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An Efficient Double-Track Auction for Substitutes and

Complements1

Ning Sun2 and Zaifu Yang3

Abstract: We propose a dynamic auction mechanism for efficiently allocat-

ing multiple heterogeneous indivisible items. These goods can be split into

two distinct sets so that items in each of the two sets are substitutes but are

complementary to items in the other. The seller has a reserve value for each

bundle of goods. In each round of the auction, the auctioneer announces the

current prices for all items, bidders respond by reporting their demands at these

prices, and then the auctioneer adjusts simultaneously the prices of items in

one set upwards but those of items in the other downwards. We prove that

despite the fact that bidders are not assumed to be price-takers and thus can

strategically exercise their market power, this dynamic auction always yields

an efficient outcome and induces the bidders to bid truthfully and at the same

time protects them from fully exposing their private values.

Keywords: Dynamic auction, gross substitutes and complements, incentives,

efficiency, indivisibility.

JEL classification: D44

1 Introduction

Our purpose is to provide a dynamic auction that can efficiently allocate multiple hetero-

geneous indivisible goods to many bidders and at the same time induces bidders to behave

truthfully. An important feature of the auction is that it can handle significant comple-

mentarity among the goods. Traditionally research has focused on examining auctions for
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and providing also constructive suggestions and comments. The usual disclaimer applies.
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nsun@mail.shufe.edu.cn
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selling a single item. However, over the last twenty years auctions for selling multiple items

have become popular and widespread use, see e.g., Klemperer (2004) and Milgrom (2004)

on auctioning spectrum rights. The past study has deepened our understanding of how the

design of auction affects its outcome and also how the environment influences the auction

design.

In a recent seminar paper, Ausubel (2006) develops an ingenious dynamic auction

mechanism for selling heterogeneous goods. His auction yields an efficient outcome, induces

the bidders to bid sincerely, and at the same time protects bidders’ private values from

being fully exposed. Therefore this auction not only maintains the important strategy-proof

property of the well-known Vickrey-Clarke-Groves (VCG) mechanism but also overcomes

the informational inefficiency problem facing the VCG mechanism. More specifically, the

VCG mechanism requires all bidders to report their entire values over all possible bundles,

whereas Ausubel’s only needs bidders to report their demands at several price vectors

along a finite path towards equilibrium. As pointed out by Rothkopf, Teisberg, and Kahn

(1990), Rothkopf (2007), Ausubel (2004, 2006), Perry and Reny (2005), and Milgrom

(2007) among others, the VCG mechanism requires significant amounts of information

from bidders and has thus made it rarely used in practice, because in reality businessmen

are generally reluctant to reveal their private value or cost and in fact always tend to

use such information very prudently. Perry and Reny (2005) also argue that the VCG

mechanism uses information wastefully and can negatively cause bidders to submit less

accurate information. Generating an efficient outcome, Ausubel (2006)’s auction not only

provides a remedy for the VCG’s defects but also preserves its strategic property. Ausubel

(2006) examines two auction models: In his first model, the goods are assumed to be

perfectly divisible and bidders have strictly concave value functions, whereas in his second

model, all goods are indivisible and are viewed as substitutes by every bidder.4 His analysis

mainly concentrates on the first model.

The purpose of this paper is to show that we can extend and generalize Ausubel’s

auction from the setting with substitutable indivisible goods to a more general and more

practical setting that permits complementarities among goods. More precisely, we examine

an auction market where a seller wishes to sell two disjoint sets S1 and S2 of heterogeneous

items to many bidders and has a value for every bundle of goods. The seller trades her

products in order to maximize revenues. Generally, items in the same set Si are substitutes

but are complementary to items in the other set Sj. This relation is introduced by Sun

and Yang (2006) and called gross substitutes and complements (GSC).5 This fundamental

4Kelso and Crawford (1982), Gul and Stacchetti (2000), Milgrom (2000) have also developed dynamic
auctions for similar models with indivisible and substitutable goods. The major difference between their
auctions and Ausubel’s is that the latter possesses the strategy-proof property.

5This condition subsumes and extends the well-known gross substitutes (GS) of Kelso and Crawford
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pattern captures many familiar and important situations. For instance, in the view of

manufacturing firms, workers and machines are typically complements, whereas workers

are substitutes and so are machines.6 In our earlier analysis (Sun and Yang (2009)), we

propose a price adjustment process and show that this process always yields a Walrasian

equilibrium if all bidders are assumed to be price-takers. Thus the important strategic and

incentive issues have not been addressed. In contrast, in the current model, we assume that

every bidder has a private value on each bundle of the goods and may have an incentive to

economize on his private information. So in this setup, bidders are not assumed to behave

as price-takers and thus may strategically exercise their market power. Now the central

issue is how to design a dynamic auction that can induce bidders to bid truthfully and at

the same time provides an efficient outcome in a complex environment where items for sale

are indivisible and can create strong synergies when being used together.7

Built upon and improving the adjustment process of Sun and Yang (2009), we will

develop a strategy-proof dynamic auction design for the environment. Roughly speaking,

the auction works as follows. Starting from an arbitrary price vector, the auctioneer calls

out the current price vector, bidders submit their demands at these prices, and then the

auctioneer adjusts the prices of over-demanded items in one set S1 (or S2) upwards but

those of under-demanded items in the other set S2 (or S1) downwards. We call this a double-

track auction because it simultaneously updates prices in two opposite directions (ascending

and descending). We show that this allocation mechanism always induces bidders to bid

sincerely and finds an efficient outcome in finitely many rounds. In particular, this auction

exhibits a significant strategic property that sincere bidding by every bidder is an ex post

strongly perfect equilibrium of the dynamic game of incomplete information induced by the

auction. More specifically, this means that after the auction has run up to any time t∗, no

matter what has happened up to t∗ and no matter whether it is now on or off an equilibrium

path, sincere bidding is an optimal strategy for every bidder i, as long as from t∗ on, every

his opponent j bids sincerely according to a certain fixed GSC utility function ũj which

need not be his true GSC utility function uj. This auction is also detail-free, robust against

any regret and independent of any probability distribution. Another attractive feature of

this auction is that it is simple, transparent and privacy-preserving. This auction does

(1982). GS is a benchmark condition for the existence of a competitive equilibrium in a market where
goods for sale are indivisible but are substitutes to the consumers.

6Ostrovsky (2008) independently presents a similar condition for a supply chain model where prices of
goods are fixed and a non-Walrasian equilibrium solution is used.

7Complementarities or synergies among items are known as a difficult issue in auction design and
well-documented in Milgrom (2000, 2004), Jehiel and Moldovanu (2003), Klemperer (2004), and Maskin
(2005) among others. As pointed out by Kelso and Crawford (1982), complementarity can even cause
problems with existence of competitive equilibrium in the presence of indivisibilities. Nonetheless, GS or
GSC guarantees existence of competitive equilibrium in economies with indivisibilities.
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not only subsume and generalize Ausubel’s from the setting with substitutes to the setting

with both substitutes and complements, but also improves Ausubel’s itself.8 Aside from

the theoretical interest and general applicability of this dynamic auction, our analysis

complements Ausubel’s which focuses on the model of divisible goods. Furthermore, our

analysis is quite elementary and intuitive.

The remainder of this paper goes as follows. Section 2 presents the auction model.

Section 3 describes the price adjustment process. Section 4 provides the main results.

2 The Auction Model

A seller (denoted by 0) wishes to auction a set N = {β1, β2, · · · , βn} of n indivisible items

to a finite group I of bidders. The items may be heterogeneous and can be divided into

two sets S1 and S2 (i.e., N = S1 ∪ S2 and S1 ∩ S2 = ∅). For example, one can think of

S1 as tables and of S2 as chairs. Items in the same set can be also heterogeneous. Let

I0 = I ∪ {0} denote the set of all agents (bidders and seller) in the market. Every agent

i ∈ I0 has a value function ui : 2N → IR specifying his/her valuation ui(B) (in units of

money) on each bundle B with ui(∅) = 0, where 2N denotes the family of all bundles of

items.9 It is standard to assume that ui is weakly increasing, and that every bidder can

pay up to his value, and every agent has quasi-linear utilities in money. The seller is a

revenue-maximizer while the bidders are profit-maximizers. Here we allow the seller to

have a utility function u0 and so we can accommodate more practical situations than the

usual situation of assuming u0 to be always zero.

A price vector p = (p1, · · · , pn) ∈ IRn indicates a price ph for each item βh ∈ N . Agent

i’s demand correspondence Di(p), the net utility function vi(A, p), and the indirect utility

function V i(p), are defined respectively by

Di(p) = arg maxA⊆N{ui(A)−∑
βh∈A ph},

vi(A, p) = ui(A)−∑
βh∈A ph, and

V i(p) = maxA⊆N{ui(A)−∑
βh∈A ph}.

(2.1)

Because the seller is a revenue-maximizer, the family of her retaining bundles at prices p

are given by

S(p) = arg max
A⊆N

{u0(A) +
∑

βh∈N\A
ph}.

8In each step of his auction, the auctioneer needs to compute the smallest or largest solution of an opti-
mization problem which typically has multiple solutions. We will show that this cumbersome computation
is not needed. This improvement is very useful for practical auction design. See Section 3 in detail.

9The seller’s value function u0 actually denotes her reservation price function. This function is not
assumed to be separable and additive.
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We first have the following basic observation which will be used later. The proof of the

next result, and Lemma 2.3 and Theorem 3.1 will be relegated to the Appendix.

Lemma 2.1 For the seller, it holds that S(p) = D0(p).

An allocation of items in N is a partition π = (π(i), i ∈ I0) of items among all agents

in I0, i.e., π(i) ∩ π(j) = ∅ for all i 6= j and ∪i∈I0π(i) = N . Note that π(i) = ∅ is

allowed. At allocation π, agent i receives bundle π(i). An allocation π is efficient if
∑

i∈I0 ui(π(i)) ≥ ∑
i∈I0 ui(ρ(i)) for every allocation ρ. Given an efficient allocation π, let

R(N) =
∑

i∈I0 ui(π(i)). We call R(N) the market value of the items which is the same for

all efficient allocations.

Let M denote the market with the set I0 of agents and the set N of items, and for each

bidder i ∈ I, let M−i denote the market M without bidder i. Let I−i = I0 \ {i} for every

bidder i ∈ I, and for convenience also let M−0 = M and I−0 = I0.

Next, we introduce two solutions for this auction model: the Walraisian equilibrium

and the Vickrey-Clarke-Groves (VCG) outcome.

Definition 2.2 A Walrasian equilibrium (p, π) consists of a price vector p ∈ IRn
+ and an

allocation π such that π(i) ∈ Di(p) for every bidder i ∈ I and π(0) ∈ S(p) for the seller.

In equilibrium (p, π), the seller retains the bundle π(0) of goods and collects the pay-

ment
∑

j∈I

∑
βh∈π(j) ph from her sold goods and thus her equilibrium revenue is u0(π(0)) +

∑
j∈I

∑
βh∈π(j) ph. Notice that in Gul and Stacchetti (1999, 2000), Milgrom (2000), Ausubel

(2006), Sun and Yang (2006, 2009) it is assumed the seller values every bundle of goods

at zero and consequently in equilibrium all goods will be sold to bidders. In the current

model, because the seller has reservation value for every bundle, we need to slightly modify

the notion of equilibrium. The following lemma shows that the modification is appropriate.

Lemma 2.3 Let (p, π) be a Walrasian equilibrium. Then π is an efficient allocation.

The following defines the Vickrey-Clarke-Groves mechanism. The definition is slightly more

general than its standard one because here we permit the seller to have her own utility

function. The standard one usually assumes that the seller values everything at zero.

Definition 2.4 The VCG outcome is the outcome of the following procedure: every agent

i ∈ I0 reports his/her value function ui. Then the auctioneer computes an efficient alloca-

tion π with respect to all reported ui and assigns bundle π(i) to bidder i ∈ I and charges

him a payment of q∗i = ui(π(i)) − R(N) + R−i(N), where R(N) and R−i(N) are the

market values of the markets M and M−i based on ui (i ∈ I0), respectively. Bidder i’s

VCG payoff equals R(N)−R−i(N), i ∈ I.
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To ensure the existence of a Walrasian equilibrium, it will be necessary for us to impose

some conditions. The most important one is known as gross substitutes and complements

condition, which is introduced and used in Sun and Yang (2006, 2009), and defined as

follows.10

Definition 2.5 The value function ui of agent i satisfies the gross substitutes and com-

plements (GSC) condition if for any price vector p ∈ IRn, any item βk ∈ Sj for j = 1 or 2,

any δ ≥ 0, and any A ∈ Di(p), there exists B ∈ Di(p+δe(k)) such that [A∩Sj]\{βk} ⊆ B

and [Ac ∩ Sc
j ] ⊆ Bc.

GSC says that agent i views items in each set Sj as substitutes, but items across the two

sets S1 and S2 as complements. In particular, when either S1 = ∅ or S2 = ∅, GSC reduces

to the gross substitutes (GS) condition of Kelso and Crawford (1982). GS requires that all

the items be substitutes, and thus excludes any complementarity among items. The GS

case has been studied extensively in the literature; see e.g., Kelso and Crawford (1982),

Gul and Stacchetti (1999, 2000), Milgrom (2000, 2004), and Ausubel (2006).

The following three assumptions will be maintained throughout:

(A1) Integer Private Values for Bidders: Every bidder i’s value function ui : 2N → Z+

takes integer values and is his private information.

(A2) Integer Public Values for Seller: The seller’s value function u0 : 2N → Z+ takes

integer values and is public information.

(A3) Gross Substitutes and Complements: The value function ui of every agent i ∈ I0

satisfies the GSC condition with respect to the two sets S1 and S2.

In the literature, the value of the seller over each bundle is usually assumed to be zero

and this information is made public. Here A2 is more general and can accommodate more

realistic situations where the seller’s reservation value over her goods for sale need not be

zero and may vary from one bundle to another.

3 The Price Adjustment Process

In a dynamic auction, at each time t ∈ Z+ and with respect to a price vector p(t) ∈ IRn,

each bidder i selects a bid Ci(t), a subset of 2N . We say that bidder i bids sincerely

10The following piece of notation will be used. For any positive integer k ≤ n, e(k) denotes the kth unit
vector in IRn. Let Zn stand for the integer lattice in IRn and 0 the n-vector of 0’s. For any subset A of
N , let e(A) =

∑
βk∈A e(k). When A = {βk}, we also write e(A) as e(k). For any subset A of N , let Ac

denote its complement, i.e., Ac = N \A. For any finite set A, ](A) denotes the number of elements in A.
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relative to value function ui if his bid always equals his true demand correspondence, i.e.,

Ci(t) = Di(p(t)) = arg maxA⊆N{ui(A)−∑
βh∈A ph(t)}.

In this section we assume that bidders are price-takers and thus bid sincerely. We will

present a modified version of the double-track adjustment process introduced by Sun and

Yang (2009). This process always yields an equilibrium and provides a key ingredient for

the auction design in Section 4 where bidders are not assumed to behave as price-takers and

thus may act strategically. Throughout the paper, in the price adjustment process and in

the auction mechanism, at the beginning the seller reports her reserve price function u0 to

the auctioneer who then uses u0 to calculate the seller’s demand correspondence D0(p(t))

at prices p(t) in every round t. Thus, the auctioneer acts as a proxy bidder for the seller.

Recall that since by Lemma 2.1, D0(p(t)) = S(p(t)), the seller can act as a bidder. In

the sequel, the seller may be also called a bidder. Nevertheless, remember that this proxy

bidder always acts sincerely.

While the existing auctions typically adjust all prices simultaneously in one direction

(either ascending or descending), the current process adjusts simultaneously prices of items

in S1 and S2 respectively in opposite directions (ascending for one set S1 (S2) but descending

for the other S2 (S1)). Therefore, we can define an n-dimensional cube for price adjustment

as

2 = {δ ∈ IRn | 0 ≤ δk ≤ 1, ∀βk ∈ S1, −1 ≤ δl ≤ 0,∀βl ∈ S2 }.

Let ∆ = 2 ∩ Zn be the discrete set and 2∗ = −2, ∆∗ = −∆. Through 2 (∆), we lower

prices of items in S2 but raise prices of items in S1, while through 2∗ (∆∗), we lower prices

of items in S1 but raise prices of items in S2.

To describe how prices will be adjusted, we define the Lyapunov function L : IRn → IR

for the auction model as

L(p) =
∑

βh∈N

ph +
∑

i∈I0

V i(p) (3.2)

where V i is the indirect utility function of agent i ∈ I0. This type of function has been

explored in Ausubel (2005, 2006), and Sun and Yang (2009). Here the Lyapunov func-

tion includes also the seller’s indirect utility function V 0 and is more general than those

previously used in the literature.

Now we discuss in detail how prices should be adjusted based on bidders’ reported

demands in each round of the process. Given a current price vector p(t) ∈ Zn, the auctioneer

first asks every bidder i to report his demand Di(p(t)). Then she uses every bidder’s

reported demand Di(p(t)) to determine the next price vector p(t + 1). The underlying

rationale for the auctioneer is to choose a direction δ ∈ 2 so as to reduce the value of the
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Lyapunov function L as much as possible. To achieve this, she needs to solve the following

problem

max
δ∈2

{L(p(t))− L(p(t) + δ)} (3.3)

Note that the above formula involves every bidder’s valuation of every bundle of goods,

so it involves private information. Apparently, it is impossible for the auctioneer to know

such information unless the bidders tell her. Fortunately, she can fully infer the difference

between L(p(t)) and L(p(t) + δ) just from the reported demands Di(p(t)) and the price

variation δ. To see this, we know from the definition of the Lyapunov function that for

any given p(t) ∈ Zn and δ ∈ 2, the difference is given by

L(p(t))− L(p(t) + δ) =
∑

i∈I0

(V i(p(t))− V i(p(t) + δ))− ∑

βh∈N

δh (3.4)

As shown in Sun and Yang (2009), when prices move from p(t) to p(t) + δ, the change

in indirect utility for every bidder i is unique and given by

V i(p(t))− V i(p(t) + δ) = min
S∈Di(p(t))

∑

βh∈S

δh =
∑

βh∈S̃i

δh (3.5)

where S̃i is a solution given by

S̃i ∈ arg min
S∈Di(p(t))

{ ∑

βh∈S

δh}, (3.6)

for bidder i with respect to price vector p(t) ∈ Zn and price variation δ ∈ ∆.

Consequently, the equation (3.4) becomes the following simple formula whose right side

involves only price variation δ and optimal choices at p(t):

L(p(t))− L(p(t) + δ) =
∑

i∈I0

(
min

S∈Di(p(t))

∑

βh∈S

δh

)
− ∑

βh∈N

δh =
∑

i∈I0

∑

βh∈S̃i

δh −
∑

βh∈N

δh (3.7)

In Sun and Yang (2009), it is shown that solving the continuous optimization prob-

lem (3.3) is equivalent to solving the following discrete optimization problem in the right

hand:

max
δ∈2

{L(p(t))− L(p(t) + δ)} = max
δ∈∆

{∑

i∈I0

(
min

S∈Di(p(t))

∑

βh∈S

δh

)
− ∑

βh∈N

δh

}
(3.8)

The max-min relation in the formulas (3.8) admits a meaningful economic interpreta-

tion: when the auctioneer adjusts the prices from p(t) to p(t + 1) = p(t) + δ(t), she acts

in an elaborate manner so that the seller can make a maximal gain whereas every bidder

can achieve a minimal loss in indirect utility. Observe that the auctioneer is responsible

for executing the computation of (3.8) based on bidders’ reported demands Di(p(t)). It is

fairly easy to calculate the value (minS∈Di(p(t))

∑
βh∈S δh) for each given δ ∈ ∆ or ∆∗ and

bidder i. We can now summarize the steps of the adjustment process as follows:
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The improved double-track (IDT) adjustment process

Step 1: The seller reports her reserve price function u0 to the auctioneer, who an-

nounces the initial price vector p(0) ∈ Zn
+. Let t := 0 and go to Step 2.

Step 2: The auctioneer asks every bidder i ∈ I0 (this also includes the proxy bidder

0) to report his demand Di(p(t)) at p(t). Then based on reported demands Di(p(t)),

the auctioneer computes a solution δ(t) to the problem (3.8). If δ(t) = 0, go to Step

3. Otherwise, set the next price vector p(t + 1) := p(t) + δ(t) and t := t + 1. Return

to Step 2.

Step 3: The auctioneer asks every bidder i ∈ I0 to report his demand Di(p(t)) at

p(t). Then based on reported demands Di(p(t)), the auctioneer computes a solution

δ(t) to the problem (3.8) where ∆ is replaced by ∆∗. If δ(t) = 0, then the auction

stops. Otherwise, set the next price vector p(t + 1) := p(t) + δ(t) and t := t + 1.

Return to Step 3.

Observe that in both Step 2 and Step 3 the auctioneer needs only an arbitrary solution

to the problem (3.8) with respect to ∆ or ∆∗. This improves considerably the original

process of Sun and Yang (2009) which requires to take the smallest or largest solution

to the same problem if there are several solutions. (In fact, the set of solutions to the

problem (3.8) is a nonempty lattice and typically has multiple solutions.) From a practical

point of view, this improvement is extremely useful and important for practical auction

design and makes the implementation very easy and fast. Consequently, it also improves

the auction of Ausubel (2006). Recall that in his auction model with indivisible goods,

all goods are assumed to be substitutes, i.e., S1 = ∅ or S2 = ∅ in the current model. In

each step of his auction, the auctioneer must compute the smallest or largest solution of

an optimization problem which typically has multiple solutions. The above process shows

that this cumbersome computation is no longer needed.

The following theorem shows the global convergence of the IDT adjustment process.

Theorem 3.1 For the market model under Assumptions (A1), (A2) and (A3), starting

with any integer price vector, the IDT adjustment process converges to an equilibrium price

vector in a finite number of rounds.

4 The Strategy-Proof Dynamic Auction Mechanism

We now address the strategic issue such as When confronting an auction, is honesty the

best policy for every bidder? More specifically, does sincere bidding constitute a Nash

9



equilibrium (or its variants) of the auction game? If it is the case, the auction is said to be

strategy-proof. The (sealed-bid) Vickrey-Clarke-Groves (VCG) auction is strategy-proof.

The dynamic auction of Ausubel (2006) not only possesses this important strategy-proof

property but also offers advantages of informational efficiency, transparency and privacy

preservation. One may wonder whether it is possible to design an auction that can deal

with the current more general environment but still possess all properties of Ausubel’s. We

will provide a positive answer to this question. To do so we divide this section into two

subsections. Section 1 introduces the mechanism and section 2 analyzes strategic properties

of the mechanism.

4.1 The Auction Mechanism Design

We now introduce the following strategy-proof dynamic auction mechanism in which every

bidder may act strategically and thus may not behave as a price-taker. The mechanism

runs the IDT adjustment process for all markets M−m (m ∈ I0) simultaneously in parallel

and in coordination. The IDT adjustment process works for every market M−m exactly as

described in Section 3 but needs the following modifications: Consider any market M−m.

At t ∈ Z+ and p−m(t) ∈ Zn
+, every bidder i ∈ I−m reports a bid C i

−m(t) ⊆ 2N (which need

not be his demand set Di(p−m(t))11) and the problem (3.8) becomes the next one for ∆ or

∆∗ respectively,

max
δ∈∆( or ∆∗)

{ ∑

i∈I−m

(
min

S∈Ci
−m(t)

∑

βh∈S

δh

)
− ∑

βh∈N

δh

}
(4.9)

If the auctioneer finds a solution σ−m(t) of (4.9) for ∆ (∆∗), she obtains the next price

vector p−m(t + 1) = p−m(t) + δ−m(t) whenever δ−m(t) 6= 0. We say the IDT adjustment

process finds an allocation π−m in M−m if δ−m(t) = 0 for ∆∗ (i.e., in Step 3 of the

auction) and π−m(i) ∈ Ci
−m(t) for all i ∈ I−m. The IDT adjustment process needs to go

back to Step 2 from Step 3 if δ−m(t) = 0 for ∆∗ but it finds no allocation π−m in M−m

such that π−m(i) ∈ Ci
−m(t) for all i ∈ I−m—this modification is meant to tolerate minor

mistakes or manipulations committed by bidders. The IDT adjustment process detects

serious manipulation if it finds p−m
h (t + 1) < 0 for some βh ∈ N , or if it never finds an

allocation in M−m in which case the auction is said to stop at time ∞. Now we have

The strategy-proof double-track (SPDT) auction

Step 1: Run the IDT adjustment process simultaneously in parallel for every market

M−m (m ∈ I0) by starting with a common initial price vector p−m(0) = p(0) ∈ Zn
+.

11However, the proxy bidder 0 (the seller) always bids honestly by reporting her demand set C0
−m(t) =

D0(p−m(t)).
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At t ∈ Z+ and p−m(t) ∈ Zn, every bidder i ∈ I−m \ {0} = I \ {m} reports a bid

Ci
−m(t) ⊆ 2N , the proxy bidder 0 bids truthfully by reporting C0

−m(t) = D0(p−m(t)),

and the auctioneer finds the next price vector p−m(t + 1) = p−m(t) + δ−m(t). If the

IDT adjustment process detects serious manipulations in any market, go to Step 3.

Otherwise, the IDT adjustment process continues until it finds an allocation π−m in

every market M−m (m ∈ I0) at p−m(T−m) ∈ Zn
+, and T−m ∈ Z+. Go to Step 2.

Step 2: In this case all markets are clear. For every m ∈ I0, every agent i ∈ I−m and

every t = 0, 1, · · · , T−m − 1, let ∆−m
i (t) denote the “indirect utility change” of agent

i in I−m when prices move from p−m(t) to p−m(t + 1), where

∆−m
i (t) = min

S∈Ci
−m(t)

∑

βh∈S

δ−m
h (t) (4.10)

Every bidder i ∈ I is assigned the bundle π−0(i) of the allocation π−0 found in the

market M−0 = M and required to pay qi and then the auction stops, where

qi =
∑

j∈I−i

(T−0−1∑

t=0

∆−0
j (t)−

T−i−1∑

t=0

∆−i
j (t)

)
+

∑

βh∈N

p−i
h (T−i)−

∑

βh∈N\π−0(i)

p−0
h (T−0) (4.11)

Step 3: In this case every bidder i ∈ I receives no item but is assigned a payoff of

−∞. The auction stops.

The payment qi of bidder i ∈ I has an intuitive interpretation: qi is equal to the

accumulation of “indirect utility changes” of his opponents l ∈ I−i (also including the proxy

bidder 0) along the path from p−i(T−i) to p(0) (in the market M−i) and the path from p(0)

to p−0(T−0) (in the market M ) by subtracting
∑

βh∈N\π−0(i) p−0
h –the equilibrium payments

by bidder i’s opponents in the market M, and adding
∑

βh∈N p−i
h (T−i)–the equilibrium

payments by bidder i’s opponents in the market M−i.

It is simple but important to observe that the SPDT auction tolerates minor mistakes

or manipulations committed by bidders and allows them to correct so that for any time

t∗ ∈ Z+, no matter what has happended before t∗, as long as from t∗ on every bidder i

bids according to his GSC value function ui, the auction will find a Walrasian equilibrium

in every market in finitely many rounds and thus terminates in Step 2, because the IDT

adjustment process converges to a Walrasian equilibrium from any integer price vector.

4.2 Incentive and Strategic Issues

To study the incentive and strategic properties of the SPDT auction mechanism, we will

formulate this auction as an extensive-form dynamic game of incomplete information in

11



which bidders are players. Prior to the start of the (auction) game, nature reveals to

every player i ∈ I only his own value function ui ∈ U of private information and a joint

probability distribution F (·) from which the profile {ui}i∈I is drawn, where U denotes the

family of all value functions u : 2N → Z+ satisfying Assumptions (A1) and (A2). Let H t
i

be the part of the information (or history) of play that player i has observed just before

he submits his choice sets at time t ∈ Z+. A natural and sensible specification is that H t
i

comprises the complete set of all observable price vectors and all players’ choice sets, i.e.,

H t
i = {p−m(t), p−m(s), Cj

−m(s) | m ∈ I0, j ∈ I, 0 ≤ s < t,m 6= j}

Note that H t
i = H t

j for all i, j ∈ I, namely, all bidders share a common history just like in

an English auction. Let T ∗ be the time when the SPDT auction stops at Steps 2 or 3. If the

auction has found an allocation in any M−m, for consistency and convenience, we define

Ci
−m(t) = Ci

−m(T−m) and p−m(t) = p−m(T−m) for any i ∈ I−m and any t ∈ Z+ between

T−m and T ∗. After any history H t
i and at any time t ∈ Z+, each player i updates his

posterior beliefs µi(· | t,H t
i , u

i) over opponents’ value functions; see also Ausubel (2006).

We stress that even after the auction is finished, player i may not know his opponents’

value functions precisely.

A (dynamic) strategy σi of player i(i ∈ I) is a set-valued function {(t,m, H t
i , u

i) | t ∈
Z+, m ∈ I−i, u

i ∈ U} → 2N , which tells him to bid σi(t,m, H t
i , u

i) ⊆ 2N for every market

M−m(m ∈ I−i) at each time t ∈ Z+ when he observes H t
i . Let Σi denote player i′s strategy

space of all such strategies σi. We say that σi is a regular bidding strategy for player i if

irrespective of his true utility function ui, he always reports his choice set Ci
−m(t) according

to some utility function ũi ∈ U for any m ∈ I−i, t ∈ Z+, p−m(t) ∈ Zn, and H t
i , i.e.,

σi(t,m, H t
i , u

i) = Ci
−m(t) = arg max

A⊆N
{ũi(A)− ∑

βh∈A

p−m
h (t)}

Note that ũi may or may not be his true utility function ui. We denote such a regular

bidding strategy by σũi

i . Thus, every GSC utility function ũ(ũ ∈ U) determines a regular

bidding strategy for each player. For simplicity, we also use U to denote the family of

all such strategies. Clearly, U ⊆ Σi. A regular bidding strategy σi is sincere bidding

(strategy) for player i if he always reports his demand set Di(p−m(t)) as defined by (2.1)with

respect to his true utility function ui, i.e., σi(t,m, H t
i , u

i) = Ci
−m(t) = Di(p−m(t)) =

arg maxA⊆N{ui(A)−∑
βh∈A p−m

h (t)} for all t ∈ Z+, m ∈ I−i and p−m(t) ∈ Zn. The strategy

space Σi of player i contains regular bidding strategies, sincere bidding strategies and also

various other strategies.

Given the auction rules, the outcome of this auction game depends entirely upon the

realization of utility functions and the strategies the bidders take. When every bidder i ∈ I

takes a strategy σi and the SPDT auction terminates in Step 2, then bidder i ∈ I receives
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bundle π−0(i) and pays qi given by (4.11). When every bidder i ∈ I takes a strategy σi

and the SPDT auction stops in Step 3, every bidder gets nothing but a payoff of −∞. In

summary, every player i′s payoff function Wi(·, ·) is given by

Wi

(
{σj}j∈I , {uj}j∈I

)
=

{
ui(π−0(i))− qi if the auction stops in Step 2,

−∞ if the auction stops in Step 3.

We now introduce notions of equilibrium to the current dynamic auction games of

incomplete information. Following Ausubel (2004, 2006), the ](I)-tuple {σi}i∈I is an ex

post perfect equilibrium12 if for any time t ∈ Z+, any history profile {H t
i}i∈I , and any

realization {ui}i∈I of profile of utility functions of private information, the continuation

strategy σi(· | t,H t
i , u

i) of every player i ∈ I (i.e., σi(s,m, Hs
i | t,H t

i , u
i) ⊆ 2N for all

s ≥ t, m ∈ I−i and Hs
i ) constitutes his best response against the continuation strategies

{σj(· | t, H t
j , u

j)}j∈I−i
of player i’s opponents of the game even if the realization {ui}i∈I

becomes common knowledge.

We shall define and use the following stronger equilibrium solution. A strategy σi of

player i constitutes an ex post strongly perfect strategy for him if for any time t ∈ Z+, any

history profile {H t
j}j∈I , and any realization {uj}j∈I of profile of utility functions of private

information, the continuation strategy σi(· | t,H t
i , u

i) of player i is his best response against

all continuation regular bidding strategies {σũj

j (· | t,H t
j , u

j)}j∈I−i
of player i’s opponents,

even if the realization {ui}i∈I becomes common knowledge. The ](I)-tuple {σi}i∈I of

regular bidding strategies comprises an ex post strongly perfect (Nash) equilibrium if for

every player i ∈ I, his regular bidding strategy σi is an ex post strongly perfect strategy.

Clearly, every ex post strongly perfect equilibrium is an ex post perfect equilibrium but

the reverse may not be true. Stronger than Bayesian equilibrium or perfect Bayesian

equilibrium, ex post (strongly) perfect equilibria have a number of additional desirable

properties, i.e., they are not only robust against any regret but also independent of any

probability distribution. Furthermore, in the complete information case, ex post perfect

equilibrium simply coincides with to the familiar notion of subgame perfect equilibrium.

In the current auction game, although the auctioneer knows that every bidder i ∈ I

possesses a GSC utility function ui, she has no precise knowledge of ui. This implies that

as long as a bidder reports his demand according to some fixed GSC utility function ũi

not necessarily being his true utility function, it is extremely hard if not impossible to

prove whether he bids truthfully or not. According to Hurwicz (1973, p.23) on mechanism

design, “it is conceivable that the participants would cheat without openly violating the

rules.” This is why we focus on “all regular bidding strategies” instead of “all dynamic

strategies” of all opponents of every bidder i ∈ I in the definition of the proposed solution.

12In (static or sealed-bid) auction games of incomplete information, the ex post equilibrium was used
by Crémer and McLean (1985) and Krishna (2002).
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Regular bidding strategies are safe, whereas irregular ones are unsafe in the sense that they

have a high probability of being detected for open violation of the auction rules.

Now we are prepared to establish our major theorem.

Theorem 4.1 Suppose that the market M satisfies Assumptions (A1), (A2) and (A3).

(i) When every bidder bids sincerely, the SPDT auction converges to a Walrasian equilib-

rium and yields a Vickrey-Clarke-Groves outcome for the market M in a finite number of

rounds.

(ii) Sincere bidding is an ex post strongly perfect equilibrium in the SPDT auction.

Proof: We first prove (i). By the argument in Section 3, we see that when every bidder

i bids sincerely according to his true GSC function ui , the auction terminates at Step 2

and finds a Walrasian equilibrium (p−m(T−m), π−m) in every market M−m, m ∈ I0. By

the rules, every bidder i receives bundle π−0(i) and pays qi of (4.11). It follows from (3.5)

that

∆−m
i (t) = min

S∈Ci
−m(t)

∑

βh∈S

δ−m
h (t) = V i(p−m(t))− V i(p−m(t + 1))

for all i ∈ I and m ∈ I0 (i 6= m), where Ci
−m(t) = Di(p−m(t)). Using these equations, we

will show that qi coincides with the VCG payment q∗i = ui(π−0(i)) − R(N) + R−i(N),

where R(N) =
∑

j∈I uj(π−0(j)) and R−i(N) =
∑

j∈I−i
uj(π−i(j)). Observe that payment

qi of (4.11) satisfies

qi =
∑

j∈I−i

(∑T−0−1
t=0 (V j(p−0(t))− V j(p−0(t + 1)))

−∑T−i−1
t=0 (V j(p−i(t))− V j(p−i(t + 1)))

)

+
∑

βh∈N p−i
h (T−i)−∑

βh∈N\π−0(i) p−0
h (T−0)

=
∑

j∈I−i

(
(V j(p−0(0))− V j(p−0(T−0)))− (V j(p−i(0))− V j(p−i(T−0)))

)

+
∑

βh∈N p−i
h (T−i)−∑

βh∈N\π−0(i) p−0
h (T−0)

=
(∑

j∈I−i
V j(p−i(T−0)) +

∑
βh∈N p−i

h (T−i)
)

−
(∑

j∈I−i
V j(p−0(T−0)) +

∑
βh∈N\π−0(i) p−0

h (T−0)
)

=
∑

j∈I−i
uj(π−i(j))−∑

j∈I−i
uj(π−0(j))

= ui(π−0(i))−R(N) + R−i(N)
= q∗i .

Bidder i′s payoff ui(π−0(i))− qi equals his VCG payoff R(N)−R−i(N).

Now we prove (ii). It suffices to show that sincere bidding is every player i′s ex-post

partially dominant strategy. Consider any time t∗ ∈ Z+, any history profile {H t∗
j }j∈I

(which may be on or off the equilibrium path), and any realization {uj}j∈I of profile of

utility functions in U I of private information.13 Suppose that from this time t∗ on every

13In this case, the outcome of the game depends on the histories Ht∗
j and the strategies that all bidders

will take in the continuation game starting from t∗. Bidders cannot change histories but can influence the
path of the future from t∗ on.
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opponent j(j ∈ I−i) will report his bids according to a regular bidding strategy. That

is, every player j(j ∈ I−i) according to some ũj ∈ U reports his Cj
−m(t) at every round

t(t ≥ t∗), namely,

σũj

j (t,m, H t
j , u

j) = Cj
−m(t) = arg max

A⊆N
{ũj(A)− ∑

βh∈A

p−m
h (t)}

for every m ∈ I−j. Of course, it is possible that ũj 6= uj. Clearly, in this continuation game

from time t∗, when all opponents of player i choose regular bidding strategies, because of the

payoff of −∞, bidder i strictly prefers a strategy which results in the auction terminating

at Step 2, to any other strategies which result in the auction stopping at Step 3. Therefore,

it sufficient to compare the sincere bidding strategy with any other strategies which also

result in the auction finishing at Step 2. Suppose that σ′i(· | t∗, H t∗
i , ui) (σ′i in short) is such

a continuation strategy of player i resulting in an allocation ρ for M, and that bidder i’s

(continuation) sincere bidding strategy results in an allocation π for M. Without any loss

of generality, we assume that by the time t∗, the auction for the markets M and M−i has

not yet finished, i.e., t∗ < T−0 and t∗ < T−i. When player i chooses the strategy σ′i, his

payment q′i given by (4.11) is

q′i =
∑

j∈I−i

(∑t∗−1
t=0 ∆−0

j (t) +
∑T−0−1

t=t∗ [Ṽ j(p−0(t))− Ṽ j(p−0(t + 1))]

−∑t∗−1
t=0 ∆−i

j (t)−∑T−i−1
t=t∗ [Ṽ j(p−i(t))− Ṽ j(p−i(t + 1))]

)

+
∑

βh∈N p−i
h (T−i)−∑

βh∈N\ρ(i) p−0
h (T−0)

=
∑

j∈I−i

(∑t∗−1
t=0 [∆−0

j (t)−∆−i
j (t)] + Ṽ j(p−0(t∗)) + Ṽ j(p−i(T−i))− Ṽ j(p−i(t∗))

)

+
∑

βh∈N p−i
h (T−i)

−
(∑

j∈I−i
Ṽ j(p−0(T−0)) +

∑
βh∈N\ρ(i) p−0

h (T−0)
)

= constant−∑
j∈I−i

ũj(ρ(j)),

where Ṽ j is bidder j’s indirect utility function based on ũj and constant is given by

constant =
∑

j∈I−i

(∑t∗−1
t=0 [∆−0

j (t)−∆−i
j (t)]

)

+
∑

j∈I−i

(
Ṽ j(p−0(t∗)) + Ṽ j(p−i(T−i))− Ṽ j(p−i(t∗))

)
+

∑
βh∈N p−i

h (T−i)

Observe that constant is totally determined by the history profile {H t∗
j }j∈I and the market

M−i without bidder i, and does not depend on player i’s strategy σ′i, (and that ∆−0
j (t) and

∆−i
j (t) for t < t∗ cannot be expressed by Ṽ j, because player j may not have bid according

to ũj before t∗). Analogously we can show that when bidder i uses the (continuation)

sincere bidding strategy, his payment q̃i will be q̃i = constant −∑
j∈I−i

ũj(π(j)), where

constant is the same as the previous one. Furthermore, we know from the argument in

Section 3 that (in the continuation game) when bidder i bids sincerely according to his

utility function ui and every his opponent j(j ∈ I−i) bids according to a regular bidding

strategy σũj

j (i.e., according to a GSC utility function ũj ∈ U), the resulted allocation π

must be efficient for M w.r.t. ui and ũj, j ∈ I−i. This implies that

ui(π(i)) +
∑

j∈I−i

ũj(π(j)) ≥ ui(ρ(i)) +
∑

j∈I−i

ũj(ρ(j)).
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Consequently, for bidder i′s payoff W̃i with the sincere bidding strategy and his payoff W ′
i

with the strategy σ′i, we have

W̃i = ui(π(i))− q̃i = ui(π(i))− (constant−∑
j∈I−i

ũj(π(j)))

= ui(π(i)) +
∑

j∈I−i
ũj(π(j))− constant

≥ ui(ρ(i)) +
∑

j∈I−i
ũj(ρ(j))− constant = ui(ρ(i))− q′i

= W ′
i .

This shows that every player’s sincere bidding strategy is his ex post strongly perfect

strategy, so sincere bidding is an ex post strongly perfect equilibrium. 2

The current dynamic procedure yields the same outcome as that of the VCG auction,

but offers several advantages over the VCG auction: First, it utilizes information from every

buyer efficiently and judiciously in that it only requires him to report his demand sets on

a number of price vectors, whereas the VCG auction is sealed-bid and requires every buyer

to report his entire values. In reality, businessmen generally do not like to reveal their

values even if truth-telling may be theoretically a dominant strategy; see e.g., Milgrom

(2007), Rothkopf (2007), Rothkopf, Teisberg and Kahn (1990). In fact, Hurwicz (1973)

has stressed the importance of informational efficiency in mechanism design. Second, the

current procedure gives a simple and transparent way of computing efficient allocations,

equilibrium prices and VCG payments using observable information, whereas the VCG

auction tells only a way of computing VCG payments assuming that all buyers’ values and

efficient allocations are already given.

While both the current dynamic procedure and Ausubel’s (2006) compute a Walrasian

equilibrium in every market M−m (m ∈ I0) somehow like the VCG auction that needs to

compute every market M−m value R−m(N), the current procedure and analysis differ from

Ausubel’s in several aspects: First, the current procedure applies to the environment with

both complements and substitutes, while Ausubel’s applies to the environment with substi-

tutes. Second, the current procedure attains the ex post strongly perfect equilibrium which

is stronger than Ausubel’s ex post perfect equilibrium. Third, his procedure and payment

rule are not symmetric, whereas the current procedure and payment rule are symmetric

and simpler.14 Fourth, Ausubel’s analysis on the VCG outcome focuses on economies with

divisible goods and relies on calculus and Theorem 1 of Krishna and Maenner (2001) but

14More precisely, the current auction starts with the same initial price vector p(0) for all markets M
and M−i, i ∈ I, whereas Ausubel’s (Ausubel (2006, pp.615-616)) starts with the same initial price vector
p(0) only for the markets M−i, i ∈ I, but for the market M his auction starts with the equilibrium price
vector p−k∗ of any chosen market M−k∗ . In Ausubel’s auction, the VCG payment of bidder k∗ is given by
Equation (7) (Ausubel (2006, p.611)) using the price vectors along the path from p−k∗ to p∗. The VCG
payment of bidder i (i ∈ I−k∗) is also given by Equation (7) but using the price vectors along the path
from p−i to p0; the path from p0 to p−k∗ ; and the path from p−k∗ to p∗.
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he mentioned that his analysis can be analogously done for his model with indivisible goods

under the GS condition, whereas the current analysis is quite different from his and in fact

very elementary and simple.

Appendix

Proof of Lemma 2.1 Because, at any given prices p,

maxA⊆N{u0(A) +
∑

βh∈N\A
ph} = maxA⊆N{u0(A)−

∑
βh∈A

ph +
∑

βh∈A
ph +

∑
βh∈N\A

ph}
= maxA⊆N{u0(A)−

∑
βh∈A

ph}+
∑

βh∈N
ph,

clearly we have S(p) = D0(p). 2

Proof of Lemma 2.3 Take any Walrasian equilibrium (p, π) and any allocation ρ.

By definition, we have for any bidder i ∈ I

ui(π(i))− ∑

βh∈π(i)

ph ≥ ui(ρ(i))− ∑

βh∈ρ(i)

ph

and for the seller

u0(π(0)) +
∑

βh∈N\π(0)

ph ≥ u0(ρ(0)) +
∑

βh∈N\ρ(0)

ph

Summing up the two inequalities yields

∑

i∈I0

ui(π(i)) ≥ ∑

i∈I0

ui(ρ(i)).

This shows that π is efficient. 2

For the proof of the following result, we need to introduce several notations. Let

p, q ∈ IRn be any vectors. With respect to the two given sets S1 and S2, we define their

generalized meet s = (s1, · · · , sn) = p ∧g q and join t = (t1, · · · , tn) = p ∨g q by

sk = min{pk, qk}, βk ∈ S1, sk = max{pk, qk}, βk ∈ S2;

tk = max{pk, qk}, βk ∈ S1, tk = min{pk, qk}, βk ∈ S2.

Notice that the two operations are different from the standard meet and join operations.

For p, q ∈ IRn, we introduce a new order by defining p ≤g q if and only if ph ≤ qh for all

βh ∈ S1 and ph ≥ qh for all βh ∈ S2. A function f : IRn → IR is a generalized submodular

function if f(p ∧g q) + f(p ∨g q) ≤ f(p) + f(q) for all p, q ∈ IRn.

Proof of Theorem 3.1 By Theorem 3.1 of Sun and Yang (2006) the market has a

Walrasian equilibrium and by Lemma 1 of Sun and Yang (2009) the Lyapunov function

L(·) attains its mimimum value at any equilibrium price vector and is bounded from below.
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Since the prices and value functions take only integer values, the Lyapunov function is an

integer valued function and it lowers by a positive integer value in each round of the IDT

adjustment process. This guarantees that the auction terminates in finitely many rounds,

i.e., δ(t∗) = 0 in Step 3 for some t∗ ∈ Z+.

Let p(0), p(1), · · · , p(t∗) be the generated finite sequence of price vectors. Let t̄ ∈ Z+

be the time when the IDT adjustment process finds δ(t̄) = 0 at Step 2. We claim that

L(p) ≥ L(p(t̄)) for all p ≥g p(t̄). Suppose to the contrary that there exists some p ≥g p(t̄)

such that L(p) < L(p(t̄)). By the convexity of L(·) via Theorem 3 (i) of Sun and Yang

(2009), there is a strict convex combination p′ of p and p(t̄) such that p′ ∈ p(t̄) + 2 and

L(p′) < L(p(t̄)). From equation (3.8) we know that L(p(t̄) + δ(t̄)) < L(p(t̄)), and so

δ(t̄) 6= 0 in Step 2 of the IDT adjustment process, yielding a contradiction. Therefore, we

have L(p ∨g p(t̄)) ≥ L(p(t̄)) for all p ∈ IRn, because p ∨g p(t̄) ≥g p(t̄) for all p ∈ IRn. We

will further show that L(p ∨g p(t)) ≥ L(p(t)) for all t = t̄ + 1, t̄ + 2, · · · , t∗ and p ∈ IRn.

By induction, it sufficies to prove the case of t = t̄ + 1. Notice that p(t̄ + 1) = p(t̄) + δ(t̄),

where δ(t̄) ∈ ∆∗ is determined in Step 3 of the IDT adjustment process. Assume by way

of contradiction that there is some p ∈ IRn such that L(p ∨g p(t̄ + 1)) < L(p(t̄ + 1)).

Then if we start the IDT adjustment process from p(t̄ + 1), we can by the same previous

argument find a δ(6= 0) ∈ ∆ in Step 2 such that L(p(t̄ + 1) + δ) < L(p(t̄ + 1)). Since L(·)
is a generalized submodular function by Theorem 3 (i) of Sun and Yang (2009), we have

L(p(t̄)∨g (p(t̄ + 1) + δ)) +L(p(t̄)∧g (p(t̄ + 1) + δ)) ≤ L(p(t̄) +L(p(t̄ + 1) + δ). Recall that

L(p(t̄)∨g (p(t̄+1)+δ)) ≥ L(p(t̄)). It follows that L(p(t̄)∧g (p(t̄+1)+δ)) ≤ L(p(t̄+1)+δ) <

L(p(t̄ + 1)). Observe that δ′ = 0 ∧g (δ(t̄) + δ) ∈ ∆∗ and p(t̄) ∧g (p(t̄ + 1) + δ) = p(t̄) + δ′.

This yields L(p(t̄) + δ′) < L(p(t̄) + δ(t̄)) and so δ′ 6= δ(t̄), contradicting the definition of

δ(t̄) ∈ ∆∗ by which L(p(t̄) + δ(t̄)) = minδ∈∆∗ L(p(t̄) + δ).

Next we prove that L(p ∧g p(t∗)) ≥ L(p(t∗)) for all p ∈ IRn. To see this, we first

show that L(p) ≥ L(p(t∗)) for all p ≤g p(t∗). Suppose to the contrary that there exists

some p ≤g p(t∗) such that L(p) < L(p(t∗)). By the convexity of L(·) via Theorem 3 (i)

of Sun and Yang (2009), there is a strict convex combination p′ of p and p(t∗) such that

p′ ∈ {p(t∗)} −2 and L(p′) < L(p(t∗)). Because of the symmetry between Step 2 and Step

3, Lemma 3 (where 2 is replaced by 2∗ = −2) and Step 3 of the GDDT procedure imply

that L(p(t∗) + δ(t∗)) = minδ∈2∗ L(p(t∗) + δ) = minδ∈∆∗ L(p(t∗) + δ) ≤ L(p′) < L(p(t∗))

and so δ(t∗) 6= 0, contradicting the fact that the GDDT procedure stops in Step 3 with

δ(t∗) = 0. So we have L(p) ≥ L(p(t∗)) for all p ≤g p(t∗). Because p∧g p(t∗) ≤g p(t∗) for all

p ∈ IRn, it follows that L(p ∧g p(t∗)) ≥ L(p(t∗)) for all p ∈ IRn.

We also proved above that L(p ∨g p(t∗)) ≥ L(p(t∗)) for all p ∈ IRn. Since L(·) is

a generalized submodular function by Theorem 3 (i) of Sun and Yang (2009), we have

L(p)+L(p(t∗)) ≥ L(p∨g p(t∗))+L(p∧g p(t∗)) ≥ 2L(p(t∗)) for all p ∈ IRn. This shows that

18



L(p(t∗)) ≤ L(p) holds for all p ∈ IRn and by Lemma 1 of Sun and Yang (2009), p(t∗) is an

equilibrium price vector. 2
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