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Abstract

This paper adopts an evolutionary perspective on the rent-extraction model with

conjectural variations (CV). We analyze the global dynamics of the model with three

CVs under the replicator equation. We �nd that the end points of the evolutionary

dynamics include the pure-strategy consistent CVs. However, there are also mixed-

strategy equilibria that occur. These are on the boundaries between the basins of

attraction of the pure-strategy sinks. We develop a more general notion of consistency

which applies to mixed-strategy equilibria. In a three conjecture example, we �nd

that in contrast to the pure-strategy equilibria, the mixed-strategy equilibria are not

ESS: under the replicator dynamics, there are three or four mixed equilibria that may

either be totally unstable, or saddle-stable. There also exist heteroclinic orbits that

link equilibria together.
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1 Introduction.

In this paper, we adopt a dynamic approach to analyze the evolution of beliefs underlying

agents�behavior in the context of a rent-extraction game à la Tullock (1980). The idea is

that the boundedly-rational agents employ decision rules, such as reaction functions, based

on certain beliefs about other players�behavior. But how are these beliefs formed? Re-

cently, some authors have adopted an evolutionary approach to explaining such beliefs using

Maynard-Smith�s notion of evolutionary stable strategies (ESS)1. ESS is however a local sta-

bility condition: it considers the e¤ects on payo¤s of a small deviation in the make-up of

the population. In this paper we broaden the focus to consider the global dynamics of an

explicit evolutionary process - the replicator equation. We apply this dynamic evolutionary

approach to explain belief formation in the context of a rent-seeking game (Tullock 1967,

1980, 1987, Posner1975) where agents spend resources to dispute over rents or some prizes.

Agents�beliefs about other players�behavior are particularly important in such models as

it can directly impact the magnitude of the rent extracted by altering the success function.

Importantly, rent-seeking models have many applications in economics and politics e.g. in

elections where resources allocated to campaigning directly a¤ect the candidate�s probabil-

ity of success and where the allocation itself is done based on the agent�s belief about his

opponent�s behavior. Menezes and Quiggin (2010) have provided several di¤erent interpre-

tations of such rent-extraction models and have argued that such models should be viewed

as oligopsonistic markets for in�uence.

A decision rule in this context can be thought of as a reaction function (RF) which spec-

i�es the choice of action as a function of other agents�actions. Whilst there are various

ways of parametrizing such decision rules, the one we adopt in this paper is the concept of

Conjectural Variations. The notion of conjectures has maintained a long history in the In-

dustrial Organization theory ever since the introduction of Conjectural Variations Equilibria

by Bowley (1924) and Frisch (1933)2. Not only are conjectural variations (henceforth CV)

models able to capture a range of behavioral outcomes - from competitive to cooperative, but

also they have one parameter which has a simple economic interpretation. CV models have

also been found quite useful in the empirical analysis of �rm behavior in the sense that they

provide a more general description of �rms�behavior than the standard Nash equilibrium

1See, e.g. Dixon and Somma (2003), Müller and Norman (2005), Possajennikov (2009). See Jean-Marie
and Tidball (2006) for a non-evolutionary approach to formation of conjectures in a dynamic context.

2See Giacoli (2005) for a detailed account of the role of conjectural variations in the history of oligopoly
games.
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(Slade 1995).

In this context, the concept of consistent conjectures was developed by a number of

authors in the 1980s (see Bresnehan 1981, Boyer and Moreaux 1983, Klemperer and Meyer

1988) and has been widely applied in a variety circumstances such as public goods (Cornes

and Sandler 19843, Itaya and Okamura 2003), strategic investment models (Dixon 1986),

export subsidies (Tanaka 1991), natural resource extraction (Quérou and Tidball 2009). In

Public Economics, Michaels (1989) applied this concept in the context of Tullock�s rent-

seeking game to show that the fraction of rents dissipated by seekers depends upon the type

of CV assumed. In games with quadratic payo¤s where the best-response functions with CVs

are linear, the natural formulation for consistent conjectures is that the CV of one player

equals the actual slope of the other player�s RF. However, in games where the payo¤s are

not quadratic and therefore the RFs are non-linear (such as the ones in rent-seeking models

with CVs), the notion of consistency can accordingly be adapted: consistency should imply

that CVs are equal to the slopes of RFs at the equilibrium point.

Recently, the link between consistency and evolutionary stability has been made within

the CV framework. One can think of economic agents�behavior being summarized by the

CV term. One can imagine a population consisting of �rms with di¤erent CVs which will

earn di¤erent payo¤s (on average) and a process of "natural selection" or social learning

takes place (the CV is a meme). Firms with particular CVs do better than those with

others: a process of imitation or adaption leads agents to switch from less successful CVs

to more successful CVs. Dixon and Somma (2003) established that in a standard oligopoly

setting with a quadratic payo¤ function4, the consistent conjectures are the unique Nash

equilibrium in a hypothetical "conjecture game": �rms choose their CVs given the CVs of

the other �rms so as to maximize their payo¤s in the output game5. This Nash equilibrium

in the conjecture game was the consistent conjecture. This enabled the link to be made with

evolutionary stable strategies (ESS). In the case where there is a strict-Nash equilibrium

in the conjecture game, the resultant consistent conjecture will be ESS. Müller and Nor-

mann (2005) generalized this result to a wider class of oligopoly models6. Both Dixon and

Somma (2003) and Müller and Normann (2005) were in the class of quadratic payo¤models.

Possajennikov (2009) showed that the link between ESS models and consistent conjectures

3See also Cornes and Sandler (1985) and Sugden (1985).
4Speci�cally, they consider a homogeneous good Cournot oligopoly with linear demand and quadratic

costs.
5This idea was �rst developed in Dixon and Somma (1995).
6Speci�cally, di¤erentiated oligopoly with linear demands.
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extends to some non-quadratic payo¤models, including the rent-seeking model (such as the

one considered by Michaels (1989)).

However, all of the above studies were limited in that they focussed exclusively on

pure-strategy equilibria and that they only studied local stability using the ESS condition.

In contrast, the main contribution of this paper is to extend the focus to analyze the global

evolutionary dynamics in the context of mixed-strategies. We do indeed �nd that in addition

to the pure-strategy equilibria, mixed-strategy equilibria will exist in a �nite version of

the conjecture game where we restrict the set of permissible CVs to a �nite set of three

conjectures. We provide a bifurcation analysis and show that in addition to the three

pure-strategy equilibria, there will exist at least three mixed-strategy equilibria (Proposition

2).

Further, we de�ne a new concept of consistency that is applicable to the case of mixed-

strategy equilibria. This is the notion of the probability that the conjectures will be consis-

tent ex post. In the case of a pure-strategy equilibrium, the standard consistent conjectures

are 100% consistent ex post. With mixed strategy equilibria, the conjectures will only be

consistent a certain proportion of the time. We also de�ne a notion of ex ante consistency,

that the average conjecture equals the average slope. We �nd that in the rent-extraction

model in which RFs are non-linear, the average conjecture in a mixed-equilibrium is not

equal to the ex-post average slope of the reaction function. Hence, whilst the link between

consistency and equilibrium in the conjecture game still exists, it is weaker in the case of

mixed-strategies than for pure-strategy equilibria.

Our main results about the dynamics are as follows. Proposition 3 summarizes the

local dynamics: the pure strategy-equilibria are sinks (both eigenvalues stable), whilst the

strictly-mixed stationary points can either be saddle-path stable (one stable, one unstable

eigenvalue) or unstable sources (both eigenvalues unstable). For the global dynamics, in

Proposition 4 we �nd that there is a network of heteroclinic orbits7 that connect equilibria.

The heteroclinic orbits connecting these mixed-strategy stationary points with each other

and the pure-strategy sinks constitute the boundaries of the basins of attraction for the

pure-strategy sinks. There are two generic phase diagrams which describe the exact pattern

of equilibria: in particular, if the most competitive conjecture is competitive enough we

can have an internal mixed-equilibrium (with all three conjectures with strictly positive

shares) which is a source. Otherwise, we have the more general case where there are three

7An heterclinic orbit is an equilibrium path that connects two (or more) stationary points. This contrasts
to homoclinic orbits which have only one stationary point as an end-point.
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stationary points involving only two conjectures with strictly positive probabilities: two of

these stationary points are Nash equilibria (and saddle-path stable) with the third being a

non-Nash equilibrium unstable source.

We can use the global dynamics as a guide to equilibrium selection. The most cooperative

pure-strategy equilibrium is Pareto-dominant (from the point of view of the rent seekers)

and involves the least rent dissipation and highest payo¤. However, we do not �nd that

in general the most cooperative conjecture has the biggest basin. Indeed, in the three

conjecture case we might expect the intermediate conjecture to have the bigger basin. The

reason is that in the rent-extraction model, the intermediate CV can do quite well against

the two extremes, whilst the two extremes do badly against each other. Moderation can

pay. This means that the intermediate conjecture can end up with a share of 1 even if

it starts from a share of almost zero. In contrast, the two extreme conjectures require an

initial base which is bounded well away from zero if they are to be selected. In contrast, the

two extremes require an initial base which is bounded well away from zero if they are to

be selected. Whilst we cannot in general rank the most cooperative and the intermediate

conjecture, we can in general say that the most competitive equilibrium will have a smaller

basin than the most cooperative. Indeed, in the extreme case of a "Bertrand" CV of �1,
the basin of attraction shrinks to zero.

The notion of evolutionary dynamics (such as the replicator) is not unproblematic8: if

one takes a literal view of the equations, they are based on random matching with the

game played repeatedly in continuous time. However, one can think of this more as an

evolutionary metaphor : over time, more successful strategies become more common. There

are a variety of ways this can happen in social learning models. However, to explore the

dynamics without recourse to simulating simple models we need to use a speci�c evolutionary

process: the replicator equation is a robust framework that can stand for a wider class of

payo¤-monotone dynamics.

The organization of the paper is as follows. In section 2, we outline the basic rent-

seeking model, which can also be thought of as a Cournot Oligopoly game, where we treat

the conjectures as given. In section 3, we consider the underlying conjecture game and

pure-strategy equilibria in the case where the strategy sets are a closed convex subset of

the real line, and mixed-strategy equilibria where the strategy sets are a �nite subset of

the pure-strategy case. In section 4, we consider the relation between consistency and the

equilibria in the conjecture game. In section 5, we analyze the evolutionary process of the

8We would like to thank Hans Haller for stressing this point to us.
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model using the replicator equation. Section 6 concludes. All proofs are in the appendix.

2 The model.

We consider the following game where two �rmsX and Y choose actions (x; y) independently

with payo¤ functions given as follows:

UX(x; y) =
x

x+ y
� x

UY (x; y) =
y

x+ y
� y

This can be thought of as a simple rent-seeking game �a la Tullock (1980) where players

choose actions (e.g. e¤ort or investment) to win a prize of �xed value (which is unity in the

above formulation), where the �rst term in the payo¤ function denotes the probability of

player i�s winning the contest, i = X;Y , and the second term denotes constant unit cost of

the action. Alternatively, this game can also be thought of as a homogeneous good Cournot

duopoly9 with unit elastic demand and constant unit cost where the market price is given

by

P =
1

x+ y

so that total revenue equals 1; each �rm receives a share of that revenue equal to its share of

output10, and the total cost of player i equals player i�s output. For economically meaningful

outcomes, we can restrict our attention to the strategy-space:

S = f(x; y) : x � 0; y � 0 and x+ y � 1g

The above payo¤-function is strictly concave for (x; y) 2 S \ (0; 1)2. The corresponding

iso-payo¤ sets for X are characterized by

�UX = f(x; y) : UX(x; y) = �Ug
9It has been shown that a standard Tullock contest of the above type is strategically equivalent to a

Cournot oligopoly game, and that the same strategic equivalence applies also with a more general success
function in the original Tullock game (see Okuguchi 1995, Szidarovsky and Okuguchi 1997).
10Henceforth, we will refer to x and y as �outputs�.
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and have slopes given by
dy

dx

����
�Ux
=
y � x2 � 2xy � y2

x

For �U 2 (0; 1), the iso-payo¤ curve intersects the x� axis at
�
1� �U; 0

�
: However, all

iso-payo¤ sets with �U 2 (0; 1) originate from (0; 0). Appendix A provides further details

about the shape of the iso-payo¤ functions. The payo¤ function is unde�ned for x = y = 0.

However, in order to convert the joint pro�t supremum into a maximum, we adopt the

de�nition UX(0; 0) = UY (0; 0) = 0:5: In the event of neither player doing anything, the

prize is split.

2.1 Conjectural variation (CV) output game.

Each �rm has a conjecture about the response of the other �rm to variations in its own

output. �x = @y=@x and �y = @x=@y denote such conjectures held by �rms X and Y

respectively where �i 2 [�1;+1], i = x; y: This gives the reaction functions (RFs) de�ned
by the following �rst-order conditions:

1

(x+ y)
� x

(x+ y)2
(1 + �x)� 1 = 0

1

(x+ y)
� y

(x+ y)2
(1 + �y)� 1 = 0

From above, we get the reaction functions in the following form:

x = R(y; �x) = �
1

2
�x � y +

1

2
+

q
�2x + 4�xy + 4y (1)

y = R(x; �y) = �
1

2
�y � x+

1

2
+

q
�2y + 4�yx+ 4x (2)

For
�
(�x; �y) 2 [�1; 1]2 and 1� �y�x > 0

	
; the equilibrium values of output are given

by:

x
�
�x; �y

�
=

(1 + �y)(1� �y�x)
(2 + �y + �x)

2
(3)

y
�
�x; �y

�
=

(1 + �x)(1� �y�x)�
2 + �y + �x

�2 (4)

In the cases where �y�x = 1, we set x(1; 1) = 0 and x(�1;�1) = 1
2
and likewise for
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y, these being the limiting values11. In case of symmetric conjectures (�x = �y = �);

equilibrium outputs will be given by

x(�; �) = y(�; �) =
1� �
4

(5)

We can consider the following special cases:

(i) Cournot-Nash conjectures: �x = �y = 0

(1) and (2) then yield

x = �y +py
y = �x+

p
x

so that Cournot-Equilibrium values are

xc = yc =
1

4
and

UX = UY = U jCournot =
1

4

(ii) Bertrand-Nash conjectures: �x = �y = �1

(1) and (2) then yield

x = 1� y
y = 1� x

which has the set of solutions x + y = 1, with the symmetric solution being at x = y = 1
2

with corresponding equilibrium payo¤s U jBertrand = 0:

(iii) Fully collusive conjectures: �x = �y = 1

In this case, (3) and (4) imply x = y = 0:This is the joint pro�t maximum.

11Alternatively, one can restrict the strategy set to [�1 + "; 1� "] for some arbitrarily small " > 0.
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3 The Conjecture Game.

In order to analyze the evolutionary properties of conjectures, following Dixon and Somma

(2003), we consider a further stage of the game where �rms are choosing their conjectures.12

We will �rst analyze this hypothetical "conjecture game" in terms of pure-strategies, where

the strategy sets are intervals on the real line [�1; 1]. We will then consider the case of �nite
strategy sets in order to analyze the possible existence of mixed-strategy equilibria where

more than one strategy is played with a positive probability.

3.1 Pure-strategy equilibria.

Given the equilibrium outputs as a function of the conjectures, we can think of a reduced

form game of the equilibrium given conjectures with each �rm choosing its conjecture. The

payo¤s for the conjecture game, after simpli�cation, are:

UX(�x; �y) =
(1 + �x)(1 + �y)

2

(2 + �y + �x)
2

(6)

UY (�x; �y) =
(1 + �y)(1 + �x)

2

(2 + �y + �x)
2

(7)

Firms�equilibrium choice of conjectures will then be obtained from the following �rst-

order conditions:

dUX(�x; �y)

d�x
= �(1 + �y)

(�y + �y�x � �y � �2y)
(2 + �y + �x)

3
= 0

dUY (�x; �y)

d�y
= �(1 + �x)

(�x + �y�x � �x � �2x)
(2 + �y + �x)

3
= 0

This yields the following reaction functions in the conjecture game:

RX(�y) = �y

RY (�x) = �x

12The entire game can equivalently be considered as a two-stage game where, as if, �rms choose their
conjectures in the �rst stage, and then given their choice of conjectures in the �rst stage, they choose
outputs in the second stage.
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That is, the best-response of �rm is to choose the same conjecture as the other �rm13. Thus,

we have the following proposition (stated without proof):

Proposition 1 Pure strategy Nash equilibrium conjectures are symmetric.

Thus, there is a continuum of "strict" Nash equilibria, each parameterized by the sym-

metric conjecture � 2 [�1; 1] with equilibrium output levels given by (5) and symmetric

payo¤s given by:

U(�) =
(1 + �)(2�+ �2 + 1)

4(1 + �)2
=
1 + �

4
(8)

There is also a "Bertrand" Nash equilibrium which is not strict: if one �rm sets � = �1,
then the other �rm earns zero pro�ts whatever conjecture it has. Clearly, the equilibria

are Pareto-ranked: the higher the conjecture, the higher the pro�ts, with the limiting pro�t

being half the joint pro�t maximum U(1) = 1
2
and the minimum being the Bertrand case

U(�1) = 0. The structure of the conjecture game is similar to a coordination game, except
that the "o¤-diagonal" elements vary with the conjectures.

3.2 Mixed-strategy Equilibria.

Mixed-strategy equilibria will also exist if we take a �nite subset of conjectures. In this

section, we provide an example, prior to a more general analysis when we model the evo-

lutionary dynamics. Consider a �nite subset of conjectures � taken from [�1;+1], with
#� = n, so that � = f�ig

n
i=1 This then gives us an n� n payo¤ matrix A :

A(n) =
�
�ij = U

I(�i; �j
�j=1:::n
i=1:::n

; I = X; Y

The row i gives the payo¤ to the �rm playing each strategy j (conjecture) against i, while

the column j gives the payo¤ of playing strategy j against each of the strategies i.

The mixed-strategy for player X is the n vector of probabilities zx 2 �n�1, and likewise

for player Y . The expected payo¤ for player X is then:

EUx(zx; zy) = z
0
xAzy

13The second order conditions are satis�ed, since

d2UX(�x; �y)

d�2x
= �

2(1 + �y)

(2 + �y + �x)
4
(1 + 3�y + 2�

2
y � �x(1� �y))

which is strictly negative when �y = �x.
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or

EUx =
nX
i=1

nX
j=1

zixzjy�ij

That is, each element �ij in the payo¤ matrix A is weighted with the probability of X

playing i and Y playing j. A (symmetric) mixed-strategy equilibrium z� occurs when for

all z 2 �n�1;

EUx(z
�; z�) � EUx(z; z�)

In particular, all mixed-strategy equilibria have the property that if z�i > 0, then

nX
i=1

nX
j=1

z�i z
�
j�ij = EUx(z

�; z�)

That is, all strategies that are played with a strictly positive probability earn the same

expected pro�t in equilibrium.

If we consider the 3� 3 payo¤ matrix generated by conjectures � =
�
0; 1

2
; 1
	
, we have:

A =

0B@ 0:25 0:36 0:4444

0:24 0:375 0:4898

0:2222 0:3673 0:5

1CA (9)

In addition to the 3 pure strategy equilibria, there are also 2 mixed equilibria. Adapting

the notation slightly, so that z(�) is the probability that conjecture � is played, the 2 mixed

equilibria are given by:

� z�(1) = 0:4302; z�(1
2
) = 1� z�(1); z� (0) = 0:

� z�(1) = 0; z�(1
2
) = 0:4; z� (0) = 0:6:

There is the following pro�le in which z�(1
2
) = 0, and the two conjectures (1; 0) earn

equal payo¤s:

z�(1) =
1

3
; z(

1

2
) = 0; z�(0) =

2

3

This is not an equilibrium, because the expected payo¤ from playing 0:5 exceeds the payo¤s

of the other two. Note that in this example, both mixed-equilibria involve only pairs of

strategies being played with strictly positive probabilities, there being no equilibrium with

all three strategies being played.
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4 Consistency of conjectures.

There are several de�nitions of consistency of conjectures available14. However, we use the

one in the sense of Bresnahan (1981), that in the output game each �rm�s conjecture about

the slope of the other �rm�s reaction function is correct at the equilibrium outputs. Unlike

the quadratic payo¤ framework considered by Dixon and Somma (2003) and Müller and

Normann (2005), the CV reaction functions are not linear in this model, so that consistency-

correctness at equilibrium outputs does not imply correctness elsewhere. This has important

implications for the evolutionary stability of equilibria as we shall see.

From (1) and (2), the slopes of the reaction functions are:

dR(y; �x)

dy
= �1 + 1 + �xp

�2x + 4�xy + 4y
(10)

dR(x; �y)

dx
= �1 +

1 + �yq
�2y + 4�yx+ 4x

(11)

Now, we can set the outputs (x; y) at their equilibrium values given
�
�x; �y

�
using

(3); (4) ; and then consider whether or not the conjectures are consistent.

4.1 Pure-strategy Equilibria and consistency.

From Proposition 1, we can focus attention only on the symmetric conjectures: �x = �y = �.

Equations (10) and (11) then simplify as:

dR(y; �)

dy
= �1 + 1 + �p

�2 + 4�y + 4y
(12)

dR(x; �)

dx
= �1 + 1 + �p

�2 + 4�x+ 4x
(13)

Evaluating the above slopes at the equilibrium values of output given by (5) and simplifying,

we �nd:

dR(y; �)

dy
= � (14)

dR(x; �)

dx
= � (15)

14See, e.g. Hahn 1977, 1978; Perry 1982; Kamien and Schwartz 1983; Boyer and Moreaux 1983.
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Hence, all pure-strategy (symmetric) Nash equilibrium conjectures are consistent.15 This

is true for any � 2 [�1; 1] so that:

Observation 1 The set of consistent conjectures equilibria is equivalent to the set of pure-
strategy Nash equilibria in the conjecture game.

Further, we also observe that,

Observation 2 Unlike Bresnahan (1981), Cournot conjectures are consistent in this model.

To see that, note for �x = 0;the slope of �rm x�s RF:

dR(y; 0)

dy
= �1 + 1

2
p
y

which when evaluated at Cournot output level y = 1=4; yields dR(y;0)
dy

= 0: Likewise for

�y = 0.

However, if the conjectures are asymmetric i.e. �x 6= �y (as is the case in mixed-strategy)
then that will involve inconsistent conjectures (in the above sense) by one or both of the

�rms.16.

4.2 Mixed-strategy equilibria and consistency.

Is there any sense in which a mixed-strategy equilibrium in the conjecture game is consistent?

We need to modify the notion of consistency in this case. Now, there are two possible ways

of de�ning consistency in the context of mixed strategies.

De�nition 1: The Probability of consistency. In equilibrium, there is a probability that
both players will choose the same conjectures.

15A similar result is also be found in Michaels (1989) who showed that there can be multiple equilibria
in the standard symmetric form of the game where any CV can be consistent. Michaels however does not
consider a conjecture stage of the game as we do in this paper.
16To see that, note that the slopes of the reaction functions given by (10; 11) when evaluated at equilibrium

output values given by (3); (4) yields (since �y 6= �x):

dR(y; �x)

dy
=

�x + �y + 2�x�y

�2x � �x�y + 2(1 + �x)
6= �y

and similarly for the other �rm.
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If both players choose the same conjecture, their conjectures are "consistent" in the

resultant game ex post. If they choose di¤erent conjectures, they will not be consistent.

Hence, we can de�ne the probability of ex post consistency:

PC(z�) =
nX
i=1

(z�i )
2

For example, in the two mixed Nash equilibria identi�ed in the 3� 3 example, we have:

PC(0:6; 0:4; 0) = 0:36 + 0:16 = 0:52

PC(0:4302; 0:5698; 0) = (0:430 2)2 + ( 0:569 8)2 = 0:509 8

In the case of pure-strategy equilibria, of course PC(1) = 1: the conjecture is correct in

equilibrium. However, when we have strictly mixed-strategies, the conjectures will only be

correct a certain proportion of the time: in the three mixed equilibria in our game they are

correct 51� 52% of the time.

De�nition 2: The average conjecture equals the average slope. The average conjec-
ture equals the average slope of the reaction function encountered.

We have the result that in a symmetric equilibrium, the slopes of the RFs are equal

to the conjecture. Now, if the RFs were linear, this would immediately imply that the

average slope must equal the average conjecture. Hence with linear RFs, any mixed-strategy

equilibria must satisfy De�nition 2. However, here the matter is more complicated due to

the non-linearity in the RFs. If we look at the ex post game, when the �rms have di¤erent

conjectures, the outputs will be di¤erent and we will have asymmetric outcomes. In the case

of linear RFs, asymmetry in the outcome does not a¤ect the slope of the reaction function,

since this is constant. With non-linear reaction functions such as the ones we have in the

rent-extraction game, the slopes of the reaction functions vary as we move away from the 450

line in output space. We know the equilibrium outputs given the conjectures from (3); (4);

we know the slopes of the reaction functions given outputs and conjectures from (10); (11).

Hence we can de�ne the average slope and the average conjecture.

Let us take the simple example of the mixed-strategy equilibrium where z�(1) = 0:4302;

z�(1
2
) = 0:5698; z�(0) = 0: Here the average conjecture �� = 0:4302 + (0:5)0:5698 = 0:715 1:

For 49% of the time there will be an asymmetric equilibrium where one �rm will have a zero

conjecture and the other a conjecture of 1. If �x = 0:5; �y = 1; then we have the following
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slopes at the resulting outputs

dy

dx
= 0:555 6 > �x = 0:5: (16)

dy

dx
= 0:909 1 < �y = 1 (17)

We can see that the slopes in the asymmetric equilibria are not so di¤erent from the conjec-

tures in this example (only about a 10% di¤erence). However, note that the average slope

in the asymmetric case is 0:732 4 which is almost equal to the average conjecture in the

asymmetric case 0:75. Y �s slope is a little greater than X�s conjecture �x: X�s slope is a

little less than Y �s conjecture, but the two e¤ects partially cancel each other out, so that the

average slope is only a little less than the average conjecture.

Denote the average slope of the reaction functions by �R for the two symmetric cases (when

both conjectures equal 1 and 0:5; in turn) and the asymmetric case (when one conjecture

equals 1, and the other equals 0:5). Then, in this example we have �R = 0:7065,17 which

does not equal the average conjecture �� = 0:7151. Hence, the average conjecture does not

equal the average slope of the reaction function in this case. However, the deviation is not

so great: that is because the slopes in the asymmetric case are (on average) not so much

di¤erent from the conjectures see (16) and (17).

Hence we can conclude that,

Observation 3. Being an equilibrium in the conjecture game need not imply consistency

of conjectures.

The above result di¤ers from Dixon and Somma (2003) where it was derived for a simple

game in which there were no mixed equilibria and the RFs were linear. However, in the

context of our rent-extraction game, there are many pure-strategy equilibria and also many

mixed equilibria. The possibility of mixed-equilibria does imply a weaker degree of con-

sistency of conjectures: this is the ex post proportion of outcomes in which the conjectures

turn out to be consistent. With pure-strategy equilibria, this is 100%. With strictly mixed

17

�R = Pr
�
�x = �y = 1

�
1 + Pr

�
�x 6= �y

� �1:5
2

�
+ Pr

�
�x = �y = 0:5

�
0:5

= (0:4302)2 + (1� (0:4302)2 � (1� 0:4302)2)
�
0:555 6 + 0:909 1

2

�
+ (1� 0:4302)20:5
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equilibria, the conjectures may not be correct all of the time, and may not be correct on

average.

5 Global Evolutionary Dynamics.

In this section, we analyze the global dynamics of the model using the replicator equation.

Previous authors have focussed only on the local stability of consistent conjectures using

Maynard Smith�s notion of an evolutionary stable strategy (ESS). Analyzing global dynamics

is important as it will enable us to understand how the "population" behaves from any

given starting point, rather than assuming a small deviation from a proposed equilibrium.

Furthermore, this is particularly important in our context because of the large number of

equilibria and the possibility of the dynamics providing a criterion for equilibrium selection.

For the purpose of analyzing the dynamics and for notational simplicity, we will reparamter-

ize the model by de�ning the conjectures as: 'x � 1 + �x 2 [0; 2] and 'y � 1 + �y 2 [0; 2]:
Then, (6) and (7) can be written as:

UX('x; 'y) =
'x'

2
y

('y + 'x)
2

UY ('x; 'y) =
'y'

2
x

('y + 'x)
2

To construct the matrix we take our �nite set of n conjectures � = f�ig
n
i=1. This then

gives an n� n payo¤ matrix A:

A
n�n

=
�
�ij = U

I('i; 'j)
�j=1:::n
i=1:::n

; I = X; Y:

The row i gives the payo¤ to the �rm playing each strategy i (conjecture) against j. Column

j gives us the payo¤ of playing strategy j against each of the strategies i. Matrix A is not

symmetric - see (9). Let

rij =
'i'j�

'i + 'j
�2

For 'i'j 6= 0, note that18 �ij='j = �ji='i = rij. Further, note that, for any pair ij, rij is
18The asymmetry of A arises becuase when 'i 6= 'j , �ij 6= �ji. Also note that from (8) �ii = 'i=4.
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smaller than 1=4. Hence, for notational convenience, we further de�ne:

mij �
1

4
� rij =

�
'i � 'j
2('i + 'j)

�2
� 0; for all j = i; : : : ; 3; i = 1; 2:

It then follows immediately that mij = mji and mii = 0:

Let z = (z1; : : : ; zn) 2 �n�1, where zi is the probability that conjecture i will be played .

Then, the expected payo¤ of strategy i is

ui(z) = (Az)i =

nX
j=1

�ijzj; i = 1; : : : ; n;

and the n� 1-vector of expected payo¤s for all strategies u is

u = Az:

The mean across all strategies is then:

�u(z) = z>Az =
nX
i=1

nX
j=1

zizj�ij

The replicator dynamics is given by the n-dimensional ordinary di¤erential equation

system 19

_zi = Fi(z) � zi (ui(z)� �u(z)) ; i = 1; : : : ; n (18)

where z 2 �n�1.

5.1 The 3� 3 case

Here, we consider the case in which there are three conjectures, n = 3, where� = f'1; '2; '3g,
with 0 � '1 < '2 < '3 � 2. In this case the probability pro�les z = (z1; z2; z3) 2 �2. The

three pro�les located at the vertices of the simplex �2, z 2 fe1; e2; e3g, where e1 = (1; 0; 0),
e2 = (0; 1; 0) or e3 = (0; 0; 1), correspond to pure strategy equilibria. All the other pro�les

correspond to mixed strategies. The three boundary pro�les located at one of the three edges

of the simplex, excluding the vertices, z 2 fe12; e13; e23g, where e12 = fz 2 �2 : z3 = 0g ,
e13 = fz 2 �2 : z2 = 0g and e23 = fz 2 �2 : z1 = 0g; correspond to mixed strategies.
19See Sandholm (2010) for a recent account of the properties of this type of evolutionary dynamics.

17



We call them boundary mixed strategies in order to distinguish from the interior mixed

strategies, which are located at the interior of the simplex, z 2 Int(�2).

Stationary states for system (18) are the probability pro�les z� 2 �2 such that Fi(z�) = 0

for all i = 1; 2; 3. However, not all steady-states of the replicator dynamics represent Nash

equilibria: it is a property of the replicator dynamics that once extinct, a strategy can never

return, so that zi = 0 implies _zi = 0 (since payo¤s are bounded).

Now, for every strategy i there are two types of steady states that correspond to Nash

equilibria: either zi > 0 and ui(z) = �u(z) or zi = 0 and ui(z) � �u(z). However, a steady-

state with zi = 0 and ui(z) > �u(z) will not be a Nash-equilibrium (since the expected payo¤

for i can be increased by choosing zi > 0).

De�ne

� = �('1; '2; '3) � m13 � (m12 +m23) (19)

Function � de�ned over ('1; '2; '3), determines the number of stationary states and

whether or not they are Nash equilibria as given by the following proposition20:

20Observe that '1 = 0 (i.e. the Bertrand case) implies � < 0:
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Proposition 2: Stationary Pro�les.
(a) Let � > 0: Then there are six stationary probability pro�les, of which �ve are Nash

equilibria :

(i) the three pure strategy pro�les, z� = e1, z� = e2 and z� = e3 are all Nash equilibria;

(ii) three boundary mixed-strategy pro�les belonging to the three edges are stationary states

z� = e�12, z
� = e�13, z

� = e�23, where

e�12 �
�

'2
'1 + '2

;
'1

'1 + '2
; 0

�
2 e12;

e�13 �
�

'3
'1 + '3

; 0;
'1

'1 + '3

�
2 e13

and

e�23 �
�
0;

'3
'2 + '3

;
'2

'2 + '3

�
2 e23;

of which e�12 and e
�
23 are Nash equilibria and e

�
13 is not a Nash equilibrium.

(b) Let � < 0. If '1 > 0 then there are seven stationary population pro�les: the six described

in part (a), which are all Nash equilibria, and the interior mixed pro�le equilibrium:

z� = ẑ �
�
'2'3d23
D

;
'1'3d13
D

;
'1'2d12
D

�
2 Int(�2) (20)

where d12 � m12(m12�m13�m23) < 0 , d13 � m13(m13�m12�m23) < 0, d23 � m23(m23�
m12 �m13) < 0 and D � '1'2d12 + '1'3d13 + '2'3d23 < 0. If '1 = 0 then equilibria e�12,
e�13 and ẑ merge with e1 and there are four Nash equilibria.

(c) When � = 0, there are six stationary pro�les as described in (a) and they are all Nash

equilibria.

Figure 1: Bifurcation diagram

Clearly, the precise value of � is crucial in determining whether we have 1, 3 or 4 mixed

equilibria. We can take (19), and assume the three strategies are equally spaced, by setting

'2 = ('1 + '3)=2, and plot a bifurcation diagram in the space of conjectures ('1; '3) in

Figure 1. There are two bifurcation loci f('1; '3) : '1 = 0g and f('1; '3) : �('1; '3) = 0g.
The last set divides the conjecture space into two: there is a small area where '1 is less

than 0:066, for which � < 0. Most of the parameter space results in � > 0. This means
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that in the 3 � 3 example the vast majority of combinations of conjectures will yield only
two boundary mixed equilibria with a third mixed non-Nash boundary stationary point. In

this sense, the interior mixed equilibrium is a rarity, and requires one �rm to have a very

competitive conjecture (�1 < �0:94; '1 < 0:066). We can now see that the example in

section 3.2 where �1 = 0 and �3 = 1 is �rmly in the region where � > 0, so that there are

only three stationary points on the edges.

Figure 2: Phase diagrams

We can think about the strategy pro�les in terms of the unit-simplexes, depicted in Figure

2 21 for the cases not corresponding to bifurcations. The pure-strategy equilibria are on the

vertices: the most competitive is in the bottom right corner (z1 = 1 ); the least competitive

at the top (z3 = 1). All those equilibria are sinks.

When � > 0 we have the generic simplex as depicted in Figure 2(a). There are three

partially mixed stationary states: one on each of the edges between the three vertices. There

are two stationary pro�les e�12 and e
�
23 that involve conjecture '2 with each of the other two

conjectures: these are both Nash equilibria and are saddle-points with the stable manifold

belonging to the interior of the simplex. Note that e�12 is closer to e1 than e2 : this follows

because to equate the payo¤s, the more competitive conjecture needs a higher probability of

meeting itself. Likewise, e�23 is closer to e2 than e3. There is a third stationary state that

is not a Nash-equilibrium, which is a mixed pro�le with z3 = 0, and is a source.

When � < 0 we have the simplex as depicted in Figure 2(b). In this case, there are two

di¤erences: �rst, the stationary mixed pro�le with z2 = 0 becomes a saddle-point stable

Nash-equilibrium, and, second, an additional interior mixed stationary state emerges, which

is also a Nash-equilibrium but is a source. Again the stable manifold associated to boundary

equilibria for z2 = 0 belongs to the interior of the simplex. When � # 0, the mixed equilibria
gets closer to the interior mixed equilibrium in e13, and when � = 0 the two merge. In this

case, the boundary mixed equilibrium is a Nash-equilibrium. This property however does

not show up when � " 0. This corresponds to a local bifurcation point.

The next proposition formally assert that the local dynamics at the stationary points

displayed at the two phase diagrams hold generically:

Proposition 3: local dynamics.
21We have used Dynamo by Sandholm, Dokumaci and Franchetti (2010), to draw the phase diagrams.
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(a) The pure strategy Nash equilibria, z� = e1, z� = e2 and z� = e3, are always sinks, and

the two boundary mixed Nash equilibria z� = e�12 and z
� = e�23 are always saddle points.

(b) Let � > 0: then the boundary non-Nash stationary state z� = e�13 is a source.

(c) Let � < 0:. If '1 > 0: then the boundary mixed Nash equilibrium z� = e�13 is a saddle

point and the interior mixed Nash equilibrium z� = ẑ is a source. If '1 = 0, then e
�
12, e

�
13

and ẑ merge with e1; which is a fold bifurcation.

(d) If � = 0; then there is a local fold bifurcation at equilibrium point z� = e�13 = ẑ.

Phase diagrams in Figure 2 displays not only local dynamics but also global dynamics,

for the two generic cases. It shows there is a heteroclinic network which is joining all the

stationary points of the replicator dynamics. Heteroclinic orbits exist in the intersection of

the stable manifold associated to one equilibrium point to the unstable manifold associated

to another equilibrium point. Therefore, there are heteroclinic orbits linking sinks to saddle

points, in the interior of the simplex, and saddle points to sinks, in the boundaries of the

simplex. This implies that the heteroclinic orbits in the interior of the simplex separate the

basins of attractions of the three pure strategy Nash equilibria

Bi �
n
y 2 �2 : lim

t!1
z(t;y) = ei

o
; i = 1; 2; 3:

Proposition 4: global dynamics.
(a) Let � > 0. Then there is a heteroclinic network composed of 8 heteroclinic orbits: six

heteroclinic orbits join the boundary mixed equilibria to the pure strategy equilibria, and two

heteroclinic orbits join the steady state on edge e13 to the boundary mixed equilibria on the

edges e12 and e23. These two heteroclinics separate the boundaries for the basins of attraction

B1, B2 and B3 associated to the three pure strategies equilibria e1, e2 and e3.
(b) Let � < 0: If '1 > 0, then there is a heteroclinic network composed of 9 heteroclinic

orbits, six heteroclinic orbits join the boundary mixed equilibria to the pure strategy equilibria,

and three heteroclinic orbits join the interior mixed equilibrium, ẑ to the boundary mixed

equilibrium on the edges e13, e12 and e23. These three heteroclinics separate the basins of

attraction B1, B2 and B3 associated to the three pure strategy equilibria e1, e2 and e3. If '1 =
0, then there is a heteroclinic network composed of 5 heteroclinic orbits, three heteroclinic

orbits joining e1 to e2, e3 and e23, and two heteroclinic orbits joining e23 to e2 and e3. The

heteroclinic orbit between e1 and e23 separates the basins of attraction B2 and B3. Basin B1
is empty.
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From the above proposition, we can see that:

(a) The three pure-strategy equilibria are asymptotically stable and are ESS (so long as

'1 > 0 to rule out the Bertrand case).

(b) None of the non-pure strategy �xed-points are asymptotically stable or ESS.

(c) The non-pure strategy �xed points are either unstable sources or saddle-stable with a

stable manifold of dimension 1. We can see that the non-pure-strategy stationary states are

on the borders of the basins of attraction of the three pure-strategy equilibrium conjectures.

The boundaries of the basins are heteroclinic orbits which connect the "mixed" stationary

states with each other and with the pure strategy equilibria. Hence, there is a sense in

which the non-pure strategy stationary points are "fragile": the replicator dynamics on the

two dimensional simplex results in a stable manifold of at most one dimension. This means

that these stationary states are not locally stable, since a small deviation will almost always

lead away to one of the three pure-strategy sinks. Whilst they are fragile in this sense, they

are also essential to the model, as with their heteroclinic orbits they de�ne the boundaries

between the basins of attraction of the pure-strategy sinks.

5.2 Equilibrium Selection.

Clearly, the evolutionary dynamics imply that the initial position determines which equilib-

rium comes about in the long-run. However, what can we say about the size of the basins

of attraction? In particular, what determines the size of the basins of attraction? Does the

Pareto dominant equilibrium have a larger basin of attraction? If we consider each point in

the unit simplex to be equally likely, we can interpret the size of the basin as the probability

of the corresponding equilibrium. In the general case of � > 0, we are able to approximate

each basin under the assumption that the heteroclinic orbits are all linear, so that the three

basins can be broken down into triangles using Proposition 422. Let us call P (ei) the (ap-

proximate) probability of asymptotic convergence to pure strategy ei: Our approximations

22We show in the proof of Proposition 4 that there is not an analytic �rst integral for the replicator
dynamic system and therefore the separatices of the basins of attraction cannot be determined analytically.
However, we also prove that they will be close to the straight lines connecting equilibria, which allows us to
approximate of the dimension of basins of attraction for the pure strategies.
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are:

P (e1) =
'21

('1 + '2)('1 + '3)
;

P (e2) =
'2

'1 + '3

�
'1

'1 + '2
+

'3
'2 + '3

�
;

P (e3) =
'23

('1 + '3)('2 + '3)
:

Since '3 > '1we can see that the basin of attraction of the Pareto dominant equilibrium

e3 is larger than that of the most competitive equilibrium e1 : P (e3)=P (e1) = '
2
3='

2
1 > 1)

P (e3) > P (e1). However, the relative size of P (e2) is more complicated to understand. To

take the simplest case, if '1 = 0 (Bertrand), then the exact probabilities are

P (e3) =
'3

('2 + '3)

P (e2) =
'2

('2 + '3)

and so we have the unambiguous ranking P (e3) > P (e2): In general, however, it is more

than possible to have P (e3) < P (e2): In particular, as '1 ! '3, then P (e1) and P (e3) both

tend to 1=4 whilst P (e2) tends to 1=2. If we take another example with '1 = 1 (Cournot)

and '3 = 2 (Joint pro�t maximization), then P (e2) > P (e3) for '2 > 1:155:

Hence we cannot claim that the Pareto dominant equilibrium will have the largest basin.

The reason for this is from the payo¤ function of the rent-extraction game: whilst the most

competitive CV will do worst, the middle conjecture does better than the most cooperative

against the most competitive and does better against the most cooperative than the most

competitive. This was why (for � > 0) the stationary point with only the most and least

cooperative conjectures is not a Nash equilibrium and is an unstable source. The result is

that the basin of attraction for the intermediate conjecture '2 is often (although certainly

not always) larger than the most cooperative conjecture '3.

There is also a key di¤erence between the intermediate conjecture and the most coopera-

tive. If we look at Figure 2a, we can see that for � > 0, if the population starts close to e23
but in B2, there are equilibrium paths that start with an almost zero share for '2 but tend

asymptotically to e2 where the share is 1. The cooperative conjecture '3 however requires

a minimum share to start o¤ with. The lowest starting share for '3 occurs on the boundary
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of B3 at stationary point e13: its initial share must be just above that at e13 for it to be able
to get to e1. So long as '1 > 0, this is bounded away from zero.

6 Conclusion.

In this paper, we have taken the rent-extraction model with conjectural variations and ap-

plied a social learning model to it in the form of the evolutionary replicator dynamics. CVs

become more (less) common as their average payo¤s are above (below) average. The end-

points of this evolutionary process can be both pure-strategy equilibria and mixed-strategy

equilibria. However, the mixed-equilibria are either unstable, or have limited saddle-path

stability and hence are not ESS. The pure-strategy equilibria have large basins of attraction,

and their boundaries are separated by heteroclinic orbits that connect the mixed-equilibria.

Whilst all the pure-strategy equilibrium conjectures are consistent conjectures, the standard

de�nition of consistency does not apply to mixed equilibria. We therefore develop two gen-

eralizations of the standard consistency condition to apply to the case of mixed-equilibria

and show that, whilst the link between consistency and equilibrium in the conjecture game

still exists, it is weaker in the case of mixed-strategies than it is for pure-strategy equilibria.

In our analysis of the rent-extraction game, we do not �nd a tendency for all of the

rent to be extracted in the evolutionary long-run. The rent is only fully dissipated when

there are competitive (Bertrand) conjectures, which is not ESS and will have no basin of

attraction. The Pareto-optimum of zero-rent dissipation is not only possible, but also has

a signi�cant basin of attraction which in certain cases may be the biggest. However, in the

three conjecture case we have analyzed, the intermediate conjecture may well have the larger

basin of attraction.

There are very many shortcomings to using simple evolutionary dynamics: they certainly

are not a literal real-time representation of how agents behave. However, the long-run

dynamics give us a guide as to what social institutions and individual strategies might

emerge over time. In the case of the rent-extraction model they have given us an insight

into what types of behavior and associated beliefs will succeed in earning above average

payo¤s, and in so doing become more common.
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7 Appendix.

7.1 Proof of Proposition 2.

Proof The ODE (18) has three steady states in the vertices of the simplex, three steady

states in the edges of the simplex and we prove there is one additional steady state which is

in the interior of the simplex only if � < 0.

First, all the steady states in the vertices are all Nash equilibria, because for z� = e1, we

have u1(e1)� �u(e1) = 0, u2(e1)� �u(e1) = �'1m12 < 0, and u3(e1)� �u(e1) = �'2m13 < 0;

for z� = e2, we have u1(e2)� �u(e2) = �'2m12 < 0, u2(e2)� �u(e2) = 0, and u3(e2)� �u(e2) =
�'2m23 < 0 and, for z� = e3, we have u1(e3) � �u(e3) = �'3m13 < 0, u2(e3) � �u(e3) =
�'3m23 < 0, and u3(e3)� �u(e3) = 0.
Second, for the steady states in the edges of the simplex we have: steady state in edge e12,

joining vertices e1 and e2, z� = e�12 = ('2=('1 + '2); '1=('1 + '2); 0) is a Nash equilibrium

because u1(e�12)� �u(e�12) = u2(e�12)� �u(e�12) = 0 and

u3(e
�
12)� �u(e�12) = �

'1'2 (m13 +m23 �m12)

'1 + '2
< 0

as

m13 �m12 = '1
('3 � '2)('2'3 � '21)
('1 + '3)

2('2 + '3)
2
> 0;

the steady state in edge e13, joining vertices e1 and e3, z� = e�13 = ('3=('1+'3); 0; '1=('1+

'3); 0) veri�es u1(e
�
13)� �u(e�13) = u3(e�13)� �u(e�13) = 0 and

u2(e
�
13)� �u(e�13) =

'1'3 (m13 �m12 �m23)

'1 + '3

as m12 > 0 and

m13 �m23 = '3
('2 � '1)('23 � '1'2)
('1 + '3)

2('2 + '3)
2
> 0:

As sign(u2(e�13) � �u(e�13)) = sign(�) (see equation (19)) then e�13 is a Nash equilibrium

if and only if � < 0; and, �nally, steady state in edge e23, joining vertices e2 and e3,

z� = e�23 = (0; '3=('2 + '3); '2=('2 + '3); 0) is also a Nash equilibrium because it veri�es

u2(e
�
23)� �u(e�23) = u3(e�23)� �u(e�23) = 0 and

u1(e
�
23)� �u(e�23) =

'2'3 (m23 �m12 �m13)

'2 + '3
< 0
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as m13 �m23 > 0.

The steady state outside the boundary of �2, z� = ẑ, is formally given in equation

(20) . If it belongs to the interior of �2 it is always a Nash equilibrium because it veri�es

u1(ẑ) = u2(ẑ) = u3(ẑ) = �u(ẑ). Then we have to check if it belongs to the simplex: �rst

observe that ẑ1 + ẑ2 + ẑ3 = 1; second, from the previous conditions over the quantities m12,

m13 and m23 we readily see that d12 < 0 and d23 < 0. Then z is positive and its components

are less than one if d13 < 0 as well, which implies D < 0. But d13 = m13� < 0 if and only if

� < 0.

Hence � < 0 is a necessary and su¢ cient condition both for the steady state e�13 to

be a Nash equilibrium and also for the steady state to be inside the simplex. If � > 0

e�13 is not a Nash equilibrium, and there is no interior steady-state. If � = 0 it is easy

to see that the interior mixed-strategy equilibrium and the boundary equilibrium coalesce,

which means that the boundary equilibrium will be a Nash equilibrium, because in this case

d12 = d23 = �2m12m23 and d13 = 0. �

7.2 Proof of Proposition 3.

proof We obtain equivalent results if we study the local dynamics of the 3-dimensional ODE,

(18), or if we study its 2-dimensional projection of the dynamic system (18) into the space

(z1; z3) by the relation z2 = 1� z1 � z3,

_z1 = z1 [(1� z1 � z3) (�'2m12 +m12('1 + '2)z1 +m23('2 + '3)z3)+

+m13z3(('1 + '3)z1 � '3)] (21)

_z3 = z3 [(1� z1 � z3) (�'2m23 +m12('1 + '2)z1 +m23('2 + '3)z3)+

+m13z1(('1 + '3)z3 � '1)] : (22)

The Jacobian of this system , evaluated at steady state (z�1 ; 1� z�1 � z�3 ; z�3), J(z�1 ; z�3), has
spectrum

�(z�1 ; z
�
3) � f � : det [J(z�1 ; z�3)� �I] = 0g = f�1(z�1 ; z�3); �2(z�1 ; z�3) g

First, the spectra of the reduced Jacobian for the pure strategies are: �(e1) = f�'1m13;�'1m12g,
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�(e2) = f�'2m12;�'2m23g, and �(e3) = f�'3m13;�'3m23g. In all the three cases all the
eigenvalues are negative and, if '2 is equally spaced, we have the relationship

�1(ei) < �2(ei) < 0; i = 1; 2; 3:

Note further that whilst �(e2) and �(e3) are strictly negative, �(e1) is zero if and only if

'1 = 0. This gives rise to the fold bifurcation at e1when '1 = 0.

Second, the spectra of the reduced Jacobian for the steady states in the edges are:

�(e�12) =

�
�'1'2(m13 +m23 �m12)

'1 + '2
;
'1'2m12

'1 + '2

�
;

�(e�13) =

�
'1'3�

'1 + '3
;
'1'3m13

'1 + '3

�
and

�(e�23) =

�
�'2'3(m12 +m13 �m23)

'1 + '2
;
'2'3m23

'2 + '3

�
;

so that , z� = e�12 and z
� = e�23 are saddle points because �1(e

�
12) < 0 < �2(e

�
12) and

�1(e
�
23) < 0 < �2(e

�
23) and z

� = e�13 is also a saddle point if � < 0 and '1 > 0; and is a source

if � > 0. In the case of � < 0 and '1 = 0, we have �(e�12) = �(e�13) = f 0; 0g and from
Proposition 2 (b) these equilibria merge which gives rise to the fold bifurcation.

Third, recall that steady state ẑ will only belong to the simplex �2 if � < 0. The trace

and the determinant of the Jacobian evaluated at ẑ are both positive, under that condition:

tr(J(ẑ)) = �24
2'1'2'3
D

m12m13m23 > 0

det(J(ẑ)) = �
�
42'1'2'3

D

�2
m12m13m23(m12 +m13 �m23)(m13 +m23 �m12)� > 0:

If we assume further that '2 is the average of the other two strategies, then the discrim-

inant of the Jacobian is also positive, and, as the two eigenvalues of the Jacobian are real

and positive, the interior mixed equilibrium is a source. In the case where '1 = 0 from

Proposition 2(b) this equilibrium merges with e1, at a fold bifurcation point.

�
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7.3 Proof of Proposition 4.

proof Zeeman (1980) presents a complete classi�cation of the phase portraits of the replicator

dynamics (RD) for the 3�3 case. They include the phase portraits in �gure ??. These phase
portraits suggest there is a heteroclinic network which is not an heteroclinic cycle as in some

RD games (e.g., the rock - scissor -paper RD game). The heteroclinic network consists of

six heteroclinic orbits joining equilibria on the edges, e12, e13 and e23, to equilibria on the

vertices of the simplex, e1, e2 and e3, and two interior heteroclinic orbits joining steady state

e�13 to steady states e
�
12, and e

�
23, respectively. Those two heteroclinic orbits separate the

boundaries of the basins of attractions in the interior of �2. Next we prove that the phase

diagram in �gure 2, for case � > 0, is generic. The proof for case � < 0 is similar.

Heteroclinic orbits lay along invariants of type f(z1; z2; z3) : F (z1; z2; z3) = constantg.
The best way to prove that their layout as in �gure 2 is generic, is to determine a �rst

integral of the RD system (18) explicitly. If we transform the 3-dimensional RD system

(18) into a 2-dimensional Lotka-Volterra (LV) system, using a well known transformation

(see Hofbauer and Sigmund 1998, p.77), and if we draw upon the relevant literature on the

determination of the �rst integrals of the LV equation, e.g. Llibre and Valls (2007), we �nd

that there is not an analytic �rst integral for the associated LV equation.

Therefore we resort to a heuristic proof by using equations (21)-(22).

The orbits along the edges of the simplex lay along invariants f(z1; z3) : z1 = 0g ,

f(z1; z3) : 1 � z1 � z3 = 0g , and f(z1; z3) : z3 = 0g . In the �rst case the dynamics is
given by _z1 = 0 and _z3 = z3(1 � z3)(z3 � z3(e23)m23('2 + '3), which means that z1(t) = 0,

for any t � 0 and if 0 < z3(0) < z3(e
�
23) (1 > z3(0) > z3(e

�
23)) then z3(t) will converge

asymptotically to vertex e2 (e3). In the second case the dynamics is given by _z3 = � _z1
and _z1 = z1(1 � z1)(z1 � z1(e13)m13('1 + '3), which means that z3(t) = 1 � z1(t), for any
t � 0, and if 0 < z1(0) < z1(e

�
13) (1 > z1(0) > z1(e

�
13)) then the trajectory z1(t) will

converge asymptotically to vertex e1 (e3). In the last case, the dynamics is given by _z3 = 0

and _z1 = z1(1 � z1)(z1 � z1(e12)m12('1 + '2), which means that z3(t) = 0, for t � 0,

and if 0 < z1(0) < z1(e
�
12) (1 > z1(0) > z1(e

�
12)) then the trajectory z1(t) will converge

asymptotically to vertex e1 (e2).

Next, we prove that, if � > 0 there are two heteroclinic orbits inside a closed trapping

area T which is bounded by equilibrium points e2, e�12, e
�
13, and e

�
23:

T =
�
(z1; z3) : z1 � 0; z3 � 0;

�'2 + ('1 + '3)z1
'3 � '2

� z3 �
'2(1� z1) + '1

'2 + '3

�
:
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As we already saw, all the points belonging to segments of the edges e2-e12, and e2-e23,

converge to the pure strategy steady state e2. By continuity, given any initial point close

to the those edges, the replicator dynamics will also imply asymptotic convergence to e2.

However, all the dynamics starting close to the straight line e12�e13, passing through points
e�13 and e

�
12, will exit T and converge to vertex e1. Similarly, all the dynamics starting close

to the straight line e13 � e23, passing through points e�13 and e�23, will exit T and converge
to vertex e3. This means that there are two separatrices belonging to the interior of T: the
�rst is in the intersection of the stable manifold associated to the saddle point e�12 with the

unstable manifold associated with the source e�13, W
s(e�12) \W u(e�13); and the second is in

the intersection of the stable manifold associated to the saddle point e�23 with the unstable

manifold associated with the source e�13, W
s(e�23) \W u(e�13).

Those separatrices partition T in three subsets, where there will be asymptotic conver-
gence towards one and only one of the three vertices of the simplex. The subset associated

to e2 is the basin os attraction of e2 and the other subsets of T belong to the basins of
attraction of e1 or e3. The separatrices are invariants and contain all the heteroclinic orbits

converging asymptotically to either e�12 or e
�
23.

To prove this formally, observe that the formal expression of line e13 � e12 is

z3 = �
'2

'3 � '2
+
'1 + '3
'3 � '2

z1 : (z1; z3) 2 T

which is positively sloped. Evaluating equations (21)-(22) along that line we get

_z1 = �z1
('1 + '2)('1 + '3)

('3 � '2)2
(z1 � z1(e�13)) (z1 � z1(e�12))�

� ('2(m13 +m23 �m12) + '3(m12 +m23 �m13)) > 0

_z3 = �
('1 + '2)

2('1 + '3)

('3 � '2)3
(z1 � z1(e�13)) (z1 � z1(e�12))�

�
�
('2(m13 +m23 �m12) + '3(m12 +m23 �m13)) z1 �

2'2'3m23

'1 + '2

�
< 0:

Then the vector �eld is negatively sloped along line e13 � e12 and, locally, z1 is increasing
and z3 is decreasing towards e1. Therefore, the global dynamics involves exit from trapping

area T.
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The formal expression of line e13 � e23 is

z3 =
'2

'2 + '3
� '2 � '1
'2 + '3

z1 : (z1; z3) 2 T

which is negatively sloped. Evaluating equations (21)-(22) along that line we get

_z1 = �z1 (z1 � z1(e�13))
('1 + '3)

('2 + '3)
('2(m13 �m23 +m12)(z1 � 1)� '1�z1) < 0

and

_z3 = �z1 (z1 � z1(e�13))
('1 + '3)

('2 + '3)
2
('2(1� z1) + '1z1)�

� ('2(m13 �m23 +m12) + '1(m12 +m23 �m13)) > 0

which implies that the slope of the vector �eld along the line e13 � e23 is also negative. But
the slope of the vector �eld is steeper than the slope of line e13 � e23, because

dz3
dz1

����
( _z1; _z3)

� dz3
dz1

����
e13�e12

=
2'1'2m12

('2 + '3) ('2(m13 +m12 �m23)(z1 � 1) +�'1�z1)
< 0:

Then, locally, z1 is decreasing and z3 is increasing towards e3. Therefore, the global

dynamics also involves exit from trapping area T.
At last, we prove that the separatrices lay inside the trapping area T. First, recall that

the stable eigenspaces, Es(e�12) and E
s(e�23), are tangent to the stable manifolds associated

to the two boundary saddle points, e�12 and e
�
23. This means that the heteroclinic trajectories

are asymptotically tangent to the stable eigenspaces. The stable eigenspace associated to

e�12 has slope
dz3
dz1

����
Es(e�12)

=
('1 + '2)(m13 +m23)

(m13 �m23)'3 � (m13 +m23)'2

which is positive if ('21 + '
2
3)'2 � 2'1'23 > 0, and is negative or vertical otherwise. In the

second case, the separatrix is clearly inside T. However, the separatrix is also inside T when
it is positively sloped, because it is steeper than line e13 � e12, as, in this case,

dz3
dz1

����
Es(e�12)

� dz3
dz1

����
e13�e12

=
'3('1 + '2)('1 + '3)

2

('21 + '
2
3)'2 � 2'1'23

> 0
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The stable eigenspace associated to e�23 is also negatively sloped, because

dz3
dz1

����
Es(e�23)

= �(m12 �m13)'1 + (m12 +m13)'2
('2 + '3)(m12 +m13)

< 0:

Again, it is inside T because it is steeper than line e13 � e23 as

dz3
dz1

����
Es(e�23)

� dz3
dz1

����
e13�e23

= �2 '1m12

('1 + '3)(m12 +m13)
> 0:

In the case of � < 0, the proof is similar in the case of '1 > 0. If '1 = 0, we have the

additional factor of the merging of equilibria (Proposition 2) and resultant fold bifurcation

and disappearance of B1. �

7.4 A. Iso-payo¤ sets.

The iso-payo¤ sets for X characterized by

�UX = f(x; y) : UX(x; y) = �Ug

have the slope given by
dy

dx

����
�Ux
=
y � x2 � 2xy � y2

x

The payo¤s are unde�ned at (0; 0) :For �U 2 (0; 1), the iso-payo¤ curve intersects the x�
axis at

�
1� �U; 0

�
: However, all iso-payo¤ sets with �U 2 (0; 1) originate from (0; 0) with

slope de�ned by:

x

x+ y
= �U

lim
x!0

dy

dx

����
�Ux

=
y

x
=
1� �U
�U

For �U close to 0 the slope is very high; for �U close to 0 the slope is very low; whilst the slope

is zero at an intermediate level. The locus of points at which the iso-payo¤ functions have
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zero slope is de�ned by:

dy

dx

����
�Ux

= 0

y � x2 � 2xy � y2 = 0

x = �y +py

This is depicted in Figure 1 for �rm X�s payo¤, along with the lines x+y = 1 and x = y :

Fig A1 here.

In the region to the left of the zero-slope locus, the slopes of the iso-payo¤ functions are

strictly positive; whereas to the right they are strictly negative. The slopes are all strictly

decreasing along each iso-payo¤ locus for �U 2 (1; 0): The �U = 0 locus is the union of the line
segments fx+ y = 1; x � 0; y � 0g with fx = 0; y 2 (0; 1]g. The corresponding iso-payo¤s

for �rm Y are simple the re�ection of those of �rm X in the 45o line.
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G > 0

G <0
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0.0
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1.5
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j1

j
3

Figure 1: Bifurcation diagram in the space (ϕ1, ϕ3), for equally spaced con-
jectures ϕ2 = (ϕ1 + ϕ3)/2.
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Φ1

Φ2
Φ3

Φ1

Φ2
Φ3

Figure 2: Phase diagrams over the simplex for equally spaced conjectures:
the top panel is for case Γ > 0 where (ϕ1, ϕ3) = (1, 2) and the bottom panel
for Γ < 0 where (ϕ1, ϕ3) = (0.01, 1.9).
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Figure A1: The locus of zero-sloped points on Firm Xs iso-
payoff functions. 




