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Abstract

We consider implementation problems under incomplete information with-

out incentive compatibility. If the social choice functions do not satisfy incentive

compatibility, full implementation is unattainable via the existing approaches.

By focusing on the actual problems from Typhoon by Joseph Conrad and The

Traveler’s Dilemma by Kaushik Basu (1994, 2007), we provide a new approach

to such implementation problems. For each problem, we first construct a mech-

anism which takes advantage of a unique feature of these problems, i.e., the

planners possess some information regarding the actual state. We then provide

a sufficient condition on players’ beliefs for each problem under which every

player has a unique rationalizable action. The conditions we identify however

depend on the informational structures, suggesting that obtaining a general

result within this type of frameworks is nontrivial.
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..., when we risque no contradiction, it prompts the tongue to deal in

fiction.

– John Gay

The Elephant and the Bookseller in Fables I 1

1 Introduction

In a standard implementation problem with incomplete information, the planner’s

task is to construct a (direct) mechanism where each player is asked to reveal what

she observes. This task is challenging; the planner does not know what the players

know and hence is unable to verify whether they are telling the truth. The mechanism

the planner constructs should induce the players to tell the truth. To achieve this

goal, the corresponding social choice function needs to satisfy incentive compatibility ;

each player’s best response is to tell the truth if the other players tell the truth and

the outcome is determined by the social choice function (with the players’ messages).

Then, the (desired) truth-telling outcome can be supported as an equilibrium.2 Pre-

vious studies by Dasgupta, Hammond, and Maskin (1979), Harris and Townsend

(1981), Myerson (1979) and more recently by Bergemann and Morris (2009, 2011)

show that the (Bayesian or ex-post) incentive compatibility condition is necessary for

full implementation. This immediately implies that full implementation cannot be

achieved without incentive compatibility, at least through the standard framework.

In this paper, we provide a new approach to implementation problems without

incentive compatibility. To do so, our focus is on two implementation problems under

incomplete information which are sketched in two well-known stories; one is called

Captain MacWhirr’s problem in Typhoon by Joseph Conrad and the other is what

we call the smashed antiques problem in two papers on the Traveler’s Dilemma by

Basu (1994, 2007).3 In these stories, individual’s “dishonest” behavior not only could

1Two volumes of Fables were published in 1727 and 1738 (Gay (1969)).
2Exceptions include the paper by Cabrales, Calvó-Armengol, and Jackson (2003) which analyzes

a mutual fire insurance called La Crema in Spain. Each participant reports the property value.
When the property is burnt, the reimbursement only depends on this “announced” value. They
show that if the size of the population is large, the truth-telling outcome is supported as an ε-Nash
equilibrium.

3Typhoon was first serialized in Pall Mall Magazine in 1902 (Watts (2008a)). As we will discuss
later, we modify the original setting in Basu (1994, 2007).
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(potentially) lead to a higher payoff but also would be anonymous or would not be

noticed at all. If telling the truth is never a best response for players (as in the original

stories), it would be impossible to achieve the desired outcome.

Captain MacWhirr’s Problem

The Siamese steamer Nan-Shan transports 200 Chinese workers, who have worked

for seven years in the British tropical colonies, from Singapore to their home of Fu-

chau. Each worker’s accumulated savings are stored in individual camphor wood

chests aboard the ship. When a typhoon strikes with ferocious force on Christmas

Eve, the boxes burst open and the workers’ silver dollars are scattered between decks.

In the ensuing chaos, the Captain’s orders result in the passengers’ belongings to

be amassed in a coal bunker. As soon as the storm calms down, the Captain in-

tends to return the men’s savings to their rightful owners. But the Captain faces an

information revelation problem:

You couldn’t tell one man’s dollars from another’s, he said, and if you

asked each man how much money he brought on board he was afraid they

would lie, and he would find himself a long way short. (Conrad (2008, p.

73))

In the first economic analysis of Captain MacWhirr’s problem, Mumy (1981)

claims that it is possible to motivate all passengers to truthfully report their enti-

tlements to the Captain through the use of a suitable punishment strategy. The

solution identified by Mumy, however, is only one of many possible Nash equilibria

of the game.4

Smashed Antiques Problem

The story in Basu (1994, 2007) goes as follows: Two travelers on the same flight

are carrying antiques, which are smashed during the flight. Knowing that these two

antiques are identical, the airline company manager attempts to compensate for these

damaged antiques.5 The problem is that the manager does not know the actual value.

4Saraydar (1983) criticizes this fact and defends MacWhirr’s solution of assigning equal shares
to each passenger on the grounds of feasibility and transaction costs.

5Strictly speaking, it is unclear whether (i) the travelers already know that they are carrying the
same antiques, or (ii) they are only informed by the manager. We assume that these travelers have
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Given this scenario, Basu (1994) introduced the following game, called the Trav-

eler’s Dilemma, where each traveler simultaneously announces the value of the an-

tique, which is between 2 and 100. If they announce the same number, each receives

the amount she announced. If they are different, the traveler who announced the

lower value, v′, receives v′ + 2 while the other traveler, who announced the higher

value, receives v′ − 2. It is shown that “announcing 2” is a unique rationalizable

action for each player independent of the actual value.6 Although each announcing a

number higher than 5 is Pareto-improving, which may seem to be rather natural, the

standard solution concepts predict that both travelers announce the lowest value.

Our interest is in the scenario the manager faces, not the game itself. In Basu

(1994, p. 391), the manager “assures the passengers of adequate compensation.”7 In

this sense, the manager fails to achieve the desired outcome. Just like in Conrad’s

story, achieving the desired outcome seems to be a challenging task. Basu (2007, p

68) writes:

Simply asking the travelers for the price is hopeless, he figures, for they

will inflate it.

In this paper, we allow for heterogeneity. Hence, the realization in the original

story (i.e., they are identical) is one of many possible observations. We also assume

that the planner can see which antique has a higher value if they are not identical (but

not their exact values). Note that even with this modification on the informational

assumption, we cannot avoid the incentive problem. We also make it the case that

the number of player is at least two.

The social choice functions implied in these stories are indeed the same. That

is, each player observes her type (private information); the amount saved in Captain

MacWhirr’s problem and the value of the antique in the smashed antiques problem.

The planner’s goal is to give each player the amount equal to her type. From the

quotations above, it is clear why achieving the desired outcomes in these stories is

difficult. Assuming that the planner simply asks each player how much she deserves

not met before and did not know that they are carrying identical antiques.
6Since each player knows (i) the value of the antique she has and (ii) that the antiques are

identical, this game has complete information. It can be shown that for iterative elimination of
strictly dominated strategies (rationalizability), the use of mixed strategies is essential while it is
not the case for iterative elimination of weakly dominated strategies.

7Basu (2007, p.68) also writes “the manager says that he is happy to compensate them.”
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to receive (i.e., direct mechanism), since this is her private information, each player

has an incentive to exaggerate it independent of how much the other players are

entitled to receive. Thus, the social choice functions implied in the stories above do

not satisfy incentive compatibility.

As we stated above, our goal is to show, by focusing on the implementation prob-

lems in the stories mentioned above, a feasible approach to implementation problems

under incomplete information even when the incentive compatibility condition does

not hold. This is possible for two reasons. First, the problems we are interested in

have a unique feature which the standard implementation problems do not have; the

availability of some information to the planner regarding the actual state. Second,

our sufficient conditions are not placed on the social choice function. They are rather

reflected in players’ beliefs about their opponents’ types.

One common and unique component in these problems is that the planner can

possess some (verifiable) information regarding the actual state – she still does not

know the actual state. Namely, the total amount collected in Captain MacWhirr’s

problem and the observation regarding which has a higher value (if not identical) in

the smashed antique problem. In this paper, we allow the planners to embed this

private information into the mechanisms. Our approach suggests that even if the

available information to the planner is limited, it is still possible for her to rely on

such information, which may drastically change the outcome.

Even if the planner possesses such information, it is still not possible for her to see

directly whether or not the players are telling the truth, unless she knows the actual

state. However, in the contexts we consider, the planner knows which message profiles

do not match the information she has. This creates an informational advantage for

the planner, in particular, if she does not reveal what she observed.8 Given the

mechanism which embeds the information the planner received, the outcome depends

on the players’ messages and their consistency with the information the planner holds.9

Recently, given that the informational requirements in previous studies such as

Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989), and Jackson (1991)

8If the players know what the planner observed, the desired outcome would not be achieved. This
can be observed as the existence of multiple equilibria in Mumy (1981) for Captain MacWhirr’s
problem. If the values are identical in the smashed antiques problem, there would be multiple
equilibria as well.

9In other words, inconsistency implies that the planner avoids false negative (Type II error) with
the hypothesis that the players are telling the truth.
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– relying on the Bayesian framework – may be implausible, Bergemann and Morris

(2009, 2011) seek the necessary and sufficient conditions for robust implementation,

i.e., under a weaker informational requirement.10 This leads to the employment of a

different solution concept, namely rationalizability.11 Robust implementation implies

that each player has a unique rationalizable action for each (payoff) type with no

assumption on the players’ beliefs.

If there is a common belief of the information the planner holds, the mechanism

we provide reduces to a simple direct mechanism. In this case, full implementation

is not possible.12 It is hence crucial that the players do not know what the planner

observed. This immediately implies that the implementation results in this paper are

not “robust” in the sense of Bergemann and Morris (2009, 2011).

Unlike standard approaches which place conditions on the social choice function,

given that the social choice functions are already implied in the stories above, we take

a different step. To respect the desirability of weaker informational assumptions, we

employ the notion of ∆-rationalizability by Battigalli and Siniscalchi (2003). In each

implementation problem, we provide a sufficient condition on the players’ (first-order)

beliefs about the opponents’ types, which corresponds to the prefix “∆.” We only

assume that there is a common belief of the restriction on players’ beliefs. Given

the mechanism which includes the private information the planner observes, we show

that truth telling is a unique rationalizable action for each player.

We compare the results for both problems. In addition to the differences in in-

formation structures in these problems, our comparison shows (i) that the sufficient

conditions are different, and (ii) that their asymptotic properties are also different.13

While we show that full implementation is possible for the settings we consider, these

observations may give an impression that achieving the general result is nontrivial.

Further analyses on this type of environments are certainly needed for our under-

standing.

10See also Bergemann and Morris (2005) for robust mechanism design.
11The notion of rationalizability is due to Bernheim (1984) and Pearce (1984). For games with

incomplete information, see also Battigalli and Siniscalchi (2003) for ∆-rationalizability, which we
employ in this paper, and Dekel, Fudenberg, and Morris (2007) for interim correlated rationalizabil-
ity. Bergemann, Morris and Tercieux (2011) analyze rationalizable implementation with complete
information.

12Exceptions include (i) every player’s type is the lowest in Captain MacWhirr’s problem and (ii)
one player has the highest while the other has the second highest in the smashed antiques problem.

13As mentioned above, in our analysis on the smashed antiques problem, we allow for an arbitrary
number of players.
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2 Preliminaries

Let N = {1, . . . , n} be the finite set of players with n ≥ 2. Let Θi ⊂ N correspond

to the finite set of types. We call θ = (θ1, . . . , θn) ∈ Θ = ×i∈NΘi a state. Each player

i simultaneously draws θi ∈ Θi which is only known to herself. Let f : Θ → Rn be

a social choice function. For each i ∈ N , let ui : Rn × Θ → R be player i’s utility

function.

A social choice function f is said to satisfy ex-post incentive compatibility if for

each i ∈ N , θi, θ
′
i ∈ Θi, θ−i ∈ Θ−i, we have

ui(f(θi, θ−i), (θi, θ−i)) ≥ ui(f(θ′i, θ−i), (θi, θ−i)).

The notion of strict ex-post incentive compatibility requires the inequality to be strict

for θi 6= θ′i. Let ρi ∈ ∆(Θ) be a prior player i has and ρθi ∈ ∆(Θ−i) once player i

observes θi ∈ Θi (following the Bayes’ rule). A social choice function is said to satisfy

Bayesian incentive compatibility if for each i ∈ N , θi, θ
′
i ∈ Θi, we have∑

θ−i∈Θ−i

ρθi(θ−i)ui(f(θi, θ−i), (θi, θ−i)) ≥
∑

θ−i∈Θ−i

ρθi(θ−i)ui(f(θ′i, θ−i), (θi, θ−i)).

The mechanism is M = (M1, . . . ,Mn, g) where Mi is a message space for each

i ∈ N while g : M → ∆(Θ) is the outcome function.14 Our focus is on the direct

mechanism, that is, Mi = Θi for each i ∈ N .

To respect the desirability of weaker informational assumptions, we provide a

sufficient condition on players’ (first-order) beliefs in each problem. To do so, we

adopt ∆-rationalizability from Battigalli and Siniscalchi (2003).15 The restriction

on players’ beliefs we propose (sufficient condition) corresponds to the prefix “∆”,

the collection of the sets of players’ beliefs satisfying certain (given) conditions. We

assume that there is a common belief of ∆ in each problem.

When the mechanismM is played, each player i ∈ N knows her own type θi ∈ Θi

14The reason that the set of outcomes is ∆(Θ) is that in the mechanism we construct for Captain
MacWhirr’s problem, the planner uses lotteries when she observes a message profile inconsistent with
the information she has. Otherwise, each player receives an element in Θi. We will later specify this
for each problem.

15See also Battigalli (1999, 2003), Battigalli and Siniscalchi (2007), and Battigalli and Prestipino
(2012). For the relationship among three different notions of rationalizability (belief-free, ∆, and
interim correlated), see Battigalli, Di Tillo, Grillo, and Penta (2011).
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and forms a belief about the other players’ types θ−i ∈ Θ−i as well as their messages

m−i ∈M−i. Let qθi ∈ ∆(Θ−i ×M−i) denote player i’s belief about the other players’

types θ−i ∈ Θ−i as well as messages m−i ∈M−i when her type is θi. Let pθi ∈ ∆(Θ−i)

be player i’s belief about the other players’ types θ−i obtained from qθi (that is, pθi =

margΘ−i
qθi). Our sufficient conditions are placed on pθi for each i ∈ N , corresponding

to ∆ (and hence not on the opponents’ behavior).

Given the collection of the sets of players’ beliefs satisfying this restriction, ∆,

after the realization of her type, each player eliminates messages which cannot be best

responses to any of her beliefs satisfying the condition. Then, with the reduced set of

type-message combinations, each player again eliminates messages which cannot be

best responses to any of her beliefs which satisfy the condition and take into account

the fact that some type-message combinations would not arise for the other players.

This continues until there is no more message eliminated for each possible type of

each player. The remaining type-message combinations give the set of rationalizable

actions for each possible type of each player.

Given M, θi ∈ Θi and qθi ∈ ∆(Θ−i ×M−i), let

BRi(θi, qθi) = arg max
m′i∈Mi

∑
m−i,θ−i

ui(g(m′i,m−i), (θi, θ−i))qθi(θ−i,m−i)

be the set of best responses for player i with type θi.

Let ∆θi be the set of beliefs for each θi satisfying the restriction and ∆ =

((∆θi)θi∈Θi
)i∈N . The following iterative procedure eliminates messages for each θi

for each i ∈ N .16

• R0
i = Mi × Θi; that is, the procedure starts with all possible combinations of

messages and types for each player i ∈ N .

• At the k-th iteration where k > 0, for each i ∈ N and θi ∈ Θi, a message

mi is a best response to a belief for the player with type θi which satisfies the

condition ∆θi and whose support only includes the type-message combinations

of the others which have survived so far;

Rk
i =

{
(θi,mi) ∈ Θi ×Mi |

there exists qθi ∈ ∆θi ∩∆(Rk−1
−i )

such that mi ∈ BRi(θi, qθi)

}
.

16Our result requires iterative elimination of strictly dominated strategies, excluding the possibility
of implementation in dominant strategies (at least in our framework).
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• For each i ∈ N , let Ri = ∩∞k=0R
k
i .

For each (θi,mi) ∈ Ri, we say that a message mi is rationalizable to player i with

θi. Let Ri(θi) = {mi ∈ Mi | (θi,mi) ∈ Ri} and R(θ) = ×j∈NRj(θj). We say that a

social choice function f is fully implemented viaM if for every θ ∈ Θ and m ∈ R(θ),

g(m) = f(θ).17

2.1 Social Choice Function and Incentive Compatibility

In Captain MacWhirr’s problem, the planner (Captain MacWhirr) wants to return

the exact amount each worker saved while in the smashed antiques problem, the

planner (airline company manager) wants to compensate for the damaged antiques.

In each case, the amount the planner intends to give to each player, i.e., each player’s

type, is the private information only the corresponding player holds. This means

that we have a very specific social choice function which applies to both problems

described above. That is, the planner’s goal is to give θi to each i ∈ N , which implies

that for each θ ∈ Θ, f(θ) = θ.

We impose the following natural assumption: For each i ∈ N and θi ∈ Θi, player

i’s utility function is such that ui(f(θ′i, θ−i), (θi, θ−i)) is strictly increasing in θ′i for

each θ−i ∈ Θ−i. In other words, the higher the amount she receives, the higher utility

she obtains independent of the actual state. This implies that for each i ∈ N and

θi, θ
′
i ∈ Θi with θi being the actual type and θi < θ′i, we have

ui(f(θi, θ−i), (θi, θ−i)) < ui(f(θ′i, θ−i), (θi, θ−i))

for every θ−i ∈ Θ−i. This simply means that ex-post incentive compatibility and

Bayesian incentive compatibility do not hold.18 Moreover, this observation is con-

sistent with the fact that the each player has an incentive to “exaggerate.” Since

the incentive compatibility condition is necessary for full implementation, this simply

implies that the desired goal is not attainable for the implementation problems we

consider with the standard approaches.

17Our result shows that for every i ∈ N and θi ∈ Θi, Ri(θi) = {θi} and hence R(θ) = {θ}.
18Hence, this also implies that the social choice function does not satisfy robust monotonicity

in Bergemann and Morris (2011, Lemma 1). This also implies that Bayesian monotonicity does
not hold since, irrelevant of what the other players’ messages (deceptions), player i’s deception “θ̄
independent of the actual θi” leads to a payoff of θ̄.
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2.2 Setup

We assume that the planner acquires some information regarding the actual state

without incurring any cost. Let Λ be a partition of Θ with λ ∈ Λ being a typical

element. Our assumption on the planner’s knowledge regarding the actual state θ

means that the planner observes an element λ ∈ Λ where θ ∈ λ. For example, if

the planner observes λ ∈ Λ with θ ∈ λ and λ is a singleton, the planner knows the

actual state. We assume (i) that Λ is exogenously given and commonly known to the

players, and (ii) that each λ ∈ Λ is verifiable.

In Typhoon, Captain MacWhirr observes some information regarding the workers’

savings, that is, the total amount of their savings. However, he does not utilize this

fact, and rather simply allocates the money equally among the workers at the end.19

In our mechanism, the planner does not reveal this private information and designs

the outcome function so that the outcome depends on not only the message profile

but also its consistency with the information she holds.

In Basu (1994, 2007), the information that these antiques are identical is shared

by the airline company manager and the travelers (on which the traveler’s dilemma

game is built). We rather assume that, after checking the antiques, the planner does

not reveal information on whether they are identical. In other words, we introduce a

possibility of heterogeneity. Moreover, we also assume that the planner sees which has

a higher value (but not their actual values). Again, in our mechanism, the planner

designs the outcome function so that the outcome depends on the message profile and

its consistency with the fact she withholds.

For each implementation problem, given that the planner observes λ ∈ Λ, we

require that g(θ) = f(θ) for each θ ∈ λ. That is, this only applies to the message

profiles which are consistent with what the planner observes. We provide the complete

description of the outcome functions later.

We further make the following assumptions. First, we assume that the set of

possible types is identical for each player. That is, for any i, j ∈ N , Θi = Θj. For each

i ∈ N , let θ be the lowest possible type while θ̄ is the highest with 0 < θ < θ̄.20 Second,

we assume that the players’ preferences are state-independent and only depend on how

19Watts (2008b) mentions that “Equitable Division” was considered as a title by the author.
20This means that each player earned some money in Captain MacWhirr’s problem. In the

smashed antiques problem, this means that their antiques have some values.
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much she receives.21 That is, let ui : N→ R be player i’s utility function which only

depends on (and is strictly increasing in) how much she receives. We further assume

that ui is linear in its argument.22

Both problems have the following common structure:

1. Each player observes her type θi ∈ Θi. Remember that for each i, j ∈ N ,

Θi = Θj = {θ, . . . , θ̄}.

2. The planner observes λ ∈ Λ.23 Note that Λ itself is commonly known among

the players while λ is the planner’s private information. We will define the

structure of Λ for each problem later.

3. The social choice function f is such that for each θ ∈ Θ, f(θ) = θ.

4. The players play the game M = (M1, . . . ,Mn, g). Each player’s message space

is Mi = Θi.

5. If m = θ ∈ λ, then g(θ) = f(θ). The complete description of g for each problem

will be given later.

For each problem, we provide the description of Λ, the corresponding (direct)

mechanism, and a sufficient condition, and establish the uniqueness result in the next

two sections.

3 Captain MacWhirr’s Problem

In Captain MacWhirr’s problem, the planner observes the total amount of the players’

savings. Let T = {nθ, nθ+1, . . . , nθ̄−1, nθ̄} be the set of possible numbers the planner

observes. This implies |Λ| = |T | = n(θ̄ − θ) + 1. Given t ∈ T , let λ(t) ∈ Λ be the set

21See Ben-Porath and Lipman (2011) for the implication of state-independent preferences in im-
plementation problems under complete information.

22The linearity assumption is for exposition purpose. As long as the utility functions are strictly
increasing, our result on the smashed antiques problem works without any modification. For Captain
MacWhirr’s problem, although the result does not change qualitatively, it does change the expression
of the sufficient condition; that is, the elements of the right hand side expression in Condition 1 are
measured in utility terms.

23In Captain MacWhirr’s problem, the planner not only observes t, but also holds the actual
amount.
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of states where the total of the players’ savings is equal to t. For each t ∈ T , we have

λ(t) =

{
θ ∈ Θ |

∑
j∈N

θj = t

}
.

Note that for each t, t′ ∈ T with t 6= t′, λ(t) ∩ λ(t′) = ∅ and ∪t∈Tλ(t) = T . In the

original story, the planner does not take advantage of her private information. Here,

we assume that the planner keeps t (and hence λ(t)) as her private information and

embeds this variable in the mechanism. This information will be revealed only after

the realization of m.

Given the profile of messages m ∈ M = Θ and the planner’s private information

λ(t) for t ∈ T , the outcome function g follows the rule below:

1. If
∑

j∈N mj ≤ t, the planner gives mi to each player i (and keeps the rest).

2. If
∑

j∈N mj > t, each player receives r(z) where z =
∑

j∈N mj − t (and the

planner keeps the rest).

In general, the planner constructs r(·) with the following properties: (i) r(z) ∈
[0, θ) for z ∈ {1, . . . , n(θ̄ − θ)}, and (ii) r(z) is strictly decreasing and linear in

z ∈ {1, . . . , n(θ̄−θ)}. Each player faces a lottery with two possible outcomes {0, θ}.24

With the chance z
n(θ̄−θ) , she receives 0 while she receives θ with probability n(θ̄−θ)−z

n(θ̄−θ) .

Hence, a player’s expected payoff for z > 0 is

r(z) =

(
n(θ̄ − θ)− z
n(θ̄ − θ)

)
θ.

Under the specification above, given the other players’ messages m−i, if z > 0, an-

nouncing a higher number would lead to a strictly lower payoff. In such scenarios,

the marginal cost of announcing a higher number is

d = r(z)− r(z + 1) =
θ

n(θ̄ − θ)
24We use lotteries since we assume the discreteness of money. If θ is not sufficiently high, the

planner cannot assign an adequate punishment (where each player receives some amount lower than
θ) when she observes the total higher than t. If instead θ is sufficiently high, there is no need of
using lotteries, as we discuss below.
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which plays a crucial role in the sufficient condition we provide. Note (i) that d is

decreasing in θ̄, and (ii) that d is increasing in θ.

For a sufficiently large θ, the planner can instead construct r(·) without lotteries

such that (i) r(·) is strictly decreasing in z, (ii) the image of r(z) for z ∈ {1, . . . , n(θ̄−
θ)} is a subset of {0, . . . , θ− 1}, and (iii) the following expression (i.e., the minimum

of the marginal cost of announcing a higher number when z > 0) is sufficiently large:

min
z∈{1,...,n(θ̄−θ)−1}

[r(z)− r(z + 1)] = d.

We now specify a sufficient condition. The condition below states that for each

i ∈ N and θi ∈ Θi, player i believes that the chance of everyone else’s type being

the lowest is sufficiently high. Note that if this is indeed the true state (i.e., every

player’s type is θ) and commonly known, given the outcome function specified above,

stating the actual type is a strictly dominant strategy for each player. The condition

below implies that as long as there is a common belief that each player believes it is

very likely that the other players have the lowest type, the planner can achieve the

desired outcome with the direct mechanism described above.

Take pθi = margΘ−i
qθi , the marginal on the type profiles Θ−i obtained from qθi .

We assume that each player i’s first-order belief satisfies the following condition.

Condition 1 For each i ∈ N and θi ∈ Θi\{θ̄},

pθi(θj = θ for all j 6= i) >
θ̄ − θi

(θ̄ − θi) + d
.

We also assume that there is a common belief that the players’ beliefs satisfy this

sufficient condition.25

If n is sufficiently large (i.e., d is small), it is harder for Condition 1 to be satisfied.

Instead, if θ̄ − θ is relatively small and θ is sufficiently large, the condition may be

easily satisfied.26 Intuitively, the former implies that deviation is less profitable while

the latter implies severe punishment.

As a simple example, consider the case where n = 3, θ̄ = 220 and θ = 210 (and

25Take player i’s belief regarding the other players’ types given θi as a conditional probability. It
is important to note that we exclude neither correlation nor independence of types. This also applies
to the smashed antiques problem.

26Even in Conrad’s story, this might have been the case since the workers had “worked in the
same place and for the same length of time” (Conrad (2008, p.73)).
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hence θ̄−θ = 10). Then, the planner can have r(z) = 210−7z where z ∈ {1, . . . , 30},
which implies d = 7. Here, the planner does not use lotteries. The sufficient condition

above requires each player i’s belief that θj = θ for all j 6= i to be strictly higher than

θ̄ − θi
θ̄ − θi + d

=
220− θi
227− θi

≤ 10

17
≈ 0.588.

Under Condition 1, we have the following result:

Proposition 1 Given Condition 1, for each i ∈ N and each θi ∈ Θi, mi = θi is a

unique rationalizable action.

The proof for the result is given in Appendix A. Here, we outline the proof for

the result. Compare two strategies mi = θi and m′i > θi. The net loss from mi

compared to m′i is simply m′i − θi if t ≥
∑

j∈N mj. However, there are cases where

t <
∑

j∈N mj for which there are two possible reasons; (a)
∑

j 6=imj is too high, or

(b) t is too low. There is at least one scenario to which (b) applies. If θj = θ for each

j 6= i, independent of m−i, m
′
i leads to an expected payoff which is strictly lower than

θ. In this scenario, the net gain from mi compared to m′i is at least (m′i − θi) + d.

If Condition 1 holds, this net expected gain always exceeds the net expected loss for

any m′i > θi independent of m−i. Hence, mi = θi strictly dominates m′i > θi for each

i ∈ N and θi ∈ Θi\{θ̄}. This means that no one claims more than her type, and,

hence, each player receives what she claims. Since claiming less than her type simply

lowers a player’s payoff, mi = θi strictly dominates m′′i < θi for each θi ∈ Θ\{θ}.
Hence, mi = θi is a unique rationalizable action for each i ∈ N and θi ∈ Θ.

4 Smashed Antiques Problem

The structure of Λ here is different from that of Captain MacWhirr’s problem. For

comparison purpose, we keep the assumption that there are n ≥ 2 players while there

are only two in the original story. In the original story of Basu (1994), the planner

as well as the players know that the antiques are identical, that is for each i, j ∈ N ,

θi = θj. Instead, we assume that each player does not know the values of the other

players’ antiques. Given this, we assume that the planner can check whether the

players’ antiques are identical or not. For any i, j ∈ N , if their antiques are not

13



identical (θi 6= θj), we assume that the planner can see which antique has a higher

value (but not their actual values), that is, either θi > θj or θi < θj.

Assumption 1 For any i, j ∈ N , the planner observes either θi = θj, θi > θj or

θi < θj.

Hence, each element of λ ∈ Λ contains every θ ∈ Θ which maintains the same order.

In other words, for each λ ∈ Λ,

sgn(θi − θj) = sgn(θ′i − θ′j)

for every θ, θ′ ∈ λ and i, j ∈ N where sgn(·) is the sign function. Again, we assume

that the planner keeps λ as her private information and reveals this only after the

game is played.

The mechanism, which is simpler than the one in the previous problem, works as

follows:

1. For each i ∈ N , if there exists j ∈ N (j 6= i) such that θj > θi and mj ≤ mi,

player i receives 0.

2. Otherwise, player i receives mi.

Hence, the only case where player i does not receive what she claims (and only receives

zero) is when there exists another player j whose type is strictly higher than hers,

and their messages are not consistent with this fact.

A sufficient condition we need to achieve the desired outcome is the following:

Condition 2 For each i ∈ N , θi, θ̃i ∈ Θi\{θ̄} where θi is the actual type of player i

and θ̃i > θi,

θi > pθi(for each j 6= i, θj ≤ θi or θj > θ̃i)θ̃i.

Again, we assume that there is a common belief that the players’ beliefs satisfy the

sufficient condition. It is important to note that stating θ̃i > θi does not lead to

punishment under the event “for each j 6= i, θj ≤ θi or θj > θ̃i.”

Under Condition 2, we have the following result.

Proposition 2 Given Condition 2, for each i ∈ N and θi ∈ Θ, announcing θi is a

unique rationalizable action.
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The proof, which is given in Appendix B, uses induction. Given θi ∈ Θi, assume

that for every θ̂i > θi, mi = θ̂i is a unique rationalizable action. Given this assumption

and our mechanism, mi = θi guarantees a payoff of θi for player i with θi. First, any

m′i < θi simply leads to a strictly lower payoff (namely m′i) and hence is strictly

dominated by mi = θi. Second, m′′i > θi leads to a payoff strictly higher than θi

if there is no one whose type is strictly higher than θi and weakly lower than m′′i .

Note that if there is a player whose type falls into this interval, she tells the truth

(by the previous assumption) and hence player i receives a payoff of zero. Her payoff

therefore depends on her beliefs about the other players’ signals, which is reflected in

Condition 2. The initial step does not require any condition since for any player with

θi = θ̄, it is a strictly dominant action for her to choose mi = θ̄.

5 Comments

We consider two implementation problems sketched in two stories, Typhoon by Con-

rad and Basu (1994, 2007). In each problem, the planner acquires some information

regarding the actual state. Although the social choice functions implied in these sto-

ries are identical, the planner receives different information; in the former, it is the

total amount of their savings while it is the order of antiques’ values for the latter

(with our extension). As a consequence, we establish two distinct mechanisms (out-

come functions) for these problems. Our results rely on (i) the availability of some

information to the planner and (ii) conditions on the players’ beliefs regarding the

opponents’ types.

As for the treatments of the players’ beliefs, there are other studies which take

similar routes. In first-price auction settings, Battigalli and Siniscalchi (2003) and

Dekel and Wolinsky (2003) also utilize ∆-rationalizability.27 In particular, Dekel and

Wolinsky (2003) show the uniqueness result for large auctions (with discrete values

and bids) which relies on the assumptions on the players’ first-order beliefs regarding

the opponents’ values. In this sense, Dekel and Wolinsky (2003) is an inspiration to

our study.

Artemov, Kunimoto, and Serrano (2011) also employ ∆-rationalizability for their

analysis of robust virtual implementation. In their analysis, the planner has some

information regarding the players’ beliefs, i.e., ∆, and there is a common belief of

27Robles and Shimoji (2012) extend the results of Dekel and Wolinsky (2003).
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this. They introduce the notion of first-order incentive compatibility for social choice

functions, which is concerned with the restrictions. Artemov, Kunitomo, and Serrano

(2011) show that first-order incentive compatibility is necessary for robust virtual

implementation. Just like Bayesian incentive compatibility, the social choice function

considered in the current paper does not satisfy this condition.

The current paper is also related to a recent literature on implementation problems

with the presence of evidence. Ben-Porath and Lipman (2011) and Kartik and Ter-

cieux (2011) consider implementation problem under complete information where the

players can decide which evidence to submit. Kartik and Tercieux (2011) introduce

the condition called evidence-monotonicity which is similar to Maskin monotonicity

but takes into account the cost of evidence provision. By considering the possibility of

state-independent preferences, Ben-Porath and Lipman (2011) introduce the condi-

tion called measurability, which says that, for any pair of states, if the sets of evidence

are identical for each player, the social choice function chooses the same outcome for

these two states. Although the availability of “evidence” is crucial in Ben-Porath and

Lipman (2011) and Kartik and Tercieux (2011) as well as in the current paper, the

approaches are completely different. Note that in the current paper, the players have

no discretion regarding the availability of information related to the actual state.

Instead, the planner simply acquires information related to the actual state without

incurring any cost.

Baliga, Corchon, and Sjöström (1997) consider an implementation problem where

the planner is one of the players (under complete information among the other play-

ers). Our setting has a similar flavor as theirs in the sense that the planner responds

to the players’ action profiles. In their paper, the planner maximizes her expected

payoff (in a dynamic game) while in our study the social choice function is given to

the planner who hence commits herself to it.

For the two implementation problems we consider, the sufficient conditions are

significantly different. In Captain MacWhirr’s problem, the condition looks at a

probability assigned to a certain type profile – everyone else has the lowest type –

which is in fact a subset of the type profiles in consideration for smashed antiques

problems. Moreover, it is possible to have two extreme cases where only one condition

holds while the other does not.28

28This is possible by making pθi(θj = θ for all j 6= i) in Condition 1 close to one or pθi(for each j 6=
i, θj ≤ θi or θj > θ̃i) in Condition 2 close to zero.
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Assuming that the types are i.i.d., these sufficient conditions show distinct asymp-

totic properties. In Captain MacWhirr’s problem, let p be the probability that a

player’s type is θ. Condition 1 implies

pn−1 >
θ̄ − θi

(θ̄ − θi) + d
.

Hence, for a sufficiently large n, the inequality above does not hold. In the smashed

antiques problem, given θi ∈ Θi and θ̃i > θi, let p(θi, θ̃i) be the probability that player

j’s type θj is such that θi < θj ≤ θ̃i. Then, Condition 2 becomes

θi >
[
1− p(θi, θ̃i)

]n−1

θ̃i.

Contrary to the case above, for any set of parameter values, there exists n̄ such that

for any n > n̄, the inequality above holds.29

These highlighted differences suggest that obtaining general results in this type of

environments with different types of Λ’s is not a trivial exercise. We hope that the

results in this paper would help our understanding of implementation problems even

when incentive compatibility does not hold.

A Proof for Proposition 1

We first show that for each i ∈ N and θi < θ̄, any mi > θi is strictly dominated by

mi = θi, and hence mi > θi is not a best response for each i ∈ N and θi < θ̄. Then,

we show that mi = θi is a unique rationalizable strategy for each i ∈ N and θi ∈ Θ.

Take θi ∈ Θ\{θ}. Let ti =
∑

j 6=i θj and mi =
∑

j 6=imj. For the following ex-

pressions in A, let mi be a message such that mi > θi (we later show that mi is

strictly dominated by θi). The expected payoff from announcing θi can be computed

as follows – player i receives θi as long as mi ≤ ti;

A =

(n−1)θ̄∑
ti=(n−1)θ


ti∑

mi=(n−1)θ

qθi(t
i,mi)θi +

(n−1)θ̄∑
mi=ti+1

qθi(t
i,mi)r(mi − ti)


29In smashed antiques problems, as n becomes sufficiently large, the planner eventually obtains

the exact order over θi’s, which makes the problem trivial.
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=

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ


ti∑

mi=(n−1)θ

qθi(t
i,mi)θi +

(n−1)θ̄∑
mi=ti+1

qθi(t
i,mi)r(mi − ti)

 (1)

+

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


ti−(mi−θi)∑
mi=(n−1)θ

qθi(t
i,mi)θi

 (2)

+

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


ti∑

mi=ti−(mi−θi)+1

qθi(t
i,mi)θi

 (3)

+

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


(n−1)θ̄∑
mi=ti+1

qθi(t
i,mi)r(mi − ti)

 . (4)

For the first summations in (2), (3), and (4),

(n− 1)θ̄ − [(n− 1)θ + (mi − θi)] ≥ (n− 1)(θ̄ − θ)− (θ̄ − θ) = (n− 2)(θ̄ − θ) ≥ 0

For the second summation in (2), note that

[ti − (mi − θi)]− (n− 1)θ = ti − [(n− 1)θ + (mi − θi)] ≥ 0

since ti ∈ {(n− 1)θ+ (mi− θi), . . . , (n− 1)θ̄} in (2). In addition, note that even if we

change the upper bound of the first summation in (4) from (n− 1)θ̄ to (n− 1)θ̄ − 1,

it does not affect the expression.30

The expected payoff from announcing mi ∈ {θi + 1, . . . , θ̄} can be computed as

follows – the players will be punished independent of mi if ti < (n− 1)θ + (mi − θi)
while player i receives mi if mi ≤ ti − (mi − θi):

B =

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ


(n−1)θ̄∑

mi=(n−1)θ

qθi(t
i,mi)r((mi − ti) + (mi − θi))


+

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


ti−(mi−θi)∑
mi=(n−1)θ

qθi(t
i,mi)mi


+

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


(n−1)θ̄∑

mi=ti−(mi−θi)+1

qθi(t
i,mi)r((mi − ti) + (mi − θi))


30This also applies to the first summation in (8) below.
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=

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ


(n−1)θ̄∑

mi=(n−1)θ

qθi(t
i,mi)r((mi − ti) + (mi − θi))

 (5)

+

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


ti−(mi−θi)∑
mi=(n−1)θ

qθi(t
i,mi)mi

 (6)

+

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


ti∑

mi=ti−(mi−θi)+1

qθi(t
i,mi)r((mi − ti) + (mi − θi))

 (7)

+

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


(n−1)θ̄∑
mi=ti+1

qθi(t
i,mi)r((mi − ti) + (mi − θi))

 (8)

We now show that A > B under Condition 1 independent of m−i. Note that

(3) ≥ (7) and (4) ≥ (8). In addition, consider (2)− (6):

(2)− (6)

= −[mi − θi]
(n−1)θ̄∑

ti=(n−1)θ+(mi−θi)


ti−(mi−θi)∑
mi=(n−1)θ

qθi(t
i,mi)


= −[mi − θi]

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


(n−1)θ̄∑

mi=(n−1)θ

qθi(t
i,mi)−

(n−1)θ̄∑
mi=ti−(mi−θi)+1

qθi(t
i,mi)


= [mi − θi]

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


(n−1)θ̄∑

mi=ti−(mi−θi)+1

qθi(t
i,mi)

− [mi − θi]
(n−1)θ̄∑

ti=(n−1)θ+(mi−θi)

pθi(t
i)

= [mi − θi]
(n−1)θ̄∑

ti=(n−1)θ+(mi−θi)


(n−1)θ̄∑

mi=ti−(mi−θi)+1

qθi(t
i,mi)


−[mi − θi]


(n−1)θ̄∑

ti=(n−1)θ

pθi(t
i)−

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ

pθi(t
i)


= [mi − θi]

(n−1)θ̄∑
ti=(n−1)θ+(mi−θi)


(n−1)θ̄∑

mi=ti−(mi−θi)+1

qθi(t
i,mi)


−[mi − θi]

1−
(n−1)θ+(mi−θi)−1∑

ti=(n−1)θ

pθi(t
i)


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≥ −[mi − θi] + [mi − θi]
(n−1)θ+(mi−θi)−1∑

ti=(n−1)θ

pθi(t
i).

Remember the definition of d – the lower bound for the marginal cost of choosing

a higher message when
∑

j∈N mj >
∑

j∈N θj. Take A−B:

A−B

≥ [(1)− (5)] + [(2)− (6)]

≥
(n−1)θ+(mi−θi)−1∑

ti=(n−1)θ


ti∑

mi=(n−1)θ

qθi(t
i,mi)θi +

(n−1)θ̄∑
mi=ti+1

qθi(t
i,mi)r(mi − ti)


−

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ


(n−1)θ̄∑

mi=(n−1)θ

qθi(t
i,mi)r((mi − ti) + (mi − θi))


−[mi − θi] + [mi − θi]

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ

pθi(t
i)

=

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ


ti∑

mi=(n−1)θ

qθi(t
i,mi)

{
θi − r((mi − ti) + (mi − θi))

}
+

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ


(n−1)θ̄∑
mi=ti+1

qθi(t
i,mi)

{
r(mi − ti)− r((mi − ti) + (mi − θi))

}
−[mi − θi] + [mi − θi]

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ

pθi(t
i)

≥ d

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ


ti∑

mi=(n−1)θ

qθi(t
i,mi) +

(n−1)θ̄∑
mi=ti+1

qθi(t
i,mi)


−[mi − θi] + [mi − θi]

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ

pθi(t
i)

= d

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ

pθi(t
i)− [mi − θi] + [mi − θi]

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ

pθi(t
i)

= −[mi − θi] + [mi − θi + d]

(n−1)θ+(mi−θi)−1∑
ti=(n−1)θ

pθi(t
i)
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≥ −[mi − θi] + [mi − θi + d]pθi(t
i = (n− 1)θ)

= −[mi − θi] + [mi − θi + d]pθi(θj = θ for all j 6= i)

= [mi − θi + d]

{
pθi(θj = θ for all j 6= i)− mi − θi

mi − θi + d

}
≥ [mi − θi + d]

{
pθi(θj = θ for all j 6= i)− θ̄ − θi

θ̄ − θi + d

}
> 0

where the last inequality comes from Condition 1. This implies that A − B > 0

independent of m−i. Hence, we have the following result.

Lemma 1 Given Condition 1, for any i ∈ N , any mi > θi is strictly dominated by

mi = θi for each θi < θ̄.

Given Lemma 1, each player knows that no opponent chooses mi > θi. Hence,

in each possible outcome, each player with her endowment equal to θi receives an

amount at most θi. Given this, it is easy to see that choosing mi < θi is strictly

dominated since such an announcement strictly lowers the payoff.

Lemma 2 Given Condition 1, for each i ∈ N , any mi < θi is strictly dominated by

mi = θi for each θi > θ.

The results above imply Proposition 1.

B Proof for Proposition 2

First, mi = θ̄ strictly dominates m′i < θ̄ for each i ∈ N and θi = θ̄. Note that the

payoff from mi = θ̄ is simply θ̄ while the payoff from m′i < θ̄ is m′i which is strictly

lower than θ̄. It is important to note that this argument does not depend on the

players’ beliefs regarding the other players’ types when the type is θi = θ̄.

Next, take i ∈ N and θi = θ̄ − 1. Given the argument above, it is clear that

m′i < θ̄ − 1 is strictly dominated by mi = θ̄ − 1 since the former gives the payoff of

m′i while the latter gives θ̄ − 1(> m′i). In addition, m′′i = θ̄ is strictly dominated by

mi = θ̄ − 1 for each i ∈ N and θi = θ̄ − 1. The expected payoff from m′′i = θ̄ is

pθi(for each j 6= i, θj ≤ θ̄ − 1)θ̄ (9)

21



while the expected payoff from mi = θ̄− 1 is simply θ̄− 1. Then, the difference from

the payoff from announcing θ̄ − 1 and the expected payoff from announcing θ̄ (the

only higher type) is

(θ̄ − 1)− (9)

= (θ̄ − 1)− pθi(for each j 6= i, θj ≤ θ̄ − 1)θ̄

which is strictly positive if

(θ̄ − 1) > pθi(for each j 6= i, θj ≤ θ̄ − 1)θ̄.

Note that this inequality holds given Condition 2.

Consider i ∈ N and θi ∈ Θ\{θ̄}. Suppose that for each i ∈ N and θ̃i ∈ {θi +

1, . . . , θ̄}, mi = θ̃i is a unique rationalizable strategy. First, m′i < θi is strictly

dominated by mi = θi; the former gives a payoff of m′i while the latter gives θi(> m′i).

In addition, mi = θi strictly dominates m′′i > θi for θi. The payoff from mi = θi is

simply θi while the expected payoff from m′′i > θi is

pθi(for each j 6= i, θj ≤ θi or θj > m′′i )m
′′
i (10)

Then, the difference between the payoff from announcing θi and the expected payoff

from announcing m′′i > θi is

θi − (10)

= θi − pθi(for each j 6= i, θj ≤ θi or θj > m′′i )m
′′
i

which is strictly positive if

θi > pθi(for each j 6= i, θj ≤ θi or θj > m′′i )m
′′
i .

Again, the inequality holds given Condition 2. Induction leads to Proposition 2.
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