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Abstract

The paper generalizes the natural projection approach introduced by Bal-
asko [4] to production economies with uncertainty. It explores the equilibrium
structure of the long run and short run private ownership production model.
It is shown that qualitative equilibrium properties of the production model are
those of the exchange model with production adjusted demand functions.
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1 Introduction

Balasko [2] shows that comparative static analysis of the Debreu mapping amounts to
a qualitative study of the restriction of the projection (p, ω) 7→ ω to the equilibrium
manifold E . A summary of results on qualitative properties of the equilibrium set
for exchange economies and economic applications based upon the natural projection
approach are found in Balasko [3]. The natural projection π is the mathematical
tool used to study the structure of the set E , the set of solutions of the equilibrium
equation z(p, ω) = 0 (aggregate excess demand function), for varying parameters
ω ∈ Ω. Economic equilibrium properties do not only depend on the structure of E
but also on how this set is embedded in the Cartesian product defined by the set of
prices S and the set of economies Ω. These properties are derived from restricting π
to E ⊂ S×Ω, a mapping from E into the set of economies Ω, called natural projection.

For example, Balasko shows that for the static Arrow-Debreu model and for the
two period exchange model (Balasko and Cass,[5]) that existence of competitive equi-
librium is a consequence of the projection mapping being smooth and proper. Its
inverse defines a ramified covering with a finite set of layers for regular economies.
The number of equilibria is not only finite but always odd and constant for some
sections of the parameter space Ω. Another remarkable property of the natural pro-
jection approach follows immediately from its relation to the Walras correspondence
W (ω)× {ω} = π−1 [1],[10].

Originally, the structure of the equilibrium set E following the natural projec-
tion approach is studied in the context of static exchange models. This set up does
not consider for the many situations where production is the center object of study.

∗Contact address: Department of Mathematics University of York, and Department of Economics
and Related Studies, York: pascal.stiefenhofer@york.ac.uk.
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This paper considers the extension of the natural projection approach to the study of
economic equilibrium properties of a two period production model with uncertainty.
It is shown that some properties of the solution set of the equilibrium equation of
the exchange model generalize to the smooth long run production model with con-
vex production sets. This essentially follows from the fact that every equilibrium of
the two period production model is also an equilibrium of the exchange model with
production adjusted demand functions.

Section 2 introduces the long run model of production. It shows that every long
run equilibrium of the two period production model with uncertainty is an equilib-
rium of the exchange model with production adjusted demand functions. Section
3 explores the equilibrium structure of the long run private ownership production
model. It generalizes the natural projection approach to economies with production
and uncertainty. Section 4 considers the full model of production where firms chose
long and short run profit maximizing activities. It shows that long run equilibria
always exists and that the number of short run equilibria associated with every long
run equilibrium is finite and odd. Section 5 is a conclusion.

2 The two period private ownership model with un-
certainty

Consider a version of the two period private ownership production model introduced in
Debreu [7], chapter 7. Uncertainty is denoted by a realization of a random variable s in
the set of mutually exclusive and exhaustive states of nature denoted by s ∈ {1, ..., S}.
There are i ∈ {1, ...,m} consumers, j ∈ {1, ..., n} producers, and k ∈ {1, ..., l} physical
goods. For all consumers i ∈ {1, ...,m}, a consumption bundle is a collection of vectors

xi = (xi(0), ..., xi(s), ..., xi(S)) ∈ Xi = Rl(S+1)
++ , where consumption in a particular

state s ∈ {0, 1, ..., S} is a vector xi(s) = (x1i (s), ..., xli(s)) ∈ Rl
++. Associated with

physical commodities is a set of normalized prices, denoted S = {p ∈ Rl(S+1)
++ : pl(s) =

1,∀s ∈ {0, 1, ..., S}}. For a particular realization s ∈ {1, ..., S} denote the state price

vector p(s) ∈ S = R(l−1)
++ × {1}. Consumers are further endowed with a fraction θij

representing the exogenously determined ownership structure of the private ownership
production economy. θij satisfies for each j ∈ {1, ..., n} and i ∈ {1, ...,m} 0 ≤ θij ≤ 1
, and

∑
i θij = 1. Denote the set of ownership structures Θ = {θij ∈ Rnm

+ :
∑

i θij =
1,∀i ∈ {1, ...,m}}.

Consumers are endowed with initial resources ωi = (ωi(0), ..., ωi(s), ..., ωi(S)) ∈
Ωi = Rl(S+1)

++ , where initial endowments in a particular state s ∈ {0, 1, ..., S} is a vector
ωi(s) = (ω1

i (s), ..., ωl
i(s)) ∈ Rl

++. Consumer i ∈ {1, ...,m} is further characterized by

a smooth Marschallian demand function fi : S × RS+1
++ → Rl(S+1)

++ , where fi(p, wi) is

defined for price vector p ∈ S and wealth level wi ∈ RS+1
++ .

Producers are characterized by production sets and their smooth supply func-
tions. In the classical two period Arrow-Debreu private ownership production model
with uncertainty P(L) firms choose profit maximizing net inputs in t = 0 with asso-
ciated outputs in t = 1. Production sets in P(L) are defined by

Yj = {(y(0), y(1)) ∈ Rl
− × RlS

+ : F (y(0), y(1)) ≤ 0}.

Each firm chooses a net activity vector yj = (yj(0), ..., yj(s), ..., yj(S)) ∈ Yj . The time
structure of this production model suggests that production of goods takes place over
two periods with l capital inputs in t = 0 and l associated outputs in t = 1 in each
state of the world s ∈ {1, ..., S}. Essentially, this is a long run model, equivalent to
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the static Arrow-Debreu model with no time structure.

In the reformulated long run production model P(L) firms choose long run factors
of production such as capital in period t = 0. The total amount of capital purchased
by a firm in t = 0 determines the maximal units of production a firm can produce in
period t = 1, called production capacity, K̄ measured in units of outputs ykj (1) ≥ 0
for some k ∈ {1, ..., l}. Once production capacity is installed, actual production
of goods takes place in period t = 1 where the firm’s problem is to choose profit
maximizing short run net activities with labor as a typical example of a short run
input of production. Production sets in P(L) are defined by

Yj = {(y(0), y(1)) ∈ Rl
− × RaS

− × RbS
+ : F (y(0), y(1)) ≤ 0},

where a + b = l, yj(0) < 0, and ykj (1) ≥ 0 for some k ∈ {a + 1, ..., b} and ykj (1) < 0

for k ∈ {1, ..., a}1. In the model P(L) long and short run activities of the firm are
variable. For example: A firm chooses l capital inputs in t = 0 defining the upper
boundary of maximal output of quantities of goods ykj (1) ≥ 0 for some k ∈ {a+1, ..., b}
it can produce in period t = 1. In period t = 1 actual production of goods takes place.
Profit maximization requires a firm to choose optimal short run inputs of production
of dimension a with associated outputs of production of dimension b. The real asset
structure of model P(L) is a generalization of the real asset structure of model P(L).

Associated with every long run production model P(L) there exists a short run
production model P(S). The main property of the short run model is that the pro-
duction set available to a firm is fixed, Yj(K̄). This implies that in the short run the
production capacity (the size of the firm) available to a firm is fixed. The short run
problem of the firm is then to maximize short run profits. This amounts to choosing
optimal quantities of short run real activities at competitive prices such that produc-
tion operations employ maximum production capacity. Production sets in P(S) are
defined by

Yj(K̄) = {(ȳ(0), y(1)) ∈ Rl
− × RaS

− × RbS
+ : F (ȳ(0), y(1)) ≤ 0},

where ȳj(0) < 0 ∈ Rl
− is fixed and only yj(1) ∈ RlS variable. The model P(L)

can further be refined. Here, the producer chooses long and short run inputs of
production in each period. For example consider a two period production set of
model P(L) defined by

Ȳj = (y(0), y(1)) ∈ Ra
− × Rb

+ × RaS
− × RbS

+ : F (y(0), y(1)) ≤ 0}

with sign constraints on capital and production goods in every time period. The asset
structure of this model of production is sufficiently rich to model production beyond
two periods. For example yj(t) = (y1j (t), ..., ykj (t), yk+1

j (t), ..., ylj(t) ∈ Ra
−×Rb

+ in every

t ∈ {0, 1}, where ykj (t) ≤ 0 for index 1, ...., k and ykj (t) ≥ 0 for index k + 1, ...., l. In
such a model a firm purchases capital and produces goods in every period. Here, the
economy ends in period t = 1 which implies that capital purchase in t = 1 is zero.

Associated with the long run model there exist a sequence of short run production
models. One in each period of time. For the special case of a two period long run
production model P(L) the single short run production set Ȳj(K̄) associated with
P(L) is defined by

Ȳj(K̄)j = (ȳ(0), y(1)) ∈ Ra
− × Rb

+ × RaS
− × RbS

+ : F (ȳ(0), y(1)) ≤ 0},
1k is the index for a input/ouput combination of production goods.
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where ȳj(0) is fixed. This implies that the maximal amount of producible goods of
dimension b in every state s ∈ {0, 1, ..., S}} is determined in t = 0. Hence, in the short
run the problem of the firm is to choose profit maximizing real quantities yj(s) ∈ Rl

at realized state of nature s ∈ {0, 1, ..., S}} and competitive price p(s).

Denote ξj : S → Rl(S+1) the supply function of producer j ∈ {1, ..., n}, where
ξj(p) is defined on the set of normalized prices. Standard assumptions of smooth
economies hold for each production set Yj [4]. In particular Yj is convex, inactivity 0
is an element in Yj , and the efficient boundary of Yj has a strictly positive Gaussian
curvature.

2.1 Consumers optimization

The objective of consumers is to maximize utilities subject to a sequence of budget
constraints. In the long run, each consumer maximizes utility from consumption
goods over both periods. In the short run, each consumer maximizes utility at the
realized state of the world and short run consumption constraints. Formally, every
i ∈ {1, ...,m}

(xi) ∈ argmax{ui(xi) : xi ∈ B} (1)

where

B = {p(s) · (xi(s)− ωi(s)) =
∑
j

θijp(s) · yj(s),∀s ∈ {0, 1, ..., S}}

2.2 Producers optimization

The problem of the firm is to maximize profits subject to a sequence of constraints. In
the long run production model P(L) all net activities (y(0), y(1)) in Yj are variable.
For every j ∈ {1, ..., n} profit maximization is formally defined by

(yj) ∈ argmax{p�yj : yj ∈ Yj ,∀s ∈ {0, 1, ..., S}} (2)

where the box product � is a state by state inner product operation on the price
vector p(s) and activity yj(s) for s = 0 in period t = 0, and s ∈ {1, ..., S} in period
t = 1.

In the short run production model P(S) each producer j ∈ {1, ..., n} chooses profit
maximizing short run net activities yj(1) in Yj(K̄) at fixed production capacity level
K̄ determined in period t = 0. Formally every j ∈ {1, ..., n}

(yj(s)) ∈ argmax{p(s) · yj(s) : yj ∈ Yj(K̄),∀s ∈ {1, ..., S}} (3)

2.3 Equilibrium

Each consumer i ∈ {1, ...,m} chooses a utility maximizing consumption bundle xi ∈
Xi at fixed ωi ∈ Ω and θij ∈ Θ satisfying his budget constraints. Each producer
j ∈ {1, ..., n} chooses profit maximizing net activities yj ∈ Yj at competitive prices
p ∈ S.
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Definition 1 An equilibrium of the two period private ownership production model
with uncertainty P(L) is a price vector p ∈ S, at fixed pair (ω, θ) ∈ Ω×Θ if for utility
maximizing consumers i ∈ {1, ...,m} and profit maximizing producers j ∈ {1, ..., n}
the excess demand function z(p, ω) = 0 defined by∑

i

fi(p, p · ωi +
∑
j

θijp · ξj(p)) =
∑
i

ωi +
∑
j

ξj(p). (4)

is satisfied.

An equilibrium allocation is a pair (x, y) ∈ Rl(S+1)m
++ ×Rl(S+1)n associated with an

equilibrium price vector p ∈ S for fixed parameters (ω, θ) ∈ Ω×Θ. There are l(S+ 1)
equilibrium equations less (S + 1) equations satisfying Walras’ law p�z(p, ω) = 0,
hence we have a system of l(S + 1) − (S + 1) linearly independent equations2. This
amounts to the number of unknowns, given the number of normalized prices of (S+1).

A study of the qualitative equilibrium structure of the two period private owner-
ship production model with uncertainty amounts to a study of the structure of the
solution set of the equilibrium equation z(p, ω) = 0. The first result is an equivalence
relation between the two period exchange model with uncertainty and the two period
production model with uncertainty. The relation between these models follows from
the definition of a two period exchange model with production adjusted Marshallian
demand functions.

Let ζi(p) =
∑

j θijξj(p) for any price system p ∈ S. Let hi : S × RS+1
++ → Rl(S+1)

++

defined by hi(p, wi) = fi(p, wi + p · ζi(p)) − ζi(p) denote the demand function of the
two period ”production adjusted” exchange model, where for every i ∈ {1, ...,m}
ownership structure θij is fixed, and total wealth defined by p · ωi + p · ζi(p). Now,
consider equilibrium equation (1) of the production model given by∑

i

fi(p, p · (ωi + ζi(p)) =
∑
i

ωi +
∑
j

ξj(p).

Rewriting the supply function in terms of ownership structure and summing over i∑
j

∑
i θijξj(p), and using definition ζi(p) =

∑
j θijξj(p) yields∑

i

fi(p, p · (ωi + ζi(p)) =
∑
i

ωi +
∑
j

ζj(p).

which can be rewritten into∑
i

fi(p, p · (ωi + ζi(p)− ζj(p)) =
∑
i

ωi,

hence by definition of production adjusted demand functions obtain

hi(p, wi) = fi(p, wi + p · ζi(p))− ζi(p).

We have proved the equivalence between the two period exchange model P(E) and
the long run production model P(L) by showing that the production model can
be reformulated in terms of an exchange model with production adjusted demand
functions.

2� is the mathematical symbol for the box product, a state by state inner product operation.
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Proposition 1 For fixed θ ∈ Θ, (p, ω) ∈ S × Ω is an equilibrium of the long run
production model with uncertainty P(L) if and only if (p, ω) ∈ S×Ω is an equilibrium
of the two period exchange model with uncertainty and production adjusted demand
functions P(E).

Proposition 2 Short run equilibria are contained in the set of long run equilibria,
P(S) ⊂ P(L).

Proof. Assuming that an equilibrium exists. Clearly every long run equilibrium is
also a short run equilibrium since in the long run all activities are variable. In the
short run, some variables are fixed.

Next section studies properties of the exchange model with production adjusted
demand functions, P(E). We use proposition (1) to derive corollaries for the long
run production model P(L). Among other properties, it is shown via the natural
projection approach that equilibria always exist.

3 Equilibrium structure E of P(E) and P(L)
Let E denote the set of equilibrium solutions of the production adjusted exchange
model P(E) or the set of solutions of the long run production model P(E).3 This
set consists of pairs (p, ω) ∈ S × Ω satisfying the equilibrium equations z(p, ω) = 0.
Formally

E = {(p, ω) ∈ S× Ω :
∑
i

fi(p, p · ωi +
∑
j

θijp · ξj(p))− (
∑
i

ωi +
∑
j

ξj(p)) = 0}

Theorem 1 The set E of model P(E) is a closed subset of the Euclidean space defined
by S× Ω.

Proof. E is defined by pairs (p, ω) ∈ S× Ω satisfying equilibrium equation (1). E is
the preimage of the vector 0 ∈ Rl(S+1) by the smooth mapping (p, ω) 7→

∑
i fi(p, p ·

ωi +
∑

j θijp · ξj(p)) − (
∑

i ωi +
∑

j ξj(p)) = 0 and by the closed map lemma closed
[11].

Corollary 1 The set E of model P(L) is a closed subset of the Euclidean space defined
by S× Ω.

Proof. Same as above. Note that in both cases continuity of the mapping (p, ω) 7→∑
i fi(p, p · ωi +

∑
j θijp · ξj(p)) − (

∑
i ωi +

∑
j ξj(p)) = 0 is sufficient. Indeed this

requires demand functions to be continuous only.

Theorem 2 The set E of model P(E) is a smooth manifold of dimension (S+ 1)lm.

Proof. Consider the mapping Z : S×Ω into Rl(S+1) defined by the smooth mapping
(p, ω) 7→

∑
i fi(p, p · ωi +

∑
j θijp · ξj(p)) − (

∑
i ωi +

∑
j ξj(p)). By theorem (1) E is

the preimage of 0 ∈ Rl(S+1). We need to prove that this mapping does not contain
critical points. This follows by showing that the linear tangent map DZ is onto. The
onto property follows directly from the rank property of the Jacobian matrix chosen

3E is always understood from the context.

6



for any arbitrary individual i ∈ {1, ...,m} and state of nature s ∈ {0, 1, ..., S}. By the
chain rule, we obtain

∂f1
i (s)

∂wi(s)
p1(s)− 1 . . .

∂f1
i (s)

∂wi(s)
pl−1(s)

∂f1
i (s)

∂wi(s)

...
. . .

...
∂f l−1

i (s)

∂wi(s)
p1(s) . . .

∂f l−1
i (s)

∂wi(s)
pl−1(s)− 1

∂f l−1
i (s)

∂wi(s)

 .

By simple algebraic manipulation we obtain


−1

∂f1
i (s)

∂wi(s)

. . .
...

−1
∂f l−1

i (s)

∂wi(s)


from which we extract the information required. Rank DZ is equal to (l − 1) in
every state s ∈ {0, 1, ..., S}. By the regular value theorem E is a smooth manifold
parameterized by smooth coordinate functions ω = (ω(0), ..., ω(s), ..., ω(S) ∈ Ω. Its
dimension is equal to the dimension of S × Ω minus l(S + 1), hence dim(E) = ((l −
1)(S + 1)).

Corollary 2 The set E of model P(L) is a smooth manifold of dimension (S+ 1)lm.

Proof. Follows along the same lines of the proof above and by applying proposition
(1).

Following theorem illustrates other economically interesting global properties of
the equilibrium manifold. It says that by construction of a diffeomorphism φ re-

stricted to the equilibrium manifold E into Rl(S+1)
++ that E is diffeomorphic to the

sphere Rl(S+1)
++ implying that the equilibrium manifold is arc-connected, simply con-

nected, and contractible. In order to prove this result, we state a mathematical result
(without proof) that we make use of.

Let f : X → Y and g : Y → X be two smooth mappings between smooth mani-
folds such that f ◦ g : Y → Y is the identity mapping Id. Then Z = g(Y ) is a smooth
sub manifold of X diffeomorphic to Y .4

Theorem 3 The smooth equilibrium manifold E of model P(E) is diffeomorphic to

Rl(S+1)
++ .

Proof. let g : S×R(S+1)m
++ ×R(l−1)(S+1)(m−1)

++ → S×Ω denote a smooth map defined by

g(p, ω̄1, ω
l
1, ...., ω̄m−1, ω

l
m−1, ω̄m), and let f : S×Ω→ S×R(S+1)m

++ ×R(l−1)(S+1)(m−1)
++

denote a smooth map defined by f(p, ω1, ..., ωm) = (p, p · ω1, ..., p · ωp, ω̄1, ..., ω̄m−1),
where

ωl
i = wi − (

l−1∑
l=1

pl · ωl
i),∀i ∈ {1, ...,m− 1} (5)

4See Bourbaki for a proof of this lemma [6].
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and

ωm =

m∑
i=1

fi(p, wi)−
m−1∑
1=1

ωi (6)

The strategy of the proof is to apply above lemma. For that need to show that E is
the image of the mapping g, then we can apply above lemma to the mapping f ◦ g.

Now, to show that (i) Im(g) ⊂ E , take x = (p, w1, ..., wm, ω̄1, ..., ω̄m−1). Next,
compute the inner product of (6) with p and apply Walras’ law to obtain wm = p ·ωm.
From that a reformulation of (6) readily follows∑

i

fi(p, p · ωi +
∑
j

θijp · ξj(p)) =
∑
i

ωi +
∑
j

ξj(p),

which is the the equilibrium equation (1), hence Im(g) ⊂ E . Next, need to show that
(ii) E ⊂ Im(f). Take (p, ω) ∈ E . It is then trivial to do the computations proving
following equality

f ◦ g(p, ω) = (p, ω)

from which it readily follows that E ⊂ Im(f). Clearly we have constructed the two
smooth relations such that

f ◦ g = Id,

where Id is the identity map defined on (S×R(S+1)m
++ ×R(l−1)(S+1)(m−1)

++ ). The result
then follows immediately from above lemma.

Corollary 3 The smooth equilibrium manifold E of model P(L) is diffeomorphic to

Rl(S+1)
++ .

Proof. The proof follows immediately from theorem above and proposition (1). The
dimension of the sphere is the same as for the P(E) model. The proof is therefore
omitted.

It remains to be shown that equilibria in the long run production model with
uncertainty always exist. The strategy of the proof is to show that the natural pro-
jection mapping π : E → Ω is smooth and proper. Existence of long run equilibria
of the production model with uncertainty follows immediately from lemma (1) and
lemma (2) below.

Theorem 4 Equilibria of the two period production model P(L) with uncertainty
always exist.

Lemma 1 π : E → Ω is smooth.

Proof. Recall that E is a smooth submanifold of S×Ω. It follows from the definition
of a smooth manifold that its natural embedding π̂ : E → S×Ω is itself smooth. The
projection mapping π̄ : S×Ω→ E being itself smooth, it follows that π the restriction
of the natural projection to E as the composition of two smooth mappings π = π̄ ◦ π̂
is therefore smooth.

If X and Y are topological spaces, a map f : X → Y is said to be proper if for every
compact set K ⊂ Y , the inverse image f−1(K) is compact. A sufficient condition for
a map to be proper is therefore equivalent to showing that K is compact [6].
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Lemma 2 π : E → Ω is proper.

Proof. Pick an arbitrary ωi for i ∈ {1, ...,m}. Let ωi ∈ Ki be an element in a compact
set Ki. Compactness implies that Ki is bounded from below and from above, hence
there exist elements ω′i ≤ ωi ≤ ω′′i . Now, for every p ∈ S and ωi ∈ Ki need to show (i)
that fi(p, wi) is bounded from below. It follows from the definition of fi(p, wi) that

ui(ωi) ≤ ui(fi(p, wi))

and by non satiation have also

ui(ω
′
i) ≤ ui(ωi),

which by monotonicity of ui implies that

ui(ω
′
i) ≤ ui(fi(p, wi)).

clearly, there exists some x′i ∈ Rl(S+1)
++ for every p ∈ S and ωi ∈ Ki satisfying

x′i ≤ ui(fi(p, wi))

by boundedness of indifference mappings from below for every i ∈ {1, ...,m}. (ii) We
now show that for every p ∈ S and ωi ∈ Ki, fi(p, wi) is also bounded from above.
For (p, ωi) have

(fi(p, wi)) =
∑
i

ωi −
∑
−i

fi(p, wi)

where ∑
i

ωi −
∑
−i

fi(p, wi) ≤
∑
i

ωi −
∑
−i

x′i

Clearly, fi(p, wi), is bounded above by some x′′i ∈ Rl(S+1)
++ , since for (p, ω) ∈ E ,

∑
−1 ωi

is bounded from above for every ω ∈ K. Hence have established upper and lower
bounds defining a compact set

{x′i ≤ fi(p, wi) ≤ x′′i }

for every (p, ω) ∈ π−1(K). Let G be a compact set defined by the preimage of the
diffeomorphism fi(p, wi) projected onto S. Now, by continuity of π : E → Ω, π−1(K)
is closed in E , which by theorem (1) is a closed subset of S×Ω. Closedness of π−1(K)
follows from closedness of π−1(K) ∩G×K ⊂ G×K.

The number of equilibria of the long run production model with uncertainty is
odd for any regular economy ω ∈ Ω.

Proposition 3 The modulo 2 degree of π is +1.

Proof. For any regular ω ∈ Ω oddness follows immediately from the definition of
intersection theory modulo 2 degree. See i.e. [9], p.78 for its definition.

We now define a subset of points on E at which pairs (p, ω) ∈ E are not regular.
Singular points are points associated with the coordinate system of the natural pro-
jection map π, at which the rank of the Jacobian matrix is strictly less that l(S+1)m.
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Definition 2 The set Ec consists of critical equilibria (p, ω) ∈ E defined by the critical
points of π.

Ec={ all critical equilibria (p, ω) ∈ E : (p, ω) ∈ E defined by the critical points of
π}. Following result shows that this set is closed.

Proposition 4 Ec is closed.

Proof. A necessary and sufficient condition for an equilibrium pair (p, ω) ∈ E to be
critical is that the determinant of the Jacobian matrix of π, denoted det(Dπ) is equal
to zero. Now, the set of critical values Ec defined by the preimage of 0 ∈ det(Dπ)
is closed by the closed mapping lemma [11]. Clearly, π , Dπ, and the coefficients of
det(Dπ) are all continuous from which the result follows.

Definition 3 Σ = {ω ∈ Ω: for all ω ∈ Ω critical values of image of π}.

A singular value ω ∈ Ω is the image of π of a critical point (p, ω) ∈ Ec into Ω.
The set of regular values is defined by R = {ω ∈ Ω: for all ω ∈ Ω regular values
of image of π}. It follows that R = Ω \ Σ represents the sets of regular economies.
The next proposition states the Σ is closed and of measure zero. This means that the
probability of observing an economy with this property is ”close” to zero. Hence, its
complement R is an open dense set.

Proposition 5 The set of singular economies Σ is closed and of Lebesgue measure
zero in Ω.

Proof. The proof follows from the application of Sards’s theorem which describes
the set of singular values of a smooth mapping having the property of Lebesgue
measure zero. Hence know that Σ is a set of Lebesgue measure zero. Closedness of
Σ follows from the properness of π. To see this recall that Σ is the image of π for
pairs (p, ω) ∈ Ec is closed. This follows from proposition (3). The property that Σ is
a closed set follows from lemma (2).

In the short run production model P(S) each producer j ∈ {1, ..., n} chooses profit
maximizing short run net activities yj(1) in Yj(K̄) at fixed production capacity level
K̄ determined in period t = 0. Formally every j ∈ {1, ..., n}

(yj(s)) ∈ argmax{p(s) · yj(s) : yj ∈ Yj(K̄),∀s ∈ {1, ..., S}} (7)

The equilibrium equations z(p, ω) = 0 for this model are:∑
i

fi(p, p · ωi +
∑
j

θijp · ξj(p)) =
∑
i

ωi +
∑
j

ξj(p). (8)

Proposition 6 For fixed θ ∈ Θ and K̄, (p, ω) ∈ S ×Ω is an equilibrium of the short
run production model P(S) if and only if (p, ω) ∈ S × Ω is an equilibrium of the
production adjusted exchange model.

This is essentially the result of proposition (1) adjusted for fixed production ca-
pacity. The proof is therefore omitted. It goes along the same lines of the proof of
proposition (1). In addition we note that P(S) ⊂ P(L).

Theorem 5 π−1 restricted to the short run production model P(S) is a finite covering
for every ω ∈ R.
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Proof. Let {p} consist of a single element of π−1(ω). Consider the tangent map
of elements of E not contained in the set of critical points, p 6∈ Ec. Then as a non
critical point in E there exists a bijective map Dπp which by the inverse function
theorem implies that π : E −→ Ω is locally a diffeomorphism. By the inverse function
theorem there exists an open set U of ω ∈ R and an open set V of p ∈ E such that
the restriction of the natural projection to V , π |V : V → U is a diffeomorphism. It
follows from the one-to-one property of this map that π−1(ω) ∩ V = {p}. Since V is
open in E it follows from the definition of open sets of π−1(p) as intersections with
π−1(ω) of open sets of E that the subset {p} is open in π−1(p). The union of all open
subsets {p} ∈ π−1(ω) define an open covering P of {p} ∈ π−1(ω). Compactness of
the set π−1(ω) follows from compactness of the preimage of a compact set {ω} by the
proper mapping π : E −→ Ω. It follows from compactness of π−1(ω) that the open
covering has a finite subcovering defined by the unique element of π−1(ω). The union
of a finite number of elements defines the set π−1(ω) which is therefore a finite set.
This proves finiteness of the number of equilibria.

Theorem 6 For every regular ω ∈ R restricted to P(S) there exists an open neigh-
borhood U ⊂ R of ω. For every nonempty π−1(ω), π−1(U) is the union of a finite
number of pairwise disjoint open sets V1, ..., Vn and the restriction of the map π defined
by πk : Vk → U being a diffeomorphism for k ∈ {1, ..., n}.

Proof. By theorem (5) have a nonempty finite set of elements defined by π−1(ω).
Let p1, ..., pn be all elements of the inverse image of π : E −→ Ω defined by π−1(ω) for
every ω ∈ R. Provided that all open sets are small enough, it is always possible to con-
sider open disjoint unions Ū1, ..., Ūn in E of p1, ..., pn such that π |Ui where Ui = π(Ūi)
is a diffeomorphism. E \ (Ū1∪, ...,∪Ūn) is closed in E and its image by properness of
π is closed in Ω. Let U = (U1∩, ...,∩Un)π(E \ (Ū1∪, ...,∪Ūn)). Obviously, U is open
in Ω. We need to show that ω ∈ U follows from π−1(ω) ⊂ Ū1∪, ...,∪Ūn implying that
ω ∈ U does not belong to π(E \ (Ū1∪, ...,∪Ūn)). Let Vn = Ūn ∩ π−1(U). Then for all
k ∈ {1, ..., n}, πk |Vk

obviously determines a diffeomorphism between Vn and π(Vn).
It only remains to prove that π−1(U) is equal to the union of all Vn. This follows by
contradiction. Let {p} ∈ π−1(U). Assume that {p} does not belong to any Vn. Then
{p} must belong to E \ (Ū1∪, ...,∪Ūn), implying that ω = π(p) ∈ π(E \ (Ū1∪, ...,∪Ūn))
and ω does therefore not belong to U . A contradiction.

Section two shows that long run multiple equilibria exist for some economies.
Fuchs [8] shows that the number of equilibria is finite for the deterministic produc-
tion model. This result generalizes to the production model P(L) with uncertainty.
This section shows that associated with every long run equilibrium of the production
model P(L) there exist ”possibly” multiple short run equilibria of model P(S) with
the property that the number of short run equilibria is odd and finite. Oddness of
equilibria follows from a straight forward application of degree theory along the lines
of section three.

4 Conclusion

The paper shows that the application of the natural projection approach to the study
of economic equilibrium is not restricted to pure exchange economies. It generalizes
this approach to the study of economic equilibrium to the private ownership produc-
tion model with time and uncertainty. Existence of equilibria of the production model
is a consequence of the natural projection being smooth and proper. The structure
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of the set E is studied in some detail. It is shown that for a version of the Arrow-
Debreu private ownership model with time and uncertainty the number of short run
equilibria associated with every long run equilibrium is odd and finite. This model
is particularly interesting since the generalized real asset structure allows for a richer
interpretation of the model of the firm in terms of long and short run activities.
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