intercepts (and

in (ii) the slope coeffi cients) are determined by recursive relationships involving the

basic structural parameters.

The estimation procedure can as usual be speeded up by concentrating the like-

lihood with respect to the measurement errors vtwhich reduces the number of para-

meters in the non-linear optimization by N − 3. Moreover, because (25) (and (28))

is just-identified and the price of risk is absent from the equation spanning the noisy

revisions (29) we can write the former as an unrestricted form:

Xt = h + HZt−1 + B0e
P
t ,

which (using the Zellner (1962) unrelated regressions theorem) can be concentrated

out of the likelihood using OLS regression formulae. Given the final estimates of

the structural parameters ax and Bx the Duffee price of risk parameters can then be

backed out as Λ′1 = B−1x H and λ0 = B−1x (h − ax). Concentrating the likelihood in

this way reduces the number of parameters in the non-linear optimization by another

K × (M + 1).

4 Empirical results

This section discusses the various empirical models used to test the restrictions. We

start by fitting the ATSM of the cross-section (23) to a variety of different forward

rate data sets, comparing them with unrestricted OLS specifications to check the

validity of the Jensen NA restrictions on the intercepts. We then develop a set of
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return forecasting regressions (25) which are combined with (23) to model the cross-

section and time series behavior of the forward curve jointly in the DTSM. The

combined model (25) and (26) is then fitted to a monthly data set for the period

1983-2011 to test the validity of the AR and ARFIMA restrictions on the slope

parameters.

4.1 Testing the no-arbitrage restrictions

The NA condition (15) restricts the factor dynamics used to model the cross-section

under the Q measure, allowing us to test these restrictions without specifying the

form of the risk premia (or equivalently the P dynamics)10 . To test these we opti-

mize this model using MLE and compare the fit with that of an OLS model with

unrestricted coeffi cients. Because these restrictions are recursive, to do this without

restricting the slope coeffi cients we need a complete set of equally spaced maturities

in each observation of the cross-section, with a periodicity equal to that of the time

series11 . Equation (14) then shows that the Ny intercept coeffi cients (Ny being the

number of noisy revisions) are determined by recursion formulae involving the slope

coeffi cients and the covariance matrix. In the case of the 3 factor model, the latter

has 6 coeffi cients, so in principle we save Ny − 6 degrees of freedom relative to an

unrestricted OLS system.

We test the NA restrictions using data from three different sources. The first is

the Gurkaynak, Sack and Wright (GSW, 2007) model which can be used to calculate

yields and forward rates at any maturity frequency out to 30 years12 back to 1971.

10This is the appropriate framework for such an exercise because a dynamic model such as (25)
and (26) is a test of the joint hypothesis of the restricted NA dynamics under Q and the model of
the risk premium.
11The time series observations on this cross-section need not be complete however, as in the case

of the tests of the Fama-Bliss dataset reported in table 1.
12Conveniently, this gives the parameters of the interpolated forward curve, allowing us to obtain

forward rates and revisions on a consistent time period/maturity basis. The parameters are available
from from http://www.federalreserve.gov/pubs/feds/2006/200628/feds200628.xls.
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To avoid measurement problems at the long end where observations are frequently

sparse, we restrict the analysis to maturities up to 15 years. To allow for the pos-

sibility of a structural break in 198213 , we run the test on both the full GSW time

span and the period since 1983. In this section we use an annual and in the next

section we use a monthly GSW data set.

The second source is the McCulloch and Kwon (McC-K, 1993) data set, which

has been extensively used in term structure research and provides a time series of

the cross-section back to 1946. This data has been updated by the New York Fed

and reports annual maturity yield observations out to 20 years. These models re-

spectively generate interpolated discount yield equivalent data using exponential and

polynomial spline functions which have the effect of smoothing them, reducing the

dimensionality of the resulting estimates. For example, the GSW estimates are gen-

erated by the Nelson-Siegel-Svensson model (Svensson (1994)). This is fitted by a six

factor function, which means that once six maturity observations are modelled, ad-

ditional observations are not strictly independent. Consequently our initial strategy

was to test the NA restrictions using annual observations and maturities, to keep N

relatively low while spanning a wide range of maturities. Finally we tested the NA

restrictions using unsmoothed monthly observations for the short end provided by

the well-known Fama-Bliss (FB) Treasury Bill file on CRSP14 .

Table 1 reports the results of testing the NA restrictions. The first two columns

show the number of parameters for each model and the next two show the number of

observations for each data set and the number of ‘noisy’revisions used as dependent

variables. The next two columns show the maturities of the ‘noiseless revisions’used

13This is found in time series results for short term interest rates under P, see for example Garcia
and Perron (1996), Bai (1997), Bai and Perron (1997).
14For a detailed description please see the US Treasury Database Guide at:

www.crsp.com/documentation.
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as explanatory variables and the frequency of the data. The final column reports the

value of the standard Likelihood Ratio statistic LR =2(lnLOLS−lnLNA) for the null

hypothesis that the data is arbitrage-free (i.e. that OLS and NA models fit the data

equally well), where lnL is the value of an optimized log-likelihood function). This

statistic has a χ2 distribution with (kOLS − kNA) degrees of freedom with the 95%

critical value shown in small font. The LR test does not reject the null hypothesis

for any dataset. The LR test for the McC-K data set gives the p−value of 0.16.

For GSW data, the p−values (not shown) are equal to 1 for all frequencies and time

spans. Using the Fama-Bliss unsmoothed unsmoothed observations at the monthly

frequency, gives p−values ranging from 0.23 to 0.63.

4.2 Testing the risk neutral dynamic restrictions

Having established that the NA restrictions on the intercepts are acceptable in the

cross-section, we develop a DTSM that simultaneously extracts information from

the time series behavior of the system. We are primarily concerned at this stage to

test the validity of the standard AR specification of the factor dynamics and loadings,

as well as the more general ARFIMA model. We refer to these as Restricted Risk

Neutral Dynamic or ‘RRND’models.

4.2.1 The monthly forward rate data

In this section we use a monthly data set constructed using the GSW parameters of

the interpolated forward curve. To allow for the suspected structural break in the

time series behavior in 1982 we use the sample January 1983 to December 2011. These

models can be estimated using only a small selection of maturities but because the

computation cost is minimal we use the complete set of 180 maturities to avoid any

possible loss of information. We define the forward rate revisions as fn,t − fn+1,t−1,

where n denotes the revision horizon. This gives us 62, 420 monthly observations
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(180 revisions × 347 months).

As in the previous section, we assume the 4, 48 and 168 month revisions (the

‘noiseless revisions’) are measured without error. These maturities have highest cor-

relations with the first three factors from the Principal Component Analysis of the

revisions. Figure 1 plots the corresponding 4 month, 4 year and 14 year forward

rates, revealing a clear downward trend. Oscillatory behavior at the business cycle

frequency is also apparent, which is especially strong for the 4 month rate. The long,

random cycles might be suggesting persistent long memory dynamics of the time

series that is different from the short memory behavior displayed by ARMA models.

Figure 2 plots periodograms of these forward rates. The sharp spike at frequency

zero suggest very persistent behavior. Additionally, we can see another spike for the

4 month rates, which could suggest a long memory behavior at the business cycle

frequency.

The time series of the forward rate revisions for these maturities are presented in

Figure 3. Figures 6 and 7 show the unconditional mean and volatility (as measured

by standard deviation) of forward rates and forward revisions, respectively. The

term structure of forward rates is upward sloping for maturities up to about 12

years, reaching a maximum of 7.54% at 148 months, and decreasing slowly thereafter.

The term structure of the volatility of forward rates is more interesting; it initially

increases with maturity up to 2.889% at 11 months, then decreases to 1.997% at

132 months and then appears to increase. Figure 7 shows the unconditional mean

and standard deviation of the term structure of forward revisions. The mean forward

revisions are negative and their term structure is hump shaped with a maximum value

of −0.021% at 167 months. The unconditional standard deviation of the revisions is

also humped shaped with a maximum of 0.376% at 22 months, decreasing slightly to

0.325 at the long end. At the short end of the volatility curve there is a sharp kink
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at 2 months to maturity.

Figures 8 and 9 plot the correlograms of 4 month, 4 year and 14 years of forward

rates and forward rate revisions respectively. It is notable especially given the ‘irreg-

ular’time series behavior shown in Figure 3, that the forward rate revisions display

high persistence at long lags. The correlograms of both forward rates and forward

revisions also exhibit oscillatory behavior.

4.2.2 Modeling the price of risk

We began this part of the empirical analysis by estimating monthly forward return

forecasting regressions for the noise-free forward revisions (25), designed to identify

the variables driving the price of risk. We started with the 4 month, 4 year and 14

year forward rates and then added Fama-Bliss annual yields which have been used

successfully for annual discount bond return forecasting by Cochrane and Piazzesi

(2005). The work of Ludvigson and Ng (2009) and Joslin et al (2012) also suggested

the use of macro variables like industrial production growth (IP ) and expected in-

flation (EI)15 . These data are presented in Figure 4. The variables that are jointly

significant in the final model are: the 3, 47 and 167 month forward rates, Fama-

Bliss 2 and 5 year yields, IP and EI. To take account of the large sample size, the

significance threshold for this test is determined using the Hendry (1995) rule for

decreasing the significance level with sample size16 . The significance level α = 0.31%

for this sample.

15 Industrial Production is the monthly logarithmic growth in the seasonally adjusted Industrial
Production index and Expected Inflation is a monthly series for the median expected price change
over the next 12 months compiled by the, University of Michigan Survey Research Center. Both
series are available from the website of Federal Reserve Bank of St. Louis.
16Hendry (1995) suggests that when the sample size increases, we should be more strict with

the hypothesis test and a use smaller significance level for the critical value. As a rule of thumb,
Hendry suggested cT−0.9, where c = 1.6. This gives the critical values for our sample of p = 0.31,
which is comparable to the 5% level for T = 50. If the value of test exceeds this critical value, the
null hypothesis (that the two models have the same fit) is rejected. For model selection, Canova
(2007) recommends the use of the Schwartz or Bayesian Information Criterion (BIC) which makes
a similar adjustment and is asymptotically consistent.
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The macroeconomic time series do not exhibit long range persistence (see Figure

5). Although EI exhibits substantial autocorrelation at short lags (the first order

autocorrelation coeffi cient is 0.82), this autocorrelation decays rapidly and becomes

insignificant at 26th lag. The first order autocorrelation coeffi cient for IP is equal to

0.24, which increases to 0.35 at the third lag and then falls, becoming insignificant

for lags larger than 10.

Table 2 reports the estimates of the parameters and their significance. There is no

obvious pattern of signs and significance across regressors. Industrial production is

very significant in the short revision regression, but insignificant in others. Expected

inflation is significant in the long revision regression, and marginally significant in

the medium term revision. The Fama-Bliss rates are significant in the short rate

revision. As can be seen from the lower panel, all variables are significant at the

0.31% significance level.

4.2.3 The risk-neutral dynamics

We first estimate the unrestricted OLS and no-arbitrage models (the results are

available on request). The slope parameters are initially unrestricted, as in the ex-

ercise of the previous section, but in this exercise we simultaneously estimate the

price of risk and hence the real world factor dynamics as in (25) and (26). Given the

estimates of the reduced form coeffi cients ax and Bx and the risk neutral parameters

we can then find the price of risk parameters17 . We then estimate eight models in

which the risk-neutral dynamics are restricted using the AR(1), AR(2), ARMA(1, 1),

ARFIMA(1, d, 0), ARFIMA(2, d, 0), ARFIMA(1, d, 1), ARFIMA(2, d, 1) andARFIMA(2, d, 2)

specifications discussed in section 3.2. In these RRND models we parametrize all

three factors in the same way, giving three short memory and five long memory

17As noted in section 3.4, the price of risk parameters λ0 and Λ1 are concentrated out from the
log-likelihood maximization. These results are not reported here but available upon request.
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parameterizations of the model. Table 3 reports the estimates of the risk neutral

parameters of these models. The asymptotic standard errors are reported in a small

font.

Figure 10 plots the moving average representation of the factor dynamics in these

models (By in (23)). These are similar to the factor loadings of a discount yield

model and show the effect of the three risk neutral shocks inferred from the noise-

less revisions (using (22)) on the forward rates (and revisions) across the maturity

structure. All three factors exhibit ‘dual persistence’under Q: long-lasting short

and long memory dynamics. The two highest autoregressive roots are typically

very close to 0.99 and the smallest is typically about 0.95. When we include the

long memory parameter d, for the more parsimonious models ARFIMA(1, d, 0) and

ARFIMA(2, d, 0) one of the factors has d > 0.5 and is not covariance-stationary18 .

For models that introduce an MA term, the estimates of all factors are in the sta-

tionary region with the estimates of the highest long memory parameter varying from

0.46 (ARFIMA(1, d, 1)) and 0.40 (ARFIMA(2, d, 2)). The two other factors also

exhibit long memory behavior with the estimates of the long memory parameter of

the least persistent factor about 0.09 to 0.12, and 0.24 to 0.30 for the medium per-

sistence factor. The estimates of the MA parameters lie in the invertibility region

for the short memory model ARMA(1, 1), but for all long memory models at least

one factor has non-invertible MA roots. The largest estimate of the MA coeffi cient

is for the ARFIMA(1, d, 1) model: 23.21.

4.2.4 The real world dynamics

Appendix B shows how the model of the risk premium (24) is used to obtain the

model of the real world short rate dynamics ((B-5)) from the model of the risk

18However, since all d < 1, the factors are still mean-reverting.
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neutral short rate dynamics (4). Figure 11 shows the effect of shocks backed out

from the three noiseless revisions used as factors (the ϕ′s in (B-5)) and is comparable

with figure 10 showing the risk neutral dynamics. These effects are depicted in the

form of an impulse response function or moving average representation, showing the

response over time of the spot rate to real world shocks that are spanned by the yield

curve. While the general pattern is similar to that of 10, these responses tend to be

smaller and their ‘humps’more muted. The impact of the second and third factors

is much weaker than it is under Q, particularly in the case of the ARFIMA(1, d, 0)

and ARFIMA(1, d, 1) models. Figure 12 shows the effect of the macro and other

unspanned factors (the γ′s in (B-5)), which affect the risk premia and the evolution

of the yield curve but not the current yield curve. These move away from their initial

value of zero to a single peak before mean reverting to zero.

4.2.5 Relative model performance

The standard errors on these cross-sectional parameters are very small. There are

two reasons for this. The first is that the likelihood of the cross-section depends

upon measurement errors (vt) that are, as Cochrane and Piazzesi say in their (2008)

paper, ‘tiny’empirically, so that restrictions that generate tiny perturbations in the

yield curve estimates are often rejected. The second is the large sample, which tends

to bias classical statistics such as likelihood ratio statistics toward rejection of model

simplifications (Hendry (1995), Canova (2007)).

Table 4 reports the number of parameters and log-likelihood values for each model.

The table shows the negative of the BIC statistic, making it appropriate to select

the model with the highest value of (−)BIC=2 lnL−k lnT . The table also reports

the likelihood ratio statistic for a test against the ARFIMA(2, d, 2) model19 . The

19For the tests in Panel A the ARFIMA(2, d, 2) model is the restricted model, while for the tests
in Panel B it is unrestricted.
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number in small font under the LR test value shows the critical value for p = 0.0011,

which the analysis of Hendry (1995) suggests will give a null-rejection frequency

comparable to that of the conventional 95% value (p = 0.05) used in a small sample.

Panel A reports these statistics for the OLS and NA models,while Panel B reports

the statistics for the RRND models.

Panel A of Table 4 shows that the ARFIMA(2, d, 2) model is preferable to the

OLS and NA models. Panel B shows that there is a small increase in the log-

likelihood value from 73, 814 for the AR(1) model to 73, 821 for ARMA(1, 1), but

a much larger increase to 74, 258 for the AR(2) model. However, this model is still

inferior to the models with long memory dynamics. The long memory models perform

much better than the rest in this comparison. The ARFIMA(2, d, 2) is preferred to

all the other models. The MA component seems to play a more significant role

in these (compare e.g. ARFIMA(2, d, 0) and ARFIMA(1, d, 1)) than it does in

the short memory models (compare AR(2) and ARMA(1, 1)). The long memory

parameter plays a double role in the autocorrelation function. First, like the MA

component, it can amplify the effect of autocorrelation. The value of loading for the

most persistent factors is typically well more than 5 at 180th lag (see Figure 10 for the

models with long memory). Second, it makes the rate at which the autocorrelations

decay hyperbolic, instead of exponential as in the pure autoregressive models.

4.2.6 Cross sectional errors

Table 5 reports the root mean square error of the cross-sectional errors for each model

defined as:

RMSE =

√√√√ 1

TN

N∑
n=1

T∑
t=1

(ŷnt − ynt)2, (30)

where ynt denotes the revision with maturity n observed at time t and ŷnt is the fitted

value, conditional upon the contemporaneous noiseless revisions. This shows that all
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models fit the cross section very well, with an average measurement error of just

over 10 basis points. The richer models are more flexible, therefore they offer smaller

RMSE20 . The improvement is not dramatic at the first sight, but if we assume that

the OLS model gives the best possible fit and use this as the baseline then going

from the AR(1) model to ARFIMA(2, d, 2) we improve the fit21 by nearly 42%.

4.3 The maturity structure of the unconditional means and

coeffi cients

In this section we look in more detail at the results for four representative specifica-

tions: the OLS, NA, AR(2) and ARFIMA(2, d, 2) models and the way they capture

the behavior of the yield curve at different maturities. First we look at the uncondi-

tional means of the noisy forward rate revisions implied by these models and compare

these with the sample means. Then we compare the intercept and slope coeffi cients

of the restricted models of the noisy revisions with those of the unrestricted OLS

model.

4.3.1 Comparing the model-implied and sample means across maturity

Figure 13 plots the maturity structure of the unconditional mean implied by each

of these models for the forward revisions and compares them with the sample mean

(shown by the dotted curve). The model means are calculated (using (23)) as:

E [Yt] =
(
ay −ByB

−1
x ax

)
+ ByB

−1
x E [Xt] , (31)

20Maximising likelihood is not equivalent to minimizing the RMSE of the measurement error.
Indeed, we can see that the ARMA(1, 1) model has a higher rmse than AR(1), although it has three
more parameters .
21Calculated as

total rmseAR(1)−total rmseARFIMA(2,d,2)
total rmseAR(1)−total rmseOLS

× 100%.
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where E [Xt] is the vector of sample means. For the noiseless revisions Xt, these

coincide with the sample mean, so the curves converge at these maturities (4, 48

and 168 months). The unconditional means implied by these models are very close

to those observed in the sample, except for the short maturities. In the case of the

AR(2) model the short-end values are much higher than those seen in the data.

4.3.2 Comparing the parameters of the restricted and unrestricted mod-

els across maturity

Equation (31) involves both the model intercepts
(
ay −ByB

−1
x ax

)
and the factor

loadings or slope coeffi cients ByB−1x in (23). Their separate effects can be seen by

comparing the coeffi cients of the restricted models with those of the unrestricted

OLS model, which gives a very good approximation to the data. Figure 14 compares

the intercepts
(
ay −ByB

−1
x ax

)
of the restricted models with those of the OLS model

(shown by the dotted curve). The NA model replicates the OLS intercept almost

perfectly. The intercepts of the ARFIMA(2, d, 2)model exhibit a pronounced ‘hump’

for maturities up to 48 months, but lie within the 95% confidence interval of the OLS

model for almost all maturities. However the intercept of the AR(2) model again goes

completely astray at the short end of the curve. For example, the OLS intercept is

−5.20 bp for the 1 month revision , while the AR(2) intercept is 6.02 bp, a difference

of more than 8 OLS standard errors.

Figure 15 presents the loadings ByB−1x on the three noiseless revisions used to

back out the factors. The dots again show the loadings of the unrestricted OLS

model. The restricted models have similar loadings. Unsurprisingly the NA model

(which has unrestricted slope coeffi cients) fits better than the RRND models. One

difference is clear in the loading of factor 1 shown in the first panel of Figure 15. This

shows that the AR(2) and ARFIMA(2, d, 2) models overlap each other and have a

30



much shorter hump than the OLS model. The other difference is in the loadings on

the third factor for 6 to 42 month maturities, where the loadings for the OLS model

are relatively flat but exhibit a ‘valley’shape for the RRND models . These long

memory models seem to be particularly good at improving the way that the models

replicate the behavior of the short maturities.

5 Conclusion

Economists and finance professionals have divided into two camps when modelling

the behavior of the term structure of interest rates. On the one hand practitioners

tend to follow the so called ‘no-arbitrage’approach and use an ATSM to analyze

current market prices of fixed income securities and to back-engineer the unrestricted

risk-neutral dynamics of the underlying factors and their volatilities. On the other

hand economists and finance academics tend to follow the so called ‘equilibrium

approach’ by adopting specific RRND models to describe the dynamic behavior

of interest rates and other factors, using a DSTM to model these under both the

risk neutral and historical probability measures. These models normally assume the

absence of arbitrage, but recently some researchers have compared their performance

with unrestricted linear regressions (Hamilton and Wu (2010), Cochrane and Piazzesi

(2008) for example).

We show that this divide is somewhat artificial and can be bridged by using

the Wold representation to provide a discrete time model-free specification of the

risk neutral factor dynamics in the forward rate domain. We start by estimating a

Meiselman (1962) OLS model of the revisions to forward rates, without adopting any

specific model of the factor dynamics. We modify the standard yield factor approach

to develop an ATSM that shows how the innovations implied by (three) revisions

that are assumed to be measured without error. We then impose the no-arbitrage
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restriction on the coeffi cients, to obtain the analogue of the HJM model in discrete

time, but avoiding the restrictions imposed by their continuous time volatility frame-

work. We test the no-arbitrage assumption by comparing this with the unrestricted

OLS system and find that this is acceptable across a range of data sets.

We then develop a DSTM by augmenting this model of the cross-section with a

Cochrane and Piazzesi (2005) type return forecasting model which defines the price

of risk and allows us to model the real world as well as the risk neutral dynamics.

This allows the model parameters to be informed by the information contained in

the cross section of forward rates and their times series behavior. The change of

measure can allow for complete flexibility in the specification of the dynamics under

the two measures, but it assumes that the variance structure does not change. The

MLE procedure seeks a compromise between the values of the volatility parameters

that optimize the fit of the cross section and the values that optimize the dynamic

performance of the model, reducing the likelihood compared to an unrestricted OLS

model. Nevertheless, the Bayesian Information Criterion, which corrects for the

number of parameters and observations, does favour the NA version of the DTSM

over the OLS model.

Finally, we use this DTSM to examine different RRND models for the factors

under the risk-neutral measure. Since the great majority of term structure mod-

els adopt an autoregressive specification, we wanted to check the effect of allowing

for richer dynamics, which is very easy to do in this framework. We examined 8

models from the ARFIMA class, allowing for autoregressive, moving average and

long memory effects. We find that the model with traditional AR(1) dynamics is

outclassed by more flexible models. The model with AR(2) dynamics offers much

better performance, but further improvement is achieved using the more flexible

ARFIMA(2, d, 1) and ARFIMA(2, d, 2). models. These long memory models seem
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to be particularly good at improving the way that the models replicate the behavior

of the short maturities.

We are currently extending this research in several directions, shadowing develop-

ments in the standard yield curve literature. One is to relax the yield factor assump-

tions by using latent factors modelled as in the Kalman filter, perhaps distinguishing

real and nominal discount factors. Another is to check the spanning assumptions of

our DTSM , to consider for example whether macro variables affect the forward yield

curve directly rather than indirectly through the risk premia (Joslin et al (2012). A

related area of research is based on the examination of the form of the risk pre-

mium, which is of a restrictive exponential-affi ne variety in our DTSM 22 . Like the

continuous time HJM model, this framework can also be used to examine forward

and hazard rates in corporate bond prices23 . Last but not least, it is worth noting

that this model framework can be readily adapted to admit square root processes

(Cox et al (1985), Sun (1992), Gourieroux and Jasiak (2006)), while preserving the

linear-recursive model parameter structure.
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Appendices

Appendix A The change of measure

The change of measure from Q to P depends on the Radon-Nikodym derivative or

dP
dQ (Xt|Xt−1) which transforms the conditional densities multiplicatively24 :

fP(Xt|Xt−1) =
dP
dQ (Xt|Xt−1)× f(Xt|Xt−1). (A-1)

where f and fP are densities under Q and P respectively conditional upon the

information set Xt−1, where Xt−1 is the relevant information set. We assume that

this multiplier (and hence the distribution of ePt under P) is exponential affi ne:

dP
dQ (Xt|Xt−1) = exp[−1

2
λ′t−1λt−1 − λ′t−1Σ′−1ePt ] (A-2)

where λt−1 is the price of risk vector25 . Given (5), the conditional density of the

factor shocks under the risk neutral measure Q is:

f(et) = (2π)
− 3
2 |Ω|−

1
2 exp[−1

2
e′tΩ

−1et].

Substituting these two relationships and (16) into (A-1) and consolidating the expo-

nents gives the density of the factor shocks under P conditional upon the information

24Although there are two kinds of innovations in our model, shocks to the factors and measurement
errors, these are independent and serially uncorrelated. Consequently the latter are not priced and
do not affect this transform.
25 In other words, the Stochastic Discount Function (SDF) dP

dQ
(Xt+1|Xt)e−rt is specified

as.exp[−rt − 1
2
λ′tλt − λ′tP′−1ePt+t].
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set Xt−1 :

fP(ePt ) = (2π)
− 3
2 |Ω|−

1
2 exp[−1

2

(
ePt −Σ′λt−1

)′
Ω−1

(
ePt −Σ′λt−1

)
+ λ′t−1Σ

′−1ePt +
1

2
λ′t−1λt−1]

= (2π)
− 3
2 |Ω|−

1
2 exp[−1

2
eP ′t Ω−1ePt ].

which satisfies Et−1[ePt ] = 0 as reported in (16).

Appendix B Derivation of the dynamics under the P measure

This appendix shows how the model of the risk premium (24) is used to obtain

the model of the real world short rate dynamics ((B-5), below) from the model of

the risk neutral short rate dynamics (4). We focus on the relationship betwen the

Wold coeffi cients under the two measures and ignore intercept terms by assuming

for expositional simplicity that r0 and λ0 are zero. The risk neutral dynamics of

the vector of forward rates (ft) with maturities {a, b, c} that span the term structure

follow directly from (4):

ft = f0 +

t−1∑
j=0

B′jut−j , (B-1)

where B0 = Bx is defined in (21) and

B′j =


β1,a+j β2,a+j β3,a+j

β1b+j β2,b+j β3,b+j

β1,c+j β2,c+j β3,c+j

 ; j ≥ 1.

For expositional simplicity it is assumed that f0 = 0.

Joslin et al (2012) note that the dynamics under P can be richer than under Q

in the sense that they can be driven by macroeconomic and other unspanned factors

(mt) as well as the factors that span the term structure (ft). In this paper we model
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this using an AR OLS regression specification for these additional variables26

mt = Θf t−1 + Φmt−1 + wt t ≥ 1. (B-2)

(with zero intercepts for mean-adjusted data). Substituting recursively for mt yields:

mt =

t−1∑
j=0

Φj(Θft−1−j + wt−j)

=

t−2∑
j=0

ΦjΘft−1−j +

t−1∑
j=0

Φjwt−j . t ≥ 2.

(where the first summation is truncated because f0 = 0). Substituting (B-1) we get:

mt =

t−1∑
j=0

Φjwt−j +

t−2∑
j=0

ΦjΘ

t−1−j∑
i=1

B′i−1ut−j−i (B-3)

=

t−1∑
j=0

Φjwt−j +

t−1∑
j=1

(
j−1∑
i=0

ΦjΘB′j−i−1

)
ut−j

=

t−1∑
j=0

Φjwt−j +

t−1∑
j=1

A′jut−j where: A′j =

j−1∑
i=0

ΦiΘB′j−i−1

Writing the vector Z′t = (f ′t ,m
′
t), and assuming λ0 = 0 the price of risk (24) can

be written as:

P′λt= Λ′1f ft + Λ′1mmt, (B-4)

which together with (B-3) implies that the dynamics of the factors under the P

measure are of the form:

rt =

t−1∑
i=0

ϕ′iu
P
t−i +

t−1∑
i=1

γiwt−i. (B-5)

26This is not reported but available upon request.
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where

uPt = ut −P′λt−1. (B-6)

Sucessively substituting (B-6), (B-4), (B-3) and (B-1) back into (B-5):

rt =

t−1∑
i=0

ϕ′i(ut−i − (Λ′11ft−1−i + Λ′12mt−1−i)) +

t−1∑
i=1

γiwt−i

=

t−1∑
i=0

ϕ′iut−i +

t−1∑
i=1

γiwt−i −
t−2∑
i=0

ϕ′i{Λ′11
t−1−i∑
j=1

B′j−1et−i−j

+Λ′12

t−1−i∑
j=2

A′j−1ut−i−j +

t−1−i∑
j=1

Φj−1wt−i−j ])}

Equating this with (4) gives a set of recursive restrictions across the coeffi cients of

the forward rates spanning the term structure, which determines the ϕis in terms of

their shorter maturity values and the P-coeffi cients:

t−1∑
i=0

ϕ′iut−i =

t−1∑
i=1

βiut−i +

t−2∑
i=0

ϕ′iΛ
′
11B

′
0et−i−1 +

t−2∑
i=0

ϕ′i

t−1−i∑
j=2

[Λ′11B
′
j−1 + Λ′12A

′
j−1]ut−i−j

= β0ut + (β1 −ϕ0Λ′11B′0)ut−1

−
t−1∑
i=2

(βi +

i−2∑
j=0

ϕ′j [Λ
′
11B

′
i−j−1 + Λ′12A

′
i−j−1] +ϕ′iΛ

′
11B

′
0)ut−i

Hence:

ϕ0 = β0;

ϕ1 = β1 +ϕ0Λ
′
11B

′
0;

ϕ′i = (βi+

i−2∑
j=0

ϕ′j [Λ
′
11B

′
i−j−1+Λ′12A

′
i−j−1]+ϕ

′
i−1Λ

′
11B

′
0) where: A′i =

i−1∑
j=0

ΦjΘB′i−j−1 i ≥ 2,

This leaves a set of Duffee (2012) style restrictions across the effects of macro & other
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unspanned variables on the term structure:

t−1∑
i=0

γiwt−i =

t−2∑
i=0

ϕ′i

t−1−i∑
j=1

Λ′12Φ
j−1wt−i−j

=

t−1∑
i=1

i−1∑
j=0

ϕ′jΛ
′
12Φ

i−j−1

wt−i

Hence:

γ0 = 0

γi =

i−1∑
j=0

ϕ′jΛ
′
12Φ

i−j−1

 , i ≥ 1.
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Tables

Number of
parameters (k)

Number of
observations

Maturities
of regressors

Frequency of data
and maturities

LR
c5%

OLS NA T Ny
Panel A: Annual GSW, 0-14y, 1971-2011
55 50 40 11 4,48,168 monthly 0.043

11.071

Panel B: Annual GSW, 0-14y, 1983-2011
55 50 28 11 4,48,168 monthly 0.098

11.071

Panel C: Annual McC-K, 0-19y, 1946-2010
80 70 64 16 3,10,18 annual 14.183

18.307

Panel D: Monthly Fama, 0-11m, 01/1964-03/2000
40 38 434 8 3,6,12 monthly 0.720

5.992

Panel E: Monthly Fama, 0-11m, 01/1964-03/2000 & 10/2008-12/2011
40 38 472 8 3,6,12 monthly 0.843

5.992

Panel F: Monthly Fama, 0-11m, 01/1983-03/2000
40 38 206 8 3,6,12 monthly 4.606

5.992

Panel G: Monthly Fama, 0-11m, 01/1983-03/2000 & 10/2008-12/2011
40 38 244 8 3,6,12 monthly 2.962

5.992

Table 1: Comparison of the unrestricted (OLS) and No Arbitrage (NA) ATSMsThe
columns show: the number of parameters for the OLS and NA models; the number of
observations and dependent variables; the maturities of the ‘noiseless revisions’used
as regressors; the frequency of the data and the Likelihood Ratio statistic and (in
small typeface) the p-value for the NA model against the OLS model. Panels A to
G present results for different datasets: Gurkaynak-Sack-Wright, McCulloch-Kwan,
and Fama-Bliss, reporting frequency, forward rate span and time span. The NA
restriction are accepted in all these data sets.
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Regressand b0,0 IPt EIt yFB24,t yFB60,t f3,t f47,t f167,t R2

Panel A
f3,t+1 − f4,t −0.122

0.115
0.070
0.025

0.044
0.028

0.870
0.185

−0.903
0.278

−0.284
0.069

0.177
0.147

0.115
0.037

0.141

f47,t+1 − f48,t 0.086
0.140

−0.046
0.031

−0.066
0.034

0.436
0.225

−0.371
0.339

−0.127
0.084

−0.039
0.179

0.112
0.045

0.052

f167,t+1 − f168,t 0.485
0.128

−0.001
0.028

−0.078
0.031

0.206
0.205

−0.604
0.309

0.043
0.077

0.476
0.163

−0.146
0.041

0.068

Joint
significance test

Panel B

F (3, 336)
crit.value

7.357
4.715

8.124
4.715

4.834
4.715

7.545
4.715

5.183
4.715

6.688
4.715

7.244
4.715

18.564
4.715

Table 2: Forward return forecasting regressions (24). These regress the noisy revisions
on the noiseless revisions and determine the price of risk. The standard errors of the
parameters are reported in small font. In Panel B the joint significant test is reported
with the critical value at 0.31% significance level. The sample is January 1983 to
January 2012.
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Correlations
φ1 φ2 d θ1 θ2 σii f1 f2 f3

Panel A: AR(1)
factor 1 0.995

0.000
4.121
0.029

1

factor 2 0.993
0.000

3.417
0.031

−0.950
0.001

1

factor 3 0.955
0.001

0.342
0.002

0.214
0.016

−0.337
0.022

1

Panel B: AR(2)
factor 1 1.982

0.000
−0.983
0.000

0.006
0.000

1

factor 2 1.465
0.000

−0.469
0.000

0.484
0.000

0.254
0.000

1

factor 3 1.444
0.000

−0.469
0.000

0.209
0.002

0.190
0.022

−0.607
0.003

1

Panel C: ARMA(1, 1)
factor 1 0.994

0.000
0.178
0.018

4.875
0.076

1

factor 2 0.993
0.000

−0.139
0.018

5.898
0.128

−0.977
0.000

1

factor 3 0.955
0.000

0.479
0.256

0.228
0.041

0.233
0.008

−0.317
0.009

1

Panel D: ARFIMA(1, d, 0)
factor 1 0.989

0.000
0.518
0.001

0.105
0.000

1

factor 2 0.991
0.000

0.249
0.001

0.430
0.001

−0.809
0.002

1

factor 3 0.945
0.000

0.119
0.002

0.464
0.004

0.563
0.015

−0.827
0.018

1

Panel E: ARFIMA(2, d, 0)
factor 1 0.999

0.000
−0.010
0.000

0.508
0.001

0.113
0.000

1

factor 2 0.994
0.000

−0.003
0.000

0.243
0.001

0.454
0.000

−0.734
0.002

1

factor 3 1.030
0.000

−0.077
0.000

0.102
0.000

0.461
0.004

0.478
0.014

−0.840
0.008

1

Panel F: ARFIMA(1, d, 1)
factor 1 0.989

0.000
0.458
0.001

0.855
0.031

0.124
0.000

1

factor 2 0.999
0.000

0.288
0.001

0.697
0.008

0.324
0.001

−0.877
0.003

1

factor 3 0.951
0.000

0.091
0.001

23.210
0.317

0.021
0.000

0.575
0.026

−0.815
0.051

1

Panel G: ARFIMA(2, d, 1)
factor 1 0.989

0.000
−0.001
0.000

0.411
0.000

2.382
0.012

0.130
0.000

1

factor 2 0.990
0.000

0.001
0.001

0.298
0.000

2.025
0.006

0.257
0.000

−0.953
0.000

1

factor 3 1.161
0.000

−0.201
0.000

0.107
0.001

0.016
0.003

0.431
0.003

0.607
0.008

−0.770
0.007

1

Panel H: ARFIMA(2, d, 2)
factor 1 0.996

0.000
−0.007
0.000

0.396
0.000

1.097
0.008

−0.357
0.006

0.216
0.000

1

factor 2 0.994
0.000

−0.003
0.000

0.252
0.000

1.844
0.006

−0.179
0.004

0.288
0.000

−0.929
0.001

1

factor 3 1.180
0.000

−0.220
0.000

0.118
0.001

3.218
0.048

−0.415
0.010

0.119
0.001

0.533
0.011

−0.755
0.008

1

Table 3: The risk neutral dynamic parameters of the RRND models. The standard
errors are reported in small font. The sample period is January 1983 to January
2011.
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Model k lnL (−)BIC LR
cα

Panel A

OLS model 918 76, 031 141, 926 2, 646.3
2874.3

NA model 741 75, 544 142, 906 1, 671.66
1853.6

Panel B

AR(1) 213 73, 814 145, 277 1, 788.0
39.811

AR(2) 216 74, 258 146, 131 900.2
34.358

ARMA(1, 1) 216 73, 821 145, 258 1, 774.2
34.358

ARFIMA(1, d, 0) 216 74, 539 146, 694 337.4
34.358

ARFIMA(2, d, 0) 219 74, 590 146, 762 236.7
28.450

ARFIMA(1, d, 1) 219 74, 639 146, 860 138.3
28.450

ARFIMA(2, d, 1) 222 74, 676 146, 902 63.3
21.646

ARFIMA(2, d, 2) 225 74, 708 146, 932 −

Table 4: Likelihood statistics for the DTSMs (OLS, NA and RRND models). The
columns show: the number of parameters; the loglikelihood, Baysian Information
Criterion and the Likelihood Ratio statistic and (in small typeface) the p=0.0011
value for the test of the ARFIMA(2,d,2)) model against the others. In panel A
the likelihood ratio is below this critical value, favoring ARFIMA(2,d,2)) as the
restricted model. In panel B the likelihood ratio is above this critical value, favoring
ARFIMA(2,d,2)) as the unrestricted model.

Model Total RMSE
OLS 10.029
NA 10.049
AR(1) 10.320
AR(2) 10.275
ARMA(1, 1) 10.321
ARFIMA(1, d, 0) 10.263
ARFIMA(2, d, 0) 10.238
ARFIMA(1, d, 1) 10.223
ARFIMA(2, d, 1) 10.212
ARFIMA(2, d, 2) 10.198

Table 5: RMSE of cross-sectional errors. These are calculated using (29) and reported
in basis points.

46



Figures

Figure 1: Time series of 4 month, 4 year and 14 year forward rates.
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Figure 2: Periodogram of the 4 month, 4 and 14 year forward rates.
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Figure 3: Time series of 4 month, 4 year and 14 year forward rates revisions. The
forward rate revisions are defined as fn−1,t+1 − fn,t

49



Figure 4: Time series of monthly changes in industrial production and 12 month
expected inflation.
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Figure 5: Correlogram of expected inflation and industrial production growth.

Figure 6: Unconditional mean and standard deviation of forward rates by maturity.
The sample period is January 1983 to January 2011.
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Figure 7: Unconditional mean and standard deviation of forward rate revisions by
maturity. The sample period is January 1983 to January 2011.

Figure 8: Correlogram of 4 month, 4 year and 14 year forward rates. The area
between the dotted lines denotes the 95% confidence interval around zero. The
sample period is January 1983 to January 2011.
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Figure 9: Correlogram of 4 month, 4 year and 14 year forward rate revisions. The
area between the dotted lines denotes the 95% confidence interval around zero. The
sample period is January 1983 to January 2011.
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Figure 10: Moving average representations of the factor dynamics under the risk
neutral measure (4.2.3). These are similar to the factor loadings of a discount yield
model and show the effect of risk neutral shocks inferred from the noiseless revisions
on the forward rates and revisions at different maturities.
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Figure 11: Impulse responses for the spanned factors. These show the response over
time of the short rate to the real world shocks spanned by the yield curve (backed
out from the noiseless revisions) under the risk-neutral measure. They are given by
the parameters ϕ defined in Appendix B. This figure is comparable to the previous
figure showing the risk neutral dynamics.55



Figure 12: Impulse responses for the unspanned factors (mt in (37)). These are
defined under the real-world measure and show the response over time of the short
rate to macro and other unspanned real world shocks. They move away from their
initial value of zero to a single peak before mean reverting to zero. They are given
by the parameters γ defined in Appendix B. These unspanned factors are ‘latent’in
the sense that they do not affect the yield curve under the risk-neutral measure.

56



Figure 13: Sample and model-implied unconditional means of the forward rate revi-
sions by maturity. The dashed line shows the 95% confidence interval for the data
sample.

Figure 14: Intercepts of restricted and unrestricted (OLS) models. The dashed line
shows the 95% confidence band for the latter.
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Figure 15: Loadings on the three noiseless revisions (4, 48 year and 14 year matu-
rities) in the restricted and unrestricted (OLS) models (ByB−1x ). The dots denote
the loadings of the unrestricted OLS model

58


