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AbstratWe onsider the optimal ontrol of inequality under unertainty,with a partiular fous on inome inequality. For an eonomy experi-ening eonomi growth and random shoks, we show how a simple lossand `bequest' funtion may be ombined to guide the expeted level ofinequality towards a pre-de�ned target within a �nite planning hori-zon. Closed form solutions show that, the stronger the shoks to theinome distribution, the more aggressive is poliy. We disuss the re-sults in the ontext of reent applied and poliy literature on soialinequality, globalisation and eonomi instability.JEL odes: C61, D31, D63, I38Keywords: Globalisation; Inequality; Stohasti dynami program-ming

∗Corresponding author. Department of Eonomis and Related Studies, University ofYork, York YO10 5DD, U.K.. e-mail: mf8�york.a.uk, tel.: +44 (0)1904 323797.
†Department of Eonomis, Business and Statistis, University of Milan, 20122 Milan,Italy. e-mail: davide.latorre�unimi.it, tel.: +39 02 50321462.
‡Department of Eonomis, University of Oregon, Eugene, OR 97403-1285, U.S.A.,e-mail: plambert�uoregon.edu, tel.: +00 1 541 346-4670.1



1 IntrodutionThis paper presents a dynami, stohasti, model of the optimal ontrol ofinequality in the presene of eonomi growth and unertainty, fousing, inpartiular, on the role played by shoks to the inome distribution. Weonsider a poliy maker who hooses the level of a mean-preserving ontrolvariable to in�uene the rate of hange of an index of inequality and whoinurs losses assoiated with both the instantaneous level of inequality andthe strength of poliy. The inequality index we hoose to work with is theoe�ient of variation. This has many desirable properties, key among whihis that it assists derivation of a losed form solution for the optimal poliyrule. Though the fous is on inome, the framework is general and an beapplied to any time-varying random variable whose distribution is subjet toshoks.The researh is timely for a number of reasons. Firstly, there now existsa large body of evidene suggesting that many ountries are experieningeonomi growth aompanied by inreasing inome inequality. The OECD(2008) reports `moderate but signi�ant growth' in the gap between rih andpoor in around three-quarters of its member ountries over the last twentyto thirty years. Using its latest data, for the years 1975 to 2008, Figures 1(a)and (b) ontrast the inreasing real, average, disposable inomes of four ofits member states (Canada, Germany, the United Kingdom and the UnitedStates) with hanges in inome inequality, as measured by the square of theoe�ient of variation. Average inomes and inequality follow an upwardtrend for all four ountries. Using a wider group of ountries, the reent`World of Work' reports of the International Institute for Labour Studies(2008, 2010) report a similar piture. Between 1990 and 2000, approximatelytwo-thirds of the 85 ountries reviewed (inluding those in Asia, the Pai�,Eastern Europe, the former USSR, the Middle East and North and Sub-Saharan Afria) experiened an inrease in inome inequality as measuredby the Gini index. For the 44 ountries for whih data is available throughto 2005, two-thirds experiened an inrease in inome inequality.Seondly, survey evidene taken over the last deade suggests growing2
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dissatisfation with the way that nations are handling issues onerninginequality and poverty. In the reent Eurobarometer survey (TNS Opin-ion & Soial, 2010), 62% of those asked felt that the way inequalities andpoverty were addressed in their ountry was bad (31% felt that it was good),38% felt that the situation had worsened in the last �ve years (11% feltthat there had been an improvement) and 51% felt that there would be nohange during the forthoming year (12% felt that there would be an im-provement). Using slightly older data for 23 ountries, the World ValuesSurvey (www.worldvaluessurvey.org) shows similar results, the index oftolerane of large inome inequalities falling from 6.5 (survey of 1988-1993)to 5.4 (1999-2004), where a deline suggests inreasing intolerane (Interna-tional Institute for Labor Studies, 2008).Thirdly, there is a growing body of literature linking high levels of in-equality to politial instability. Dutt and Mitra (2008) found empirial ev-idene to support the theoretial work of Aemoglu and Robinson (2000,2001) suggesting that unequal soieties are more likely to �utuate into andout of demoray, as the elite in a demoray have an inentive to seizepower so as to avoid redistributive poliies, while the poor have an inentiveto overthrow ditatorships in order to reassert redistributive poliies. Duttand Mitra found that inequality signi�antly exaerbates politial instabil-ity, with the ausal diretion running from inequality to politial instability,rather than the other way round. Similar results have been reported in thework of Muller and Seligson (1987) and Alesina and Perotti (1996).Finally, despite large bodies of applied work doumenting the hangesin, and orrelates of, inome inequality over time (reent examples inludeLundberg and Squire (2003), Jenkins and van Kerm (2006) and Heathoteet al. (2010)), we are not aware of any theoretial work whih has addresseddiretly the problem set out in this paper.The major ontributions are as follows. The parsimonious set up of themodel allows us to derive a losed form solution for the optimal poliy rule toontrol inequality. The rule is independent of the starting level of inequalityand, the more unertain is the world in whih the poliy-maker operates, themore aggressive is optimal poliy. The poliy-maker an hoose to target4



a partiular redution in the expeted level of inequality over a �nite timehorizon by means of a penalty, or bequest, funtion. The optimal poliy ruleis nonlinear in the time remaining in the planning horizon and, under par-tiular onditions, it an be optimal for the poliy maker to allow inequalityto inrease over time. The results suggest that poliy rules whih ignore un-ertainty arising from shoks to the inome distribution an result in targetsfor inequality redution being missed.The paper is organised as follows. Setion 2 presents the model, with itsmain results laid out in two setions. The �rst presents a simple miro-leveldesription of inequality in an eonomy in whih individual inomes followa random walk with drift. This gives some theoretial underpinning to thestory of Figures 1(a) and (b) - eonomi growth aompanied by inreas-ing inequality - and introdues the oe�ient of variation as our measureof inequality. The seond setion formulates and solves the poliy-maker'soptimisation problem using the material from the �rst. Setion 3 disussesthe results, the limitations of the model, and onludes.2 Analysis2.1 The modelA poliy maker (heneforth PM) wishes to hoose an optimal rule to ontrolinome inequality in an eonomy between year t = 0 and t = T , where t isan integer and T is �nite. The PM seeks to hit a target level of inequalityat T . De�ne Yt as a ontinuous random variable denoting the inomes in thepopulation. Assume that the inequality index of interest is the oe�ient ofvariation, de�ned as xt = σYt
/µYt

, where σYt
> 0 is the standard deviationof Yt and µYt

> 0 is its mean.Given Y0, we assume that Y evolves aording to the following �rst orderstohasti di�erene equation:
Yt+1 = (1 + αt)Yt + ǫt, t = 0, . . . , T, (1)5



where αt and ǫt are random variables with the (time-invariant) expeted val-ues µα > 0 and µǫ = 0 and varianes σ2
α and σ2

ǫ , respetively, together withovariane σαǫ = ραǫσασǫ, where ραǫ is the orrelation oe�ient. Giventhe assumption about µα, it is to be expeted that average inome in thepopulation is inreasing over time. The following proposition desribes theevolution of inequality over time.Proposition 1. Under the individual inome growth proess of Eq. (1),inequality is unambiguously inreasing over time, that is, xt+1 > xt, for allnon-degenerate inome distributions.All proofs are presented in the Appendix.Proposition 1 is in the spirit of the results of earlier work by Eden (1980) andDeaton and Paxson (1994), whih were based on a simple random walk. Weintrodue positive drift for onsisteny with the story told by Figures 1(a)and (b). The result in Proposition 1 is used to de�ne the level of growth of
µY relative to σY in the PM's optimisation problem, to whih we now turn.2.2 The poliy maker's optimisation problemAlthough t was an integer for Proposition 1, here we assume that it is ontin-uous, to allow us to use the tools of stohasti alulus to solve the problem.The PM assumes that the following system desribes the evolution of µY (t)and σY (t):

µ̇Y (t) = rµY (t), µY (0) = µY0
, (2a)

σ̇Y (t) = [1− γ(t)]aσY (t), σY (0) = σY0
, ∀t ∈ [0, T ], (2b)where r > 0 and a > 0 are exogenous growth rates. γ(t) is a mean preservingvariable under the ontrol of the PM whih alters the rate of hange ofthe standard deviation of the inome distribution, while leaving the rate ofhange of mean inome untouhed (for example, γ ould desribe the extent6



of a mean-preserving realloation of inome from rih to poor). We imposethe restrition γ(t) ≥ 0 for all t, to rule out the senario in whih the PMatively seeks to inrease the standard deviation of the inome distribution.Hene the optimisation takes plae on the set S = {(x, γ) : x ≥ 0, γ ≥ 0}.Following Proposition 1, we assume that, in the absene of poliy intervention(γ(t) = 0 for all t), inequality is unambiguously inreasing with time (thatis, a > r).The oe�ient of variation, x(t) = σY (t)/µY (t), is assumed to be sub-jet to random shoks, re�eting unertainty in either Eq. (2a), or (2b), orboth. By di�erentiating x(t) with respet to time, substituting in Eqs. (2a)and (2b) and adding exogenous, independently distributed Gaussian shokssaled by x(t), we obtain the ontrolled stohasti di�erential equation:dx(t)
x(t)

= [(1− γ(t))a− r]dt + σXdW (t), x(0) = x0 ≡ σY0
/µY0

, (3)
∀t ∈ [0, T ],where dW (t) = Z(t)

√dt, Z(t) ∼ N(0, 1), is the inrement of a Wiener pro-ess and σX is the variane parameter, suh that when σX = 0 we have thease of no unertainty. In the event of the PM hoosing a onstant level of γfor all t, whih we shall all γ̄, Eq. (3) has the analytial solution:
x(t) = x0e

(

(1−γ̄)a−r−
σ
2

X

2

)

t+σXW (t)
, (4)so that :

E[x(t)] = x0e
((1−γ̄)a−r)t andvar(x(t)) = x20e
2((1−γ̄)a−r)t(eσ

2

X
t − 1).

x(t) has a log-normal distribution suh that, in the absene of poliy inter-vention (γ̄ = 0) and making the assumption, from Proposition 1, that a > r,both the expeted level and variane of inequality inrease with time. Whenthe PM intervenes, the greater is γ(t), the stronger is the poliy taken toredue the expeted rate of growth of inequality. However, a positive valueof γ does not neessarily imply a redution in the expeted level of inequality;7



this will only be the ase when γ > 1− r/a (see Eq. (3)).The PM wishes to hoose an optimal poliy rule for γ so as to minimise aperformane riterion, de�ned as the expetation of the sum of the disountedintegral of a loss funtion over the planning horizon, and a funtion whihpenalises the level of inequality remaining at T :
E0

[
∫ T

0

e−ρtℓ(x(t), γ(t))dt+ φP [T, x(T )]

]

, (5)The loss funtion ℓ is assumed to be of lass C 2, 2 and is inreasing andonvex in eah of its arguments, penalising deviations from perfet equality(x(t) = 0) and the strength of the ontrol poliy γ(t). The penalty funtion
P is assumed to be of lass C 1, 2 and is inreasing and onvex in the level ofinequality remaining at the end of the planning horizon, x(T ). φ > 0 is aweight attahed to the level of inequality remaining at T , suh that φ = 0implies that no penalty is inurred; di�erent values of φ allow the PM totarget di�erent levels of x(T ). E0 is the onditional expetation operatorat t = 0 given an initial level of inequality, x0. ρ > 0 is the disount rate.The minimisation takes plae subjet to Eq. (3) and its assoiated boundaryonditions.We restrit attention to the set U of admissable ontrols, that is, ontrolsin S whih lead to a �nite expetation in Eq. (5). De�ne the value funtionas:

V (t, x) = min
{γ(s)∈U}

Et

[
∫ T

t

e−ρ(s−t)ℓ(x(s), γ(s))ds+ φP [T, x(T )]

]

, (6)subjet to Eq. (3), where Et is the onditional expetation operator at tgiven that x(t) = x.The following proposition shows that the simple value funtion V (t, x) =
e−ρt(0.5)A(t)[x(t)]2, where A(t) may be determined, is assoiated with a ver-sion of a quadrati loss funtion with an interation between x(t) and γ(t)and a simple penalty funtion whih yield a losed-form solution for the op-timal hoie of γ(t). We shall denote this as γ∗s (t), where the subsript sdenotes the stohasti version of the model (we shall use the subsript d for8



the deterministi version).Proposition 2. For all non-degenerate inome distributions and assum-ing the following value funtion belonging to the Generalised Entropy familyof inequality indies:1
V (t, x) =

e−ρtA(t)[x(t)]2

2
, (7)there exist the following loss and penalty funtions:

ℓ(x(t), γ(t)) =
[x(t)]2(1 + [γ(t)]2)

2
and (8a)

P [T, x(T )] =
e−ρT [x(T )]2

2
, (8b)suh that: (a) the optimal level of the ontrol poliy is as follows:

γ∗s (t) =
1

2a

(

2(a− r)− ρ+ σX
2 + tanh

(√
M(T − t)

2

+artanh(2φ a2 + 2(r − a) + ρ+−σX2

√
M

))√
M

)

, (9)where M = [2(a−r)−ρ+σ2
X]

2+4a2, tanh(z) = (exp(z)−exp(−z))/(exp(z)+
exp(−z)) is the hyperboli tangent funtion and artanh(z) = (0.5)(log(1 +

z) − log(1 − z)) its inverse; and (b) the optimal poliy rule for ontrol ofinome inequality is more aggressive in the stohasti version of the modelthan the deterministi version, that is, γ∗s (t) ≥ γ∗d(t), for all t ∈ [0, T ].1The Generalised Entropy family of inequality indies have the form:
1

α2 − α

∫
((

y

µY

)α

− 1

)

fY (y)dy,where α is real and not equal to zero or one. This expression equals the term in our valueand loss funtion when α = 2. Shorroks (1980) developed these indies, whih are theonly measures for whih relative inequality an be deomposed additively aross populationsubgroups, a property whih has found many uses; see Jenkins and van Kerm (2009) fora reent survey. Hene the value funtion in Proposition 2 is additively deomposable.9



(a) (b)Figure 2: Dependene of: (a) optimal poliy rule γ∗s and (b) optimal expeted path of x on hoie of φ
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Eq.(9) shows that the optimal poliy rule is independent of x0 and is anonlinear funtion of the time remaining in the DM's planning horizon, T−t.Conditional upon a partiular hoie of T , omparative stati results for theother parameters in the model are di�ult to establish in losed form, butdi�erentiating Eq. (9) with respet to ρ, a and r and evaluating at a rangeof parameter values suggests that ∂γ∗s (t)/∂ρ < 0 (an inrease in the rate oftime preferene makes optimal poliy less aggressive), ∂γ∗s (t)/∂a (the greaterthe rate of growth in the standard deviation of the inome distribution, themore aggressive is optimal poliy) and ∂γ∗s (t)/∂r < 0 (the greater the rateof growth of mean inome, the less aggressive is optimal poliy). These areintuitively agreeable results.The remaining parameter in the expression for the optimal ontrol is
φ, the weight applied to the penalty funtion. Repeating the numerialomparative stati analysis shows that ∂γ∗s (t)/∂φ > 0, implying that, thegreater the weight attahed to the level of inequality remaining at T , themore aggressive is optimal poliy. The e�et of hanging the level of φ on
γ∗s (t) and the optimal expeted path of x(t) may be seen in Figures 2(a) and(b), where we run numerial simulations with the parameters T = 10, a =

1/40, r = 7/1000, ρ = 1/50, σX = 1/4, and x0 = 1, varying φ. The higher isthe value of φ, the more aggressive is the poliy, and, onsequently, the loweris the level of inequality remaining at T .3 DisussionProposition 2 shows that a PM seeking to redue inequality to a partiulartarget level within a �nite planning horizon should aount for both the ex-peted response of x to the poliy variable and the strength of the shoks.Failure to aount for the latter an lead to targets being missed, on aver-age. This is an important result, given that many developed eonomies areurrently experiening sluggish growth and intensi�ed eonomi instability,and are implementing wide-ranging austerity poliies.Proposition 2 also suggests a simple mehanism by whih a PM mayhoose to target an expeted level of inequality redution by use of the weight11



Figure 3: `Missing the target', by failing to aount for the shoks to theinome distribution
φ attahed to the penalty funtion. However, poliy makers seeking to forethe expeted level of inequality to fall throughout the planning horizon musthoose a value of φ whih penalises su�iently the level of inequality remain-ing at T (see Figures 2(a) and (b)). Figure 2(b) shows that the optimalexpeted path of x an be non-linear in t, meaning that, for a range of valuesof φ, the level of expeted inequality an be inreasing when following anoptimal poliy.These ideas are illustrated in Figure 3, whih ontrasts the stohastiand deterministi poliy rules for a PM seeking to redue the oe�ient ofvariation by 10%, from a starting value x0 = 1, over a ten-year period andusing the parameter values from the previous numerial example. We seefrom Figure 2(a) that this requires that φ ≈ 30. Figure 3 ompares theresulting optimal paths of γ∗s (σX = 1/4) and γ∗d (σX = 0), and also showsthe expeted trajetories of x. It shows that failure to set a poliy rule whihaounts for the shoks to the inome distribution, that is, setting the poliyrule assuming that σX = 0, leads to the PM implementing a more benign12



poliy, with the result that there is an expeted deline in the oe�ient ofvariation of 3.5% rather than the 10% ahieved by γ∗s .As we pointed out in the introdution, the fous in this paper is oninome inequality but the methodology an also be applied to other ran-dom variables. We have hosen to work with the oe�ient of variation,a well-understood variability measure whih is of partiular interest in themeasurement of inome inequality (see on). Eden (1980) and Deaton andPaxson (1994) arry out most of their applied analysis using the varianeof logarithms, whih has some problems as an inequality measure (involvingthe priniple of transfers, and enumerated in Foster and Ok, 1999), but theylaim that their result, showing that inequality inreases over time wheninome follows a random walk, holds for `any measure of inequality that pre-serves the priniple of transfers'. It is primarily through our hoie of theoe�ient of variation as an inequality index that we have been able to derivea losed form solution to the problem at hand.There is a strong sense in whih the oe�ient of variation is salient forour model. Using the notation of setion 2.1, de�ne z as a variate whihhas been saled to have the same mean, as well as the same Lorenz urve, as
Yt+1 in expetation. We may think of z as the `mean-and-inequality ertainty-equivalent period 1 inome distribution'. A neessary and su�ient onditionfor `expeted inequality' to have unambiguously inreased aording to anyinequality index, is that the oe�ient of variation of z exeeds that of inomein period t.There are many other possible andidates for inequality measure thanthe oe�ient of variation in terms of whih we have analyzed this prob-lem. These inlude the ever-popular Gini oe�ient. Further work ouldbe done in terms of the Gini oe�ient, although its non-di�erentiability inindividual inomes would limit tratability. When the entire Lorenz urvefor inome is shifted up/down, every index of relative inequality shows anderease/inrease, and in suh a ase the hoie of index is immaterial; butwhen there are Lorenz urve intersetions, di�erent indies respond di�er-ently. In many suh ases the oe�ient of variation is `deisive', in that its13



diretional hange is re�eted by other familiar inequality indies.2 3Our results show that ignoring the unertainty assoiated with the growthequations for average inome, the standard deviation of inome, or both,ould lead to poliies missing their targets (in expetation). Of ourse, thishas been demonstrated using a parsimonious set-up, with a mean-preservingontrol poliy, whih allowed us to derive a losed form solution. Extensionsof the model in whih, for example, the system of di�erential equations (2a)and (2b) is oupled, thereby allowing for feedbak between the level of averageinome and inequality and vie versa (suh as in the models of Lundberg andSquire (2003)) would be an interesting extension. In the present model, the`osts' of poliy are re�eted in the loss funtion alone. A model whihrelaxes the assumption that the poliy is mean preserving - for example, byinorporating a diret e�et of government ation on reduing the rate ofgrowth of average inome - might also reveal new insights.AppendixProof of Proposition 1We show the result for periods t = 0 and t = 1. The same argument may beused for subsequent periods. Using standard results for onditional meansand varianes (Wakerly et al., 2008), the oe�ient of variation in period 1,
x1, is:

x1 =

√

σ2
1

µ1

=

√

(σ2
Y0

+ µ2
Y0
)σ2

α + 2µY0
σαǫ + σ2

ǫ + (1 + µα)2σ
2
Y0

(1 + µα)µY0

. (10)2This result, whih follows from Shorroks and Foster's (1987) Corollary 1, enom-passes all `transfer-sensitive' inequality indies. Shorroks and Foster argue that transfersensitivity provides `a means of prohibiting eentri inequality judgements' (suh as at-tahing greater importane to small transfers between millionaires than bigger transfersto the poor). Many of the generalized entropy indies are transfer sensitive.3The Gini oe�ient is not transfer sensitive, but it does satisfy a riterion alled`positional transfer sensitivity,' and it is similarly deisive for inequality omparisons usingpositionally transfer sensitive inequality indies when Lorenz urves ross one (Zoli, 1999).None of the positionally transfer sensitive inequality indies are di�erentiable funtions ofindividual inomes. 14



Inome inequality will rise, fall or stay the same between t = 0 and t = 1aording to:
x1 R x0 ⇔ σα,e R −(σ2

Y0
+ µ2

Y0
)σ2

α + σ2
ǫ

2µY0

. (11)Sine ραǫ = σα,ǫ/σασǫ, Eq. (11) may be written:
x1 R x0 ⇔ −2µY0

ραe ⋚ (σ2
Y0

+ µ2
Y0
)λ+

1

λ
≡ f(λ), (12)where λ = σα/σǫ. It follows that f ′(λ) = (σ2

Y0
+ µ2

Y0
) + 1/λ2, whih has aunique minimum at λ = λ∗ = 1

√

σ2

Y0
+µ2

Y0

. Hene:
f(λ) ≥ f(λ∗) = 2

√

σ2
Y0

+ µ2
Y0

= 2µY0

√

x2Y0
+ 1, ∀λ.Returning to Eq. (12):

x1 R x0 ⇔ −2µY0
ραe ⋚ (σ2

Y0
+ µ2

Y0
)λ+

1

λ
≥ 2µY0

√

x2Y0
+ 1.but sine −2µY0

ραe ∈ [−2µY0
, 2µY0

], it follows that x1 > x0 for all non-degenerate inome distributions undergoing growth as de�ned by Eq.(1), thatis, expeted inequality in inome, as measured by the oe�ient of variation,is unambiguously higher in period 1 than in period 0. �Proof of Proposition 2The idea is to identify a C1,2 value funtion V (t, x) whih satis�es the Hamilton-Jaobi-Bellman (HJB) equation for the problem, together with the terminalondition given by the penalty funtion. This leads to the `fundamentalquadrati' for the problem, the solution to whih an be used to establishthe optimal poliy rule. The HJB equation is:
−Vt = min

γ ∈U

{

e−ρtx
2(1 + γ2)

2
+ Vx[(1− γ)a− r]x+ (13)

15



σ2
Xx

2Vxx
2

}

,with terminal ondition V (T, x) = φP [T, x(T )]. The optimal level of γs (asu�ieny ondition is needed - see below) is obtained by solving Eq. (13):
γ∗s =

Vxae
ρt

x
. (14)Substituting γ = γ∗s into Eq. (13) and simplifying gives:

−eρtVt =
x2

2
− e2ρtV 2

x a
2

2
+ eρtVxx(a− r) +

eρtσ2
Xx

2Vxx
2

. (15)Make the guess that:
V (t, x) =

e−ρtA(t)x2

2
, (16)where A(t) is to be determined. This implies that:

Vt(t, x) =
e−ρtx2

2
[Ȧ(t)− ρA(t)], (17a)

Vx(t, x) = e−ρtA(t)x and (17b)
Vxx(t, x) = e−ρtA(t). (17)By substituting Eq. (17b) into Eq. (14), we note that:

γ∗s = aA(t). (18)Finally, substitute Eqs. (17a) to (17) into Eq. (15) and anel terms. We areleft with the following ordinary di�erential equation in A(t) (the RHS beingthe `fundamental quadrati'), the solution to whih may be used to yield theoptimal γ (in Eq. (18)) and the optimal expeted path of inequality:
Ȧ(t, T ) = −1 + (A (t))2 a2 + 2A(t)(r − a)− σ2A (t) + A (t) ρ. (19)(a) The optimal level of γ∗s 16



To obtain the optimal level of γ∗s , solve Eq. (19) for A(t) and substituteinto Eq. (18) to give Eq. (9).4 We use the stohasti maximum prinipleproposed by Framstad et al. (2004), to show that the poliy rule Eq. (18) isoptimal. Firstly, rewrite Eq. (13) as:
−Vt = min

γ ∈U
{H} ,where H is the stohasti Hamiltonian:

H = e−ρtx
2(1 + γ2)

2
+ p(t)[(1− γ)a− r]x+

σ2
Xx

2q(t)

2
, (20)where p(t) and q(t) satisfy the adjoint equations for the problem. Theorem2.1 of Framstad et al. states that, for an admissable set of state and ontrols,if H evaluated at the value of the ontrol whih minimises H is onvex in

x, for all t in [0, T ], then the pair (γ, x) omprise an optimal pair for theproblem. H is stritly onvex in γ sine Hγγ = x2e−ρt > 0. The ontrolwhih minimises H is given by Eq. (14) and so the minimised Hamiltonianis:
Ĥ(x, γ, ψ(t), π(t)) = 1/2 x2

(

1 +
p2a2

(e−ρ t)2 x2

)

e−ρ t + px

((

1− pa

xe−ρ t

)

a− r
)

+ 1/2 qσ2x2whih is stritly onvex in x, sine Ĥxx = e−ρt + qσ2 > 0.(b) Comparison of stohasti and deterministi poliy rulesSetting σX = 0 in Eq. (9) does not allow a de�nitive omparison of thestohasti and deterministi poliy rules, beause σX appears in both thenumerator and the denominator of the RHS. To ompare the levels of γ∗s and
γ∗d , we use a qualitative approah based on the analysis of the fundamentalquadrati (following the ideas of Ewald and Wang (2011)).Consider Eq. (19) when Ȧ = 0 and let A−

s and A+
s be the roots of the4Maple 14 is used to solve Eq. (19).
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fundamental quadrati (where A−
s < A+

s ):
A−

s =
2( a− r)− ρ+ σX

2 −
√
M

2a2
, (21a)

A+
s =

2( a− r)− ρ+ σX
2 +

√
M

2a2
, (21b)where M = [2(a− r)− ρ+ σ2

X ]
2 +4a2>0. It is straightforward to show that

A−
s A

+
s = −1/a2 < 0, implying that A−

s is always negative and A+
s is alwayspositive. Let A−

d and A+
d be the roots when σX = 0. Inspetion of Eqs. (21a)and (21b) shows that A−
d < A−

s and A+
d < A+

s .The parabola of the fundamental quadrati has its vertex at (Amin
s , Ȧmin

s )where:
Amin

s =
2 ( a− r)− ρ+ σX

2

2 a2
, and (22a)

Ȧmin
s = −M

4a2
< 0. (22b)Let Amin

d and Ȧmin
d be the respetive values in the deterministi version of themodel. By setting σX equal to zero in Eq. (22a), it follows that Amin

d < Amin
sand Ȧmin

d > Ȧmin
s . By setting σX equal to zero in Eq. (22b), it follows that

Ȧmin
d > Ȧmin

d .Finally, for both the stohasti and deterministi versions, Ȧ = −1 when
A = 0.Figure 4 ontrasts the parabolas from stohasti and deterministi ver-sions of the model under the restrition that ρ < 2(a− r), whih plaes theverties of both parabolas to the right of the Ȧ(t) axis. The proof requiresthat the the parabola for the stohasti version of the model lies to the rightof that for the deterministi version, whih is guaranteed regardless of thevalue of the rate of time preferene relative to a, r and σ2

X given that: 1.
A−

s > A−
d and 2. for both parabolas, Ȧ = −1 when A = 0.Use Eqs. (16) and (8b) to equate the value and penalty funtions at T :

e−ρTA(T )[x(T )]2

2
=
e−ρTφ[x(T )]2

2
, (23)18



A(t)

Ȧ(t)

A−
d

A−
s A+

sA+

d

Amin
s

Ȧmin
s

Amin
d

0

Deterministic

Stochastic-1
Figure 4: Phase diagram for stohasti and deterministi solutions to Eq.(19) under the restrition ρ < 2(a− r)hene:

A(T ) = φ ≥ 0, (24)whih implies we may restrit attention to the orthants for whih A(t) > 0.The phase diagram shows that both A+
d and A+

s are unstable equilibria,beause the quadrati is upward sloping at eah root. A(T ) = φ ≥ 0 maylie in three regions: [0, A+
d ), [A+

d , A
+
s ) and [A+

s ,∞). If A+
d ≤ φ < A+

s , thepath of A(t) approahes φ = A(T ) from below in the deterministi modeland from above in the stohasti model. From Eq. (18), the optimal poliyrule for the ontrol is equal to aA(t), so it follows that γ∗s (t) > γ∗d(t) for all
t ∈ [0, T ].Now onsider 0 < φ < A+

d . The point A(T ) = φ is approahed from above19



by A(t) in both the stohasti and deterministi models (beause Ȧ(t) < 0,refer to Figure 4). A simple ontradition may be used to show that it is stillthe ase that, in this senario, γ∗s (t) > γ∗d(t) for all t ∈ [0, T ]. Without loss ofgenerality, �x a value of As(T ) = Ad(T ) = φ̄ > 0 in this interval. We wantto show that As(t) ≥ Ad(t) for all t ∈ [0, T ]. De�ne the funtion:
g(t) = As(t)− Ad(t) (25)and let us suppose that there exists t1 ∈ [0, T ] suh that As(t1)−Ad(t1) < 0(implying γ∗s (t1) < γ∗d(t1)). By applying a lassial mean value theorem toEq. (25), for some t2 ∈ [t1, T ]:

[As(T )−Ad(T )]− [As(t1)− Ad(t1)]

T − t1
= ġ(t2),

⇒ −[As(t1)− Ad(t1)]

T − t1
= ġ(t2) > 0,sine As(T ) = Ad(T ) = φ and given our assumption that As(t1)−Ad(t1) < 0.This is a ontradition, sine ġ(t) = Ȧs(t)− Ȧd(t) < 0 for all t ∈ [t1, T ] (referto Figure 4). Hene As(t) ≥ Ad(t), and so γ∗s (t) ≥ γd(t) by Eq. (18), for all

t ∈ [0, T ].Analogous reasoning an be used for φ ∈ [A+
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