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1 Introduction

This paper develops Brown and Newey�s (2002) e¢ cient bootstrap methodology to

possibly overidenti�ed moment conditions models with weakly dependent observa-

tions. The e¢ cient bootstrap di¤ers from the traditional one in that it uses as

resampling probabilities those obtained by estimating the unknown distribution of

the observations subject to the constraint implied by the moment conditions them-

selves. The resulting estimator is typically more e¢ cient than the empirical dis-

tribution function used in the traditional bootstrap as the nonparametric estima-

tor of the distribution of the observation, hence the term e¢ cient, although some-

times in the statistical literature the same bootstrap methodology is called �biased�

(Hall and Presnell, 1999). In this paper the estimator we consider is the gener-

alised empirical likelihood estimator of Newey and Smith (2004). This estimator

is very general and includes a number of well-known estimators including empirical

likelihood (Owen, 1988), exponential tilting (Efron, 1981), and euclidean likelihood

(Owen, 1991).

In this paper we make two main contributions: �rst we generalise the e¢ cient

bootstrap to weakly dependent observations. To be speci�c we prove the asymptotic

validity of the e¢ cient bootstrap approximation to the true distribution of the gener-

alised method of moment (GMM) estimator. We also consider testing and prove the

asymptotic validity of the bootstrap approximation for t-statistics, Hansen�s (1982)

J statistic for overidentifying restrictions, and for Wald, Lagrange multiplier and dis-

tance statistics for nonlinear hypotheses. This extension is theoretically interesting

and empirically relevant in economics and �nance where most of the observed time

series exhibit some form of temporal dependence and most of the hypotheses of in-

terest are typically composite. Second we provide Monte Carlo evidence about the

�nite sample performance of the proposed bootstrap and compare it with that of the

standard bootstrap. The results of the simulations are encouraging and suggest that

the proposed bootstrap has competitive �nite sample properties compared to those
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of the standard bootstrap.

The results of this paper complement those obtained by Flachaire (2005) and

Godfrey and Tremayne (2005) among others. These authors recommend using wild

(block) bootstrap in the context of (dynamic) heteroskedastic linear regression mod-

els. The wild bootstrap however cannot accommodate potential endogeneity of re-

gressors, and, more generally, it requires a regression type of model. In contrast the

method proposed in this paper applies to more general statistical models and can

accommodate endogeneity; for example nonlinear instrumental variable estimation is

allowed.

It is important to note that the results of this paper are related to those obtained

by Allen, Gregory and Shimotsu (2005). They propose to use the same type of

e¢ cient bootstrap used in this paper. There are however a number of important

di¤erences between their paper and ours. First, our e¢ cient bootstrap uses the

estimated probabilities to resample the moment indicators, whereas Allen et al. (2005)

use the estimated probabilities only to centre the resampled moment indicator. Thus

our bootstrap method is the direct extension of that proposed by Brown and Newey

(2002). Second we consider e¢ cient bootstrap GMM inferences for possibly nonlinear

statistical hypotheses. Third we consider k-step versions of the e¢ cient bootstrap

GMM estimators. Finally we resample using the overlapping blocks scheme (the so-

called moving block bootstrap) as opposed to nonoverlapping blocks scheme used by

Allen et al. (2005). On the other hand we consider stationary �-mixing observations,

instead of the more general possibly nonstationary near epoch dependent speci�cation

used by Allen et al. (2005).

The rest of the paper is structured as follows: Section 2 brie�y introduces the

statistical model and GMM estimation and inference. Section 3 describes the e¢ cient

bootstrap and develops the necessary asymptotic theory. Section 4 reports the results

of the simulations and some concluding remarks. An appendix contains all the proofs

and some details about the arti�cial data used in the simulations.
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2 GMM estimation and inference

Let fztgt2Z denote a sequence of Rdz -valued random vectors de�ned on some proba-

bility space (
;F ; P ). Let � 2 B � Rk denote a parameter vector, and let g (zt; �) :

Rd � B ! Rl (l � k) denote a vector of (FnBorel-measurable for each � 2 B) func-

tions satisfying the possibly overidenti�ed moment conditions

E [g (zt; �0)] = 0; (1)

where the expectation is with respect to the unknown distribution F of zt and �0 is

the unique unknown parameter.

Given an observed sample fztgTt=1, the two-step (e¢ cient) GMM estimators b� for
�0 is de�ned as b� = argmin

�2B
bg (�)0 b
�e���1 bg �b�� ;

where bg (�) = PT
t=1 gt (�) =T , gt (�) = g (zt; �), b
�e�� is a consistent estimator of

the covariance matrix 
 (�0) := limT!1 V
�
T 1=2bg (�0)� and e� any preliminary T 1=2-

consistent estimator. Under mild regularity conditions Hansen (1982) shows that

T 1=2
�b� � �0

�
d! N

�
0;� (�0)

�1� ;
where � (�0) := G (�0)

0
 (�0)
�1G (�0) and G (�0) := E [@bg (�0) =@�0]. Associated

with the two-step GMM estimator b� there is the so-called J-statistic for overidentify-
ing restriction J

�b��, where J (�) = Tbg (�)0 b
 (�)�1 bg (�), which can be used to test
the correct speci�cation of (1) since Hansen (1982) shows that

J
�b�� d! �2l�k:

Let h (�) : B ! Rp (p � k) denote a vector of continuously di¤erentiable on B

functions, and suppose that we want to test the hypothesis H0 : h (�0) = 0. As in

Newey and West (1987a) we can de�ne three GMM analogues of the Wald, Lagrange
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multiplier and likelihood ratio statistics:

W
�b�� = Th

�b��0 �H �b�� b��b���1H �b��0��1 h�b�� ; (2)

LM
�e�� = Tbg �e��0 b
�e���1 bG�e�� b��b���1 bG�e��0 b
�e���1 bg �e��

and

D
�e�; b�� = JT

�e��� JT

�b�� ;
where H (�) = @h (�) =@�0, e� is the constrained GMM estimator for �0 de�ned as

e� = argmin
�2B

bg (�)0 b
�e���1 bg (�) subject to h (�) = 0; (3)

bG (�) = PT
t=1 @gt (�) =@�

0T . Under mild regularity conditions Newey and West

(1987a) show that

W
�b�� ; LM �e�� ; D �e�; b�� d! �2p:

GMM is widely used in empirical economics and �nance -see the special issue of

the Journal of Business and Economic Statistics 2002 and especially the monograph

of Hall (2005) for a survey of recent applications and development of GMM. There

exists however Monte Carlo evidence, see for example the special issue of the Journal

of Business and Economic Statistics 1996, showing that asymptotic theory might not

provide a good approximation to the �nite sample behaviour of GMM estimators and

associated statistics.

In order to improve the �nite sample behaviour of GMM statistics one possibility

is to use bootstrap methods. Indeed Hall and Horowitz (1996), Andrews (2002) and

more recently Inoue and Shintani (2006) use the block bootstrap to obtain asymp-

totic re�nements to the distributions of Hansen�s (1982) J statistic for overidentifying

restrictions and symmetrical t statistics. All these authors base the bootstrap estima-

tion on centred sample moment conditions. Centring is not necessary to obtain the

asymptotic validity of the bootstrap GMM t-statistic (Hahn, 1996), but it is neces-

sary to obtain asymptotic re�nements (Hall and Horowitz, 1996). It is also necessary

to obtain asymptotic validity of the bootstrap J statistic (Brown and Newey, 2002).
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An alternative approach to centring is to use a di¤erent estimator of the unknown

distribution of the observations that automatically centres the resampled moment

indicators, as originally suggested by Brown and Newey (2002) in the context of for

identically and independently observations.

3 E¢ cient block bootstrap

In this section we introduce a modi�cation of Brown and Newey�s (2002) e¢ cient

bootstrap that is based on the generalised empirical likelihood (GEL) estimator of

Newey and Smith (2004) and can be used with weakly dependent observations. Let

� (v) denote a function of a scalar v that is concave on its domain, an open interval V

containing 0, and let �j (v) = dj� (v) =dvj. Examples of � (v) are log (1� v) (empirical

likelihood), � exp (v) (exponential tilting) and � (1 + v)2 =2 (euclidean likelihood).

To capture the weakly dependent structure of the observations we consider over-

lapping blocks of observations; let m = m (T ) and bi =
�
z0i; :::; z

0
i+m�1

�0
be the i-th

block of m consecutive observations for 1 � i � Q = T � m + 1. De�ne now the

blockwise moment function

 (bi; �) :=  i (�) =
mX
j=1

g (zi+j�1; �) =m; (4)

and note that if (1) holds then E [ i (�0)] = 0. The (blockwise) GEL estimator of

the unknown distribution F consistent with (1) is

bFb� (z) = QX
i=1

mX
j=1

b��i I fzi+j�1 � zg =m;

where

b��i = �1

�b�0 i �b��� = QX
i=1

�1

�b�0 i �b��� (5)

are the so-called GEL implied probabilities, b� = argmax�2bVQPQ
i=1 �

�
�0 i

�b��� =Q,bVQ := f� : �0 i (�) 2 V , i = 1; :::; Qg and b� is any e¢ cient estimator for �0, such as
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the e¢ cient GMM or any asymptotically equivalent GEL estimators de�ned as b� =
argmin�2B

PQ
i=1 �

�b�0 i (�)� =Q. Note that the computation of b� is straightforward
because of the global concavity of � (�), and that

b� = 
(�0)�1 b �b��+ op (1) ; (6)

where b (�) =PQ
i=1  i (�) =Q (Bravo, 2009).

The e¢ cient block bootstrap (EBB henceforth) uses the GEL implied probabilitiesb��i to resample the blocks bi to obtain n blocks b�i with n = bT=mc where b�c is the
integer part function, that is each bootstrap block b�i is drawn independently with

replacement with probability Pr
�
b�j = bi

�
= b��i i = 1; :::; Q, j = 1; :::; n. Given b�i

(i = 1; :::; n) we can construct EBB analogues of the blockwise moment indicators

(4), that is  �i (�) (i = 1; :::; n). These moment indicators satisfy the sample moment

condition because E� [ �i (�)] = 0 when � = b� by construction (by (6) and Lemma
4 in the Appendix), where E� denote the expectation relative to the EBB bootstrap

distribution conditional on the original sample.

The EBB two-step GMM estimator b�� is de�ned as
b�� = argmin

�2B
b � (�)0 b
� �e����1 b � (�) ; (7)

where e�� is a preliminary consistent EBB GMM estimator, such as an EBB one-step

GMM estimator. The latter can be de�ned in an analogous way as

b�� = argmin
�2B

b � (�)0cW b � (�) ;
where cW is a possibly random positive semide�nite matrix. Furthermore we can

de�ne the EBB t-statistic and J statistic for overidentifying restrictions as

t� = T 1=2
�b��j � b�j� =�b�� �b����1

jj

�1=2
j = 1; :::; k; (8)

J�
�b��� = T b � �b���0 b
� �b����1 b � �b��� ;

7



where, with a slight abuse of notation, mn = T . Thus an EBB t-test and J test

reject, respectively, if jtj � bqt� and J � bqJ�, where bqt� and bqJ� are the 1� � percentile

of the distributions of t� and J�
�b��� obtained by computing (8) B times.

To de�ne EBB analogues of the three GMM based statistics (2) that can be used

to test H0 : h (�0) = 0 let

e��i = �1

�e�0 i �e��� = QX
i=1

�1

�e�0 i �e��� (9)

denote the restricted implied probabilities, where e� = argmax�2bVQPQ
i=1 �

�
�0 i

�e��� =Q
a and e� is any two-step constrained estimator for �0, such as the constrained GMM
estimator de�ned in (3)or any asymptotically equivalent blockwise GEL estimators

de�ned as e� = argmin�2B
PQ

i=1 �
�e�0 i (�)� =Q subject to h (�) = 0. As with the

unconstrained EBB two-step GMM estimator we use e��i to obtain moment functions
 �i (�) (i = 1; :::; n) that by construction E

� [ �i (�)] = 0 when � = e�.
The EBB constrained two step GMM estimator is

e�� = argmin
�2B

b � (�)0 b
� �����1 b � �b�� ;
where �� is a preliminary consistent EBB constrained GMM estimator. The EBB

analogues of (2) are

W �
�b��� = T

h
h
�b���� h

�b��i0 �H �b��� b�� �b����1H �b���0��1 hh�b���� h
�b��i ;

LM�
�e�� = T b � �e���0 b
� �e����1 bG� �e��� b�� �e����1 bG� �e���0 b
� �e����1 b � �e���

and (10)

D�
�e�; b�� = J�

�e���� J�
�b��� :

Thus an EBB Wald, Lagrange multiplier and distance tests, say S, reject if S � bqs�
where bqs� is the 1 � � percentile of the distribution obtained by computing B times

any of the three statistics (10).
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Like any other resampling method EBB can be computationally very demanding

when applied to nonlinear moment conditions models. One way to reduce the com-

putational cost is to follow Davidson and MacKinnon�s (1999) suggestion and use an

approximate k-step (k = 1; 2; :::) EBB two-step GMM estimator alternative to (the

fully optimised) ��, that is

��(j) = ��(j�1) � b�� ���(j�1)��1 bG� ���(j�1)�0 b
� ���(j�1)��1 b � ���(j�1)� 1 � j � k

where ��(0) = � and � can be either the unconstrained or constrained two-step GMM

estimator.

Asymptotic theory

The following assumptions are standard in the GMM/GEL literature on nonlinear

(di¤erentiable) moment condition models with stationary weakly dependent obser-

vations - see for example Wooldridge (1994), Hall (2005), and Politis and Romano

(1992), and Goncalves and White (2004) for a bootstrap analogue.

A1 fztgt2Z is a strictly stationary strong mixing sequence of size ��= (�� 2) where

� > 2;

A2 (i) The parameter space B is compact, (ii) �0 2 B is the unique solution

to E [gt (�0)] = 0, (iii) gt (�) is continuous a:s: at each � 2 B , (iv) (a)

E
�
sup�2B kgt (�)k

�
< 1, (b) E

h
kgt (�0)k

2�+�
i
< 1 for some � > 0 (v)


 (�0) := limT!1 V
�
n1=2bg (�0)� is positive de�nite,

A3 (i) �0 2 int (B) , (ii) gt (�) is continuously di¤erentiable a:s: in a convex neigh-

bourhood N of �0 8t and 8� 2 N (iii) E sup�2N k@gt (�) =@�0k
2
< 1 (iv)

rank [G (�0)] = k where G (�0) = E [@gt (�0) =@�
0],

A4 � (�) is twice continuously di¤erentiable in an open neighbourhood of 0, and

�k (0) = �1 for k = 1; 2:
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The following theorem establishes the asymptotic validity of the EBB two-step

GMM estimator b�� and of the J statistic for overidentifying restrictions J� �b���.
Theorem 1 Suppose that A1-A4 hold. If m = o

�
T 1=2

�
then

sup
x2Rk

���P � hT 1=2 �b�� � b�� � x
i
� P

h
T 1=2

�b� � �0

�
� x

i��� p! 0;

sup
x2R+

���P � hJ� �b��� � x
i
� P

h
J
�b�� � x

i��� p! 0:

The following theorem establishes the asymptotic validity of the EBB Wald, La-

grange multiplier and distance statistics W �
�b���, LM�

�e�� and D�
�e�; b�� :

Theorem 2 Suppose that A1-A4 hold. If rank [H (�0)] = p and m = o
�
T 1=2

�
then

sup
x2R+

���P � hW �
�b��� � x

i
� P

h
W
�b�� � x

i��� p! 0;

sup
x2R+

���P � hLM�
�e��� � x

i
� P

h
LM

�e�� � x
i��� p! 0

and

sup
x2R+

���P � hD�
�e��; b��� � x

i
� P

h
D
�e�; b�� � x

i��� p! 0:

Finally the following theorem shows that the k-step (k = 1; 2; ::) EBB two-step

GMM estimator ��(k) achieves the same asymptotic accuracy as that of the fully

optimised one ��.

Theorem 3 Suppose that A1-A4 hold. If m = o
�
T 1=2

�
then

sup
x2Rk

��P � �T 1=2 ���(k) � ��
�
� x

�
� P

�
T 1=2

�
�� � �

�
� x

��� p! 0:

4 Monte Carlo evidence

In this section we use simulations to evaluate the �nite sample properties of the

EBB and compare them with those obtained by the standard block bootstrap (BB

henceforth) and by standard asymptotic approximations. We focus on the t and J
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statistics partly because they are routinely used in empirical work and partly because

of their well documented �nite sample over-rejections problems.

We consider an intertemporal consumption based asset pricing model used by

Tauchen (1986), Kocherlakota (1990) and Wright (2003) among others. Consumption

and dividend growth are assumed to follow a �rst order vector autoregression24 log (ct=ct�1)

log (dt=dt�1)

35 =
24 �c0

�d0

35+ �0
24 log (ct�1=ct�2)

log (dt�1=dt�2)

35+
24 "ct

"dt

35 ; (11)

where ct is consumption, dt is dividend, �0 is a 2�2matrix of constants and ["ct; "dt]0 �

N (0;�0). Returns are generated so as to satisfy the stochastic Euler equation

E
h
�10 (ct=ct�1)

��20 rt � 1sjIt�1
i
= 0 (12)

where �0 = [�10; �20]
0 is the unknown parameters vector, rt is an s-dimensional vector

of returns, 1s is an s-dimensional vector of ones and It�1 is the information set at time

t�1. To generate consumption and returns time series consistent with both (11) and

(12) we use the same method proposed by Tauchen (1986) and Tauchen and Hussey

(1991). This method �ts a 16 state Markov chain to [log (ct=ct�1) ; log (dt=dt�1)]
0 to

approximate (11) and then uses numerical methods to approximate the expectation

in (12) : The resulting (discretised) system of equations is then used to obtain the

prices pt (and hence the returns rt) of stocks and risk-free bonds in each time period

(see the Appendix for some details).

We consider two returns: one based on a stock, say rst , and one risk free, say r
f
t .

Estimation of �0 is based on

bg (�0) =

TX
t=1

ft (�0) rt 
 zt�1=T; (13)

where ft (�0) = �10 (ct=ct�1)
��20, rt =

h
rst ; r

f
t

i0
, 
 is the Kronecker product, and

zt = [1; r
0
t; ct=ct�1]

0 is a vector of so-called instruments. Thus (13) consists of 8 esti-

mating equations for 2 unknown parameters, that is the degree of overidenti�cation
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is 6. To compute the covariance 
 (�0) in the two-step GMM we use the Newey-West

estimator (Newey and West, 1987b) , whereas we use a blockwise bootstrap covari-

ance estimator either centred as in Politis and Romano (1992) or with the implied

probabilities b��i in the bootstrap two-step GMM. These estimators are asymptoti-
cally equivalent for m = o

�
T 1=2

�
and have the same optimal block length parameter

m� =
�
T 1=3

�
for any choice of �nite  > 0. We consider two b��i , namely
b�ELi = Q�1

�
1� b�0 i �b����1 ;

b�EUi = 1� b �b��0 b
�b���1  i �b�� = hQ�1� J 

�b���i ;
which correspond to empirical likelihood (EL) and euclidean likelihood (EU), respec-

tively. Note that the latter does not require to numerically �nd b� because in this caseb� = b
�b���1 b �b�� exactly.
In the simulations we consider two parameterisations of (11) and (12) namely

Case 1. �0 = [0:97; 1:36]
0 , �0 = [0:018; 0:013]

0 ,

�0 =

24 �0:5 0:00

0:00 �0:5

35 , �0 =
24 0:01 0:005

0:005 0:01

35 ;
and

Case 2. �0 = [0:97; 0:36]
0 , �0 = [0:02; 0:03]

0 ,

�0 =

24 �0:1 0:05

0:20 0:12

35 , �0 =
24 0:01 0:02

0:02 0:05

35 ;
which are in the same spirit of those used by Tauchen (1986) and Kocherlakota

(1990), respectively. The sample sizes are T = 100 and T = 400, and the block

length parameter m is chosen using Newey and West�s (1994) method. The number

of bootstrap repetitions is 500 and the number of Monte Carlo replications is 5000.

The results of the simulations are presented using the graphical methods proposed

by Davidson and MacKinnon (1998). To save space we report only the results for

Case 2 and T = 100. The results for Case 1 and T = 400 are very similar and
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Figure 1: P-value plots of the t-statistics for H0 : �1 = �10. The two vertical lines

correspond to the 0.05 and 0.10 nominal size.

available upon request. Figures 1-3 show the p-value plots of the two t and J sta-

tistics. These plots show the empirical distribution function bF (xi) of the p-values of
the simulated statistics against the set of points xi (i = 1; :::; l) in the (0; 1) interval

with l = 1000. The closer is the plot to the 45-degree line the more accurate is the

corresponding approximation. In the plots the solid lines correspond to the asymp-

totic approximation (�Norm�or ��26� in the legend), the dashed lines to the block

bootstrap approximation (�BB� in the legend), the two-dash lines to the empirical

likelihood based e¢ cient bootstrap approximation (�EL�in the legend) and the dot-

dash lines to the euclidean likelihood e¢ cient bootstrap approximation (�EU�in the

legend).
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Figure 2: P-value plots of the t-statistics for H0 : �2 = �20. The two vertical lines

correspond to the 0.05 and 0.10 nominal size.
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Figure 3: P-value plots of the J-statistics. The two vertical lines correspond to the

0.05 and 0.10 nominal size.
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Figures 1-3 show that the t and J statistics based on the asymptotic approximation

over-reject, whereas those based on the three block bootstrap approximations perform

signi�cantly better, particularly those based on EL. For example the actual size of the

J-statistic at the 0.05 nominal level is 0.113 whereas the size of the three bootstrapped

J-statistics are 0.052 for that based on EL, 0.059 for that based on EU and 0.061 for

that based on BB. Figures 4-6 report the p-value discrepancy plots, which show the

discrepancy of bF (xi)� xi against xi. The �gures also feature the 0.05 critical value

of the Kolmogorov-Smirnov (KS)-type statistic

max
i

��� bF (xi)� xi

��� ; (14)

which is used to assess whether the discrepancies can be explained by experimental

randomness. Figures 4-6 show that the discrepancies for the three bootstrap proce-

dures are not signi�cant. Indeed the p-values of (14) are typically above 0.50. The

only exception is for the J statistic based on BB whose p-value is around 0.13, which

indicates that in this case the BB approximation is less satisfactory. Figures 4-6

also con�rm that among the three di¤erent block bootstraps the two based on EBB

have smaller p-value discrepancies (with those based on EL having the smallest dis-

crepancies), implying an overall better �nite sample approximation to the unknown

distributions of both the t and J statistics. As a further indication of the better

quality of approximations obtained using EBB we have computed the probabilities

of BB leading to size distortions that could have been avoided using both EL-EBB

and EU-EBB. Table 1 reports these probabilities for the conventional 0.05 and 0.10

nominal sizes and both the t and J statistics.
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Table 1

EL EU

nominal size 0.05 0.10 0.05 0.10

t1 0.24 0.17 0.14 0.11

t2 0.12 0.09 0.09 0.05

J 0.19 0.14 0.12 0.09
tj is the BB t-statistic for H0:�j=�j0 (j�1;2) and J is the BB J-statistic.

Table 1 shows that if we use for example EL-EBB instead of BB for testing H0 : �1 =

�10 we are 24% less likely to have a size distortion at the 0.05 nominal size. Likewise

if we use EU-EBB for the J-statistic we are 9% less likely to have a size distortion at

the 0.10 nominal size.

Before we consider the �nite sample power of the t and J statistics, it should

be noted that although the various block bootstrap procedures improve considerably

their �nite sample behaviour, some small size distortions are still present, particularly

for the J statistic with BB. However this fact seems to be typical of overidenti�ed

moment conditions models and is consistent for example with the �ndings of Hall and

Horowitz (1996).

Figures 7-9 show the size-power curves, which plot the power of a test statistic

against its true size. The �gures show that in terms of power EL based EBB (EL-

EBB henceforth) uniformly dominates the other procedures for a given true size; for

example in Figure 7 the t-statistic based on EL-EBB is on average about 18% more

powerful than the one based on the normal approximation, whereas in Figure 10 the

J statistic based on EL-EBB is on average around 32% more powerful than the one

based on BB. These plots also show that neither of the other two block bootstrap

approximations dominate the one based on the asymptotic distribution. However the

statistics based on EU-EBB are more powerful than those based on BB approximation

(from around 5% (on average) in Figure 7 to around 12% (on average) in Figure 9).
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Figure 4: P-value discrepancy plots of the t statistic forH0 : �1 = �10. The horizontal

line corresponds to the 0.05 critical value of the K-S statistic (14).
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Figure 5: P-value discrepancy plots of the t statistic forH0 : �2 = �20. The horizontal

line corresponds to the 0.05 critical value of the K-S statistic (14).
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Figure 6: P-value discrepancy plots of the J statistic. The horizontal line corresponds

to the 0.05 critical value of the K-S statistic (14).

20



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T rue size

P
ow

er

Norm
BB
EL
EU

Figure 7: Size-power curves of the t statistic for H0 : �1 = �10.

This suggests that, in general, the e¢ cient bootstrap method of this paper has a clear

advantage over the standard bootstrap in terms of power.

We now consider the one-step version of both BB and EBB based GMM. These

estimators are computationally very attractive because they are simply the �rst (boot-

strap) iteration from the original GMM estimator. Overall the �nite sample prop-

erties of the resulting bootstrapped t-statistics are very similar. Therefore we only

report the results for the t-statistic for H0 : �2 = �20 and the J-statistic. Figures

10-11 show the di¤erences between the p-value discrepancy plots of the fully opti-

mised with those based on the one-step version of the bootstrap, with a negative

value indicating a larger discrepancy for the one-step estimator. It is clear that BB

has the largest discrepancy di¤erence, however all of the di¤erences are statistically
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Figure 8: Size-power curves of the t statistic for H0 : �2 = �20.
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Figure 9: Size-power curves of the J statistic.
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Figure 10: P-value discrepancy di¤erence plots of the t-statistic for H0 : �2 = �20.

insigni�cant, as indicated by p-values above 0.60 of the K-S statistics for the equal-

ity of their distributions. Thus Figures 10-11 indicate that in terms of accuracy the

one-step bootstrap approximation is a valid alternative to that based on the fully

optimised bootstrap.

Figures 12-13 report the size-power di¤erence curves between the fully optimised

and the one-step version of the three block bootstrap procedures. For the t-statistic

the di¤erences are rather small, particularly for that based on EL-EBB. For the J-

statistic however there is a clear loss in power in the case of BB, which is on average

about 15% and 11.5% less powerful than EBB-EL and EBB-EU, respectively.

The Monte Carlo results of this section suggest that EBB and in particular EL-
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Figure 11: P- value discrepancy di¤erence plots of the J statistic.

25



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

20
0

.0
10

0.
00

0
0.

00
5

0.
01

0

T rue size

P
ow

er
 d

iff
er

en
ce

BB
EL
EU

Figure 12: Size-power di¤erence plots of the t statistic for H0 : �2 = �20.
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Figure 13: Size-power di¤erence plots of the J statistic.
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EBB is a valid alternative to BB. Compared to the latter, EBB requires in general

an additional maximisation. On the other hand the overall quality of the resulting

approximation seems to be superior to that based on BB. The graphical analysis indi-

cates that EBB provides a slightly more accurate �nite sample approximation to the

unknown distributions of both t and J statistics than that obtained by BB. However

the real advantage of using EBB comes when considering the power properties of the

resulting statistics. The graphical analysis indeed indicates that statistics based on

EL-EBB not only outperform those based on BB, but, perhaps more remarkably, also

those based on standard asymptotic approximations. The results of the simulations

also suggest that a one-step version of the EBB is an accurate and computationally

convenient alternative to its fully optimised analogue. This should be particularly

convenient when estimation is numerically di¢ cult and/or very time consuming.
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Appendix

Throughout the Appendix we use the following abbreviations: BCLT, CMT, ULLN

stand for bootstrap central limit theorem as in Goncalves and White (2004), contin-

uous mapping theorem, and uniform law of large numbers as in Wooldridge (1994).

�CS�, �M� and �T� stand for Cauchy-Schwarz, Markov and Triangle inequalities;

�
p��p! �, �

d��p! �denote, respectively, convergence in bootstrap probability and in boot-

strap distribution in probability, �Op��p (�)�and �op��p (�)�are the bootstrap stochas-

tic order of magnitude in probability. Finally �
a��p! �denotes asymptotically equiva-

lent bootstrap random vectors, i.e. X� a
��p
= Y � ) X� = Y �+ op��p (1), when X� and

28



Y � are Op��p (1).

Preliminary lemmas

Lemma 4 Suppose A1-A4 hold. Then for m = o (T )

max
i

���b�i � �1 + b�0 i �b��� =Q��� p! 0:

Proof. By Bravo (2009) maxi sup�2B
���b�0 i (�)��� = op (1) and the result follows by a

mean value expansion of b�i, results of Fitzenberger (1997), ULLN and simple algebra.
Lemma 5 Suppose A1-A4 hold. Then for m = o (T ), l = 0; 1 and j = 1; :::; k

E�
�
sup
�2B

@l � (�) =@�lj� <1 in probability.

Proof. By Lemma 4, results of Fitzenberger (1997), and ULLN

E�
�
sup
�2B

@l � (�) =@�lj� =X
i

b�i sup
�2B

@l i (�) =@�lj
�

X
t

�
sup
�2B

@lgt (�) =@�lj� =T +Op (m=T ) = Op (1) :

Lemma 6 Suppose A1-A4 hold. Then for m = o (T ), l = 0; 1 and j = 1; :::; k

sup
�2B

@lb � (�) =@�lj � E�
�
@l �i (�) =@�

l
j

� p��p! 0.

Proof. Let @l � (�) =@�lj = @lb � (�) =@�lj � E�
�
@l �i (�) =@�

l
j

�
, and

@l �� (�; �
0) =@�lj = sup

�2B
sup

�02N (�;�)

X@l �i (�) =@�lj � @l �i (�
0) =@�lj

 =Q:
By Lemma 5E�

�
@l �� (�; �

0) =@�lj
�
<1 in probability and thusE�

�
@l �� (�; �

0) =@�lj
� p!

0 as � ! 0 . Note that

sup
�2B

sup
�02N (�;�)

@l � (�) =@�lj � @l � (�0) =@�lj
 � @l �� (�; �

0) =@�lj+E
� �@l �� (�; �0) =@�lj�
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and thus by M

limP �

 
sup
�2B

sup
�02N (�;�)

@l � (�) =@�lj � @l � (�0) =@�lj
 > "

!
�

lim 2E�
�
@l �� (�; �

0) =@�lj
�
="

p! 0;

which implies that @l � (�) =@�lj is stochastically equicontinuous in probability. Note

that by Lemma 4 and M applied twice@lb � (�) =@�lj � E�
�
@l �i (�) =@�

l
j

� p��p! 0;

and thus the conclusion follows.

Lemma 7 Suppose A1-A4 hold, and that T 1=2
�
�� � �0

�
= Op��p (1) (or T 1=2

�
� � �0

�
=

Op (1)). Then for m = o
�
T 1=2

�
b
� �b����1 � 
 (�0)�1 p��p! 0.

Proof. By mean value expansion, CS, results of Fitzenberger (1997) and ULLN

b
� �b���� b
� (�0) � 2�X sup
�2N

kgt (�)k2 =T
�1=2�X

sup
�2N

k@g�i (�) =@�0k
2
=T

�1=2
�
m=T 1=2

�
T 1=2

b�� � �0

+Op�
�
m2=T

�
= op��p (1) ,

and the result follow by T and CMT since
b
� (�0)� 
 (�0) = op��p (1) (Politis and

Romano, 1992).

Proof of the main theorems

Proof of Theorem 1. We �rst show the consistency of b��. This follows by the stan-
dard arguments based on the uniqueness of �0, implied byE

�
g (�)0
 (�0)

�1 g (�)
�
> 0

for all � 6= �0, and

sup
�2B

���b � (�)0 b
� �����1 b � (�)� E� [ �i (�)]
0 b
� �����1E� [ �i (�)]��� = op��p (1)
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for any T 1=2
�
�� � b�� = Op��p (1) implied by Lemmas 6, 7 and CMT. The asymp-

totic normality of T 1=2
�b�� � b�� follows by mean value expansion about b� of the

EBB FOCs: 0 = @

�b � �b���0 b
� �����1 b � �b���� =@�, noting that by Lemmas 6,
7 and CMT

h@b � �b��� =@�0i0 b
� �����1 �G (�0)
0
 (�0)

�1
 = op��p (1) and that

T 1=2b � �b�� d��p! N (0;
 (�0)). The latter follows by T
1=2
�b � (�0)� E� [ �i (�0)]

�
d��p!

N (0;
 (�0)) (BCLT), Lemma 7 combined with a mean value expansion

T 1=2
b � �b��� b � (�0)� b �b��+ b (�0) �

sup
�2N

@b � (�) =@�0 � E� [@ � (�) =@�0]
T 1=2 b� � �0

 = op��p (1) ;

and T 1=2E� [ �i (�0)]
a
= T 1=2

�b (�0)� b �b��� (Lemma 4). Thus by CMT
T 1=2

�b�� � b�� d��p! N
�
0;� (�0)

�1� ;
and the �rst conclusion follows. By mean value expansion about b� of T 1=2b � �b��� ,
the asymptotic normality of T 1=2b � �b�� and standard arguments imply that J� �b��� d��p!

�2l�k and the second conclusion follows.

Proof of Theorem 2. To prove the �rst result note that by mean value ex-

pansion about b�, the results of Theorem 1 and CMT T 1=2
h
h
�b���� h

�b��i d��p!

N
�
0; H (�0) � (�0)

�1H (�0)
0�. By Lemma 7 and CMTH �b�����b����1H �b���0 �H (�0) � (�0)

�1H (�0)
0
 = op��p (1) :

Thus by standard argumentsW �
�b��� d��p! �2p. To prove the second result we �st note

that the consistency of e�� follows as in the Theorem 1 (using the modi�ed compact

parameter space B \ h (�) = 0). Then by a standard Lagrangian argument, a mean

value expansion about e�, Lemmas 6 and 7 and CMT
T 1=2

�e�� � e�� a��p
= �� (�0)

�1 �I � �(�0) � (�0)�1�G (�0)0
 (�0)�1 T 1=2b � �e�� ;
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where �(�0) = H (�0)
0 �H (�0) � (�0)�1H (�0)0��1H (�0). Thus by a further mean

value expansion of the constrained EBB GMM FOCs about e� we obtain
bG� �e���0 b
�e����1 T 1=2b � �e��� a��p

= 	(�0) � (�0)
�1G (�0)

0
 (�0)
�1 T 1=2b � �e�� ;

so that using similar arguments as those used in the proof of Theorem 1

bG� �e���0 b
�e����1 T 1=2b � �e�� d��p! N (0;�(�0)) ;

and therefore by standard arguments LM�
�b��� d��p! �2p. Finally to prove the third

result note that by a mean value expansion of b � �e�� about b��, some algebra, Lemma
6 and CMT

D�
�e��; b��� a��p

= T
�e�� � b���0G (�0)0
 (�0)�1G (�0)�e�� � b���+

2T 1=2
�e�� � b���0 bG�b���0 b
�e����1 T 1=2b � �e��� :

By the EBB FOCs 0 = bG�b���0 b
�e����1 T 1=2b � �e��� the second term on the right

hand side is op��p (1). Some algebra shows that

T 1=2
�e�� � b��� d��p! � (�0)

�1�(�0) � (�0)
�1G (�0)

0
 (�0)
�1 T 1=2b � �b��� ;

from which by the same arguments of Theorem 1

T 1=2
�e�� � b��� d��p! N

�
0;� (�0)

�1�(�0) � (�0)
�1� ;

and therefore by standard arguments D�
�e��; b��� d��p! �2p.

Proof of Theorem 3. We �rst show the consistency of the one-step estima-

tor b��(1). By the consistency of b��(0) = b�, Lemmas 6, 7 and CMT we have thatb�� �b���1 � � (�0)�1 = op��p (1) and

 bG� �b��0 b
� �b���1 �G (�0)
0
 (�0)

�1
 =

op��p (1). The same arguments of Theorem 1 applied to

b�� �b���1 bG� �b��0 b
� �b���1 T 1=2b � �b��
and the de�nition of b��(1) can be used to show that

T 1=2
�b��(1) � b�� d��p! N

�
0;� (�0)

�1� ;
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hence the conclusion. For any other k-step estimator b��(k) (k � 2) the result follows
by the same arguments applied recursively using the fact that T 1=2

�b��j � b��(j�1)� =
Op��p (1) (j = 1; 2; :::; k � 1) :

Data generating process

The method and design of the data generation process is the same as that proposed

by Tauchen (1986) and Tauchen and Hussey (1991). The basic idea is to approxi-

mate a continuous process through a �nite-state Markov chain that mimics closely

the underlying process. The distribution of the resulting Markov chain can then be

used to approximate the integral operator that arises in a number of stochastic op-

timisation problems, such as, for example, those arising in dynamic assets pricing.

More speci�cally let xit = dit=dit�1, wt = ct=ct�1 and let vit = pit=dit denote the price

dividend ratio for the i-th asset (i = 1; :::; s). Note that

rit = (pit + dit) =pit�1;

so that (12) can be written as

�1E
�
wt
��2 (1 + vit)xitjIt�1

�
= vit�1 (i = 1; :::; s) : (15)

Under the assumption that xt and wt are a (jointly stationary) �rst order Markov

process with conditional cumulative probability distribution

F
�
x1; w1jx;w

�
= Pr

�
xt � x1; wt � w1jxt�1 = x;wt�1 = w

�
(with �1�denoting one period ahead), the values x;w when the event fwt�1 = w; xt�1 = xg

occurs characterise completely the state of the system (15) so the equilibrium vit will

be a function vi (x;w) of x and w for i = 1; :::; s. These s functions are the solutions

to the following set of asset pricing equations (integral equations)

�1

Z �
w1
���2 �1 + vi �x1; w1� x1i dF �x1; w1jx;w�� = vi (x;w) ; (16)
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which under certain regularity conditions (see, for example, Lucas (1978)) admit a

unique positive solution for vi (x;w). Let n = 1; 2; ::; N denote the states of nature,

x (n) and w (n) denote the values of x and w in the state n, and let

�
�
n; n1

�
= Pr

�
xt = x

�
n1
�
; wt = w

�
n1
�
jxt�1 = x (n) ; wt�1 = w (n)

�
;

denote the transition probabilities for [x0t; wt]
0. Then (16) can be written as

�1

NX
n1=1

�
�
n; n1

� �
w
�
n1
����2 �1 + vi �n1�� xi �n1� = vi (n) : (17)

Tauchen (1986) and Tauchen and Hussey (1991) propose to use numerical methods

to compute � (n; n0), from which the equilibrium price dividend ratio vi =: vi (n)

(n = 1; :::; N) (solution of (17)) is simply

vi = (IN � P )�1 P1N

where P =: Pn;n1 = �1� (n; n
1) (w (n1))

��2 xi (n
1) (n; n1 = 1; :::; N). Then the return

for the ith asset rsi can be computed simply as

rsi
�
n; n1

�
= xi

�
n1
� �
1 + vi

�
n1
��
=vi (n) ;

whereas the return for the risk free asset rf is

rf
�
n; n1

�
=

 
�1

NX
n1=1

�
�
n; n1

� �
w
�
n1
����2!�1

- see Kocherlakota (1990) for further details.
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