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Abstract

This article extends the theory of spatial competition by allowing

�rms to endogenously select their operating costs within a Hotelling

(1929) framework. A three-stage duopoly model is examined in which

the �rms compete in cost reduction, locations and �nally prices. Fur-

thermore, it is assumed that �rms are identical except with respect

to their cost reducing technologies and one �rm has a Stackelberg

leadership advantage in the cost-reduction stage.

The model implies two results that are unique within the litera-

ture. First, if a �rm possesses both an e¢ cieny and investment timing

advantage, it always becomes the dominant �rm in the product mar-

ket in all relevant respects. Second, if an ex ante ine¢ cient �rm has an

investment timing advantage it can only become the ex post market
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leader if and only if the a priori e¢ ciency gap is not too large. Con-

sequently, these results suggest that a �rm�s ability to innovate - in

terms of both e¢ ciency and timing - play a large part in determining

the composition of the �nal product market.

Key words Location model; Asymmetric �rms; Stackelberg game;

Endogenous cost selection

JEL Classi�cation L13; R32

1 Introduction

This paper examines the e¤ects of endogenous cost selection on a �rm�s prod-

uct and pricing decisions where the �rms are heterogeneous with respect to

their ex ante investment e¢ ciencies and investment timing. In doing so, it

is possible to examine the importance of both investment timing and e¢ -

ciencies in determining the composition of the �nal product market or, more

interestingly, whether it is possible for an ex ante ine¢ cient �rm to become

an ex post market leader. Thus, we extend the linear spatial competition

literature in two ways: �rst, �rms are a priori heterogeneous in respect to

their e¤ectiveness at reducing costs and the timing of their investments and;

second, the ex post cost di¤erential is endogenous. The results o¤er two in-

teresting additions to the existing literature: (i) if a �rm possesses both an

investment timing and e¢ ciency advantage it always becomes the ex post ef-

�cient �rm and; (ii) if a �rm possesses only an investment timing advantage,

it can become the ex post e¢ cient �rm if and only if the a priori e¢ ciency

gap is not too large.

Hotelling (1929) developed a simple model for examining �rms�product

choices in a spatial setting, �nding that �rms would have a preference to pro-

duce homogenous goods. The result suggested that �rms would be driven

to agglomerate as, by moving towards their rival in the location space, �rms

could steal a rival �rm�s market share. d�Aspremont et al. (1979) under-
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mined this result arguing that no pure strategy solution existed in Hotelling�s

original model speci�cation �nding, instead, that equilibrium only exists if

transport costs are quadratic.1 The use of quadratic transport costs, pro-

posed by DGT, ensures a stable equilibrium for all price-location pairs but,

in contrast to Hotelling�s (1929) conclusion, suggested that �rms would �nd

it optimal to produce maximally di¤erentiated products. Furthermore, were

�rms able to locate outside of the city�s boundaries, it would be optimal for

them do do so (Tabuchi and Thisse, 1995; Lambertini, 1997).

One criticism to be levelled at this body of work is that the �rms are

assumed to face symmetric production costs. The speci�c consideration of

exogenous cost di¤erentials has been examined within a linear spatial frame-

work by Schulz and Stahl (1985), Ziss (1993) and Matsumura and Mat-

sushima (2009). Ziss (1993) introduced heterogeneous production costs into

a DGT framework, �nding that maximum product di¤erentiation is the only

pure strategy Nash equilibrium solution, and that this (pure strategy) equi-

librium outcome exists if and only if the cost di¤erential is not too large.

Matsumura and Matsushima (2009) extend this analysis to consider cases in

which this small cost di¤erential assumption is violated. They �nd, where

cost di¤erentials are large, the �rms face contrasting incentives regarding

location with the stronger (weaker) �rm having an incentive to minimise

(maximise) product di¤erentiation. Thus, a mixed strategy Nash equilib-

rium is ensured even where the heterogeneity between �rms undermines a

pure stragey solution.

It is for this reason that the Hotelling (1929) model �is [assumed] in-

convenient for investigating endogenous production costs� as a full exami-

nation of location equilibrium conditions is di¢ cult to obtain (Matsumura

and Matsushima, 2009: p216). Nonetheless, from a theoretical standpoint,

the existence of mixed strategy solutions may explain di¤erences in market

structure across seemingly similar markets especially where �rms face asym-

1d�Aspremont et al. (1979) will henceforth be denoted DGT.
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metric costs. Bester et al. (1996), using a DGT model, �nd an in�nity of

mixed strategy equilibria and argue that, without some coordination mech-

anism, �rms face a strictly positive probability that they would locate at

the same point. Thus, where �rms face asymmetric production costs, simple

coordination failure can be the di¤erence between a high cost �rm remaining

in the market or being driven out of business. Whilst this result is intuitive,

Martin (2001) argues that �rms do not randomly select a location or product

mix but, rather, make such decisions in secret. This generates asymmetric

information and inherits the same propensity for coordination failure.

Also pertinent to this discussion are models of competition between �rms

facing heterogeneous costs within a circular city/Salop (1979) framework.

Aghion and Schankerman (2004) and Syverson (2004) adopt a Bayesian set-

up, with �rms knowing only their own (stochastic) production costs and

assume prices are set prior to learning their rivals�locations and costs. Anal-

ogous to the linear spatial model results, the (pure strategy) equilibrium

breaks down for very large cost di¤erentials as the (low cost) �rms�incen-

tive to limit price becomes accute. Interestingly, Alderighi and Piga (2009,

2010), who examine the maximum permissible cost disparity within these

models, observe that an Eaton and Lipsey (1978) style "no mill-price under-

cutting rule" must be satis�ed, similar to that derived by Ziss (1993), or "a

highly e¢ cient �rm�s reach could potentially extend beyond its nearest neigh-

bours position" (Alderighi and Piga, 2009: p.3). Furthermore, extending this

analysis to allow �rms to endogenously select their locations suggests "the

distance between two direct competitors is strictly increasing in the average

productivity: all else equal, more productive �rms are more isolated" (Vogel,

2008: p.450).2Therefore, whilst issues arising from using a Hotelling model to

examine endogenous cost selection do exist, these problems are comparable

to other areas of the spatial competition literature.

2To the best of the author�s knowledge some papers in this area have examined en-
dogenous cost selection. However, their focus is generally on the entry e¤ects of R&D. See
Scalera and Zazzaro (2005) or Ebina and Shimizu (2008).
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This paper takes a di¤erent approach and, rather than simply examining

the e¤ect of cost di¤erentials, analyses the cause of cost di¤erentials. That

is, we examine the extent to which a �rm�s ability to innovate - in terms

of both e¢ ciency and timing - a¤ects the composition of the �nal product

market. Our results suggest two �ndings unique to the literature. First,

if a �rm possesses both an investment timing and e¢ ciency advantage it

always becomes the ex post dominant �rm (Proposition 3). Second, where
a �rm possesses only an investment timing advantage, it can become the

ex post market leader �rm if and only if the a priori e¢ ciency gap is not

too large (Summary 1).These results, whilst consistent with those in the
existing literature, suggest that the innovation process plays a crucial part in

determining which �rm will become the ex post market leader. Additionally,

whilst it is the ex post low cost �rm that becomes the market leader, as

noted in the literature, it is possible that this �rm could be either the ex

ante e¢ cient or ine¢ cient �rm.

Another body of literature to which this paper relates is the work regard-

ing endogenous Stackelberg leadership between quantity setting �rms facing

asymmetric production costs. Within a two-period Cournot duopoly game,

van Damme and Hurkens (1999) observe that a high cost �rm �nds com-

mitting to move �rst riskier than a low cost �rm and so it must be the low

cost �rm that emerges as the endogenous Stackelberg leader. This assertion

backed by Branco (2008) who, within a similar framework, also �nds that

the low-cost �rm becomes the Stackelberg leader. However, both papers dis-

agree as to whether a Cournot equilibrium would obtain if the �rms faces

symmetric costs.3

Whilst this paper does not a¤ord �rms the opportunity to commit to

becoming a Stackelberg leader, the results presented here contrast with those

of both van Damme and Hurkens (1999) and Branco (2008).4 Whilst the

3It is of note that similar models specifying Bertrand competition obtain a reversed
results (see van Damme and Hurkens (2004) and Tasnádi (2003)).

4In the model presented, the cost reduction stage is akin to that of quantity setting.
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results presented here agree that the ex post low cost �rm would emerge as

the market leader, they also suggest that this �rm could be either the ex ante

e¢ cient or ine¢ cient �rm. If, as here, the �rms are a priori heterogeneous

with respect to their e¤ectiveness at reducing costs and the timing of their

investments then a �rm�s unit cost is no longer a measure of its e¢ ciency but,

instead, a direct consequence of strategic interactions given the �rms�relative

e¢ ciencies (investment timing and cost reduction e¤ectiveness). Therefore,

the van Damme and Hurkens (1999) and Blanco (2008) results ignore the

possibility that this �rm could be either the ex ante e¢ cient or ine¢ cient

�rm. That is, an a priori ine¢ cient �rm may, in fact, possess an incentive

to commit to becoming the Stackelberg leader if the ex ante e¢ ciency gap is

not too large.

The rest of the paper proceeds as follows: section 2 decsribes the model�s

speci�cation; section 3 analsyses the model including the equilibrium condi-

tions for prices, locations and cost reduction and; section 4 concludes.

2 Model

Consider a three-stage duopoly model. In the �rst stage, the �rms compete

in cost reduction sequentially before making symmetric location and price

choices in the second and third periods respectively.

In the second and third stages, �rms compete in (linear) spatial- and

then price competition respectively; moving simultaneously in each case. As

in Hotelling�s (1929) seminal work, two �rms, A and B, supply a physically

homogenous good from di¤erent locations on the real axis. The location of

�rm N is denoted by n 2 R and, consequently, the location of each �rm

is measured from zero. This implies that �rms are free to locate anywhere

on the real axis and, without loss of generality, we assume a < b.5 Firms

maximise pro�ts at each stage.

5It is trivial to derive the results for the case a > b.
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Consumers are uniformly distributed across a linear city of unit length

and are assumed to have a density of one. For simplicity the city is de�ned

by [0; 1] 2 R which ensures that any a; b =2 [0; 1] simply implies that a �rm is
locating outside of the city�s boundaries. It is also assumed that consumers

face unit demands and consume either zero or one units of production. Con-

sequently, a consumer, located at x 2 [0; 1], would only purchase a good from
�rm N , located at n, if and only if

Ux = s� pN � t(x� n)2 � 0

where s is a �xed utility of consuming a good, pN is the price charged by

�rm N , t is a measure of consumer heterogeneity and t(x�n)2 is a quadratic
transport cost incured by a consumer having to move a distance of jx� nj to
consumre good N .6 In order to ensure that total demand is equal to one, or

that each consumer purchases a good, s is assumed to be large enough that

Ux � 0 for all x 2 [0; 1] for at least one of the �rms�products and consumers
only purchase the good that maximises their utility.

In the �rst stage the �rms sequentially invest in cost reduction, at a cost,

to reduce their ex ante production cost. At the beginning of the �rst stage,

we assume that both �rms face a symmetric production cost, c, but these

initial production costs can be reduced by 'N(IN) at a cost of CN(IN); where

IN is the investment level of �rm N . Furthermore, it is assumed that the cost

reduction schedule and investment cost functions are linear and quadratic in

investment respectively.7 More formally, the cost reduction and investment

6The assumption of quadratic transport costs is to ensure pure strategy Nash equilirbia
in the location and pricing stages (see d�Aspremont et al (1979)).

7Whilst these functional form assumptions are not ideal, they are necessary for two
reasons. First, to make the mathematics more tractible. Attempts were made to gen-
eralise the model using a convex investment cost schedule but these rendered the model
intractable.
Second, to keep the model speci�cation in line with other cost selection models within the

linear sptial competition literature.This linear cost reduction schedule is assumed across a
broad range of the literature: georgraphic spillover e¤ects (see Mai and Peng (1999) and
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cost schedules are given by:

'N(IN) = mNIN ;

CN(IN) =
1

2
I2N ;

wheremN > 0 represents the ability of �rmN to implement the cost reducing

technology or the (constant) marginal cost reduction per unit of investment.

The �nal unit cost of �rm N , used in the price and location stages, is given

by

cN = c� 'N(IN)

In specifying the �rst stage in this manner it is possible to allow �rms

to di¤er with respect to both their investment timing and e¢ ciency. In the

case of investment timing this is obvious, as �rms move sequentially and this

can be thought of as the �rm�s di¤ering in their abilties to spotting new

investment opportunities. However, the cost reduction schedule allows for

�rm heterogeneity with respect to their investment e¢ ciencies if mA 6= mB.

Without loss of generality, the remainder of this paper assumesmA > mB � 0
or, more simply, that �rm A is more e¤ective at implementing cost reduction

dollar-for-dollar than �rm B. With both of these assumptions in place it

is possible to examine the relative importance of investment e¢ ciency and

timing advantages.

The game is solved through backward induction and at each stage �rms

maximise their pro�ts. Consequently, only pure strategy Nash equilibria are

examined in this paper. The game proceeds as follows. In the �rst stage,

�rms select their investment levels, IN 2 [0;1), sequentially; both cases
where �rms A and B move �rst are examined. In the second stage, each �rm

selects its location, n 2 R8N 2 fA;Bg, simultaneously. Finally, in the third

Piga and Poyago-Theotoky (2005)); licensing (see Matsumura and Matsushima (2004 and
2010a)) and; public vs. private �rms (see Matsumura and Matsushima(2010b)).
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stage, �rms select their prices, pN 2 [cN ;1), simultaneously.

3 Analysis

3.1 Price Stage

Recall that consumers i) maximise utility and; ii) can only purchase one

unit of production. In this instance, a consumer, located at x, is indi¤erent

between purchasing either good A or good B if and only if

s� pA � t(x� a)2 = s� pB � t(b� x)2 (1)

As a < b by assymption, the total demand for good A is given by all con-

sumers located to the left of x and demand for good B is the residual demand,

1� x. Solving equation (1) yields the demand functions:

DA = x =
pB � pA
2t(b� a) +

(a+ b)

2

DB = 1� x = pA � pB
2t(b� a) +

(2� a� b)
2

Taking these demand functions as given, �rm N�s pro�ts are given by the

expression:8

�N = (pN � c+ 'N)DN � CN

Firms simultanesouly select prices, pN 2 [cN ;1), to maximise pro�ts, taking
location and investment choices as given. The relevenant �rst order condi-

8For notational purposes, as IN is known at this stage we abbreviate 'N (IN ) and
CN (IN ) to 'N and CN respectively.
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tions are:

@�A
@pA

=
pB � 2pA + c� 'A

2t(b� a) +
(a+ b)

2
= 0

@�B
@pB

=
pA � 2pB + c� 'B

2t(b� a) +
(2� a� b)

2
= 0

The second order conditions are given by @2�N
@p2N

= � 1
b�a < 08N and are, there-

fore, met for all price pairs, (pA; pB). Solving these equations simultaneously

yields the equilbrium prices:

pA =
3c� 2'A � 'B + t(b� a)(2 + a+ b)

3
(2)

pB =
3c� 'A � 2'B + t(b� a)(4� a� b)

3
(3)

From these conditions, it is possible to observe that a subgame perfect

Nash equilibrium in prices always exists, regardless of the locations and the

ex post cost disparity between the two �rms. Furthermore, the signs of the

components within the equilbrium price functions are as one would expect,

with prices increasing in the a priori unit cost and decreasing in the cost

reduction e¤orts of both �rms. However, assuming 'A = 'B, it is notable

that the equilbrium prices of both �rms are a¤ected more by changes to their

own ex post unit cost than to changes to a rival�s ex post unit cost.

3.2 Location Stage

With the equilibrium prices given by equations (2) and (3), the relevant pro�t

functions for both �rms are:

�A =
['A � 'B + t(b� a)(2 + a+ b)]2

18t(b� a) � CA
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�B =
['B � 'A + t(b� a)(4� a� b)]2

18t(b� a) � CB

Each �rm, N , simultaneously selects its location, n 2 R, in order to maximise
pro�ts taking investment decisions and equilibrium prices as given. The �rst

order conditions are given by

@�A
@a

= 0 = �2
9

t(1 + a)[t(b� a)(2 + a+ b) + 'A � 'B]
t(b� a)

+
1

18

[t(b� a)(2 + a+ b) + 'A � 'B]2
t(b� a)2

@�B
@b

= 0 =
2

9

t(2� b)[t(b� a)(4� a� b)� 'A + 'B]
t(b� a)

+
1

18

[t(b� a)(4� a� b)� 'A + 'B]2
t(b� a)2

Solving these equations simultaneosuly for a and b yields:

a =
('A � 'B)

3t
� 1
4

b =
('A � 'B)

3t
+
5

4

The relevant second order conditions are given by:

@2�A
@a2

=
1

486

(4('A � 'B) + 9t)(4('A � 'B)� 27t)
t

@2�B
@b2

=
1

486

(4('A � 'B)� 9t)(4('A � 'B) + 27t)
t

As these equations must be strictly negative, it is trivial to show 'A � 'B 2
(�9

4
t; 9
4
t) must hold for both second order conditions to be met, or that the

ex post cost disparity between the two �rms is not too large relative to the

transport cost.
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This additional condition ensures that a pure strategy Nash equilibrium

in locations exists but, unlike the pricing game, only where the ex post pro-

duction costs are not too di¤erent. This is because, in allowing for cost

heterogeneity, a highly e¢ cient �rm may have an incentive to drive its in-

e¢ cient rival from the market. A similar argument is made by Alderighi

and Piga (2008). Recalling the demand functions and substituting in the

equilibrium price and location choices yields:

DA =
1

18

(4('A � 'B) + 9t)
t

DB = �
1

18

(4('A � 'B)� 9t)
t

Therefore, if 'A � 'B � 9
4
t then the ex post high cost �rm, �rm B, would

be driven out of the market whilst the low cost �rm, �rm A, would serve all

demand.9 It is for this reason that large ex post cost di¤erentials undermine

the existence of a pure strategy Nash equilibrium in the location stage given

that, for all 'A � 'B � 9
4
t, �rm B�s demand and pro�ts are driven to zero.

Thus, there no longer exists a unique optimal location for �rm B as, no

matter where it locates, it would surely be driven from the market. Given

that �rm B no longer has a unique optimal location, a pure strategy Nash

equilibrium cannot exist. Consequently, we restrict our focus to cases in

which j'A � 'Bj < 9
4
t, or a pure strategy Nash equilibria exist in the location

stage.10

With this restriction placed on the ex post cost di¤erential, it is possible

to say something of the location choice of each �rm. First, where 'A =

'B, both �rms locate symmetrically outside of the market (at a = �1
4
and

b = 5
4
respectively). As the quadratic transport costs make price competition

increasingly �erce, �rms prefer to locate beyond the boundaries of the city

9This is because as DA � 1 and DB � 0:
10See Matsumura and Matsushima (2009) for a discussion on the existence mixed strat-

egy Nash equilibria in a similar case.
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to mitigate the price competition e¤ects on their pro�ts (Lambertini, 1997).

Second, the structure of the �rms locations implies that the distance between

the two �rms is �xed at 3
2
, regardless of the size of the cost disparity. Second,

where 'A 6= 'B, it is the �rm with lower unit costs that locates closer

to the centre of the market, with the ine¢ cient �rm moving further from

the city to shield itself from aggresive price competition. Additionally, as

j'A � 'Bj ! 9
4
t the e¢ cient �rm�s location converges to 1

2
, the centre of the

market. Therefore, it is only an e¢ cient �rm that is able to locate within the

city�s boundaries at the expense of its ine¢ cient rival who, fearful of limit

pricing, is driven away from the centre of the market.

3.3 Cost Reduction Stage

In the �rst stage of the model, the �rms select investment levels, IN 2
[0;1)8N , sequentially. This sequential investment assumption obviously

a¤ords one �rm a strategic timing advantage, but can also be thought of

as another way in which the �rms�relative investment abilities di¤er. For

example, an investment timing advantage in this case may re�ect a di¤erence

in the �rms�abilities to spot new investment opportunities; be a consequence

of a disparity in the skills of the �rms respective R&D departments or; more

simply, be luck.

Recalling the equilibrium locations, prices and mA > mB � 0, the �rst

stage pro�t functions are given by:

�A =
1

108

(4(mAIA �mBIB) + 9t)
2

t
� 1
2
I2A

�B =
1

108

(4(mAIA �mBIB)� 9t)2
t

� 1
2
I2B

In the following sections, the equilibrium investment levels are determined

where (i) the ex ante e¢ cient �rm, �rm A, moves �rst and; (ii) the ex ante

ine¢ cient �rm, �rm B, moves �rst in sections 3.3.1 and 3.3.2 respectively.
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3.3.1 E¢ cienct Firm Moves First

In this case �rm A has a Stackelberg leadership advantage in cost reduction

and its investment decision is made taking �rmB�s optimal response as given.

Assuming RB(IA), the solution to @�B
@IB

= 0, is the best responce function of

�rm B to any the investment choice of �rm A, the equilibrium investment

decision of �rm A is given by:

argmax
IA
�A(IA; RB(IA))

Solving this equation yields �rm A�s equilibrium investment level:

IA =
18tmA(16m

2
B � 27t)

216tm2
A � (8m2

B � 27t)2
(4)

Substituting IA into RB(IA) = @�B
@IB

= 0 obtains:

IB =
18tmB(16m

2
A + 8m

2
B � 27t)

216tm2
A � (8m2

B � 27t)2
(5)

In order to obtain a reasonable equilibrium in the cost reduction stage two

conditions must be satis�ed: (i) equilibrium investment levels must be non-

negative and; (ii) the second order conditions must be satis�ed. However,

in order for the game to yield a subgame perfect Nash equilibrium it is

also necessary for the pure strategy equilbria in the cost reduction stage

to be consistent with those in the price and location stages. This occurs

if 'A(IA) � 'B(IB) = mAIA � mBIB 2 (�9
4
t; 9
4
t). This leads to our �rst

proposition.

Proposition 1 Equilibrium investment levels are non-negative, the second

order conditions are satis�ed and equilbrium investment in the �rst stage is

consistent with a subgame perfect Nash equilibrium at all stages if and only

14



if

m2
A 2 (m2

B;
27

16
t� m

2
B

2
) (6)

m2
B 2 [0;minfm2

A;
27

8
t� 2m2

Ag) (7)

Proof. In Appendix 5.1

Equations (6) and (7) ensure that a reasonable equilbrium is not only

ensured in the investment stage, but also that equilbrium investment deci-

sions do not undermine the existence of a pure staregy Nash equilibrium for

the entire game. However, they also imply that, for an equilibrium to exist,

the a priori heterogeneity between the two �rms cannot be too large. In

fact, given the simplicity of (6) and (7) is not too di¢ cult to formalise the

maximum level of heterogeneity permissable in the model. This implies:

Corollary 1 Given conditions (6) and (7) and takingm2
B as given, the maxi-

mum a priori heterogeneity between the �rms�cost reducing e¢ ciency is given

by

maxfm2
Ag �m2

B =
27

16
t� 3

2
m2
B = �

If this holds, then:

(i) m2
A 2 (0; 2716t) and m

2
B 2 [0; 2724t) and;

(ii) As m2
B ! 27

24
t, �! 0

All of the above results can be derived very simply from equations (6) and

(7) assuming m2
A > m

2
B � 0 and so a formal proof is omitted. However, the

importance of these results comes from their implications for the model with

regards to ensuring a pure strategy Nash equilibrium. Given �rm A possesses

both an investment timing and e¢ ciency advantage at the begining of the

game, Corollary 1 simply states that the e¢ ciency advantage cannot be too
great or �rm A�s equilibrium actions would undermine the stability of a (pure
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strategy) equilbrium solution. Quite simply, then, �rm A�s e¤ectiveness at

cost reduction must be capped relative to that of �rm B. If this were not

the case, and the e¢ ciency gap is greater than or equal to �, then either:

(i) the equilibrium investment levels would be negative; (ii) the second order

conditions are violated; (iii) the location stage has no pure strategy Nash

equilibrium or; (iv) some combination of (i)� (iii) occurs.
Assuming that conditions (6) and (7) are met, it is then possible to make

a number of observations regarding the equilibrium investment levels of the

�rms.

Proposition 2 For all m2
A and m

2
B as de�ned in (6) and (7):

(i) IA and IB are strictly positive;

(ii) @IA
@mA

> 0, @IB
@mA

< 0 8 m2
B 2 [0; 2724t);

(iii) IB ! 0 as the a priori e¢ ciency gap tends to � and;

(iv) IA > IB

Proof. In Appendix 5.2

Proposition 2makes four observations regarding the equilibrium invest-
ment levels of the �rms if conditions (6) and (7) are met. The �rst, that the

equilibrium investment levels of both are strictly positive, rules out the posi-

bility that one, or both, �rms remain passive in the cost reduction stage.

Moreover, it goes further than the assumption made to derive Proposition
1, that equilibrium investment levels simply be non-negative, and rules out

any case in which one �rm would simply "give up" and exit the market.

The second implies that the equilibrium investment decision of �rm A

(B) increases (decreases) as �rm A becomes more e¢ cient relative to �rm B.

This occurs because, as cost reduction in this model is a strategic substitute,

�rm A is able to use its investment timing advantage to temper its rival�s cost

reducing investment.11 Therefore, as �rm A becomes a stronger competitor,
11Here:

R
0

B(IA) =
8mAmB

8m2
B � 27t

< 0
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relative to �rm B, it is better able to take advantage of its timing and

e¢ ciency advantages by investing more heavily in cost reduction and forcing

�rm B�s equilbrium investment to contract.

The third states that, as the e¢ ciency gap converges to�, �rmA becomes

su¢ ciently aggressive that �rm B�s optimal investment decision is to invest

nothing. However, from Corollary 1, the maximum level of heterogenity

is decreasing in m2
B and, as m

2
B increases, the maximum a priori e¢ ciency

gap, �, converges to zero. Therefore, as the weaker �rm becomes relatively

stronger (m2
B increases), the size of the e¢ ciency gap required to drive IB to

zero becomes smaller.12 Therefore, it must be that the ex ante e¢ cient �rm

becomes more aggresive when competing against relatively tougher rivals.

The �nal observation simply notes that the equilibrium investment levels

of �rm A are always strictly larger than those of �rm B. As cost reduction

in this model acts as strategic substitute, an e¢ cient �rm has an incentive

to invest heavily in cost reduction in the �rst stage to limit the cost reduc-

tion of its weaker rival. Therefore, as �rm A also possesses an investment

timing advantage, even where the �rms are (almost) symmetric, it will use

this advantage to cement its dominance in the �nal product market through

aggressive and preemptive investment. Thus, it is intuitive that IA > IB.

Despite all of these observations, both (6) and (7) ensure that, whilst �rm

B�s optimal investment strategy is restricted as its rival becomes more ag-

gressive, it is always optimal to invest. In fact, �rm B�s optimal investment

decision has to satisfy two contrasting incentives: (i) investing in cost reduc-

tion allows the �rm to retain a small, but positive, market share but; (ii) cost

reductions exacerbate �erce price competition in the �nal product market.

Which of these incentives dominates depends on the relative strengths of the

two �rms but, in general, it is optimal to make a small investment to protect

a niche in the market whilst ensuring the ex post market is not too �ercely

12Observe @�
@m2

B
< 0
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competitive.

Knowing IA > IB and m2
A > m

2
B � 0 also implies that the ex post cost

reduction of �rm A is larger than that of �rm B; as the cost reduction form

is simply given by

'i(Ii) = miIi 8 i 2 fA;Bg

Intuitively, then, where IA > IB and m2
A > m2

B � 0 it must hold that

'A(IA) > 'B(IB). Therefore, a �rm with an investment timing and e¢ ciency

advantage is able, through an aggressive, preemptive investment strategy, to

maintain these competitive advantages into the location and prices stages.

For �rm A, the bene�ts of possessing a lower unit cost and serving a larger

proportion of the market are the impetus for it to act aggressively in cost

reduction as it is able to cement its position in the �nal product market as

the dominant �rm.

These equilibrium investment levels yield pro�ts for each �rm given by:

�A = �3
4

t(16m2
B � 27t)2

216tm2
A � (8m2

B � 27t)2
(8)

�B = �81
4

(16m2
A + 8m

2
B � 27t)2(8m2

B � 27t)
[216tm2

A � (8m2
B � 27t)2]

2 (9)

Examining these pro�t functions leads to one observations: the pro�ts ob-

tained by both �rms are strictly positive. Once again, this is a direct conse-

quence of Proposition 1. Of course, if this were not the case then it would
be impossible for an equilbirum to be sustained as one �rm would have no

unique optimal location.

All this leads to:

Proposition 3 If mA and mB are de�ned by (6) and (7) and �rm A has a

Stackelberg leadership advantage in the cost reduction stage then:

(i) IA > IB > 0;

(ii) 'A > 'B;

(iii) �A > �B and;
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(iv) a pure strategy Nash equilibrium is enured across all stages of the

game.

Proof. Follows directly from Propositions 1, 2 and Appendix 5.3

The third observation, that �rm A obtains larger pro�ts than �rm B,

should not come as a surprise given the previous propositions. As �rm A

aggressively invests in preemptive cost reduction to become the ex post low

cost �rm and, because of this, is able to limit the market share of �rm

B can attain. Quite simply, the e¢ cient �rm marginalises the ine¢ cient

�rm in the �nal product market. Furthermore, as �rm A becomes relatively

stronger, the ex post cost di¤erential becomes larger until DA ! 1 and

DB ! 0. Obviously, as the demand for �rm B becomes smaller and the cost

di¤erential incrases then the pro�ts associated with competition are pushed

towards zero.

The implications of this result are clear. Where a �rm possesses both an

investment timing and e¢ ciency advantage, the ex ante e¢ cient �rm invests

aggresively in cost reduction in order to cement its place as the dominant �rm

in the �nal product market. The e¢ cient �rm�s investment generates lower ex

post unit costs, serves a greater proportion of demand and yields larger pro�ts

than its a priori (and, indeed, ex post) ine¢ cient rival. Nevertheless, whilst

the ex ante e¢ cient �rm invests to cement its position as the market leader,

the ex ante ine¢ cient �rm still possesses an incentive to invest. However, the

size of the investment must always remain relatively small for two reasons:

�rst, investment is used in order to maintain the weaker �rm�s (niche) market

position by reducing the size of the ex post cost asymmetry and; second, the

investment is kept relatively small in order to mitigate the e¤ects of increased

price competition.
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3.3.2 Ine¢ cient Firm Moves First

In this case �rm B has a Stackelberg leadership advantage in cost reduction

and makes its investment decision taking �rm A�s optimal response as given.

Assuming RA(IB), the solution to @�A
@IA

= 0, is the best response function

of �rm A to the investment choices of �rm B, the equilibrium investment

decision of �rm B is given by:

argmax
IB
�B(RA(IB); IB)

Solving this equation yields �rm B�s equilibrium investment level:

IB =
18tmB(16m

2
A � 27t)

216tm2
B � (8m2

A � 27t)2
(10)

Substituting IA into RB(IA) = @�B
@IB

= 0 obtains:

IA =
18tmA(8m

2
A + 16m

2
B � 27t)

216tm2
B � (8m2

A � 27t)2
(11)

As in the previous case, a reasonable (pure strategy) equilibrium exists

in the cost reduction stage if two conditions are satis�ed: (i) equilibrium

investment levels must be non-negative and; (ii) the second order conditions

must be satis�ed. However, in order for the game to yield a subgame perfect

Nash equilibrium it is also necessary for the pure strategy equilbria in the

cost reduction stage to be consistent with those in the price and location

stages. Again, this occurs if 'A(IA)� 'B(IB) = mAIA �mBIB 2 (�9
4
t; 9
4
t).

This leads to:

Proposition 4 Equilibrium investment levels are non-negative, the second

order conditions are satis�ed and equilbrium investment levels in the �rst

stage are consistent with a subgame perfect Nash equilibrium at all stages if
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and only if

m2
A 2 (m2

B;minf
27

16
t;
27

8
t� 2m2

Bg) (12)

m2
B 2 [0;minfm2

A;
27

16
t�m2

Bg) (13)

The conditions imposed in equations (12) and (13) ensure that a reason-

able equilibrium exists in the cost reduction stage that does not undermine a

subgame perfect Nash equilbrium. However, given the form of these restric-

tions it no longer so simple to generalise the maximum level of heterogeneity

supported within the model, but we can still infer from these conditions that

the heterogeneity between the �rms cannot be too large. If this the e¢ ciency

gap is too large then either: (i) the equilibrium investment levels are nega-

tive; (ii) the second order conditions are violated; (iii) the location stage has

no pure strategy Nash equilibrium or; (iv) some combination of (i) � (iii)
occurs.

Keeping this result in mind, it is possible to make some observations

regarding the equilibrium investment levels of both �rms. However, before

this it is necessary to de�ne a critical value of m2
B, denoted m

I
B, such that,

for any relevant m2
A, the equilibrium investment levels of the �rms are equal

if m2
B = m

I
B.
13 For all other values of m2

B, IA 6= IB. With this in mind, we
obtain:

Proposition 5 For all m2
A and m

2
B as de�ned in (12) and (13):

(i) IA and IB are strictly positive;

(ii) @IA
@mB

< 0, @IB
@mB

> 0 8 m2
A 2 (0; 2716t) and;

(iii) IA > IB if, 8 m2
A 2 (0; 2716t), m

2
B < m

I
B 2 [0;maxfm2

Bg)

Proof. In appendix 5.5

Proposition 5 makes three observations about the equilibrium invest-

ment levels where the ine¢ cient �rm possesses a Stackelberg leadership ad-
13A formal de�nition and derivation of mI

B can be found in Appendix 5.5.
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vantage in the cost reduction stage and conditions (12) and (13) are met.

The �rst, that equilibrium investment levels are strictly positive, again rules

out that the posibility that one, or both, �rms remain passive in the cost

reduction stage. As in the previous case, this observation goes beyond the as-

sumption that required equilibrium investment levels be non-negative, which

was a key assumption made to derive Proposition 4.
The second implies either �rm can be rendered (almost) passive during

the investment stage. That is, because the equilibrium investment levels of

�rm A (B) to decrease (increase) as �rm B becomes relatively more e¢ cient,

the intial level of heterogeneity plays an important role in determing the

equilibrium investment levels. As in the previous case, �rmB remains passive

if the initial level of heterogeneity is very large. In contrast, �rm A is only

rendered passive where the initial level of heterogeneity between the �rms

is su¢ ciently small. Simply, where the �rms� initial parameters are more

"equal," a timing advantage enables the a priori weaker �rm to preemptively

invest in cost reduction and restrict the investment level of �rm A. Thus, it

can become a more �erce competitor when the �rms are more symmetric.

The third observation extends this analysis further. It argues that, for

a given m2
A, if m

2
B � mI

B the ine¢ cient �rm is very weak relative to its

rival and, consequently, its ability to preemptively invest in cost reduction

is weak also. Thus, even with a �rst mover advantage in the cost reduction

stage, the ex ante weaker �rm is unable and unwilling to act aggresively (or

at least reasonably) to restrict its rival�s investment and, consequently, the

equlibrium investment level of �rm B is less than or equal to that of �rm

A. However, once m2
B > m

I
B, the ine¢ cient �rm becomes su¢ ciently strong,

relative to its rival, to be able to take advantage of its timing advantage

and cement a position in the market; beyond simply �lling a niche. In this

case, �rm B becomes more e¤ective at preemptively investing and, therefore,

invests more. In turn, this drives down the equilibrium investment decisions

of �rm A and �rm B is induced to invest su¢ ciently to drive IA below IB.
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Therefore, if the a priori e¢ ciency gap is not too large then the a priori

weaker �rm will invest more than its ex ante e¢ cient rival.
The equilbrium investment observations imply �rm B can become the

"investment leader," but are not su¢ cient to ensure that �rm B will become

the ex post low cost �rm too. Rather, because m2
A > m2

B > 0, ensuring

IB > IA does not directly imply mBIB > mAIA. Instead, the cost reduction

of �rm B will only be larger if its investment levels, relative to �rm A�s, are

su¢ ciently large to overcome this relative ine¢ ciency. Comparing the �rms�

cost reductions yields:

'A � 'B =
18tmA(8m

4
A � 27t(mA �mB)(mA +mB))

216tm2
B � (8m2

A � 27t)2

Again, it is necessary to de�ne a critical value of m2
B, denoted m

'
B, such

that, for any relevant m2
A, the equilibrium cost reduction levels of the �rms

are equal if m2
B = m

'
B.
14 For all other values of m2

B, 'A 6= 'B. Consequently,
one observes:

Proposition 6 For all m2
A and m

2
B as de�ned in (12) and (13):

(i) 'A > 'B if 8 m2
A 2 (0; 2716t), m

2
B < m

'
B 2 [0;maxfm2

Bg)
(ii) m'

B > m
I
B

Proof. In appendix 5.6

Both observations in Proposition 6 imply that an ex ante ine¢ cient
�rm can become the ex post low cost �rm if: (i) it is not too ine¢ cient

relative to its rival and; (ii) it has a Stackelberg leadership advantage in the

cost reduction stage. Recall from Proposition 5 that ceteris paribus the
equilibrium investment level of �rm B (A) increases (decreases) as �rm B

becomes relatively more e¢ cient and, once m2
B > m

I
B, �rm B�s equilibrium

investment is larger than that of �rm A. However, as �rm B is relatively

14A formal de�nition and derivation of m'
B can be found in Appendix 5.6.
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ine¢ cient, for it to become the ex post low cost �rm it is not su¢ cient for

�rm B to simply invest more than �rm A but, rather, it must invest enough
to overcome this disadvantage. This occurs once m2

B > m
'
B > m

I
B. That is,

once di¤erence between IA and IB is su¢ ciently in �rm B�s favour, or the a

priori e¢ ciency gap su¢ ciently small, �rm B is induced to reduce its costs

to such an extent that it can overcome its initial ine¢ ciency and become the

low cost �rm.

Finally, taking into account the equilibrium investment levels, the corre-

sponding pro�t functions are given by:

�A = �81
4

t2(8m2
A � 27t)(8m2

A + 16m
2
B � 27)2

[216tm2
B � (8m2

A � 27t)2]2
(14)

�B = �3
4

t(16m2
A � 27t)2

216tm2
B � (8m2

A � 27t)2
(15)

Similar to investment and cost reduction, it is possible to make some observa-

tions regarding the pro�t levels of the �rms. Before proceeding, it is necessary

to de�ne a �nal critial value of m2
B, denoted m

�
B, such that, for any relevant

m2
A, the equilibrium pro�t levels of the �rms are equal if m2

B = m
�
B.
15 For

all other values of m2
B, �A 6= �B. This leads to:

Proposition 7 For all m2
A and m

2
B as de�ned in (12) and (13):

(i) �A; �B > 0

(ii) �A > �B if 8 m2
A 2 (0; 2716t), m

2
B < m

�
B 2 [0;maxfm2

Bg)
(iii) m�

B > m
'
B > m

I
B

Proof. In appendix 5.7

The �rst observation of Proposition 7 states that the equilibrium pro�t
levels of both �rms are strictly positive if m2

A and m
2
B are de�ned as in (12)

and (13). Of course, were this not the case then it would be impossible

15A formal de�nition and derivation of m�
B can be found in Appendix 5.7.
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to sustain an (pure strategy) equilbirum as one �rm would have no unique

optimal location. Consequently, Proposition 4 ensures this holds by the
underlysing assumption that a pure strategy Nash equilibrium is ensured in

the location and price stages.

The second and third observations imply an ex ante ine¢ cient �rm with

a Stackelberg advantage in the cost reduction stage can only become the ex

post dominant �rm, in all respects, if and only ifm2
B > m

�
B. Thus, only when

the ex ante ine¢ cient �rm is not too ine¢ cient relative to its rival is it able to

fully take advantage of its timing advantage and become the market leader.

The rationale behind this result is analogous to that behind Proposition 6.
As �rm B becomes relatively more e¢ cient, the equilibrium investment levels

of �rms A andB decrease and increase respectively. Therefore, as the a priori

e¢ ciency gap becomes smaller, the ex ante ine¢ cient �rm becomes better

able to preemptively invest in cost reduction. Once the initial e¢ ciency gap

is small enough, m2
B > m�

B, �rm B is able to use its timing advantage to

overcome its initial disadvantage and become the market leader in terms of

costs, demand and pro�ts.

An additional, and unstated, result can be found within Proposition
7. For all m2

A, there exists a possible range of m
2
B such that an a priori

ine¢ cient �rm can become the ex post low cost �rm but earn lower pro�ts in

the �nal product market. Thus, if m2
B 2 (m

'
B;m

�
B), �rm B invests more, has

lower ex post production costs and serves a larger proportion of the market

but yields smaller pro�ts. Over this range, the costs incurred by �rm B in

becoming the ex post low cost �rm are are su¢ ciently large to outweigh the

cost and demand bene�ts gained by the ex post e¢ cient �rm. Whilst the

ine¢ cient �rm can obtain a larger market share and possesses lower unit

costs, in doing so, the additional investment costs prevent it from yielding

larger pro�ts than its ex ante e¢ cient rival.

Considering all of these propositions together, it is possible to state:

Summary 1 If m2
A and m

2
B are de�ned by (12) and (13), m

2
A > m2

B and

25



�rm B possesses a Stackelberg leadership in cost reduction, four potential

equilibria may obtain for a given m2
A 2 (0; 2716t):

1: m2
B 2 [0;mI

B): IA > IB, mAIA > mBIB and �A > �B

2: m2
B 2 [mI

B;m
'
B): IA � IB, mAIA > mBIB and �A > �B

3: m2
B 2 [m

'
B;m

�
B): IA < IB, mAIA � mBIB and �A > �B

4: m2
B 2 [m�

B;m
2
A): IA < IB, mAIA < mBIB and �A � �B

Finally, a pure strategy Nash equilibrium is ensured across all stages of the

game.

Proof. Follows directly from Propositions 4, 5, 6 and 7

This result has a number of interesting implications. However, the key

result is simply, as the e¢ ciency gap becomes smaller, an ex ante ine¢ cient

�rm becomes a tougher competitor if it has a Stackelberg leadership advan-

tage in the cost reduction stage. The reason for this is simple. When the

e¢ ciency gap is su¢ ciently large the ine¢ cient �rm is always either unable

or unwilling to invest aggressively in cost reduction. As the initial e¢ ciency

gap becomes smaller, the ine¢ cient �rm is better able to take advantage of

its �rst mover advantage in the cost reduction stage and adopts an increas-

ingly aggressive investment strategy. Therefore, by moving �rst it is able to

compensate its ine¢ ciency by restricting its rival�s investment decision and

manipulating a better ex post situation for itself. Consequently, the initial

heterogenity between the �rms plays an important role in determing the mar-

ket outcome and, in general, relatively weak �rms "give up" whilst stronger

�rms "�ght."
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4 Conclusion

This paper examines the e¤ects of endogenous cost selection on a �rm�s

product and pricing decisions where the �rms are heterogeneous with respect

to their ex ante investment e¢ ciencies and investment timing. In doing so,

two results, unique to the literature, are obtained.

First, where an ex ante e¢ cient �rm possesses Stackelberg leadership in

cost reduction, they generate lower costs, greater demand and yield larger

pro�ts ex post than their ex ante ine¢ cient rival. This result suggests, where

a �rm possesses both an investment timing and e¢ ciency advantage, the ex

ante e¢ cient �rm invests aggresively in cost reduction in order to cement its

place as the dominant �rm in the �nal product market. Thus, the impetus

for the e¢ cient �rm to invest are the bene�ts of being the dominant �rm in

the �nal product market. In contrast, the ex ante ine¢ cient �rm�s incentive

to invest is, ultimately, an attempt to balance two contrasting incentives: (i)

to increase investment in order to maintain its market position by reducing

the size of the ex post cost asymmetry and; (ii) to reduce investment so

as to mitigate increased price competition in the �nal product market. In

general, the latter incentive dominates as the a priori e¢ cient �rm is able to

preemptively invest in cost reduction and force its rival to act "soft" in order

to prevent itself undermining its pro�ts through tough price compeition.

Second, if an ex ante ine¢ cient �rm is the Stackelberg leader in the cost-

reduction stage, there are a four potential equilibrium outcomes that depend

on the relative e¢ ciencies of the two �rms. If the a priori e¢ ciency gap is

large, then the ex ante ine¢ cient �rm invests simply to protect some market

share. This result obtains because, where the ex ante �rm is very weak and

unable to make the most of its timing advantage, investment serves only

to increase price competition in the �nal product market and undermine its

pro�ts. Therefore, for a large e¢ ciency gap, the ex ante ine¢ cient �rm "gives

up." However, as the initial e¢ ciency gap becomes smaller, the ine¢ cient �rm

becomes better able to preemptively invest in cost reduction and temper the
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investment decision of its rival �rm. Consequently, the �rm begins to "�ght."

However, it is only when the gap between the two �rms is su¢ ciently small

that the ine¢ cient �rm is able to overcome this e¢ ciency disadvantage, using

its timing advantage to either invest more than its a priori e¢ cient rival;

become the ex post low cost �rm; or become the dominant �rm in the �nal

product market. Therefore, the initial heterogenity between the �rms plays

an important role in determing the market outcome and, in general, relatively

weak �rms "give up" whilst stronger �rms "�ght."

These results are unique in the literature and suggest that the �rms�

ability to innovate - in terms of timing and e¢ ciency - play a crucial role

in determining the composition of the �nal product market. Furthermore,

whilst the ex post low cost �rm does, in general, become the market leader it is

not a priori obvious whether this will be an ex ante e¢ cient or ine¢ cient �rm.

Consequently, simply examining the structure of a market in which �rms face

asymmetric unit costs may miss some crucial underlying mechanisms.

It would be interesting to examine this model within the framework of

an endogenous leadership game and examine whether this "stronger" �rm�s

incentives to preemptively invest are upheld. That is, despite the possibility

that the ex ante ine¢ cient �rm can become the ex post market leader if

it preemptively invests, this only obtains if the a priori e¢ ciency gap is

su¢ ciently small. In contrast, as with the literature regarding endogenous

Stackelberg leaderhip, the ex ante e¢ cient �rm always �nds it optimal to

invest �rst. This, however, is left for future research.

28



5 Appendix

5.1 Proof of Proposition 1

Proof. The second order conditions are given by:

@2�A
@I2A

=
216tm2

A

(8m2
B � 27t)2

� 1 < 0 (A1)

@2�B
@I2B

=
8m2

B

27t
� 1 < 0 (A2)

From equation (A1) it is possible to observe that the denominators of

equations (4) and (5) are strictly negative. Given this, it is necessary that

the numerators of (4) and (5) must be non-positive for IA and IB � 0 to

hold. Given that mA > mB > 0 and t > 0, this implies:

16m2
B � 27t � 0

16m2
A + 8m

2
B � 27t � 0

Rearraning these inequalities, noting mA > mB > 0 and t > 0, yields:

m2
A 2 (m2

B;
27

16
t� m

2
B

2
] (A3)

m2
B 2 [0;minfm2

A;
27

8
t� 2m2

Ag) (A4)

The restrictions in (A3) and (A4) ensure that equilibrium investment is

non-negative, but it also necessary to check that they are compatible with

the second order conditions. This requires:

m2
A <

(8m2
B � 27t)2
216t

(A5)

m2
B <

27

8
t (A6)

Equations (A5) and (A6) o¤er the maximum ex ante cost reducing e¢ ciencies
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for each �rm that are consistent with the second order conditions. It is most

obvious that equation (A6) is always met as it is fairly trivial to show, from

(A4), and assuming mA = mB, that maxfm2
Bg = 27

24
t < 27

8
t. Knowing that

m2
B 2 [0; 2724t) makes it easier to demonstrate that equation (A5) must always

hold too. Taking m2
B 2 [0; 2724t) as given it is possible to show

maxfm2
Ag �

(8m2
B � 27t)2
216t

= � 1

432

(8m2
B � 27t)(16m2

B � 27t)
t

which is strictly negative for all m2
A and m

2
B pairs as de�ned by (A3) and

(A4). Therefore, the second conditions hold under these restrictions.

Finally it is necessary to evaluate whether the restirctions in (6) and

(7) yield equilibrium investment levels consistent with subgame perfect Nash

equilibrium for the entire model. For this to occur we requiremAIA�mBIB 2
(�9

4
t; 9
4
t). The ex post cost di¤erential is given by

mAIA �mBIB =
18t[27t(mB �mA)(mA +mB)� 8m4

B]

216tm2
A � (8m2

B � 27t)2

which is strictly positive given the conditions in (A3) and (A4). Therefore,

it is necessary that mAIA �mBIB <
9
4
t, or

�243
4

t2(16m2
A + 8m

2
B � 27t)

216tm2
A � (8m2

B � 27t)2
< 0

Of course, holds if and only if m2
A <

27
16
t� m2

B

2
. This implies that the restric-

tions derived from the second order and non-negative investment conditions

are generally consistent with mAIA �mBIB 2 (�9
4
t; 9
4
t). However, it is nec-

essary to remove a single case from (A3), where m2
A =

27
16
t� m2

B

2
, which yields

(6), and (7) remains identical to (A4).

30



5.2 Proof of Proposition 2

Proof. (i) It is trivial to show that the equilibrium investment levels are

strictly positive as this follows directly from the proof of Proposition 1.
(ii) Taking m2

A and m
2
B de�ned as in (6) and (7):

@IA
@mA

=
�18t(16m2

B � 27t)(216tm2
A + (8m

2
B � 27t)2)

[216tm2
A + (8m

2
B � 27t)2]2

> 0

@IB
@mA

=
�288tmAmB(8m

2
B � 27t)(16m2

B � 27t)
[216tm2

A + (8m
2
B � 27t)2]2

< 0

(iii) Recall �rm B�s investment function given in equation (5) and assume

that the e¢ ciency gap is given by

� =
27

8
t� 3

2
m2
B

If this is the case then IB = 0. However, it is known that IB > 0 for all other

levels of the e¢ ciency gap (Proposition 1) and that, for any m2
B,

@IB
@mA

< 0.

Therefore, taking m2
B as given, it must be that increasing the size of the

e¢ ciency gap reduces IB until it equals zero.

(iv) Where equations (6) and (7) hold:

IA � IB =
�18t[(mA �mB)(16mAmB + 27t) + 8m

3
B]

216tm2
A + (8m

2
B � 27t)2

> 0

This is strictly positive for all relevant m2
A and m

2
B pairs which implies that

IA > IB in all relevant cases.
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5.3 Proof of Proposition 3 (�A > �B)

Proof. (iii)Taking m2
B 2 [0; 2724t) as given, we note that �A � �B = 0 if and

only if m2
A = m

2
A or m

2
A where

m2
A =

1

576

243t2(32m2
B � 81t) + �

t(8m2
B � 27t)

m2
A =

1

576

243t2(32m2
B � 81t)� �

t(8m2
B � 27t)

and

� =
q
�3t(16m2

B � 81t)(32m2
B � 81t)(16m2

B � 27t)3

It is obvious that the domains of both m2
A and m

2
A are given by m

2
B 2

[0; 27
16
t]\ [81

32
t; 27

8
t)\ (27

8
t; 81
16
t]. However, from Proposition 1 and Corollary

1 it is know that m2
B 2 [0; 2724t), which is strictly contained in this domain

and so this does not pose a problem.

As �A � �B = 0 only if m2
A = m

2
A or m

2
A it must be that �A � �B has a

constant for all m2
A 2 (m2

A;m
2
A) and so we examine if: (i) m

2
A < minfm2

Ag
and; (ii) maxfm2

Ag < m2
A. Simply, that m

2
A 2 (m2

A;m
2
A).

First, m2
A = 0 if and only if m

2
B 2 f0; 8132tg and implies that m

2
A is contin-

uous, with the same sign, over m2
B 2 [0; 2724t). Therefore, we can evaluate

minfm2
Ag �m2

A = m
2
B �m2

A

for all m2
B 2 [0; 2724t). Doing so yields

minfm2
Ag �m2

A =
1

576

288tm2
B(16m

2
B � 81t)2 + 19683t3 � �
t(8m2

B � 27t)
(A7)

Equation (A7) is zero if and only if m2
B = 0;

189
64
t � 27

64
t
p
17. Therefore, it is

quite trivial to check that this minfm2
Ag � m2

A for all m
2
B 2 [0; 2724t). Hence,

for all m2
B de�ned as in equation (7), m

2
A is strictly larger than m

2
A.

Second, m2
A = 0 if and only if m

2
B =

81
32
t. Again, this implies that m2

A is
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continuous over m2
B 2 [0; 2724t). This only leaves us to evaluate

maxfm2
Ag �m2

A =
27

16
t� m

2
B

t
�m2

A

for all m2
B 2 [0; 2724t). With some manipulation

maxfm2
Ag �m2

A =
1

576

�9t(16m2
B � 27t)2 + �

t(8m2
B � 27t)

(A8)

Equation (A8) is zero if and only if m2
B =

27
16
t which lies outside the relevant

range of m2
B. In this case, it is trivial to check that this is strictly negative.

Hence, for all m2
B de�ned as in equation (7), m

2
A is strictly smaller than m

2
A.

The implication of equations (A7) and (A8) being positive and negative

respectively, for all relevant m2
A and m

2
B pairs, is that m2

A 2 (m2
A;m

2
A).

However, it is already known that between these critical values �A � �B
must have a constant sign. Thus, taking m2

A = t and m
2
B = 0 we obtain

�A � �B =
294

361
t > 0

Naturally, if �A � �B is strictly positive for these value of m2
A and m

2
B, it

must hold from the signs of equations (A7) and (A8) that this holds for all

relevant values of m2
A and m

2
B. Thus, �A � �B > 0 holds for all m2

A and m
2
B

as de�ned in equations (6) and (7).

5.4 Proof of Proposition 4

Proof. The second order conditions are given by:

@2�A
@I2A

=
8m2

A

27t
� 1 < 0 (A9)

@2�B
@I2B

=
216tm2

B

(8m2
A � 27t)2

� 1 < 0 (A10)
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From equation (A9) it is possible to observe that the denominators of

equations (10) and (11) are strictly negative. Given this, it is necessary that

the numerators of (10) and (11) must be non-positive for IA and IB � 0 to
hold. Given that mA > mB > 0 and t > 0, this implies:

16m2
A � 27t � 0

8m2
A + 16m

2
B � 27t � 0

Rearraning these inequalities, noting mA > mB > 0 and t > 0, yields:

m2
A 2 (m2

B;minf
27

16
t;
27

8
t� 2m2

Bg] (A11)

m2
B 2 [0;minfm2

A;
27

16
t�m2

Bg) (A12)

The restrictions in (A11) and (A12) ensure that equilibrium investment

is non-negative, but it also necessary to check that they are compatible with

the second order conditions. This requires:

m2
A <

27

8
t (A13)

m2
B <

(8m2
A � 27t)2
216t

=gmB (A14)

Equations (A13) and (A14) o¤er the maximum ex ante cost reducing e¢ cien-

cies for each �rm that are consistent with the second order conditions. It is

most obvious that equation (A13) is always met as it is fairly trivial to show

maxfm2
Ag = 27

16
t. It is then trivial to note thatgmB is strictly positive and,

consequently, that gmB > minfm2
Bg = 0: Thus, it is then a case of simply

ensuring that maxfm2
Bg <gmB.

First, for m2
A 2 (0; 2724t], maxfm

2
Bg = m2

A. Thus

maxfm2
Bg �gmB = �

1

216

64m4
A � 81t(8m2

A � 9t)
t
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This equals zero where m2
A =

81
16
t � 27

16
t
p
5 both of which are strictly larger

than 27
24
t = maxfm2

Bg. Therefore, for all m2
A 2 (0; 2724t] and over all m

2
B 2

(0; 27
24
t) it must hold that maxfm2

Bg �gmB has the same sign. It is then easy

to show maxfm2
Bg �gmB < 0 for all m2

A 2 (0; 2724t].
Second, where m2

A 2 [2724t;
27
16
t], maxfm2

Bg = 27
16
t� m2

A

2
. This implies

maxfm2
Bg �gmB = �

1

432

(8m2
A � 27t)(16m2

A � 27t)
t

This is negative for allm2
A 2 (0; 2716t) and equal to zero if and only ifm

2
A =

27
16
t.

However, all possible m2
B are strictly less than maxfm2

Bg , which doesn�t
cause a problem. Therefore, this implies that the second order conditions

are met for all m2
A and m

2
B pairs.

Finally, it is necessary to check that 'A�'B = mAIA�mBIB 2 (�9
4
t; 9
4
t)

also holds, or that the ex post cost asymmetry allows for a subgame perfect

Nash equilibrium. This is true if and only if

mAIA �mBIB > �9
4
t (A15)

mAIA �mBIB <
9

4
t (A16)

From equation (A15) we obtain

243

4

t2(8m2
A + 16m

2
B � 27t)

216tm2
B � (8m2

A � 27t)2
> 0

which implies m2
A + 2m

2
B <

27
8
t. Equation (A16) on the other hand requires

9

4

t(8m2
A � 27t)(16m2

A � 27t)
216tm2

B � (8m2
A � 27t)2

< 0

This equation implies that m2
A <

27
16
t.

Combining this �nal elements with (A11) and (A12) the non-negative

investment and second order conditions it is apparent that we must remove a
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single case (where m2
A =

27
16
t). Doing this obtains the restriction in equations

(12) and (13).

5.5 Proof of Proposition 5

Proof. (i) it is trivial to demonstrate that IA and IB are strictly positive as
this follows directly from Proposition 4.
(ii)Taking m2

A 2 (m2
B;

27
16
t) as given and m2

B de�ned as in (13):

@IA
@mB

=
�288tmAmB(8m

2
A � 27t)(16m2

A � 27t)
[216tm2

B + (8m
2
A � 27t)2]2

< 0

@IB
@mB

=
�18t(16m2

A � 27t)(216tm2
B + (8m

2
A � 27t)2)

[216tm2
B + (8m

2
A � 27t)2]2

> 0

Consequently, it is easy to see that, taking m2
A as given, an increase to m

2
B

decreases (increases) the equilibrium investment levels of �rm B (A).

(iii)Where equations (12) and (13) hold

IA � IB = �
18t[(mB �mA)(16mAmB + 27t) + 8m

3
B]

216tm2
B + (8m

2
A � 27t)2

This function is equal to zero if and only if m2
B = m

I
B where

mI
B =

1

1024

[16m2
A � 27t�

p

]2

m2
A

and


 = 729t2 + 864tm2
A � 256m4

A

Of course, for the function to be continuous we require that m2
A 6= 0 and


 � 0. The �rst of these follows from Proposition 4, but 
 � 0 if and only
if

m2
A 2 [

27

16
t(1�

p
2);
27

16
t(1�

p
2)]

This clearly contains all relevant m2
A and so is not an issue.
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Note that there are two critical values of m2
B which we will denote as

mI+
B =

1

1024

[16m2
A � 27t+

p

]2

m2
A

mI�
B =

1

1024

[16m2
A � 27t�

p

]2

m2
A

It is possible to observe that mI+
B > 0. This is because mI+

B = 0 could

only occur if m2
A = 0 but, if this were the case, mI+

B = 0
0
which is not

de�ned. Therefore, mI+
B is continuous over m2

A 2 (0; 2716t) and it is trivial to
demonstrate that it is always positive over this range. In contrast, mI�

B > 0

and if jm2
Aj = 27

8
t and is, therefore, continuous over all m2

A 2 (0; 2716t) also.
However, it is possible to demonstrate that mI�

B is always positive over this

range.

Given that bothmI+
B andmI�

B are strictly positive over the relevant range,

it is useful to observe

mI�
B �mI+

B = � 1

256

(16m2
A � 27t)

p



m2
A

> 0

It is also important to note that the second order conditions are violated

if16

m2
B >

(8m2
A � 27t)2
216t

= �

Now

mI+
B � � = 1

13824

(16m2
A � 27t)(�16m2

A(16m
2
A � 81t)� 729t2 + 27t

p

)

tm2
A

16As this value of m2
B is derived from the second order conditions, it must be that all

relevant m2
B - contained in equation (13) - meet this criteria. Therefore

maxfm2
Bg < �
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which equals zero if and only if m2
A =

27
16
t. Therefore, for m2

A 2 (0; 2716t) the
equation has the same sign. In this case, it is trivial to show that it is always

negative. Likewise

mI�
B � � = � 1

13824

(16m2
A � 27t)(16m2

A(16m
2
A � 81t) + 729t2 + 27t

p

)

tm2
A

This function equals zero if and only if m2
A =

27
16
t or 27

8
t which implies it has

the same sign for all m2
A 2 (0; 2716t). In this case, it is trivial to check that it

must be positive.

Consequently, we can ignore mI�
B (as it would violate the SOCs) and

simply use mI+
B = mI

B. This implies that for all m
2
B 2 (mI

B;�) it must hold

that IA � IB has the same sign also. Therefore, we must examine

maxfm2
Bg �mI

B = m2
A �mI

B 8 m2
A 2 (0;

27

24
t] (A17)

maxfm2
Bg �mI

B =
27

16
t� m

2
A

2
�mI

B 8 m2
A 2 (

27

24
t;
27

16
t] (A18)

From equation (A17) we observe

m2
A �mI

B = �
1

512

(16m2
A � 27t)

p

 + 729t2 � 512m4

A

m2
A

which is never equal to zero. Thus, it is continuous over all m2
A 2 (0; 2724t] and

positive over this range. Similarly, from equation (A18) we observe

27

16
t� m

2
A

2
�mI

B = �
1

512

(16m2
A � 27t)(16m2

A � 27t+
p

)

m2
A

which equals zero if m2
A =

27
16
t. However, as this is not a potential value for

m2
A it must be that it is continuous over all m

2
A 2 [2724t;

27
16
t) and it is trivial

to demonstrate that this, too, is positive.

Therefore, it must be that, for all m2
A 2 (0; 2716t), m

I
B 2 (0;maxfm2

Bg).
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5.6 Proof of Proposition 6

Proof. (i)The ex post cost di¤erential is given by

mAIA �mBIB =
18tmAmB(8m

4
A � 27t(mA �mB)(mA +mB))

216tm2
B + (8m

2
A � 27t)2

Furthermore, this equation is equal to zero if and only if m2
B = m

'
B where

m'
B = �

1

27

m2
A(8m

2
A � 27t)
t

Naturally, this is strictly positive and implies that it must be larger than the

minimum potential value of m2
B. Therefore, for m

2
A 2 (0; 2724t] we �nd

maxfm2
Bg �m

'
B = m

2
A �m

'
B =

8

27

m4
A

t
> 0

which implies that maxfm2
Bg > m

'
B for all m

2
A 2 (0; 2724t]. In addition, for all

m2
A 2 [2724t;

27
16
t)

maxfm2
Bg �m

'
B =

27

16
t� m

2
A

2
�m'

B =
1

432

(8m2
A � 27t)(16m2

A � 27t)
t

> 0

which implies maxfm2
Bg > m

'
B for all m

2
A 2 [2724t;

27
16
t).

Together, these imply that maxfm2
Bg > m

'
B for all m

2
A 2 (0; 2716t]. More-

over, as mAIA �mBIB = 0 if and only if m2
B = m

'
B we can observe that the

sign of the equation is the constant on either side of m'
B. Thus, it is trivial

to check, for a given m2
A, if m

2
B < m'

B, mAIA � mBIB > 0. Therefore, if

m2
B > m

'
B then mAIA �mBIB < 0.

(ii) It is easy to check the relationship between m'
B and m

I
B by observing

m'
B �mI

B = �
1

13824

(16m2
A � 27t)(16m2

A(16m
2
A � 27t)� 729t2 + 27t

p

)

tm2
A
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This equation is zero if and only ifm2
A =

27
16
t. Therefore, over allm2

A 2 (0; 2716t]
this must have the same sign. Therefore, it is trivial to then check, for any

m2
A, that m

'
B > m

I
B.

5.7 Proof of Proposition 7

Proof. (i) Taking m2
A and m

2
B as de�ned in (12) and (13) is is trivial to

demonstrate that the pro�ts for both �rms are strictly positive.

(ii) The di¤erence in �rm pro�ts is given by

�A��B =
6t[m2

A(81t� 32m2
A)(8m

2
A � 27t)2 + 729t2m2

B(32m
2
B � 81t)� 864m2

Am
2
B(8m

2
B � 27t)]

[216tm2
B � (8m2

A � 27t)2]2

Of course, it is not obvious whether this function is positive or negative.

However, we can observe that �A � �B = 0 if and only if m2
B = m

�
B where

m�
B =

1

576

243t2(32m2
A � 81t)�

p
�

t(8m2
A � 27t)

where

� = �3t(16m2
A � 81t)(32m2

A � 81t)(16m2
A � 27t)3

Of course, we require that � � 0. This occurs for all m2
A 2 [0; 2716t]\ [

81
32
t; 81
16
t]

which is contained in the feasible set of m2
A.

However, this does imply that there are two critical values for which

�A � �B = 0 given by

m�+
B =

1

576

243t2(32m2
A � 81t) +

p
�

t(8m2
A � 27t)

m��
B =

1

576

243t2(32m2
A � 81t)�

p
�

t(8m2
A � 27t)

First, over the relevant range ofm2
A 2 (0; 2716t),m

�+
B = 0 if and only ifm2

A = 0;

which is not contained in this set. Therefore, for all m2
A 2 (0; 2716t], over which
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the function is continuous, the sign will be the same. It is trivial, then, to

check that this is positive. Second, over the relevant range of m2
A 2 (0; 2716t],

m��
B = 0 if and only if m2

A = 0 also. Consequently, the sign on this is

constant for all m2
A 2 (0; 2716t] and it is trvial to observe that this is positive.

Therefore, we know that both m�+
B and m��

B are positive. However, it is

fairly simple to observe which is larger by checking

m�+
B �m��

B =
1

288

p
�

(8m2
A � 27t)

For all m2
A as de�ned as in equation (12) it must be that this is negative, or

m�+
B < m��

B .

However, we must also check that they meet the necessary SOCs. This

requires

m�+
B � � =

1

1728

�(16m2
A � 27t)(256m4

A � 2160tm2
A + 3645t

2) + 3
p
�

t(8m2
A � 27t)

< 0

m��
B � � =

1

1728

�(16m2
A � 27t)(256m4

A � 2160tm2
A + 3645t

2)� 3
p
�

t(8m2
A � 27t)

< 0

Interestingly, both of these equations only equal zero where m2
A =

27
16
t. Thus,

for all m2
A 2 (0; 2716t) these equations have the same sign and it is not di¢ cult

to check that these must be negative. This means that both of these critical

values are below the upper bound set by the SOCs. Consequently, it is

possible to argue that for all m2
B 2 (m�+

B ;m
��
B ) the di¤erence in �rm pro�ts

has the same sign.

Therefore, it is only left to check that m�+
B or m��

B are contained within

the feasible set of m2
B. Obviously, as both of these are strictly possitive,

it must be that they are above the lower bound. However, we must check

whether they are under the upper bound. First, for all m2
A 2 (0; 2724t] we can
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check

m�+
B �maxfm2

Bg = m�+
B �m2

A (A19)

=
1

576

�288tm2
A(16m

2
A � 81t)� 19683t3 +

p
�

t(8m2
A � 27t)

m�+
B �maxfm2

Bg = m��
B �m2

A (A20)

=
1

576

�288tm2
A(16m

2
A � 81t)� 19683t3 �

p
�

t(8m2
A � 27t)

Equation (A19) equals zero if and only if m2
A = 0. Therefore, for all m

2
A 2

(0; 27
24
t] it must have the same sign (and is continuous). It is trivial then to

show that this is negative. Equation (A20) is zero if and only ifm2
A =

27
64
t(7�p

17) > 27
24
t. Therefore, this too has the same sign over the relevant range

but, in this instance, the sign is positive. Consequently, for all m2
A 2 (0; 2724t]

only m�+
B is contained within the set of possible m2

B.

Second, we must check, for m2
A 2 [2724t;

27
16
t)

m�+
B �maxfm2

Bg = m�+
B � (27

16
t� m

2
A

2
) (A21)

=
1

576

6561t3 � 7776t2m2
A + 2304tm

4
A +

p
�

t(8m2
A � 27t)

m�+
B �maxfm2

Bg = m��
B � (27

16
t� m

2
A

2
) (A22)

=
1

576

6561t3 + 7776t2m2
A � 2304tm4

A �
p
�

t(8m2
A � 27t)

Equation (A21) is equal to zero only where m2
A =

27
16
t. Thus, for all m2

A 2
[27
24
t; 27
16
t), this equation has the same sign and it is simply to sho that this

is negative. The second equation, (A22), is zero if and only if m2
A =

27
16
t.

Therefore, this too has the same sign over the relevant range. However, in

this case, the sign is positive. Consequently, for all m2
A 2 [2724t;

27
16
t) only m�+

B

is contained within the set of possible m2
B.

Therefore, given that the sign of �A � �B is constant for all m2
B 2
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(m�+
B ;m

��
B ), m

�+
B < maxfm2

Bg and m��
B > maxfm2

Bg it must be that for
all m2

B 2 (m�+
B ;maxfm2

Bg) the sign of �A� �B is constant. We shall rename
m�+
B = m�

B as it is contained in the relevant set and it is then simple to

demonstrate that, for all m2
A 2 (0; 2716t), if m

2
B > m

�
B then �A < �B.

(iii) Finally

m�
B �m

'
B =

1

1728

(16m2
A � 27t)(246m4

A � 1296tm2
A + 2187t

2) + 3
p
�

t(8m2
A � 27t)

This equals zero if and only if m2
A = 0 or

27
16
t and is continuous between. This

means that m�
B �m

'
B has the same sign for all m

2
A 2 (0; 2716t) and it is quite

easy to show that this is positive.

Thus, m�
B > m

'
B > m

I
B over the relevant range.
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