
Discussion Papers in Economics

Department of Economics and Related Studies
University of York

Heslington
York, YO10 5DD

No. 11/12

Captain MacWhirr's Problem Revisited

By

Paul Schweinzer and Makoto Shimoji





Captain MacWhirr’s Problem Revisited∗

Paul Schweinzer and Makoto Shimoji†

Abstract

This note analyzes the problem Captain MacWhirr faces in Joseph Conrad’s novel

Typhoon as an implementation problem under incomplete information. We identify a

sufficient condition under which each player has a unique rationalizable strategy. In

this unique rationalizable outcome, truthful revelation by each player is observed.

1 Introduction

Captain MacWhirr’s problem was originally posed by Joseph Conrad in his 1902 novel Ty-

phoon. The Siamese steamer Nan-Shan transports 200 Chinese workers, who have worked for

seven years in the British tropical colonies, from Singapore to their home of Fu-chau. Each

worker’s accumulated savings are stored in individual camphor wood chests aboard the ship.

When a typhoon strikes with ferocious force on Christmas Eve, the boxes burst open and

the workers’ silver dollars are scattered between decks. In the ensuing chaos, the Captain’s

orders result in the passengers’ belongings to be amassed in a coal bunker. As soon as the

storm calms down, the Captain intends to return the men’s savings to their rightful owners.

But the Captain faces an information revelation problem:

You couldn’t tell one man’s dollars from another’s, he said, and if you asked each
man how much money he brought on board he was afraid they would lie, and he
would find himself a long way short. [Joseph Conrad, Typhoon]

In the first economic analysis of Captain MacWhirr’s problem, Mumy (1981) claims that

it is possible to motivate all passengers to truthfully report their entitlements to the Captain

∗We are grateful to Dirk Bergemann, Anindya Bhattacharya, Kim-Sau Chung, Alex Gershkov, Tymofiy
Mylovanov, Joel Sobel, and Olivier Tercieux for helpful comments and discussions. We would also like
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rationalizability. (June 16, 2011)
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through the use of a suitable punishment strategy. The solution identified by Mumy, however,

is only one of many possible Nash equilibria of the game.1

We view Captain MacWhirr’s problem as an implementation problem under incomplete

information. Our setup is different from the standard environments discussed in the liter-

ature (e.g., Bergemann and Morris (2009) and Jackson (1991)). We assume that Captain

MacWhirr has partial information regarding the true state, that is, the total amount of

the passengers’ endowments, which is not available to the passengers. Each passenger only

knows their own entitlement (own types) and does not know the others’ entitlements (others’

types) or the total amount of endowments. In addition, we assume that each passenger’s

preferences are state independent. We also impose a financial non-negativity constraint on

the passengers’ final wealth.

We identify a sufficient condition under which the planner (Captain MacWhirr) can

construct a direct mechanism so that each player has a unique rationalizable strategy.2 In

this unique outcome, each player’s rationalizable strategy is to simply tell the truth. In the

mechanism we provide, the planner hides the information on the total amount of money to

achieve the desired outcome.

Our sufficient condition says that each player assigns a sufficiently high probability to the

case that every other player’s endowment is the lowest. Consider the case where everyone

else’s endowment is indeed the lowest. Then, irrespective of the amount she had, if a player

claims more than her endowment, this would be noticed by the planner who knows the total

amount. In our mechanism, this leads to a payoff below her endowment. If every player

believes that this case is likely, then she will never claim more than what she had. This

means that every player receives what she claims in our mechanism. Then, knowing this, no

one would claim less than her endowment since doing so would lead to a lower payoff than

what she could have received by telling the truth, that is, her endowment.

Note that in the argument above, we only describe a restriction on beliefs instead of

specifying the players’ beliefs explicitly. To incorporate such a weak condition, our analysis

is based on the notion of ∆-rationalizability due to Battigalli and Siniscalchi (2003), which

allows us to put a restriction on the players’ (first-order) beliefs. The prefix “∆” corresponds

to such restrictions. In our setting, it is the sufficient condition mentioned above. Only

assuming a common belief regarding this restriction is certainly weaker than the standard

Bayesian approach. We believe that this is a more natural way to treat actual environments.3

1Saraydar (1983) criticizes this fact and defends MacWhirr’s solution of assigning equal shares to each
passenger on the grounds of feasibility and transaction costs.

2Bergemann, Morris, and Tercieux (2011) study implementation problems under complete information
via rationalizability.

3In the Bayesian environment, we could also use the notion of interim correlated rationalizability by Dekel,
Fudenberg, and Morris (2007). For a comparison of these notions, see Battigalli, Di Tillo, Grillo, and Penta
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2 Mechanism

N is the set of players with |N | = n > 1. For each player i, xi is the amount of money

she earned, which we call endowment. We assume that xi ∈ {x, x + 1, . . . , x̄ − 1, x̄} = X

for each i ∈ N with x̄ > x > 0 where x (and, hence, each element of X) is an integer. Let

y =
∑

j∈N xj and yi =
∑

j ̸=i xj = y − xi.

The set-up we consider is different from the standard environment in the literature.

That is, the planner has partial information regarding the true state which the players do

not have, namely, the total amount of entitlements, y.4 The planner uses this information

to implement the desired outcome. The planner does not make y public and, hence, this is

a random variable from the players’ point of view.5 After observing her own endowment xi,

each player announces si ∈ X.6 Given the profile of announcements, the planner distributes

the collected funds according to the following rule:

1. If
∑

j∈N sj ≤ y, then the planner gives si to each player i and keeps the rest.

2. If
∑

j∈N sj > y, then each player receives r(z) where z =
∑

j∈N sj − y.

In general, the planner constructs r(·) with the following properties: (i) r(z) ∈ [0, x) for

z ∈ {1, . . . , n(x̄− x)}, and (ii) r(z) is strictly decreasing and linear in z ∈ {1, . . . , n(x̄− x)}.
The planner adopts a lottery rule: Each player faces a lottery with two possible outcomes

{0, x}. With the chance z
n(x̄−x)

, she receives 0 while she receives x with probability n(x̄−x)−z
n(x̄−x)

.

Hence, a player’s expected payoff for z > 0 is

r(z) =

(
n(x̄− x)− z

n(x̄− x)

)
x.

Under the specification above, given the other players’ announcements, if z > 0, announcing

a higher number would lead to a strictly lower payoff. In such scenarios, the marginal cost

of announcing a higher number is

d = r(z)− r(z + 1) =
x

n(x̄− x)

which plays a crucial role in the sufficient condition we provide. Note (i) that d is increasing

if the difference x̄− x decreases, and (ii) that d is increasing if x increases.

(2011). Our sufficient condition results in uniqueness in both environments.
4If the planner chooses to release this information, then our mechanism would not work.
5We assume that the planner applies the proposed mechanism even to trivial cases, e.g., when y = nx or

y = nx̄. Otherwise, our sufficient condition does not hold.
6It is imperative that the set of pure actions for each player coincides with X.
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For a sufficiently large x, the planner can construct r(·) without having to use lotteries

such that (i) r(·) is strictly decreasing in z, (ii) the image of r(z) for z ∈ {1, . . . , n(x̄ − x)}
is a subset of {0, . . . , x− 1}, and (iii) the following expression is sufficiently large:

min
z∈{1,...,n(x̄−x)−1}

[r(z + 1)− r(z)] = d.

3 Sufficient Condition and Result

When the game described above is played, each player i knows her own endowment xi and

forms a belief about the other players’ endowments x−i ∈ Xn−1 as well as their announce-

ments s−i ∈ Xn−1. Let qxi
∈ ∆(Xn−1×Xn−1) denote player i’s belief about the other players’

endowments x−i ∈ Xn−1 as well as announcements s−i ∈ Xn−1 when her endowment is xi.

Let pxi
∈ ∆(Xn−1) be player i’s belief about the other players’ endowments x−i obtained

from qxi
.

We adopt the notion of ∆-rationalizability by Battigalli and Siniscalchi (2003) where ∆

corresponds to the restrictions on the players’ first-order beliefs.7 We assume that there

is a common belief on ∆. Given this restriction, after the realization of her endowment,

each player eliminates announcements which cannot be best responses to any of her beliefs

satisfying the condition. Then, with the reduced set of endowment-announcement combina-

tions, each player again eliminates announcements which cannot be best responses to any of

her beliefs which satisfy the condition and take into account the fact that some endowment-

announcement combination would not arise for the other players. This continues until there is

no more announcement eliminated for each possible endowment of each player. The remain-

ing endowment-announcement combinations gives the set of rationalizable announcements

for each possible endowment of each player.

The condition below states that for each i ∈ N and xi ∈ X, player i believes that the

chance of everyone else’s endowment being the lowest is sufficiently high. We already noted

that if this corresponds to the true state (commonly known), then there is no room for each

player to state anything but the truth. The condition below implies that as long as there

is a common belief that each player believes it is very likely that the other players have

the lowest endowment, the planner can achieve the desired outcome with the simple direct

mechanism described above.

7See also Battigalli (2003) and Battigalli and Siniscalchi (2007).
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3.1 Sufficient Condition

Take pxi
= margXn−1 qxi

as the marginal on the set of endowments Xn−1 obtained from qxi
.

We assume that each player i’s first-order belief satisfies the following condition.

Condition 1 For each i ∈ N and xi ∈ X\{x̄},

pxi
(xj = x for all j ̸= i) >

x̄− xi

(x̄− xi) + d
.

We also assume that there is a common belief that the players’ beliefs satisfy this sufficient

condition.8

As a simple example, consider the case where n = 3, x̄ = 220 and x = 210 (and hence

x̄ − x = 10). Then, the planner can have r(z) = 210 − 7z where z ∈ {1, . . . , 30}, which
implies d = 7.9 The sufficient condition above requires that each player i’s belief that xj = x,

for all j ̸= i, to be strictly higher than

x̄− xi

x̄− xi + d
=

220− xi

227− xi

≤ 10

17
≈ 0.588.

Of course, this condition can become tighter or weaker, depending on the precise set of

parameters employed.

3.2 Rationalizability

Let ui : Xn × Xn → R be player i’s utility function which depends on the profile of

announcements s ∈ Xn and the profile of endowments x ∈ Xn. Given xi ∈ X and

qxi
∈ ∆(Xn−1 ×Xn−1), let

BRi(xi, qxi
) = argmaxs′i∈X

∑
s−i,x−i

ui(s
′
i, s−i, xi, x−i)qxi

(x−i, s−i)

be the set of best responses for player i with endowment xi.

Let ∆xi
be the set of beliefs satisfying Condition 1 for each xi and ∆ = ((∆xi

)xi∈X)i∈N .
10

The following iterative procedure eliminates announcements for each xi for each i ∈ N .

• R0
i = X×X; that is, the procedure starts with all possible combinations of endowments

and announcements for each player i.

8We would like to thank Pierpaolo Battigalli for pointing out imprecise statements in a previous version.
9Here, the planner does not use lotteries.

10That is, ∆xi =
{
qxi ∈ ∆(Xn−1 ×Xn−1) | margXn−1 qxi(xj = x for all j ̸= i) > x̄−xi

(x̄−xi)+d

}
.
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• At the k-th iteration where k > 0, for each i and xi, an announcement si is a best

response to a belief for the player with endowment xi which satisfies the condition

above and whose support only includes the endowment-announcement combinations

of the others which have survived so far;

Rk
i =

{
(xi, si) ∈ X ×X | there exists qxi

∈ ∆xi
∩∆(Rk−1

−i ) such that si ∈ BRi(xi, qxi
)
}
.

• For each i ∈ N , let Ri = ∩∞
k=0R

k
i .

For each (xi, si) ∈ Ri, we say that an announcement si is rationalizable to player i with xi.

Note that in the definition above, we only use pure strategies. In our setting, we assume

that each player’s utility function is independent of the state.11 Moreover, we assume that

each player’s utility function is linear in its argument.

3.3 Main Result

Under Condition 1, given the mechanism specified above, we have the following result:

Proposition 1 Given Condition 1, for each i ∈ N and each xi ∈ X, the only rationalizable

strategy is si = xi.

The proof for the result is given in Appendix A. Here, we outline the proof for the result.

Compare two strategies si = xi and s′i > xi. The net loss from announcing si compared to

s′i is simply s′i − xi if y ≥
∑

j∈N sj. However, there are cases where y <
∑

j∈N sj for which

there are two possible reasons; (a)
∑

j ̸=i sj is too high, or (b) y is too low. There is at least

one scenario to which (b) applies. If xj = x for each j ̸= i, independent of s−i, s
′
i leads

to an expected payoff which is strictly lower than x. In this scenario, the net gain from

announcing si compared to s′i is at least (s
′
i−xi)+d. If Condition 1 holds, this net expected

gain always exceeds the net expected loss for any s′i > xi independent of s−i. Hence, si = xi

strictly dominates s′i > xi for each i ∈ N and xi ∈ X\{x̄}. This means that no one claims

more than her endowment, and, hence, each player receives what she claims. Since claiming

less than her endowment simply lowers a player’s payoff, si = xi strictly dominates s′′i < xi

for each xi ∈ X\{x}. Hence, si = xi is a unique rationalizable strategy for each i ∈ N and

xi ∈ X.

11See Ben-Porath and Lipman (2011) for implementation problems when preferences are state independent.
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4 Conclusion

In this note, we present a sufficient condition under which it is each player’s unique ratio-

nalizable strategy to reveal the actual amount of her endowment. If, on the one hand, xi

is i.i.d. for each player i ∈ N or if n is sufficiently large (i.e., d is small), or both, it is

harder for Condition 1 to be satisfied compared to cases where correlations are allowed or n

is sufficiently small.

On the other hand, if x̄ − x is relatively small and x is sufficiently large, the condition

may be easily satisfied. In other words, uniqueness can be obtained if the endowments are

sufficiently large (i.e., large x and hence d) but the variance is small (i.e., small x̄−x). Even

in Conrad’s story this might have been the case since the workers had “worked in the same

place and for the same length of time” [Joseph Conrad, Typhoon].

A Appendix

We first show that for each i ∈ N and xi < x̄, any si > xi is strictly dominated by si = xi,
and hence si > xi is not a best response for each i ∈ N and xi < x̄. Then, we show that
si = xi is a unique rationalizable strategy for each i ∈ N and xi ∈ X.

Take xi ∈ X\{x}. The expected payoff from announcing xi is

(n−1)x̄∑
l=(n−1)x

qxi

(
yi = l∑
j ̸=i sj ≤ l

)
xi +

(n−1)x̄∑
l=(n−1)x

qxi

(
yi = l∑
j ̸=i sj > l

)
r

(∑
j ̸=i

sj − l

)

= xi −
(n−1)x̄∑

l=(n−1)x

qxi

(
yi = l∑
j ̸=i sj > l

)[
xi − r

(∑
j ̸=i

sj − l

)]
(1)
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where yi =
∑

j ̸=i xj. The expected payoff from announcing si ∈ {xi + 1, . . . , x̄} is

(n−1)x̄∑
l=(n−1)x

qxi

(
yi = l∑

j ̸=i sj + (si − xi) ≤ l

)
si

+

(n−1)x̄∑
l=(n−1)x

qxi

(
yi = l∑

j ̸=i sj + (si − xi) > l

)
r

(∑
j ̸=i

sj − l + (si − xi)

)

= si −
(n−1)x̄∑

l=(n−1)x

qxi

(
yi = l∑

j ̸=i sj + (si − xi) > l

)[
si − r

(∑
j ̸=i

sj − l + (si − xi)

)]

= si −
(n−1)x+(si−xi)−1∑

l=(n−1)x

pxi
(yi = l)

[
si − r

(∑
j ̸=i

sj − l + (si − xi)

)]
(2)

−
(n−1)x̄∑

l=(n−1)x+(si−xi)

qxi

(
yi = l∑

j ̸=i sj + (si − xi) > l

)[
si − r

(∑
j ̸=i

sj − l + (si − xi)

)]

where the last equality comes from the observation that if (n − 1)x + (si − xi) > yi, it is
always the case that

∑
j ̸=i sj + si > yi + xi = y.

The expression (1) can be written as

xi −
(n−1)x+(si−xi)−1∑

l=(n−1)x

qxi

(
yi = l∑
j ̸=i sj > l

)[
xi − r

(∑
j ̸=i

sj − l

)]

−
(n−1)x̄∑

l=(n−1)x+(si−xi)

qxi

(
yi = l∑
j ̸=i sj > l

)[
xi − r

(∑
j ̸=i

sj − l

)]
.

Then,

(1)− (2)

= −(si − xi)

+

(n−1)x+(si−xi)−1∑
l=(n−1)x

{
pxi

(yi = l)

[
si − r

(∑
j ̸=i

sj − l + (si − xi)

)]

−qxi

(
yi = l∑
j ̸=i sj > l

)[
xi − r

(∑
j ̸=i

sj − l

)]}

+

(n−1)x̄∑
l=(n−1)x+(si−xi)

{
qxi

(
yi = l∑

j ̸=i sj + (si − xi) > l

)[
si − r

(∑
j ̸=i

sj − l + (si − xi)

)]

−qxi

(
yi = l∑
j ̸=i sj > l

)[
xi − r

(∑
j ̸=i

sj − l

)]}
. (3)
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First, note that

pxi
(yi = l)

[
si − r

(∑
j ̸=i

sj − l + (si − xi)

)]

−qxi

(
yi = l∑
j ̸=i sj > l

)[
xi − r

(∑
j ̸=i

sj − l

)]

≥ pxi
(yi = l)

[
r

(∑
j ̸=i

sj − l

)
− r

(∑
j ̸=i

sj − l + (si − xi)

)
+ (si − xi)︸ ︷︷ ︸

(∗)

]

for each l ∈ {(n− 1)x, . . . , (n− 1)x+ (si − xi)− 1} where the inequality comes from

pxi
(yi = l) ≥ qxi

(
yi = l∑
j ̸=i sj > l

)
for each l ∈ {(n−1)x, . . . , (n−1)x+(si−xi)−1} and the assumption that r(z) < x for each
z ∈ {1, . . . , n(x̄ − x)}. Note also that the expression in the bracket (∗) is strictly positive
since r(z) is strictly decreasing in z for z ∈ {1, . . . , n(x̄− x)}.

Likewise, we have

qxi

(
yi = l∑

j ̸=i sj + (si − xi) > l

)[
si − r

(∑
j ̸=i

sj − l + (si − xi)

)]

−qxi

(
yi = l∑
j ̸=i sj > l

)[
x− r

(∑
j ̸=i

sj − l

)]

≥ qxi

(
yi = l∑

j ̸=i sj + (si − xi) > l

)
×

[
r

(∑
j ̸=i

sj − l

)
− r

(∑
j ̸=i

sj − l + (si − xi)

)
+ (si − xi)

]
≥ 0

for each l ∈ {(n− 1)x+ (si − xi), . . . , (n− 1)x̄} where the first inequality comes from

qxi

(
yi = l∑

j ̸=i sj + (si − xi) > l

)
≥ qxi

(
yi = l∑
j ̸=i sj > l

)
for each l ∈ {(n − 1)x + (si − xi), . . . , (n − 1)x̄} and the assumption r(z) < x for each
z ∈ {1, . . . , n(x̄− x)}.
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Then,

(3)

≥ −(si − xi)

+

(n−1)x+(si−xi)−1∑
l=(n−1)x

pxi
(yi = l)

×

[
r

(∑
j ̸=i

sj − l

)
− r

(∑
j ̸=i

sj − l + (si − xi)

)
+ (si − xi)

]
≥ −(si − xi) + pxi

(xj = x for all j ̸= i)[(si − xi) + d]

= [(si − xi) + d]

{
pxi

(xj = x for all j ̸= i)− (si − xi)

(si − xi) + d

}
≥ [(si − xi) + d]

{
pxi

(xj = x for all j ̸= i)− (x̄− xi)

(x̄− xi) + d

}
> 0

where the last inequality comes from Condition 1. This implies that (1)−(2) > 0 independent
of s−i. Hence, we have the following result.

Lemma 1 Given Condition 1, for any i ∈ N , any si > xi is strictly dominated by si = xi

for each xi < x̄.

Given Lemma 1, each player knows that no opponent chooses si > xi. Hence, in each
possible outcome, each player with her endowment equal to xi receives an amount at most
xi. Given this, it is easy to see that choosing si < xi is strictly dominated since such an
announcement strictly lowers the payoff.

Lemma 2 Given Condition 1, for each i ∈ N , any si < xi is strictly dominated by si = xi

for each xi > x.

The results above imply Proposition 1.
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