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Abstract

This paper studies timing games in continuous time where payoffs are stochas-

tic and strongly Markovian. The main interest is in characterizing equilibria

where players preempt each other along almost every sample path. It is found

that the existence of such preemption equilibria depends crucially on whether

there is a coordination mechanism that allows for rent equalization or not, and

whether the stochastic payoffs admit upward jumps. Through numerical exam-

ples it is argued that the possibility of such coordination improves social welfare

and that the welfare loss due to preemption decreases in uncertainty.
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1 Introduction

In many competitive timing situations the first mover has an advantage: the firm

that first adopts a new technology, the first developer of a new real-estate oppor-

tunity, etc. However, if the leader role is not exogenously determined, then the

competition to become the leader may erode that first mover advantage. Indeed,

the standard prediction from the literature on timing games with a first mover ad-

vantage is that preemption equalizes the expected payoffs of the first and second

mover. This point has been made ever since such early contributions as, for exam-

ple, Posner (1975).

Preemption is often analyzed in a continuous time framework. This can lead to

a coordination problem, because in continuous time it is impossible to distinguish
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between simultaneous action and immediate reaction. Fudenberg and Tirole (1985)

solve this problem by using a technique from optimal control which allows them to

show that in two-player deterministic timing games with a first mover advantage

there always exists an equilibrium in which rents are equalized. Unfortunately,

their equilibrium concept is rather complicated as it involves players to choose a

distribution function describing the probability with which they act before any point

in time, as well as an “intensity over an interval of atoms” when players wish to

act at the same time. It is this device that allows the derivation of a preemption

equilibrium where (i) players do not act simultaneously when this is not optimal (an

outcome they refer to as a “coordination failure”) and (ii) symmetric players each

act first with probability 1/2 at the preemption point.

In most real-life preemptive situations the future is not known with certainty and,

therefore, a deterministic timing game may not be the best modeling tool. Using

techniques from optimal stopping theory, several papers have studied timing games

in which players’ payoffs are subject to random shocks.1 This introduces an “option

value of waiting” into the payoffs which, in general, delays stopping. As can be

imagined, the addition of uncertainty complicates the game theoretic analysis even

further. As in the deterministic case this is mainly due to the difficulty of solving

the coordination problem that arises when it is a best response for both players to

stop while these are only best responses if only one player succeeds. In the literature

this is often solved by making fairly ad-hoc assumptions based on Fudenberg and

Tirole (1985). It is not at all clear, however, that this is appropriate. In addition,

this approach could not deal with asymmetries. Thijssen et al. (2002) extend the

Fudenberg and Tirole (1985) concepts in an appropriate way to a stochastic setting.

They show that, qualitatively, the equilibria are not changed by the introduction

of uncertainty. It is not clear, however, how restrictive their assumptions are. In

addition, the level of technicality required to derive the results is such that it is not

readily applicable.

In this paper I take a different approach to the problem of preemption in a real

options model. Its contribution is three-fold. First, the analysis presented here sepa-

rates, as much as possible, the timing and coordination issues involved in preemption

models. This makes it easier to prove equilibrium existence and also makes it clearer

how the different assumptions needed to guarantee existence of equilibrium interact.

The simplicity of the arguments is based on an exploitation of the strong Markovian

nature of the underlying stochastic process, which allows one to take the range of the

process as the state space, rather than time itself. As a result, this paper presents

1See, for example, Boyer et al. (2004), Pawlina and Kort (2006, 2010), Bouis et al. (2009), Roques

and Savva (2009), Mason and Weeds (2010), and Thijssen (2010).
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a more complete picture of all equilibria that can exist in preemption games. Sec-

ond, this paper starts from fairly general assumptions on primitives, which enables

one to see how economic primitives interact with equilibrium existence. This also

allows for a comprehensive analysis of asymmetric games. Finally, the paper allows

for a large class of underlying stochastic processes. The existing literature almost

exclusively relies on geometric Brownian motion. This paper allows also for an anal-

ysis of other processes such as mean-reverting diffusions and Lévy processes with

downward jumps. Numerical illustrations show that the nature of the underlying

stochastic process has no influence on the qualitative nature of equilibrium, but can

have a substantial impact on estimates of, for example, values of waiting and welfare

costs of preemption.

The paper is organized as follows. The basic ingredients of the model are de-

scribed in Section 2. Section 3 discusses the case where there is no competition for

the leader role, i.e. the standard Stackelberg approach. In this case, no coordination

problem arises. The model is still useful, however, to provide a contrast with the case

of endogenous roles, which is dealt with in Section 4. That section introduces the

main strategy and equilibrium concepts, as well as the equilibrium results regarding

preemptive equilibria in the spirit of Fudenberg and Tirole (1985). The arguments

in Section 4 are kept as simple as possible by assuming that the coordination prob-

lem is solved exogenously. In particular, the assumption of rent-equalization turns

out to be crucial for the existence of equilibria in which preemption takes place.

Attention is also paid to equilibria that do not lead to preemptive behaviour. A

non-cooperative defense of why the assumption of rent-equalization is reasonable is

given in Section 5. Implications of the theory for predictions on preemptive behavior

under different stochastic processes are presented in Section 6. Numerical examples

show that, both for spectrally negative exponential jump-diffusions and exponen-

tial mean-reverting diffusions the preemption region is increasing in volatility. This

indicates that preemptive behavior can be expected to be observed more often in

situations with higher levels of uncertainty. This section also shows how the the-

ory can be used to make welfare predictions in a model of industry investment. In

particular, it is illustrated how exogenous versus endogenous firm roles can lead to

different welfare losses. It is found, for example, that (under geometric Brownian

motion) competition for the leader role always leads to a higher social welfare than

a non-competitive situation. It is also shown, however, that the preemptive equilib-

rium does not lead to a social optimum. Interestingly, the welfare loss in both cases

decreases as volatility increases. Section 7, finally, concludes.
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2 The Model

Consider a situation where two players i ∈ {1, 2} have to decide on a stopping time

over an infinite time horizon. Their payoffs are influenced by a state-variable which

takes values in E = (a, b) ⊆ R. Let Ē denote the closure of E (in the standard

topology on R). For each y ∈ E, the state variable follows a strong Markovian

càdlàg (right-continuous with left-limits) semimartingale (Yt)t≥0 on a probability

space (Ω,F , Py), endowed with a filtration (Ft)t≥0, with Y0 = y, Py-a.s. The

process (Yt)t≥0 is assumed to be adapted to (Ft)t≥0.

It is assumed that both players discount payoffs at the constant and common

rate r > 0. All strategies in this paper take the form of hitting times. These are

stopping times of the form τ(Y ∗) := inf{t ≥ 0|Yt ≥ Y ∗}, for some Y ∗ ∈ Ē, where

τy(a) = 0 and τy(b) = ∞, Py-a.s, for all y ∈ E. For y ∈ E and Y ∗ ∈ Ē, let νy(Y
∗)

denote the Laplace transform of τ(Y ∗) (under Py) evaluated at r, i.e.

νy(Y
∗) := E

Py

[

e−rτ(Y ∗)
]

.

Note that νy(Y
∗) = 1 for all y ≥ Y ∗, that νy(b) = 0, for all y ∈ E, and that,

because of the strong Markov property, it holds that νy(Y
2) = νy(Y

1)νY 1(Y 2), for

all y < Y 1 < Y 2.

The following assumption is made on the stochastic environment.

Assumption 1. The process (Yt)t≥0 has no upward jumps and is such that for all

y ∈ E the function νy(·) is continuous.

This assumption allows for many underlying processes, like arithmetic Brownian

motion, geometric Brownian motion, mean-reverting diffusions, and spectrally neg-

ative Lévy processes. The requirement that (Yt)t≥0 has no upward jumps is equiva-

lent to saying that the supremum process
(

Ȳt

)

t≥0
, defined by Ȳt = sup0≤s≤t Ys, has

continuous sample paths. This assumption simplifies finding solutions to the opti-

mal stopping problems below considerably. It also often makes deriving νy(·) fairly

straightforward (see Section 6 for some examples). On the other hand, it limits the

number of types of behavior that are consistent with equilibrium.2

The payoffs accruing to the players depend on their “stopping status” k ∈ {0, 1},

which indicates whether a player has stopped (k = 1) or not (k = 0). Let Di
k`(y),

y ∈ Ē, denote the expected present value of stopping (under Py) to Player i if her

stopping status is k, the stopping status of Player j, j 6= i, is `, and the state variable

has value y. In addition, it is assumed that stopping entails incurring a once off sunk

cost Ii > 0.

2See Boyarchenko and Levendorskǐı (2011) for an analysis with positive jumps.
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Assumption 2. For all i ∈ {1, 2}, it holds that

1. Di
k`, k, ` = 0, 1, is continuous on E;

2. Di
10(a)−Di

00(a) < Ii and Di
10(b)−Di

00(b) > Ii;

3. Di
10(·) −Di

00(·) is strictly increasing;

4. Di
11(·) −Di

01(·) non-decreasing;

5. Di
10(·) −Di

00(·) > Di
11(·)−Di

01(·) ≥ Di
11(·)−Di

00(·) ≥ 0.

Assumptions 2.2 and 2.3 ensure that there is a unique threshold for the state

variable where the net present value of being the first player to stop becomes positive.

Assumption 2.4 allows for the possibility that it is never optimal to become the

second mover. Assumption 2.5 implies that there is a first-mover advantage and

that Di
10(·) > Di

11(·) ≥ Di
00(·) ≥ Di

01(·).

The final assumption that is made ensures that waiting forever renders the option

valueless. This assumption essentially rules out speculative bubbles.

Assumption 3. The functions νy(·), andDi
k`(·) are such that limY ∗↑b νy(Y

∗)[Di
1k(Y

∗)−

Di
1`(Y

∗)− Ii] = 0, for all k ≥ `.

3 Exogenous Leader and Follower Role

Before analyzing the game where players vie for the leader role, let’s first study

the standard Stackelberg model applied to a situation where players have to choose

stopping times. Assume that Player i is the leader in this game. Player j, hence, is

the follower. The strategies in this game are going to be the thresholds at which the

players exercise their options. We want to allow for the possibilities that Player i

stops immediately, no matter what the value of the state variable, and that Player j

never stops. So, the strategy space is taken to be Ē. For a pair of strategies (Y i, Y j),

with Y i ≤ Y j, the payoff to Player i is the leader value, which, for all y ∈ E, is

equal to

Li
y(Y

i;Y j) :=Di
00(y) + νy(Y

i)[Di
10(Y

i)−Di
00(Y

i)− Ii]

+ νy(Y
j)[Di

11(Y
j)−Di

10(Y
j)].

(1)

The expected payoff to the follower equals

F j
y (Y

j;Y i) =Dj
00(y) + νy(Y

i)[Dj
01(Y

i)−Dj
00(Y

i)]

+ νy(Y
j)
(

Dj
11(Y

j)−Dj
01(Y

j)− Ij
)

.
(2)
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This formulation depends crucially on the strong Markovian nature of (Yt)t≥0 and

on the assumption that there are no positive jumps. This assumption, namely,

guarantees that one can write

Ey

[

e−rτ(Y ∗)(Di
1k(Yτ(Y ∗))−Di

0k(Yτ(Y ∗))− Ii)
]

= Ey

[

e−rτ(Y ∗)
]

(Di
1k(Y

∗)−Di
0k(Y

∗)− Ii),

for all Y ∗ ∈ Ē.

A subgame perfect Markov equilibrium (SPME) is a pair of strategies (Ȳ i, Ȳ j) ∈

Ē × Ē, such that for all (Y i, Y j) ∈ Ē × Ē it holds that

Li
y(Ȳ

i; Ȳ j) ≥ Li
y(Y

i;Y j), and F j
y (Ȳ

j ; Ȳ i) ≥ F j
y (Y

j;Y i).

The following lemma describes the solutions to the maximization problems faced

by the players.

Lemma 1. Suppose that Assumptions 1–3 hold. The functions L(·) and F (·) have

unique maximizers Y i
L ∈ E and Y j

F ∈ Ē, respectively, which satisfy Y i
L ≤ Y j

F .

Proof. Existence of Y i
L and Y j

F follows trivially from the continuity of Di
kl(·) and

νy(·), and the fact that Ē is a compact set. Due to Assumptions 2.2, 2.3, and 3, Li
y(·)

attains it maximum on E. The fact that Y i
L ≤ Y j

F follows from Assumptions 2.3–5.

Uniqueness of Y i
F is established as follows. Define gj(·) := Dj

1k(·) −Dj
1`(·) − Ij .

Note that the maximizers of F j
y (·) are the same as the maximizers of gj(·). Suppose

that Y1 and Y2 are two distinct maximizers of gj , such that (wlog) Y1 < Y2. First,

assume that Y2 < b. Then it holds that gj(Y1) = νY1
(Y2)g

j(Y2), and, thus, that

gj(Y2) > gj(Y1). Continuity of gj(·) implies that there exists Y3 ∈ (Y1, Y2), such

that gj(Y3) > gj(Y1). Therefore, it holds that

νY1
(Y3)νY3

(Y2) = νY1
(Y2) =

gj(Y1)

gj(Y2)
<

gj(Y3)

gj(Y2)
∗

⇐⇒ νY3
(Y2)g

j(Y2) < νY1
(Y3)g

j(Y3)

⇐⇒ νY1
(Y2)g

j(Y2) = gj(Y1) < νY1
(Y3)g

j(Y3),

where (∗) follows from gj(Y2) > 0, since Y2 < b. But this is a contradiction to Y1

being a maximizer.

Finally, if Y1 = b is a maximizer, uniqueness follows from the fact that there is

no Y ∗ for which gj(Y ∗) > 0. After all, if there were, then

νy(Y
∗)gj(Y ∗) > νy(b)g

j(b) = 0.

A similar reasoning shows uniqueness of Y i
L.

The following proposition describes the unique asymmetric SPME.
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Proposition 1. The unique asymmetric SPME is (Y i
L, Y

j
F ).

The proof of this proposition follows trivially from the uniqueness of Y j
F and Y i

L.

This asymmetric equilibrium leads to players stopping sequentially. Such equilibria

are referred to in the remainder as sequential stopping equilibria.

Symmetric equilibria may also exist. To derive these, note that, if players choose

symmetric strategies (Y ∗, Y ∗), the payoff to Player i, i = 1, 2, equals

M i
y(Y

∗) :=Li
y(Y

∗;Y ∗) = F i
y(Y

∗;Y ∗)

=Di
00(y) + νy(Y

∗)[Di
11(Y

∗)−Di
00(Y

∗)− Ii].
(3)

Since symmetric strategies lead Players to stop simultaneously, such equilibria are

referred to as simultaneous stopping equilibria. Note that M i
y(·) has a unique maxi-

mizer Y i
M ≥ Y i

F . Its proof is trivial and, therefore, omitted.

Proposition 2. For any Y ∗ ≥ Y j
F , such that M i

y(Y
∗) ≥ Li

y(Y
i
L;Y

j
F ), for all y ≤ Y ∗,

it holds that (Y ∗, Y ∗) is a SPME.

Note that existence of such joint stopping equilibria is not guaranteed in general.

The sequential stopping equilibrium in proposition 1 always exists.

4 Endogenous Determination of the Leader and Fol-

lower Roles

It is often more realistic to assume that the roles of leader and follower are not exoge-

nously determined, but the outcome of strategic interaction. In games with a first

mover advantage players may try to preempt each other. Such preemptive situations

arise whenever the value of becoming the leader exceeds the value of being the fol-

lower, while it is not optimal for either player to stop. Since the purpose of the paper

is to investigate this competition and since any reasonable concept of equilibrium

must have the follower stopping at Y i
F , it will be implicitly assumed in the remainder

that the follower’s strategy is to stop at that threshold. Consequently, the second

argument in (1) and (2) will be dropped for notational convenience. Furthermore,

we use the notation Li(y) := Li
y(y), F

i(y) := F i
y(y), and M i(y) := M i

y(y), for the

instantaneous payoffs of becoming the leader, follower, and simultaneous stopping,

respectively.

It can easily be seen that Li
y(Y

∗) ≥ F i
y(Y

∗) iff Li(Y ∗) ≥ F i(Y ∗), for all y ∈ E.

Since Li(·) and F i(·) are continuous, there exists Y i
P < Y i

L such that Li(Y i
P ) =

F i(Y i
P ). In fact, due to the monotonicity assumptions in Assumption 2, Y i

P is unique.

This point is called Player i’s preemption point and it is the lowest value for y at
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Figure 1: Value functions for leader, follower, and simultaneous stopping. The

underlying stochastic process is a geometric Brownian motion.

which Player i would want to preempt Player j. Hence, the region in which Player i

would wish to preempt Player j is Si
P = [Y i

P , Y
i
F ). Let the preemption region be

defined as SP := S1
P ∩S2

P . We will focus on games with SP 6= ∅. Obviously, Player i

will only want to preempt Player j if there is a threat that Player j might preempt,

i.e. when y ∈ SP .

Combining this with the results from the previous section, the payoff structure

of the game can be summarized as follows.

Lemma 2. Under Assumptions 1–3 it holds that for every player i ∈ {1, 2} there

exist unique thresholds

1. Y i
F ∈ Ē such that M i(y) = Li(y) = F i(y), for all y ≥ Y i

F ;

2. Y i
L < Y i

F such that maxY ∗ Li
y(Y

∗) = Li(y), for all y ≥ Y i
L;

3. Y i
P < Y i

L such that Li(y) ≥ F i(y), for all y ≥ Y i
P .

If one is unwilling to make the assumption that (Yt)t≥0 exhibits no positive

jumps, then one could always assume the validity of this lemma, without linking the

payoffs to underlying fundamentals.3 A plot of typical value functions is given in

Figure 1.

3This is the approach that is taken in, for example, Thijssen et al. (2002).
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4.1 Strategies and Payoffs

The main difference between deterministic timing games – where time is the state

variable – and games where the state variable is a stochastic process is that in

the latter case an agent’s strategy, however defined, can not be forward looking.

In its most general form a strategy for Player i will be a process
(

Xi
t

)

t≥0
taking

values in [0, 1], where Xi
t is the probability with which Player i has stopped up

to and including time t. Obviously,
(

Xi
t

)

t≥0
has to be a non-decreasing process.

In addition, we want to rule out that players can act on information that has not

yet been released. That is, “insider trading” should not be allowed. These two

considerations lead us to conclude that
(

Xi
t

)

t≥0
must (i) be adapted to (Ft)t≥0 and

(ii) have càglàd (left-continuous with right-limits) sample paths. Due to the process

(Yt)t≥0 being a càdlàg semimartingale and
(

Xi
t

)

t≥0
being càglàd, stochastic integrals

of the form
∫

XidY are well-defined (see Protter (2004)).

For our purposes it suffices to restrict attention to strategies that are driven by

stopping times. Let τ be a stopping time (relative to the filtration (Ft)t≥0). The

stopping strategy induced by the stopping time τ is given by

Xi(τ) :=







0 if t < τ ,

1 if t ≥ τ .

As already remarked, given the strong Markovian nature of (Yt)t≥0, the infinite

time horizon and the no-positive-jump assumption, all optimal stopping problems

in Section 2 take the form of trigger policies. Therefore, it stands to reason to

focus on threshold strategies. These consist of a single threshold Y i ∈ Ē, with

the convention that Player i stops at the induced first-hitting time τ(Y i). So, the

strategy space for each player is Ē.

Let (Y 1, Y 2) ∈ Ē × Ē and define τ := τ(Y 1) ∧ τ(Y 2). Then the expected payoff

to Player i of the pair of thresholds (Y i, Y j) is given by

V i
y (Y

i, Y j) =Di
00(y) + E

Py

[

e−rτ
(

1[τ(Y i)<τ(Y j)]L
i(Yτ ) + 1[τ(Y i)>τ(Y j)]F

i(Yτ )

+ 1[τ(Y i)=τ(Y j)]W
i(Yτ )−Di

00(Yτ )
)]

,
(4)

for all y ∈ E. Here W i(·) is a tie-breaking rule giving the expected payoff if both

players stop at the same time. It will be elaborated on below.

Formally, a stopping game is a tuple Γ = (N, (Ē, (V i
y )y∈E))i∈N . A preemption

game is a stopping game Γ with SP 6= ∅. A Markov equilibrium in the stopping

game Γ is a pair of thresholds (Ȳ 1, Ȳ 2) ∈ Ē× Ē, such that V i
y (Ȳ

i, Ȳ j) ≥ V i
y (Y

i, Ȳ j),

for all Y i ∈ Ē, all y ∈ E, and all i ∈ {1, 2}. A preemption equilibrium is a Markov

equilibrium (Ȳ 1, Ȳ 2), such that Ȳ i < Y i
L, for at least one i ∈ {1, 2}. For ε > 0,
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an ε-Markov equilibrium is a pair of strategies (Ȳ 1, Ȳ 2) such that for all y ∈ E, all

i ∈ {1, 2}, and all Y i ∈ Ē it holds that

V i
y (Ȳ

i, Ȳ j) ≥ V i
y (Y

i, Ȳ j)− ε.

A preemption ε-equilibrium is an ε-Markov equilibrium (Ȳ 1, Ȳ 2) such that Ȳ i < Y i
L,

for at least one i ∈ {1, 2}.

The tie-breaking rule W i(·) deserves a bit more explanation. It is introduced

here to allow for coordination between players if both wish to stop simultaneously.

To allow for some generality, this function is assumed to be given by

W i(y) = pi(y)L
i(y) + pj(y)F

i(y) + p3(y)M
i(y), all y ∈ E,

for some (p1(y), p2(y), p3(y)) ≥ 0, with p1(y) + p2(y) + p3(y) = 1. In this set-up

the probability with which Player i stops is pi(y) and the probability that both

stop simultaneously is p3(y). This formulation encompasses most contributions in

the literature. For example, Murto (2004) does not allow coordination and, thus,

assumes p3(y) = 1, all y ∈ E; Weeds (2002) assumes that p1(y) = p2(y) = 1/2,

y ∈ SP and p3(y) = 1 otherwise; and Thijssen et al. (2002) argue, based on an

argument by Fudenberg and Tirole (1985) for deterministic games, that p3(y) = 0, all

y ∈ SP , but that p1(y) and p2(y) are such that W i(y) = F i(y). A preemptive game

which is such that W i(y) = F i(y), all y ∈ SP , is called a rent-equalization game.

In Section 5 a non-cooperative defense of the rent-equalization property will be

given. In the remainder of this section, we will mainly be concerned with comparing

the effect of allowing for rent-equalization or not on the nature of equilibria in

preemption games.

4.2 Preemption Equilibria

Throughout this subsection it will be assumed (wlog) that Y 1
L ≤ Y 2

L . The existence

of equilibria depends crucially on the ordering of Y 1
L and Y 2

P , as well as the tie-

breaking rule W i(·) in the preemption region. The following proposition establishes

that a preemption game has no preemption equilibria if it does not have the rent-

equalization property.

Proposition 3. Let Γ be a preemption game satisfying Assumptions 1–3 with W 2(y) <

F 2(y), for all y ∈ S2
P . Then no preemptive equilibrium exists.

Proof. Note that a preemption equilibrium can only exist if Y 2
P ≤ Y 1

L .

Let y ∈ (Y 2
P , Y

1
L ). Suppose, by contradiction, that (Ȳ 1, Ȳ 2) is a preemption

equilibrium. If y ≥ Ȳ i, i = 1, 2, then both players stop simultaneously and

V 2
y (Ȳ

2, Ȳ 1) = W 2(y) < F 2(y), which implies that Player 2 wants to deviate.

10



If Ȳ 1 ≤ y < Ȳ 2, then there exists Ŷ 1 ∈ (y, Ȳ 2∧Y 1
L ) such that L1

y(Ŷ
1) > L1

y(Ȳ
1) =

L1(y). This holds because L1
y(·) is increasing on (y, Ȳ 2 ∧ Y 1

L ). So, Player 1 wishes

to deviate. A similar reasoning applies to Player 2 if Ȳ 2 ≤ y < Ȳ 1.

In Section 4.3 it will be shown that preemption games without the rent-equalization

property sometimes allow for other equilibria.

If a preemption game satisfies the rent-equalization property, the picture looks

very different.

Proposition 4. Let Γ be a preemption game satisfying Assumptions 1–3 and the

rent-equalization property.

1. Suppose that Y 2
P ≤ Y 1

L , and that Y 1
P 6= Y 2

P . The following holds:

(a) no preemption equilibrium exists;

(b) if Y 1
P < Y 2

P , then for all ε > 0, there exists δ > 0 such that all preemption

ε-equilibria are of the form (Y 1, Y 2
P ), for any Y 1 ∈ [Y 2

P − δ, Y 2
P );

(c) if Y 2
P < Y 1

P , then for all ε > 0, there exists δ > 0 such that all preemption

ε-equilibria are of the form (Y 1
P , Y

2), for any Y 2 ∈ [Y 1
P − δ, Y 1

P ).

2. If Y 2
P > Y 1

L , then no preemption equilibria exist.

3. If Y 1
P = Y 2

P ≡ YP , then (YP , YP ) is the unique preemption equilibrium.

Proof. First note that it is obvious that the statements are true for y ≥ Y 1
F ∨Y 2

F .

1. (a) A preemption equilibrium does not exist, since the best response of Player 1

to Player 2’s strategy (Y 2
P ) is not well-defined. After all, the function

L1
y(·) is increasing on (a, Y 2

P ), so that it does not attain a maximum on

this open set.

(b) Suppose that Y i
F ≤ Y j

F . Note that Y 2
P < Y i

F , since SP 6= ∅. Let ε > 0.

Take δ > 0 such that L1
y(Y

2
P )−L1

y(Y
2
P − δ) = ε and Y 2

P − δ ≥ Y 1
P . Such a

δ exists because L1
y(·) is continuous and increasing on (a, Y 1

L ]. Also, be-

cause of the strong Markovian nature of (Yt)t≥0, δ does not depend on y.

Take any of the proposed equilibrium strategy pairs (Ȳ 1, Ȳ 2). Consider

the following cases.

i. y ∈ [Y i
F , Y

j
F ).

In this case V i
y (Ȳ

i, Ȳ j) = Li(y) = M i(y) = F i(y), and V j
y (Ȳ j , Ȳ i) =

W j(y) = F j(y). Player i has no incentive to deviate, since any deviation

to Ŷ i > y would lead to a payoff F i(y). The same holds for Player j.

11



ii. y ∈ [Y 2
P , Y

i
F ).

Note that V k
y (Ȳ

k, Ȳ `) = W k(y) = F k(y), for k = 1, 2. So, for neither

player would a deviation lead to a higher payoff.

iii. y < Y 2
P .

As in case (ii), Player 2 has no incentive to deviate to any Ŷ 2 > Ȳ 1. Let

Ŷ 2 < Ȳ 1, Because of the no-positive-jump assumption it holds that

L2
y(Ŷ

2) ≤ L2
y(Ȳ

1) ≤ F 2
y (Ȳ

1),

where the first inequality holds because Ŷ 2 < Ȳ 1 < Y 2
L and L2

y(·) is non-

decreasing on (a, Y 2
L ), and the second inequality holds by definition since

Ȳ 1 < Y 2
P . Because Ȳ 1 < Y 1

L it holds that L1
y(Ŷ

1) < L1
y(Ȳ

1) for any Ŷ 1 <

Ȳ 1. Since Y 1
L ≥ Y 2

P > Y 1
P , it also holds that F

1
y (Y

2
P ) < L1

y(Y
2
P ). Therefore,

all ε-best-responses to Ȳ 2 = Y 2
P are all in the interval (Y 2

P − δ, Y 2
P ). Since

Ȳ 1 ∈ (Y 2
P − δ, Y 2

P ), (Ȳ
1, Ȳ 2) constitutes an ε-Markov equilibrium.

As becomes clear from the above, any ε-Markov equilibrium must have

Ȳ 2 ≥ Y 2
P . However, there can be no preemption ε-equilibrium with Y 2

F ≥

Ȳ 2 > Y 2
P . For suppose there is. Then, Player 1’s ε-best response will be

to stop at some Ŷ 1 ∈ (Ȳ 2 − δ, Ȳ 2). For small enough ε, it will hold that

Ȳ 2 − δ > Y 2
P . In that case Player 2 will wish to deviate to Ŷ 2 = Ȳ 2 − δ.

(c) The proof is analogous to that for the previous statement.

2. In this case it is dominant for Player i to wait until Y i
L is hit. Consequently,

she will never choose a strategy Ȳ i < Y i
L. Given this, Player j also has no

incentive to choose a strategy Ȳ j < Y 2
L .

3. Because of rent equalization, at YP each player is indifferent between stopping

immediately and waiting. If one player chooses YP , then the other player has

no incentive to deviate from YP because for all Ŷ i < YP , it holds that

Li
y(Ŷ

i) < F i
y(Ŷ

i) ≤ F i
y(YP ).

So, (YP , YP ) is a preemption equilibrium.

Suppose, however, that there is another preemption equilibrium (Ȳ 1, Ȳ 2),

with, say, YP < Ȳ 1 ≤ Ȳ 2. Let y ≤ YP . Because of continuity of L2
y(·)

and F 2
y (·), Player 2 can find δ > 0, such that

νȲ 1−δ(Ȳ
1)[F 2(Ȳ 1)−D2

00(Ȳ
1)] < L2(Ȳ 1 − δ) −D2

00(Ȳ
1 − δ).

This, in turn, implies that L2
y(Ȳ

1 − δ) > F 2
y (Ȳ

1), and, thus, that Player 2

should deviate.

12



4.3 Other Equilibria

Apart from preemption equilibria, preemption games may exhibit other equilibria.

Again, it will be assumed throughout that Y 1
L ≤ Y 2

L .

4.3.1 Sequential Equilibria

In this subsection we look at equilibria where players stop sequentially. The following

lemma is trivial, but useful.

Lemma 3. Let Γ be a preemption game satisfying Assumptions 1–3. Let YF :=

Y 1
F ∨ Y 2

F . If Player j plays a strategy Y j ≤ YF , then it is weakly dominant for

Player i to choose a strategy Y i ≤ YF .

Proof. Suppose that Player j plays Y j ≤ YF and that Player i chooses a strategy

Y i ∈ Ē, with Y i > Y i
F . Let y ∈ [Y i

F , Y
i). Consider the following two cases.

1. Y j ≤ y.

In this case Player j becomes the leader and, therefore, Player i’s expected payoff is

F i(y). Deviating to Y i = Y i
F would lead to the expected payoff M i(y) = F i(y).

2. Y j > y.

In this case Player i can become the leader and get an expected payoff Li(y) > F i(y)

if y < Y j
F . Otherwise, Player i gets the payoff M i(y) = F i(y).

In light of this lemma we will only consider sequential Markov equilibria with

Y i ≤ Y i
F in this subsection. The sequential equilibrium from Proposition 1 sur-

vives in preemption games without the rent-equalization property as the following

proposition shows.

Proposition 5. Let Γ be a preemption stopping game satisfying Assumptions 1–3.

Assume that the rent-equalization property does not hold. If Y 2
P ≥ Y 2

L , then (Y 1
L , Y

2
F )

constitutes a Markov equilibrium.

Proof. Consider the following cases.

1. y ≥ Y 2
F

In this region F i(y) = M i(y) = Li(y), for both players. Therefore, it is optimal for

both to stop.

2. Y 1
L ≤ y < Y 2

F

Given that Player 1 stops and W 2(y) < F 2(y), Player 2 has no incentive to deviate.

Conversely, given that Player 2 does not stop immediately it is optimal for Player 1

13



to stop.

3. y < Y 1
L

Given that Player 2 does not stop before Y 2
F is hit it is optimal for Player 1 to

wait until Y 1
L is reached. Conversely, since Y 2

L ≥ Y 1
L and Y 2

P ≥ Y 1
L it holds for all

y ≤ Ŷ < Y 1
L that

ν
Ŷ
(Y 1

L )[F
2(Y 1

L )−D2
00(Y

1
L )] ≥ F 2(Ŷ )−D2

00(Ŷ ) > L2(Ŷ )−D2
00(Ŷ ),

which, in turn, implies that L2
y(Ŷ ) < F 2

y (Y
1
L ). So, Player 2 prefers to become the

follower at Y 1
L rather than to preempt and become leader at some y ≤ Ŷ < Y 1

L .

Finally, since W 2
y (Y

1
L ) < F 2(Y 1

L ), it holds that F
2
y (Y

1
L ) > W 2

y (Y
1
L ). Hence, Player 2

has no incentive to deviate to any y ≤ Ŷ ≤ Y 1
L . For any Ŷ > Y 1

L , it holds that

V 2
y (Ŷ , Y 1

L ) = V 2
y (Y

2
F , Y

1
L ) = F 2

y (Y
1
L ).

In the above proposition, the condition that Y 2
P ≥ Y 1

L cannot be dispensed with.

For suppose that Y 2
P < Y 1

L . Then, since νy(·) is continuous, there exists δ > 0,

such that L2
y(Y

1
L − δ) > F 2

y (Y
1
L ). So, Player 2 wishes to deviate and it follows from

Proposition 3 that no sequential equilibrium exists.

In preemption games with the rent-equalization property, many more equilibria

exist. However, they all lead to the same sequential scenario: Player 1 stops at Y 1
L

and Player 2 at Y 2
F .

Proposition 6. Let Γ be a preemption game satisfying Assumptions 1–3 and the

rent-equalization property. If Y 2
P > Y 1

L , then all preemption equilibria are of the

form (Y 1
L , Y

2), for any Y 2 ≥ Y 2
P .

Proof. It is dominant for Player 1 to stop whenever y ≥ Y 1
L . Given that

Y 2
P > Y 1

L , it is weakly dominant for Player 2 not to preempt Player 1, since for any

y ≤ Ŷ 2 ≤ Y 1
L , it holds that

L2
y(Ŷ

2) ≤ L2
y(Y

1
L ) ≤ F 2

y (Y
1
L ).

So, any Markov equilibrium (Ȳ 1, Ȳ 2) must have Ȳ 1 = Y 1
L and Ȳ 2 > Y 2

L . In

addition, for any y ∈ [Y 1
L , Y

2
P ) it is optimal for Player 2 to become follower rather

than leader since W 2(y) < F 2(y). So, Ȳ 2 ≥ Y 2
P . For all Y 2

P ≤ y < Y 2
F , however,

Player 2 is indifferent between stopping immediately and not stopping immediately

becauseW 2(y) = F 2(y) due to rent equalization. So, any Ȳ 2 ∈ SP leads to a Markov

equilibrium. Every Ȳ 2 ≥ Y 2
F trivially leads to a Markov equilibrium.

Again, the result depends crucially on the assumption that Y 2
P > Y 1

L . If this is

not the case then Proposition 4 gives preemption equilibria.
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4.3.2 Simultaneous Equilibria

Apart from sequential equilibria, there may exist equilibria in which both players

stop simultaneously. As is made clear in Section 4.2, such equilibria can never be

preemptive. In fact, they only exist if the value of becoming the leader at any point

in the preemption region is exceeded by the expected payoff of simultaneous stopping

at some later date. Recall that, for Y ∗ > Y i
F ,

M i
y(Y

∗) = Di
00(y) + νy(Y

∗)
[

M i(Y ∗)−Di
00(Y

∗)
]

, (5)

where M i(y) = Di
11(y)− Ii. By a similar reasoning as in Lemma 1 it can easily be

shown that (5) has a unique maximizer Y i
M .

Using this notation the following equilibrium can exist in some cases.

Proposition 7. Let Γ be a preemption game satisfying Assumptions 1–3. If Y ∗ >

Y 1
F ∨ Y 2

F is such that

Li(y) ≤ M i
y(Y

∗),

for all y ∈ Si
P and i ∈ {1, 2}, then (Y ∗, Y ∗) is a Markov equilibrium of Γ.

Proof. Consider the following cases.

1. y > Y ∗.

Given that layer j stops immediately, the best response of Player i is to stop imme-

diately as well, since Y ∗ > Y i
F .

2. y ≤ Y ∗.

Suppose that Player i deviates to Ŷ i > Y ∗. Then Player j will stop at time τ(Y ∗).

Since Y ∗ > Y i
F , Player i will then stop immediately as well. So, V i

y (Ŷ
i, Y ∗) =

V i
y (Y

∗, Y ∗). Conversely, if Player i deviates to Y i
P ≤ Ŷ i < Y ∗, then either

V i
y (Ŷ

i, Y ∗) = Li(y) ≤ M i
y(Y

∗) = V i
y (Y

∗, Y ∗),

if y ≥ Ŷ i, or

V i
y (Ŷ

i, Y ∗) = Li
y(Ŷ

i)

= Di
00(y) + νy(Ŷ

i)
[

Li(Ŷ i)−Di
00(Ŷ

i)
]

≤ Di
00(y) + νy(Ŷ

i)
[

M i(Ŷ i, Y ∗)−Di
00(Ŷ

i)
]

= M i(y, Y ∗) = V i
y (Y

∗, Y ∗),

if y < Ŷ i.
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5 Non-Cooperative Coordination and Rent-Equalization

If one views the use of continuous time simply as a modeling tool that opens up the

toolkit of stochastic calculus, then it is no great step to allow players to coordinate

“in between two instantaneous points in time”. This idea can be formalized by using

the definition of time as introduced in Dutta and Rustichini (1995). They view time

as the two-dimensional set T = R+×Z+, endowed with the lexicographic ordering,

denoted by ≥L, and the standard topology induced by ≥L. That is, a typical time

element is a pair s = (t, z) ∈ T , which consists of a continuous and a discrete part. In

the remainder, t refers to the continuous part and z to the discrete component. One

can think of the continuous part of time as “process time” in which the stochastic

environment evolves and the discrete part as “coordination time” in which players

coordinate their actions. The great advantage of using this set-up is that it allows

each part of the model to be analyzed in its most suitable way: stochastic evolution

in continuous time and strategic interaction discrete time.

Obviously, the stochastic structure that has been used so far needs to be adapted

to this new definition. Since we essentially want to keep the stochastic process (Yt)t≥0

defined on the continuous part of time only, this is a fairly straightforward exercise.

A filtration on (Ω,F ) is now a sequence of σ-fields,
(

F(t,z)

)

(t,z)≥L(0,0)
, such that

F(t,z) ⊆ F(t′,z′) ⊆ F ,

whenever (t, z) ≤L (t′, z′). For all y ∈ R, let Py be a probability measure on (Ω,F )

and define the process
(

Y(t,z)

)

(t,z)≥L(0,0)
such that Y(t,z) = Yt, for all t ∈ R+ and

z ∈ Z+. So, the extended process only moves in “process time” and is constant in

“coordination time”. This way, stochastic integrals can also be extended trivially to

operate on T .

In this framework, the threshold strategies introduced in Section 4.1 are not

so much the thresholds at which players stop, but the thresholds at which they

are willing to engage in a coordination game. As argued by Fudenberg and Tirole

(1985), this coordination game is most conveniently modeled as a “grab–the–dollar”

game. This is an infinitely repeated game the stage game of which is as depicted in

Figure 2. That is, play continues until at least one player “grabs the dollar”. We

Grab Don’t grab

Grab M1(y),M2(y) L1(y), F 2(y)

Don’t grab F 1(y), L2(y) play again

Figure 2: The coordination game.

allow for mixed strategies in the stage game. Given that the “grab–the–dollar” game
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is (potentially) infinitely repeated we can restrict attention to stationary strategies

and denote the probability with which Player i grabs the dollar in the stage game

by αi.

The payoff to Player i in this repeated game depends on the probability that she

is the first to grab the dollar. For a given pair (α1, α2), the probability that Player i

grabs the dollar first is denoted by pi(y) and is equal to

pi(y) =αi(1− αj) + αi(1− αi)(1 − αj)2 + · · ·

=αi
∞
∑

z=1

(1− αi)z−1(1− αj)z

=
αi(1− αj)

αi + αj − αiαj
.

(6)

Similar computations show that the probabilities that Player j grabs the dollar first,

denoted by pj(y), and that both players grab the dollar simultaneously, denoted by

p3(y), are equal to

pj(y) =
αj(1− αi)

αi + αj − αiαj
, and p3(y) =

αiαj

αi + αj − αiαj
, (7)

respectively.

The expected payoff to Player i in the repeated game then equals

W i
y(α

i, αj) = pi(y)L
i(y) + pj(y)F

i(y) + p3(y)M
i(y). (8)

It is obvious that it is a weakly dominant strategy to set αi = 1 whenever y ≥ Y i
F

and αi = 0, whenever y < Y i
P . Furthermore, it is easy to see that, for each y ∈ SP ,

there is a unique mixed strategy equilibrium where

ᾱi =
Lj(y)− F j(y)

Lj(y)−M j(y)
. (9)

The expected payoffs in this equilibrium are easily confirmed to be W i
y(ᾱ

i, ᾱj) =

F i(y). In other words, non-cooperative coordination through a “grab–the–dollar”

game leads to rent-equalization. This gives, therefore, a non-cooperative justification

for the assumption that W i(y) = F i(y) for y ∈ SP .

6 Examples

In this section some examples are given that illustrate the applicability of the results

derived so far. Attention is mainly focussed on preemption equilibria in games that

satisfy the rent-equalization property.
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6.1 Spectrally Negative Lévy Processes

A Lévy process is an adapted process with independent and stationary increments.4

Each Lévy process has a càdlàg version, which is the one we will work with. For

Borel sets U with 0 6∈ Ū , the Poisson random measure of (Yt)t≥0 is given by

N(t, U) :=
∑

0<s≤t 1U (∆Ys). So, N(t, U) is the number of jumps with size in U . The

corresponding compensated Poisson random measure is denoted by Ñ(t, U). The

intensity of the Poisson process is denoted by λ and the Lévy measure is defined as

m(U) := Ey[N(1, U)]. In differential form a time homogeneous Lévy process can be

written as

dYt = µ(Yt)dt+ σ(Yt)dWt +

∫

R

γ(Yt, z)Ñ (dz, dt), (10)

where (Wt)t≥0 is a standard Brownian motion. Assume that (Yt)t≥0 takes values in

E = (a, b) and that

a− y < γ(y, z) ≤ 0, for all (y, z) ∈ E ×R. (11)

This assumption ensures that (Yt)t≥0 has no upwards jumps. A Lévy process that

satisfies (11) is called spectrally negative. Such processes are useful to model situa-

tions where “success comes on foot and leaves on horseback”.

The generator of the process (Yt)t≥0, killed at rate r > 0, as defined for f ∈ C2,

is given by

LY (g) =
1

2
σ2(y)g′′(y) + µ(y)g′(y)

+ λ

∫

R

[

g(y + γ(y, z)) − g(y) − g′(y)γ(y, z)
]

m(dz) − rg(y).
(12)

Suppose that (12) has an increasing C2 solution g, such that g(a) = 0. Take Y ∗ ≥ y.

Then Dynkin’s formula gives

Ey

[

e−rτ(Y ∗)g(Yτ(Y ∗))
]

= g(y) + Ey

[

∫ τ(Y ∗)

0
LY g(Yt)dt

]

⇐⇒ Ey

[

e−rτ(Y ∗)
]

=
g(y)

g(Y ∗)
.

All diffusions, i.e. Lévy processes without jumps, are spectrally negative. For

several well-known classes of spectrally negative Lévy processes the stochastic dis-

count factor νy(·) can be computed explicitly. First consider and arithmetic Brown-

ian motion (ABM). This is a Lévy process the evolution of which is described by the

stochastic differential equation (10) with µ(y) = µ ∈ R, σ(y) = σ > 0, and λ = 0.

For this process it holds that

νy(Y
∗) = eβ1(y−Y ∗),

4See, for example, Øksendal and Sulem (2007).
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where β1 > 0 is the positive root of the quadratic equation

1

2
σ2β2 + µβ − r = 0.

A second example is the geometric Brownian motion (GBM), which takes µ(y) =

µy, σ(y) = σy, λ = 0 in (10). In addition it is assumed that r > µ. It then holds

that

νy(Y
∗) =

( y

Y ∗

)β1

,

where β1 > 1 is the positive root of the quadratic equation

1

2
σ2β(β − 1) + µβ − r = 0.

If one adds Beta distributed negative jumps to a GBM, i.e. λ > 0 and

m′(z) =
Γ(a+ b)

Γ(a)Γ(b)
za−1(1− z)b−1, a, b > 0,

where Γ(·) is the Gamma function, then it follows that (see Alvarez and Rakkolainen

(2010))

νy(Y
∗) =

( y

Y ∗

)β1

,

where β1 > 0 is the positive root of the equation

1

2
σ2β(β − 1) +

(

µ+
λa

a+ b

)

β − (r + λ) + λ
Γ(a+ b)Γ(b+ β)

Γ(b)Γ(a+ b+ β)
= 0.

The results in this paper also apply to processes that exhibit mean-reversion.

Consider, for example, the diffusion

dY

Y
= η(Ȳ − Y )dt+ σdW,

on R+, where Ȳ is the long-run value of Y and ν determines the speed of mean-

reversion. The generator of this process is

LY g =
1

2
σ2Y 2g′′ + η(Ȳ − Y )g′ − rg.

The solution to LY g = 0 is (see, for example, Dixit and Pindyck (1994))

g(y) = Ayθ1H

(

2η

σ2
y; θ1, b(θ1)

)

+Byθ2H

(

2η

σ2
y; θ2, b(θ2)

)

,

where

H(x; θ, b) =
∞
∑

n=0

Γ(θ + n)/Γ(θ)

Γ(b+ n)/γ(b)

xn

n!
,
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is the generalized hypergeometric function, θ1 > 0 and θ2 < 0 are the roots of the

quadratic equation
1

2
σ2θ(θ − 1) + ηȲ θ − r = 0,

and b(θ) = 2(θ+(η/σ2)Ȳ ). Since we are looking for solutions with g(0) = 0, it must

hold that B = 0. Since g is increasing if A > 0, we get that

νy(Y
∗) =

( y

Y ∗

)θ1 H
(

2η
σ2 y; θ1, b(θ1)

)

H
(

2η
σ2Y ∗; θ1, b(θ1)

) .

These result can be used to find the optimal thresholds Y i
F and Y i

L. For k = 0, 1,

namely, these thresholds are obtained as the solution to the optimization problem

max
Y ∗

νy(Y
∗)[Di

1k(Y
∗)−Di

0k(Y
∗)− Ii],

which leads to the first order condition (assuming differentiability of Di
k`(·)):

∂νy(Y
∗)

∂Y ∗
[Di

1k(Y
∗)−Di

0k(Y
∗)− Ii] + νy(Y

∗)
∂

∂Y ∗
[Di

1k(Y
∗)−Di

0k(Y
∗)] = 0. (13)

For ABM, GBM with beta distributed negative jumps, and mean-reversion we have

∂νy(Y
∗)

∂Y ∗
= −β1νy(Y

∗),
∂νy(Y

∗)

∂Y ∗
= −

β1
Y ∗

νy(Y
∗), and

∂νy(Y
∗)

∂Y ∗
=

2η

σ2

θ

b
H

(

2η

σ2
Y ∗; θ1 + 1, b(θ1) + 1

)

,

respectively. Note that this implies that in all these cases (13) does not depend on

y and that, thus, Y ∗ is a constant, as expected.

For several different stochastic processes the preemption region is plotted in

Figure 3 as a function of volatility. The net present values are taken to be linear

in the underlying shock: Di
k`(y) = Dk`y, where Dk` are constants such that D10 >

D11 ≥ D00 ≥ D01 and D10−D00 > D11−D01. As can be easily seen, the preemption

region tends to get wider in the case of higher volatility. This happens because a

higher volatility does not influence the present values whereas it increases option

values. These option values have a bigger impact on the follower threshold than on

the preemption threshold. After all, preemptive pressure erodes the option value for

the leader. This implies that in games with higher levels on uncertainty, it is more

likely that a preemptive situation occurs.

6.2 Industry Investment and Welfare

Many papers on preemption games deal with firms investing in a new product, or

a new technology. An important question in such models is what the impact of
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Figure 3: Preemption region as function of volatility σ for different stochastic pro-

cesses. General parameter values are I = 1, r = .1, D10 = 10, D11 = 3, D00 = 2,

and D01 = 1. (a) GBM (solid lines) and GBM with negative Beta jumps (dashed

lines) with µ = .03, λ = .1, a = 1.5, b = 2; (b) exponential mean-reverting with

Ȳ = 2 and η = .015.

preemptive behaviour on welfare is. In general, it is difficult to say anything about

this, but here we consider a fairly straightforward example. Let inverse demand in

the industry be given by D(Q) = Y − Q, where Y is a stochastic shift variable,

which follows the GBM
dY

Y
= µdt+ σdW.

For simplicity it is assumed that there are no costs of production beyond the sunk

costs of investment I > 0, and that profits are discounted at a rate r > 2µ+σ2. We

assume the following present values

Di
10(y) = Ey

[
∫ ∞

0
e−rtmax

Qt

(Yt −Qt)Qt

]

=
1

4

y2

r − 2µ − σ2
,

Di
11(y) = Ey

[

∫ ∞

0
e−rtmax

qit

(Yt − qit − qjt )q
i
t

]

=
1

9

y2

r − 2µ− σ2
,

Di
00(y) = Di

01(y) = 0.

Note that the stochastic process of interest is (Xt)t≥0, where Xt = Y 2
t . A straight-

forward application of Ito’s lemma shows that (Xt)t≥0 follows the GBM

dX

X
= (2µ + σ2)dt+ 2σdW.

Let

X∗ =
β1

β1 − 1
(r − 2µ− σ2)I,

21



where β1 > 1 is the positive root of the quadratic equation σ2β(β−1)+(2µ+σ2)β−

r = 0. The leader and follower thresholds are given by

XL = 4X∗, and XF = 9X∗,

respectively. Consumer surplus in the case where k = 0, 1, 2 firms have invested is

denoted by CSk(·), and equals

CS0(x) = 0,

CS1(x) = Ey

[
∫ ∞

0
e−rt1

2

(

Yt −
1

2
Yt

)

1

2
Ytdt

]

=
1

8

y2

r − 2µ − σ2
, and

CS2(x) = Ey

[
∫ ∞

0
e−rt1

2

(

Yt −
1

3
Yt

)

2

3
Ytdt

]

=
2

9

y2

r − 2µ − σ2
.

Note that

W1(x) := Di
10(y) + C1(y) =

3

8

x

r − 2µ− σ2
, and

W2(x) := 2Di
11(y) + C2(y) =

4

9

x

r − 2µ − σ2
.

A welfare maximizing social planner would choose the thresholds for the first

and second firm to invest such that X1 and X2 solve

max
X1,X2≥X1

{

νx(X
1)[W1(X

1)− I] + νx(X
2)[W2(X

2)−W1(X
2)− I]

}

.

Solving this problem gives

X1 =
8

3
X∗, and X2 =

72

5
X∗,

respectively. Note that X2 > XF > XL > X1. So, a social planner would have

the first firm invest sooner than in the case of exogenously determined firm roles,

but would have the second firm invest later. Since L(X1) T F (X1), no general

statement can be made about whether preemption leads to investment before the

social optimum. For various values of the volatility parameter, σ, the welfare loss for

both cases is plotted in Figure 4. As can be seen, the thresholds are (as expected)

increasing in volatility. Also, for small values of σ, preemptive investment actually

takes place later than the social optimum. The welfare loss (as % of the social

optimum) is higher when firm roles are exogenous. As volatility increase, the welfare

loss in both cases reduces. This is mainly driven by the fact that 2µ + σ2 ↑ r, so

that the present values and, hence, welfare levels diverge.

In order to disentangle the option and present value effects on welfare results,

consider the following slight modification. Rather than letting Y denote a stochastic
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Figure 4: Welfare analysis driven by GBM with µ = .02, r = .1, and I = 1: (a)

thresholds as a function of volatility σ, (b) welfare as a % of the social optimum for

the case with exogenous firm roles (dashed line) and endogenous firm roles (solid

line).

shift variable in the inverse demand function, suppose that P (Q) = Y D(Q), where

D(Q) = 1 − Q. This formulation makes all present values independent of σ and

ensures similar results as above. Let

Y ∗ =
β1

β1 − 1
(r − µ)I,

where β1 > 1 is the positive root of the quadratic equation 1
2σ

2β(β−1)+µβ−r = 0.

The leader and follower thresholds are given by

YL = 4Y ∗, and YF = 9Y ∗,

respectively. Consumer surplus equals CS0(y) = 0,

CS1(y) =
1

8

y

r − µ
, and CS2(y) =

2

9

y

r − µ
,

so that

W1(y) =
3

8

y

r − µ
, and W2(y) =

4

9

y

r − µ
.

For similar parameter values as in Figure 4, the plots in Figure 5 give the thresholds

and (absolute) welfare levels of the exogenous and endogenous firm role cases. Note

that even for somewhat higher values of σ, the preemption threshold is above the

social optimum. So, even though preemption leads to rent equalization, those rents

are still too high to induce firms to invest at the social optimum. Also, for higher

values of σ welfare levels are actually diverging. This implies that, unlike in the
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Figure 5: Welfare analysis driven by GBM with µ = .02, r = .1, and I = 1: (a)

thresholds as a function of volatility σ, (b) welfare of the social optimum (solid line),

exogenous firm roles (dashed line) and endogenous firm roles (dotted line) cases.

previous case, higher levels of uncertainty actually lead to behaviour that is further

removed from the social optimum. Finally, welfare levels are actually increasing in

volatility. This is due to a balance of a present value and a stochastic discount effect.

All welfare functions contain components of the form (y/Y ∗)β1F (Y ∗). The present

value component F (Y ∗) is homogeneous of degree one, whereas the stochastic dis-

count factor is of degree 1/β1 ∈ (0, 1) (in Y ∗). Therefore, an increase in Y ∗ due to,

for example, higher volatility, has a bigger upward effect on the present value than

it has a negative effect on the discount factor.

7 Conclusion

This paper presents equilibrium results for a large class of timing games in which

there is a first-mover advantage. The approach taken here exploits the Markovian

nature of many classes of often used stochastic processes. This allows for a more

straightforward analysis than in most existing contributions. In addition, the issue

of rent-equalization has been studied separately and embedded in the timing game,

which makes it easier to see how it arises and whether its presence is reasonable.

In some applications where the environment changes very rapidly – such as fi-

nancial markets for high frequency traded products – it might not be. In that

case, no preemption equilibria exist and only collusive simultaneous stopping equi-

libria or asymmetric sequential equilibria can be obtained. In fact, no symmetric

equilibria may exist at all. A problem with the asymmetric equilibria arises in
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symmetric games. In such games there are two asymmetric equilibria (YL, YF ) and

(YF , YL) and it is not clear, a priori, which one should be selected. In either case,

though, the leader and follower roles are determined later than in the case where

rent-equalization is possible. Therefore, somewhat contradictory, in fast moving

situations, stopping gets delayed.

The welfare analysis in Section 6.2 suggests that, in industry investment situa-

tions, preemption is actually a good thing as it gets us closer to the social optimum

than asymmetric sequential equilibria do. Therefore, the availability of time for

coordination (i.e. playing of the “grab-the-dollar” game) is socially desirable.

Another advantage of the set-up in this paper is that the ideas can easily be

adapted to games in which there is a second mover advantage (wars of attrition).

Also, games with both a first mover advantage on the upside and a second mover

advantage on the downside can be analyzed using this framework. In particular, this

opens up the possibility of a proper analysis of the investment and disinvestment

behavior of competing firms.
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