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1 Introduction

Auctions are typically the most efficient institutions for the allocation of private goods and

have been used since antiquity for the sale of a variety of items. The academic study of

auctions grew out of the work of Vickrey (1961) and has blossomed into an enormously

important area of economic research over the last 40 years. The development in the area has

been further accelerated as today governments are keen on using auctions to sell spectrum

rights, to procure goods and services, and to privatize state enterprises. Also consumer-

oriented online auctions are booming to sell virtually all sorts of commodities. The research
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of the last four decades resulted in a better understanding of how the design of auction

affects its outcome and how the environments may affect the auction design as well.

Standard auction theory assumes that all potential bidders have the ability to pay up

to their values on the items for sale. However in reality many buyers may be financially

constrained and may therefore not be able to afford what the items are worth to them.

Financial or budget constraints may occur in various circumstances. As stressed by Maskin

(2000) in his Marshall lecture, the consideration of financial constraints on buyers is par-

ticularly relevant and important in many developing countries, where auctions are used

to privatize state assets for the promotion of efficiency, competition and development, but

entrepreneurs may often be financially constrained. Financial constraints not only occur

in developing countries but also in developed nations. In particular, Che and Gale (1998)

have given a variety of situations where financial constraints may arise, ranging from an

agent’s moral hazard problem, business downturns and financial crises, to the acquisition

decisions in many organizations which delegate to their purchasing units but impose bud-

get constraints to control their spending, and to the case of salary caps in many professions

where budget constraints are used to relax competition.

Financial constraints can pose a serious obstacle to the efficient allocation of the items.

For instance, financial constraints seem to have played an important role in the outcome

of auctions for selling spectrum licenses conducted in US (see McMillan (1994) and Salant

(1997)) and in European countries (see Illing and Klüh (2003)). In this paper, we study

a general model in which a number of (indivisible) items are sold to a group of financially

constrained bidders. Each bidder wants to consume at most one item. When no bidder

faces a financial constraint, the model reduces to the well-known assignment model as

studied by Koopmans and Beckmann (1957), Shapley and Shubik (1972), Crawford and

Knoer (1981), Leonard (1983), and Demange, Gale and Sotomayor (1986), among others.

Each bidder has private information about his values for the items and his budget, but

these numbers are not revealed to the other agents. In particular the auctioneer (seller)

does not know the values and budgets of the bidders. It is well-known (see e.g. Maskin

(2000)) that even when a single item is auctioned, it is generally impossible to have a

mechanism for achieving the full market efficiency in case bidders face budget constraints.

Of course, this observation also holds when there are multiple items for sale. Even worse,

when bidders face financial constraints, a Walrasian equilibrium typically fails to exist, and

allocation mechanisms that perform well when there are no budget constraints, if applied,

often result in highly inefficient outcomes.

The natural questions therefore are whether a market mechanism can be designed

that yields an assignment of the items amongst the budget-constrained bidders and a
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corresponding price system that can be reasonably efficient and competitive,4 and what

are the properties of the mechanism and its generated outcome. In this paper we propose

the notion of an equilibrium under allotment to this market model and develop a dynamic

auction mechanism that always results in such an equilibrium in finitely many rounds. The

proposed auction can be seen as an appropriate and proper generalization of the well-known

ascending auction of Demange, Gale and Sotomayor (1986) (DGS auction in short) from

settings without financial constraints to settings with financial constraints. An attractive

feature of the auction is that it only requires the bidders to report their demands at price

vectors along a finite path rather than their values or budgets. This property is very

useful and practical, because businessmen are in general reluctant to reveal their values,

costs, or budgets. This also gives an explanation of why dynamic auctions like English

and Dutch auctions are more popular than sealed-bid auctions like the Vickrey auction;

see e.g., Rothkopf et al. (1990), Perry and Reny (2005), Bergemann and S. Morris (2007).

We show that when bidders face no budget constraints, the proposed auction reduces to

the well-known DGS auction and thus maintains the DGS auction’s strategic properties.

In this case, the auction finds a Walrasian equilibrium and it is in the best interest of

every bidder to bid truthfully. In case there are budget constraints, the auction might end

up with an outcome in which a bidder does not receive his most preferred item given the

prices at which the items are sold, because this item has been sold to some other bidder. A

bidder that does not receive his most preferred item finds himself rationed on that item. As

shown in Borgs et al. (2005) it is impossible to design truthful-bidding multi-unit auctions

in case of budget-constrained bidders. Indeed, a bidder that finds himself rationed in the

outcome of the auction, might be able to attain a better outcome by misreporting his

demands when this bidder had information advantage over other bidders and when there

were only very few bidders and items. However, in case of at most two items we will prove

that bidders who receive their most preferred item will have no incentive to manipulate the

auction. Another salient feature of the auction is that when a bidder feels himself rationed

in the outcome on some item, then the price of this item equals the budget of another

bidder who is actually assigned with this item and thus pays his full budget. We further

demonstrate that the assignment and price system generated by the auction yield Pareto

efficient allocation of the items and the money, when no bidder finds himself rationed at

the outcome.

The paper is related to several papers on auction design under budget constraints. In

contrast to our dynamic auction for selling multiple items to many financially constrained

bidders, the existing literature concentrates on sealed-bid auctions for selling a single item

4It is impossible to achieve full efficiency and competitiveness, because Walrasian equilibria simply may
not exist due to budget constraints.
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to many bidders, or two items to two bidders. Rothkopf (1977) is among the first to study

some issues concerning sealed-bid auctions with budget constrained bidders. He investi-

gates how such constraints may affect the best bids of a bidder. Palfrey (1980) analyzes a

price discriminatory sealed-bid auction in a multiple item setting under budget constraints

and gives a complete characterization of Nash equilibrium in the two items or less and

two bidders or less case. Pitchik and Schotter (1988) study the equilibrium bidding be-

havior in sequential auctions for the sale of two items with budget constrained bidders.

Che and Gale (1996, 1998) focus on single item auctions with budget constraints under

incomplete information. They prove that when bidders are subject to financial constraints,

the well-known revenue equivalence theorem does not hold any more. In particular, Che

and Gale (1998) provide conditions under which first-price auctions yield higher expected

revenue and social surplus than second-price auctions; see also Krishna (2002) and Klem-

perer (2004). Laffont and Robert (1996) characterize an optimal sealed-bid auction in a

single item setting under financial constraints. Maskin (2000) studies the performance of

second-price auctions and all-pay auctions and proposes a constrained-efficient sealed-bid

auction for the sale of a single item when bidders are financially constrained. Zheng (2001)

examines a single-object, first-price sealed-bid auction where budget-constrained bidders

have the possibility of defaulting on their bids. He shows that budget constraints and

default risk together can have a huge impact on seller’s profit, bidding behavior, and the

likelihood of bankruptcy. Benôıt and Krishna (2001) investigate simultaneous ascending

auctions and sequential auctions for the sale of two items with budget constrained bidders.

They compare the performance of both types of auctions when the two items are comple-

ments or substitutes; see also Krishna (2002). Quintero Jaramillo (2004) shows that a seller

can benefit from offering small credit subsidies in an auction with financially constrained

bidders. Brusco and Lopomo (2008, 2009) consider simultaneous ascending auctions of two

identical objects and two bidders and show that even the slightest possibility of financial

constraints may cause significant inefficiencies. Pitchik (2009) studies a sealed-bid sequen-

tial auction for selling two items to two bidders with budget constraints and incomplete

information.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

describes the notion of equilibrium under allotment and gives the basic notions of overde-

mand and underdemand. The ascending auction is given in Section 4, while Section 5

discusses the feasibility and convergence of the auction. Section 6 examines the outcome

of the auction and Section 7 deals with efficiency and strategic issues. Section 8 concludes.

Several proofs are given in the appendix.
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2 The model

A seller or auctioneer has n indivisible goods for sale to a set of m financially constrained

bidders. Let N = {1, . . . , n} denote the set of the items for sale and M = {1, 2, · · · , m}
the set of bidders. In addition to the n real items there is a dummy good, denoted by 0.

The dummy item 0 can be assigned to any number of bidders simultaneously, any real

item j ∈ N can be assigned to at most one bidder. The seller (she) has for each real item

j ∈ N a nonnegative reservation price c(j) below which the item will not be sold. By

convention, the reservation price of the dummy good is known to be c(0) = 0. A price

vector p ∈ IRn+1
+ gives a price pj ≥ 0 for each item j ∈ N ∪ {0}. A price vector p ∈ IRn+1

+

is feasible if pj ≥ c(j) for every j ∈ N and p0 = 0. Every bidder (he) i ∈ M attaches a

(possibly negative) monetary value to each item in N ∪{0} given by the valuation function

V i: N ∪ {0} → IR. Also by convention, the value of the dummy item for every buyer i is

known to be V i(0) = 0. It should be noticed that a set S ⊆ N of real items gives value

V i(S) = maxj∈S V i(j) to bidder i, i.e., bidder i can utilize only one item and thus will

never buy more than one real item. So, here we have the well known assignment model as

studied by Koopmans and Beckmann (1957), Shapley and Shubik (1972), Crawford and

Knoer (1981), Leonard (1983), and Demange et al. (1986).

Now we generalize this standard model by considering the situation where each bidder

i is initially endowed with a nonnegative amount of mi units of money. Bidders are not

allowed to have deficits on their money balances, so no bidder can afford an item j with a

price pj higher than his initial amount of money mi. This means that unlike in the standard

assignment model, the bidders are financially constrained by their initial money holdings

mi, i ∈ M . Since a bidder i is never willing to pay more than his valuation V i(j) for any

item j, his budget mi is never binding when mi > maxj∈N V i(j). We say that bidder i is

financially constrained if mi < maxj∈N V i(j), i.e., the valuation of bidder i for some items

exceeds what he can afford, and that bidder i faces no financial constraint otherwise. All

values V i(j), j 6= 0, and mi are private information and thus only bidder i knows his own

values V i(j), j 6= 0 and mi. Further it is assumed that all seller’s reservation prices, and

all valuations and money amounts of the bidders are integer values.

The utility of a bidder i possessing item j and money amount xi ≥ 0 is given by

U i(j, xi) = V i(j) + xi −mi,

i.e., the utility is equal to the value of the item j plus the difference between his amount

of money xi and his initial amount mi. So, U i(0, mi) = 0, i.e., the utility of bidder i is

normalized to zero when he gets the dummy item 0 and his initial amount of money mi.5

5Normalizing U i(0, mi) = mi and thus U i(j, xi) = V i(j) + xi does not affect the analysis throughout
this paper.
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The utility of bidder i who buys item j ∈ N ∪ {0} against price pj ≤ mi is thus given by

U i(j,mi − pj) = V i(j)− pj.

A feasible assignment π assigns to every bidder i ∈ M precisely one item π(i) ∈ N ∪{0}
such that no real item j ∈ N is assigned to more than one bidder. Note that a feasible

assignment may assign the dummy good to several bidders and that a real item j ∈ N

is unassigned at π if there is no bidder i such that π(i) = j. Let Nπ = {j ∈ N | j 6=
π(i) for all i ∈ M}, i.e, Nπ is the set of real items that are not assigned to any bidder in

π. A feasible assignment π∗ is socially efficient if∑
i∈M

V i(π∗(i)) +
∑

j∈Nπ∗

c(j) ≥
∑
i∈M

V i(π(i)) +
∑

j∈Nπ

c(j)

for every feasible assignment π, so a socially efficient assignment maximizes the total value

that can be obtained from allocating the items over all agents.

For feasible price vector p ∈ IRn+1
+ , the budget set of bidder i is given by

Bi(p) = {j ∈ N ∪ {0} | pj ≤ mi},

i.e., the budget set of bidder i at price system p is the set of all affordable items at p. Given

a feasible price vector p ∈ IRn+1
+ , the demand set of bidder i is defined by

Di(p) = {j ∈ Bi(p) | V i(j)− pj = max
k∈Bi(p)

(V i(k)− pk)},

thus Di(p) is the collection of most preferred items at p by i within his budget set, i.e.,

an item j ∈ N ∪ {0} is in the demand set Di(p) if and only if it can be afforded at p and

maximizes the surplus V i(k)−pk over all affordable items k. When the demand set contains

multiple items, then at the given prices of the items the bidder is indifferent between any

two items in his demand set. Notice that for any feasible p, the demand set Di(p) 6= ∅,
because p0 = 0 ≤ mi and thus the dummy item is always in the budget set Bi(p). In fact

this means that the bidder has always the possibility not to buy any real item.

A pair (p, π) of a feasible price vector p and a feasible assignment π is said to be

implementable if pπ(i) ≤ mi for all i ∈ M , i.e., every bidder i can afford to buy the item

π(i) assigned to him. Notice that every implementable pair (p, π) yields the corresponding

allocation (π, x) with xi = mi − pπ(i) ≥ 0.

Definition 2.1 A Walrasian equilibrium is an implementable pair (p∗, π∗) such that

(a) π∗(i) ∈ Di(p∗) for all i ∈ M ,

(b) p∗j = c(j) for every unassigned item j ∈ Nπ∗.
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If (p∗, π∗) is a Walrasian equilibrium, then p∗ is called a (Walrasian) equilibrium price

vector and π∗ a (Walrasian) equilibrium assignment. Because all values and money amounts

are integer and the seller’s reservation prices are nonnegative integers, it follows that if there

exists an equilibrium price vector p∗ ∈ IRn+1
+ , there must be an integral equilibrium price

vector p ∈ Zn+1
+ . Therefore we can restrict ourselves to the set Zn+1

+ of nonnegative integer

price vectors.

From Shapley and Shubik (1972) it is well known that in a situation without financial

constraints a Walrasian equilibrium exists and every equilibrium assignment is socially

efficient. To find an equilibrium some revealing mechanism is needed, because all valuations

V i(j), j 6= 0, are private information. The well-known auctions proposed by Crawford

and Knoer (1981) and Demange, Gale and Sotomayor (1986) are such mechanisms, we

refer to the auction in the latter paper as DGS auction. In this literature the notion of

overdemanded set of real items is used. A set S ⊆ N of real items is overdemanded at

a price vector p ∈ IRn+1 if the number of bidders who demand goods only from this set

is greater than the number of items in that set, see Section 3 for a further discussion of

this notion. The DGS auction is an ascending auction in which the auctioneer starts with

the reservation price vector p ∈ Zn+1
+ given by p0 = 0 and pj = c(j), j ∈ N . Then each

bidder is required to report his demand set Di(p). When there is an overdemanded set

of goods, the price of any item j in a minimal overdemanded set (i.e., no strict subset

of this overdemanded set is overdemanded) is increased by one and the bidders have to

resubmit their demands at this new price vector. The auction stops as soon as there are

no overdemanded sets anymore. It is well-known that the DGS auction for the assignment

model without financial constraints stops in a finite number of price adjustments with a

minimal equilibrium price vector pmin ∈ Zn+1
+ , i.e., (i) there exists a feasible assignment

π∗ such that (pmin, π∗) constitutes a Walrasian equilibrium and (ii) it holds that p ≥ pmin

for any other equilibrium price system p ∈ IRn+1
+ . Since the minimum Walrasian price

vector corresponds to the Vickrey-Clarke-Groves payments (see Leonard (1983)), the DGS

auction has truthful bidding in equilibrium. Also note that in the single item case, the

DGS auction reduces to the English auction.

The following example shows that financial constraints may cause not only the nonex-

istence of a Walrasian equilibrium but also the failure of the existing mechanisms.6

Example 1. Consider a market with three bidders (i = 1, 2, 3) and two real items

(j = 1, 2). The values of the bidders are shown in Table 1 and the seller’s reservation

price vector is C = (c(0), c(1), c(2)) = (0, 0, 0).

6It should be noted that the existing mechanisms were not designed for the current setting with budget
constraints but for the settings without budget constraints.
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Table 1: Bidders’ values on each item.

Items 0 1 2

Bidder 1 0 5 0

Bidder 2 0 0 5

Bidder 3 0 6 5

Case 1 (No Budget Constraints). Then this market has a (unique) equilibrium assign-

ment π = (π(1), π(2), π(3)) = (0, 2, 1). The set of equilibrium prices is given by

{p ∈ IR3 | p0 = 0, 5 ≤ p1 ≤ 6, 4 ≤ p2 ≤ 5 with p1 = p2 + 1}.

The two equilibrium integer price vectors (for the real items) are pmin = (5, 4) and pmax =

(6, 5). The DGS auction will find the equilibrium (π, pmin), realizing a social value of 11

and a revenue of 9 to the seller.

Case 2 (Budget Constraints). Let (m1, m2, m3) = (4, 3, 8) be the budgets of the bidders.

Suppose there exists a Walrasian equilibrium price vector p = (p0, p1, p2). Clearly, we must

have that p1 ≤ 6 and p2 ≤ 5, since otherwise no bidder demands a real item. We now

consider three cases. First, when p1 < p2 + 1, then we have that D3(p) = {1}. So, for

equilibrium we must have that p1 > 4 = m1, otherwise also bidder 1 wants to have item

1. However, then p2 > p1 − 1 > 3 = m2 and thus there is no demand for item 2. So, there

cannot be an equilibrium with p1 < p2 + 1. Second, when p1 > p2 + 1, it holds similarly

that D3(p) = {2}, implying that p2 > 3 = m2, otherwise also bidder 2 wants to have item

2. Then p1 > p2 + 1 > 4 = m1 and thus there is no demand for item 1. Again there is no

Walrasian equilibrium with p1 > p2 + 1. Third, when p1 = p2 + 1, then D3(p) = {1, 2}.
When p2 > 3, then bidders 1 and 2 demand the dummy item, and only bidder 3 demands

one of the items. On the other hand, when p1 = p2+1 ≤ 4, then D1(p) = {1}, D2(p) = {2}
and there are three bidders for 2 items. Again, also in this case there is no equilibrium and

thus a Walrasian equilibrium does not exist.

When one applies the DGS auction, first p1 is increased from 0 to 1 and then both prices

of the real items are increased simultaneously from (1, 0) to (4, 3). At each of these price

systems p (with p0 = 0) there is overdemand for both real items because, D1(p) = {1},
D2(p) = {2} and D3(p) = {1, 2}. However, at the next update we have p = (0, 5, 4) (with

p0 = 0 the price of the dummy item) and the demand sets are D1(p) = {0}, D2(p) = {0}
and D3(p) = {1, 2}. So, at prices p1 = 4, p2 = 3, each of the three bidders demands at least

one of the items. As a result, the set {1, 2} is a minimal overdemanded set and, according

to the DGS auction, both prices are increased by one. However, at p1 = 5 and p2 = 4, only

bidder 3 demands just one of the items (he is indifferent between both items). So, at these

prices the seller wants to sell both items, but only one of the items is demanded. It shows
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that the DGS auction fails to allocate the items. At p = (0, 3, 4) there is overdemand,

while at the next update there is underdemand. 2

The example demonstrates clearly why under financial constraints an equilibrium does

not need to exist. Without budget constraint, a bidder withdraws his demand for a real

item when the price of the item becomes higher than the bidder’s valuation. However, at

the price equal to the valuation, the bidder is indifferent between the real and the dummy

item (i.e., not buying an item). So, when at this price the real item belongs to the demand

set, then also the dummy item belongs to it and the seller can choose between allocating

the real item or the dummy item to the bidder. With budget constraints, by contrast,

there are two possibilities that a bidder withdraws his demand. The first one is, as before,

because the price rises above his valuation of the item. In this case, the dummy item is

also in the demand set when the price is equal to the valuation. However, the second

possibility is that the price is going to exceed the budget. Then, at price equal to the

budget, the bidder prefers the real item to the dummy one (and so the dummy one is

not in the demand set), while the demand set only contains the dummy item when the

price is increased by only one. In the example this happens when the price system goes

from (4, 3) to (5, 4). At p1 = 4 the first bidder strictly prefers the first item to any other

item (including the dummy item), while at p1 = 5 the first item is not affordable anymore

and bidder 1 only demands the dummy item (the same holds for bidder 2 with respect to

item 2). So, with budget constraints it is possible that an overdemanded item (or set of

items) becomes underdemanded when the price (prices) rises with only one unit. Because

of this discontinuity of the demand sets, the Walrasian equilibrium fails to exist. However,

without budget constraints the change from overdemand to underdemand cannot happen,

because then the bidder is indifferent between a real item and the dummy item when the

price is equal to the reservation value.

The change from overdemand to underdemand in Case 2 of Example 1 is also the reason

why the DGS auction fails to work properly. Rather than follow the DGS auction precisely

(the auction requires to increase the prices of all items in a minimal overdemanded set), one

might consider the possibility to rise only one of the prices at (4, 3). However, this is not of

any help. For instance, when only p1 increases from 4 to 5, then at (5, 3) there is no demand

for item 1, whereas both bidders 2 and 3 demand item 2. So, item 1 is underdemanded

and item 2 is still overdemanded. Then increasing p2 from 3 to 4, gives again the situation

as described in the example. Similarly, when first p2 is increased from 3 to 4, then at (4, 4)

there is no demand for item 2, whereas both bidders 1 and 3 demand item 1. So, anyway

the procedure ends up with prices (5, 4) at which bidders 1 and 2 demand the dummy item

and bidder 3 is indifferent between the two real items. Of course, it is then possible to

assign either item 1 or item 2 to bidder 3. In the first case, bidder 3 pays 5 to the seller
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who keeps item 2, realizing a social value of 6. In the second case, bidder 3 pays 4 to the

seller who keeps item 1, realizing a social value of 5. Both assignments result in a loss of

efficiency, because bidders 1 and 2 are willing to pay for the unassigned item, but they

don’t receive it. This brings us to the central issue of this paper: the design of an auction

for markets with financially constrained bidders.

3 Equilibrium under allotment

A possible way out of market situations in which the Walrasian equilibrium does not exist

and thus the DGS auction cannot work properly is as follows: as soon as underdemand

appears, one may allot an item from the chosen minimal overdemanded set at the previous

price system to one of the bidders who demanded that item at that price system, for

instance, by having a lottery between these bidders. The bidder to whom the item is

allotted, has to pay the price of the item at the previous price system. Of course, allotting

the item to one of these bidders implies that the item cannot be assigned to the others who

demanded also the item at the same price. So, the auctioneer can only accept one of the

bids but has to decline all other equal bids. In Case 2 of Example 1 the auctioneer might

accept one of the bids at price system with p1 = 4 and p2 = 3, for instance, by allotting

item 2 to bidder 2 against p2 = 3. Then bidder 2 leaves the auction with item 2 and the

auction continues with the bidders 1 and 3 and item 1, resulting in a price p1 = 5 at which

only bidder 3 demands item 1. This outcome yields a social value of 11 and a revenue

of 8 to the seller, resulting in a much better outcome than the one given at the end of

the previous section. However, note that this outcome can only sustain because the bid of

bidder 3 for item 2 has been declined. In summary, this procedure generates the outcome

(p∗, π∗) where p∗ = (p∗0, p
∗
1, p

∗
2) = (0, 5, 3) and π∗ = (π∗(1), π∗(2), π∗(3)) = (0, 2, 1). Observe

that at prices p∗, bidder 1 gets his best-liked item 0 and pays nothing, bidder 2 gets his

best-liked item 2 and pays p∗2 = 3 equal to his budget m2 = 3, whereas bidder 3 gets item

1 (second-best) rather than his most-preferred item 2, and pays p∗1 = 5. So, bidder 3 finds

himself rationed at this outcome on item 2, and bidder 2 who receives item 2 pays his full

budget m2 = 3.

The reasoning above gives us a clue to the introduction of an equilibrium under allot-

ment and the design of a dynamic auction. The necessity to decline bids of some bidders

while accepting an equal bid of one bidder induces a situation of rationing. After all, any

bidder who leaves the auction with a net surplus lower than the net surplus that could

have been obtained from an item j when paying the same price as what the bidder paid

to which the item was allotted, feels himself a posterior rationed on the demand of such

an item j. To explore this observation, we adapt the Walrasian equilibrium by incorpo-

10



rating the concept of an allotment scheme R = (R1, · · · , Rm) where, for i ∈ M , the vector

Ri ∈ {0, 1}n+1 is a rationing vector yielding which goods bidder i can demand and for

which goods offers of bidder i will be declined. That is, Ri
j = 1 means that bidder i is

allowed to demand good j, while Ri
j = 0 means that bidder i is not allowed to demand

good j ∈ N . When Ri
j = 0, we say that bidder i is rationed on his demand for item j. If a

bidder is not rationed on any item, we say that he is unrationed. Since the dummy item is

always available for every bidder i, we have that Ri
0 = 1 for all i. Given a rationing vector

Ri with Ri
j = 0 for item j, the vector Ri

−j denotes the same Ri but allows bidder i to

demand item j by ignoring Ri
j = 0. At a feasible price vector p and an allotment scheme

R = (R1, · · · , Rm), the demand set of bidder i ∈ M is given by

Di(p, Ri) = {j ∈ N | Ri
j = 1, pj ≤ mi and

V i(j)− pj = max{k∈N∪{0} | pk≤mi and Ri
k
=1} (V i(k)− pk) }.

We now introduce the notion of equilibrium under allotment for the assignment model

with financially constrained bidders.

Definition 3.1 An equilibrium under allotment (p, π,R) on a market with financially

constrained bidders consists of an implementable pair (p, π) and an allotment scheme R

such that

(i) π(i) ∈ Di(p, Ri) for all i ∈ M ;

(ii) pj = c(j) for any unassigned item j ∈ Nπ;

(iii) If Ri
j = 0 for some i, then (a) j ∈ Di(p, Ri

−j) and (b) there exist h ∈ M \ {i} with

π(h) = j and mh = pj.

Conditions (i) and (ii) correspond to Conditions (a) and (b) of the definition of the Wal-

rasian equilibrium and are straightforward. In (iii) conditions on the allotment scheme are

specified.7 First, (iiia) says that any rationing is binding, i.e., a bidder that is rationed

on some item, demands the item if the rationing on that item is dropped. Second, (iiib)

states that rationing on an item can only occur if the item is sold to some other bidder

and that this bidder pays his full budget for the item and thus cannot afford a higher

price. Together the conditions imply that it is impossible to drop any of the rationings and

that in an equilibrium under allotment the seller extracts all the money from the buyer

that is assigned a rationed item. In an equilibrium under allotment the prices of the un-

rationed items are fully competitive. However, the prices of items for which some of the

bidders are rationed are not competitive prices in the sense that at these prices there is

7These conditions may be seen as the counterparts of standard rationing conditions in fix-price litera-
ture, see e.g., Drèze (1975).
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still overdemand for these items. However, as Example 1 shows, rising these prices results

in underdemand and henceforth items with prices above the reservation prices of the seller

but nevertheless unsold. When there is no rationing in the equilibrium, i.e., Ri
j = 1 for all

i ∈ M and j ∈ N , the equilibrium under allotment is simply a Walrasian equilibrium.

Parallel to the well-known equilibrium existence theorem of Shapley and Shubik (1972)

on the assignment market without financial constraints, we can establish the following

existence theorem on the assignment market with financial constraints.

Theorem 3.2 The assignment model with financially constrained bidders has at least

one equilibrium under allotment.

In the next Section we design an ascending auction that always finds an equilibrium un-

der allotment, thus providing a constructive proof for Theorem 3.2. To describe the auction

and prove its convergence, we introduce the notions of overdemanded and underdemanded

sets and give some of its properties.

For a set of real items S ⊆ N , and a price vector p ∈ IRn+1
+ , define the lower inverse

demand set of S at p by

D−
S (p) = {i ∈ M | Di(p) ⊆ S},

i.e., this is the set of bidders who demand only items in S. Notice that S is a subset of real

items, so any bidder i in the lower inverse demand set does not demand the dummy item

and thus has a strict positive surplus V i(j) − pj for any item j in his demand set Di(p).

We also define the upper inverse demand of S at p by

D+
S (p) = {i ∈ M | Di(p) ∩ S 6= ∅},

i.e., this is the set of bidders that demand at least one of the items in S. Clearly, the

lower inverse demand set is a subset of the upper inverse demand set. Let |A| stand for

the cardinality of a finite set A.

Definition 3.3

1. A set of real items S ⊆ N is overdemanded at price vector p ∈ IRn+1
+ if |D−

S (p)| > |S|.
An overdemanded set S is said to be minimal if no strict subset of S is overdemanded.

2. A set of real items S ⊆ N is underdemanded at price vector p ∈ IRn+1
+ if (i) S ⊆ {j ∈

N | pj > c(j)} and (ii) |D+
S (p)| < |S|. An underdemanded set S is said to be minimal if

no strict subset of S is an underdemanded set.

The notion of minimal overdemanded set is due to Demange et al. (1986) and the notion

of minimal underdemanded set can be found in Mishra and Talman (2006) and is used in

a slightly different way by Sotomayor (2002). We further say that an item j is overpriced
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if {j} is a minimal underdemanded set, i.e., no bidder has item j in his demand set. So, a

minimal underdemanded set S either contains at least two (not overpriced) items, or has

an overpriced item as its single element.

In the next three lemmas we give some properties, the proofs of the lemmas are relegated

to the Appendix. The first lemma states that for every nonempty subset S of a minimal

overdemanded set O at p, the number of bidders in the lower inverse demand set D−
O(p)

that demand at least one item of S is at least equal to the number of items in S plus the

difference between |D−
O(p)| and |O| and thus is at least one more than the number of items

in S.

Lemma 3.4 Let O be a minimal overdemanded set of items at a price vector p. Then,

for every nonempty subset S of O, we have

|{i ∈ D−
O(p) | Di(p) ∩ S 6= ∅}| ≥ |S|+ |D−

O(p)| − |O|.

The next corollary follows immediately.

Corollary 3.5 For every item in a minimal overdemanded set O at p, there are at least

two bidders in D−
O(p) (actually the number is |D−

O(p)| − |O|+ 1 ≥ 2) demanding that item.

The next lemma shows that the number of bidders in the upper inverse demand set

of a minimal underdemanded set is precisely one less than the number of items in the set

and that any bidder in the upper inverse demand set demands at least two items from the

minimal underdemanded set.

Lemma 3.6 Let U be a minimal underdemanded set of items at a price vector p. Then

|D+
U (p)| = |U | − 1 and the demand set Di(p) of every bidder i ∈ D+

U (p) contains at least

two elements of U .

Mishra and Talman (2006. Theorem 1) establishes the next result for the case without

financial constraints. In fact, the lemma holds no matter whether there are financial

constraints or not.

Lemma 3.7 There is a Walrasian equilibrium at p ∈ IRn+1
+ if and only if at p no set

of items is overdemanded and no set of items is underdemanded.

4 An ascending auction mechanism

In this section we introduce an ascending auction which extends the DGS auction to the

current setting with financial constraints. The auction starts with pj = c(j) for each real
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item j ∈ N and p0 = 0. In the first round the prices of the items in some minimal overde-

manded set are increased. In the DGS auction for the model without financial constraints

this continues as long as there is overdemand. As soon as there is no overdemand, the auc-

tion ends up with an equilibrium price system and an assignment. However, as Example 1

has shown, in case of financial constraints it might happen that an increase of the prices of

the items in a (minimal) overdemanded set results in a situation with underdemand. To

deal with such situations, in the modified auction precisely one item is allocated each time

when a price increase results in an underdemanded set. Roughly speaking, the auctioneer

starts by announcing the seller’s reservation prices of the real items and requires the bidders

to respond with their demand sets. If there is overdemand without any underdemanded

set of items, then the prices of the items in a minimal overdemanded set are increased with

one and the bidders are required again to report their demand sets. This continues until

a situation is reached in which there is either an underdemanded set of items, or there is

neither overdemand nor underdemand. When the first case happens, then precisely one

of the items in the chosen minimal overdemanded set at the previous price system is sold

against its price in this system to one of the bidders who had the item in his demand

set. This bidder with the item leaves the market, after which the auctioneer recalls the

previous prices for the remaining items and requires the remaining bidders to resubmit

their demands for the remaining items at these prices. This continues until either all items

are sold subsequently or a situation is reached at which there is neither overdemand nor

underdemand. Then there is an equilibrium for the remaining items and bidders.

At each round t of the auction a new price system pt is announced with the vector

of the seller’s reservation prices p1 = C = (c(0), c(1), · · · , c(n)) ∈ Zn+1 at the first round

t = 1. During the auction process the set of bidders and the set of items are shrinking,

so accordingly these sets and also the notions of price vector, demand set and (minimal)

overdemanded and underdemanded sets all have to be adapted. We denote by N t and M t

the set of real items and the set of bidders respectively that are still involved at round t,

meaning that the set of items N \N t has been assigned to the set of bidders M \M t before

round t. Accordingly, pt is a vector of |N t|+ 1 nonnegative integer prices with pt
0 = 0 the

price of the dummy item and pt
j the price of real item j, j ∈ N t. Correspondingly, the

budget set and the demand set of some bidder h ∈ M t at round t are given by

Bh(pt) = {j ∈ N t ∪ {0} | pj ≤ mh},

and

Dh(pt) = {j ∈ Bh(pt) | V h(j)− pj = max
k∈Bh(pt)

(V h(k)− pk)}.

Notice again that 0 ∈ Bh(pt) for every pt and thus Bh(pt) is never empty.
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The Ascending Auction

Step 1 (Initialization): Set t := 1, pt := C, N t := N and M t := M . Go to Step 2.

Step 2: Every bidder i ∈ M t reports his demand set Di(pt) ⊆ N t ∪ {0}. If there

exists an underdemanded set at pt, go to Step 4. Otherwise, go to Step 3.

Step 3: If there is no overdemanded set at pt, then go to step 5. Otherwise, the

auctioneer chooses a minimal overdemanded set Ot ⊆ N t of items. Then set pt+1
j :=

pt
j + 1 for every j ∈ Ot, pt+1

j := pt
j for every j ∈ (N t \ Ot) ∪ {0}, M t+1 := M t and

N t+1 := N t. Set t := t + 1 and return to Step 2.

Step 4: Let U t ⊆ N t be a minimal underdemanded set. Then take some item

k ∈ U t ∩ Ot−1 and bidder h ∈ {i ∈ M t | Di(pt−1) ⊆ Ot−1} such that k ∈ Dh(pt−1),

but k 6∈ Dh(pt) and assign item k to bidder h against price pt−1
k . Set M t+1 := M t\{h}

and N t+1 := N t \ {k}. If N t+1 = ∅, the auction stops, otherwise let pt+1
j := pt−1

j for

all j ∈ N t+1 ∪ {0}. Set t := t + 1 and return to Step 2.

Step 5: There is a feasible assignment πt for N t, M t, such that (pt, πt) is a Walrasian

equilibrium for N t, M t. Item πt(i) ∈ N t ∪ {0} is assigned to bidder i ∈ M t against

price pt
k, k = π(i), and the auction stops.

We now explain each step in more detail and then provide an example to illustrate

how the auction actually operates. In Step 1, the auctioneer announces a set of items for

sale and sets the starting prices equal to the reservation prices.

In Step 2, each bidder is asked to report his demand set for the available items at the

current prices. Based on the reported demands from the bidders, the auctioneer checks if

there is any underdemanded set of items. If so, then Step 4 will be performed. Otherwise,

the auctioneer goes to Step 3 and checks whether there is any overdemanded set of items.

If not, the auction goes to Step 5. In case there is overdemand, the auctioneer chooses a

minimal overdemanded set of items and goes to the next round. In this round the price of

every item in the chosen minimal overdemanded set is increased by one unit, the price of

any other item remains constant and Step 2 will be performed again.

In Step 4, the auctioneer first chooses a minimal underdemanded set. Then she

selects precisely one item, say item k, that belonged to the minimal overdemanded set that

was chosen in Step 2 at the previous round t − 1 and that also belongs to the minimal

underdemanded set at the current round t. This item k is assigned to a bidder h satisfying

(i) his demand set at t−1 was a subset of the minimal overdemanded set, (ii) who demanded

the item k at the previous round t−1, and (iii) who does not demand item k anymore at the

current round t. This bidder h pays the price pt−1
k of item k at the previous round and leaves
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the auction with the item k. When no real items are left, the auction stops. Otherwise,

the auction moves to the next round t+1 with the remaining items and bidders and all the

remaining items are set equal to the prices in round t− 1. Step 2 will be performed again.

When the auction reaches Step 5, then according to Lemma 3.7 a Walrasian equilibrium

has been reached for the remaining set of items and bidders and the auction terminates.

It should be noticed that in Step 4 it can never occur that there are no remaining

bidders. Clearly, this is true when the number of bidders m is larger than the number of

items n, because in Step 4 always precisely one bidder leaves with one item. When m ≤ n,

it might happen that at certain round the auction returns from Step 4 to Step 2 with only

one bidder. Obviously then overdemand cannot occur in Step 2. In the next section we

prove that underdemand can never occur in Step 2 when the auction returned from Step 4

in the previous round. So, when after Step 4 the auction returns to Step 2 with precisely

one bidder, then neither underdemand nor overdemand can occur and the auction goes to

Step 5.

Example 2. Consider a market with five bidders (1, 2, 3, 4, 5) and four real items (1,

2, 3, 4). The initial endowment vector of money is given by m = (m1, m2, m3, m4, m5) =

(3, 4, 3, 5, 4) and bidders’ values are given in Table 2. The seller’s reservation price vector

is given by C = (c(0), c(1), c(2), c(3), c(4)) = (0, 2, 2, 2, 2).

Table 2: Bidders’ values on each item.

Items 0 1 2 3 4

Bidder 1 0 4 8 5 7

Bidder 2 0 7 6 8 3

Bidder 3 0 5 5 9 7

Bidder 4 0 9 4 6 2

Bidder 5 0 6 5 4 10

Without financial constraints this market has a unique socially efficient assign-

ment π∗ = (π∗(1), π∗(2), π∗(3), π∗(4), π∗(5)) = (2, 0, 3, 1, 4), yielding total social value∑
i∈M V i(π∗(i)) = 36. The ascending DGS auction finds a minimal equilibrium price

vector p∗ = (0, 7, 6, 8, 6) and the socially efficient allocation π∗ within a finite number of

rounds. The seller’s revenue generated by the auction is 27.

In the current situation with financial constraints, the bidders cannot afford to buy

items at these minimal equilibrium prices. To find an equilibrium under allotment we

apply the new ascending auction described above. The price vectors, demand sets and

other relevant data generated by the auction are given in Table 3. Since pt
0 = 0 for all t,
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these prices are deleted from the vectors pt in the second column of Table 3. In the first

seven rounds the auction operates in the same way as the DGS auction. Both auctions

start at round t = 1 with price vector p1 = (0, 2, 2, 2, 2) (Step 1). Then, in Step 2, bidders

report their demand sets: D1(p1) = {2}, D2(p1) = {3}, D3(p1) = {3}, D4(p1) = {1} and

D5(p1) = {4}. There is no underdemand and the auction goes to Step 3. The set S = {3}
is a minimal overdemanded set and the auctioneer adjusts p1 to p2 = (0, 2, 2, 3, 2), after

which the process returns to Step 2. Proceeding with alternating Steps 2 and 3, both

auctions generate at round 6 price vector p6 = (0, 3, 3, 4, 4). At this price vector there is

overdemand for the items 1 and 2 (there are three bidders for the two items) and, according

to Step 3, the prices of the items 1 and 2 are increased. However, at the new price vector

p7 = (0, 4, 4, 4, 4), there is no demand anymore for item 2, i.e., item 2 is overpriced. Now

the DGS auction breaks down without reaching an equilibrium. In fact, due to the financial

constraints a Walrasian equilibrium does not exist. Of course, in this final round 7 of the

DGS auction the auctioneer can still decide to allocate item 1 to the unique bidder 4

having 1 in his demand set, item 3 to the unique bidder 2 and item 4 to the unique bidder

5. However, item 2 is not allocated and the remaining bidders 1 and 3 don’t get any real

item. The resulting allocation gives a total value of V 2(3) + V 4(1) + V 5(4) + c(2) = 29

and is not socially efficient. The seller’s revenue from this ad-hoc termination of the DGS

auction is only 12 and her total revenue is 12 + c(2) = 14.

When faced with the overpriced item 2 at round 7, in the new auction the auctioneer

continues with Step 4 and assigns item 2 randomly to one of the bidders 1 and 3. Notice

that both bidders demand item 2 at p6 and that their demand sets Dh(p6), h = 1, 3,

are subsets of the minimal overdemanded set O6 = {1, 2}. Suppose item 2 is assigned

to bidder 1. Then this bidder pays p6
2 = 3 and leaves the auction with item 2. Then

round 8 starts with M8 = {2, 3, 4, 5} and N8 = {1, 3, 4}, the auctioneer adjusts p7 to

p8 = (p0, p1, p3, p4) = (0, 3, 4, 4) (with the same prices as in round 6 for the three remaining

real items), and the process returns to Step 2. At p8, item 1 is (a minimal) overdemanded

(set) and its price is increased to p9
1 = 4. At round 9 there is neither overdemand nor

underdemand and the auction goes to Step 5, in which the dummy item 0 is assigned to

bidder 3 (who pays nothing) and the items 1, 3 and 4 to the bidders 4 at p9
1 = 4, 2 at

p9
2 = 4, and 5 at p9

5 = 4 respectively. This assignment and these prices form a Walrasian

equilibrium for the sets N9 = {1, 3, 4} of real items and M9 = {2, 3, 4, 5} of bidders that

are still available in round 9.

The final price system p∗ = (p0, p1, p2, p3, p4) = (0, 4, 3, 4, 4) and assignment π∗ =

(π(1), π(2), π(3), π(4), π(5)) = (2, 3, 0, 1, 4) form an equilibrium under allotment with al-

lotment scheme R∗ = (R1, R2, R3, R4, R5), where R∗3
3 = 0 and R∗i

j = 1 for all (i, j) 6= (3, 3).

This equilibrium yields a total value of
∑

i∈M V i(π(i)) = 35, which is slightly less than
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the value 36 of the Walrasian equilibrium allocation. Recall that there is no Walrasian

equilibrium at all in this example due to budget constraints. At (p∗, π∗, R∗), the bidders

1, 2, 4 and 5 get their most preferred item. However, bidder 3 gets the dummy item, but

prefers and can afford item 2, but this item has been allotted to bidder 1. When in round 7

item 2 should have been assigned to bidder 3 instead of bidder 1, the auction would realize

a total value of 32. In both cases the seller’s revenue from the auction is 15, which is also

her total revenue, because all items are sold. 2

Table 3: The data generated by the auction in Example 4.

Round pt Nt Mt D1(pt) D2(pt) D3(pt) D4(pt) D5(pt) Ot

1 (2, 2, 2, 2) {1, 2, 3, 4} {1, 2, 3, 4, 5} {2} {3} {3} {1} {4} {3}
2 (2, 2, 3, 2) {1, 2, 3, 4} {1, 2, 3, 4, 5} {2} {1, 3} {3} {1} {4} {1, 3}
3 (3, 2, 4, 2) {1, 2, 3, 4} {1, 2, 3, 4, 5} {2} {1, 2, 3} {4} {1} {4} {4}
4 (3, 2, 4, 3) {1, 2, 3, 4} {1, 2, 3, 4, 5} {2} {1, 2, 3} {4} {1} {4} {4}
5 (3, 2, 4, 4) {1, 2, 3, 4} {1, 2, 3, 4, 5} {2} {1, 2, 3} {2} {1} {4} {2}
6 (3, 3, 4, 4) {1, 2, 3, 4} {1, 2, 3, 4, 5} {2} {1, 3} {1, 2} {1} {4} {1, 2}
7 (4, 4, 4, 4) {1, 2, 3, 4} {1, 2, 3, 4, 5} {0} {3} {0} {1} {4}
8 (3, 4, 4) {1, 3, 4} {2, 3, 4, 5} {1, 3} {1} {1} {4} {1}
9 (4, 4, 4) {1, 3, 4} {2, 3, 4, 5} {3} {0} {1} {4}

5 Feasibility and convergence

In this section we show that the auction is well-designed, i.e., all steps are feasible and the

auction stops in finitely many rounds. The proofs of all lemmas of this section are given

in the Appendix.

First, observe that each time when Step 4 is performed an item is assigned to some

of the bidders and both the set of bidders and the set of items decrease by one. So, when

m ≤ n, at each round t we have that |M t| ≤ |N t|. We show that in this case the auction

always stops in Step 5. When m > n, then at each round t we have that |M t| > |N t|.
In this case the auction stops either in Step 4 when N t+1 = ∅ or in Step 5. In the first

case all items are assigned sequentially in a number of n Steps 4, in the latter case the

auction reaches a round in which there is neither overdemand nor underdemand. Then,

according to Lemma 3.7, there is a Walrasian equilibrium for the sets of remaining items

and bidders, showing the feasibility of Step 5. Clearly, also the Steps 1-3 are feasible. So

to show feasibility, we only need to consider Step 4.

The auction starts in Step 1 with all prices equal to the seller’s reservation prices.

At this starting price system there is no underdemand, because by Definition 3.3.2 an item

can only be underdemanded when its price is above its seller’s reservation price. So, at the
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starting price vector p1 in round t = 1, either the auction goes to Step 5 and stops, or there

is overdemand. In the latter case, a sequence of alternating Steps 2 and Steps 3 is performed

with in each Step 3 an increase of the prices of all items in a minimal overdemanded set,

until there is neither underdemand nor overdemand and the auction goes to Step 5, or

items become underdemanded and the auction goes to Step 4. So, when in some round t,

the auction goes to Step 4 for the first time, then in round t−1 the prices in some minimal

overdemanded set, say Ot−1, were increased. We prove that this holds in any round t in

which the auction goes to Step 4, i.e., when there is underdemand in some round t, then

there was overdemand at round t− 1 and thus, when the auction reaches Step 4 in round

t, then in round t− 1 the prices of the items in some minimal overdemanded set Ot−1 were

increased. In Step 4 an item k in the intersection of some minimal underdemanded set

U t and the set Ot−1 is selected and assigned to a bidder h ∈ {i ∈ M t | Di(pt−1) ⊆ Ot−1}
satisfying k ∈ Dh(pt−1) \Dh(pt). The next two lemmas state that there indeed exist such

an item k and bidder h.

Lemma 5.1 Let U be a minimal underdemanded set at prices pt in some round t and

let O be the chosen minimal overdemanded set at the previous round t−1. Then U∩O 6= ∅.

Lemma 5.2 Let U be a minimal underdemanded set at prices pt in some round t and

let O be the chosen minimal overdemanded set at the previous round t−1. Then there exist

item k and bidder h satisfying the requirements of Step 4.

In the special case of U t = {k} with k ∈ Ot−1, i.e., the single item k in U t is

overpriced at pt, we have that no bidder is demanding k at pt. Hence, any bidder h with

Dh(pt−1) ⊆ Ot−1 and having item k in his demand set Dh(pt−1) can be selected. Note that

according to Corollary 3.5, there are at least two of such bidders.

The next lemma shows that any time when in some round t + 1 the auction enters

Step 2 after in round t an item k has been assigned to some bidder h by Step 4, there will

be no underdemand of items. So, when the auction arrives in Step 2 after Step 4, then the

auction goes always to Step 3. Then, either there is neither overdemand nor underdemand

and the auction goes to Step 5 (and stops), or there is overdemand and the prices of items

in some minimal overdemanded set are increased. This guarantees that any time when the

auction goes to Step 4, prices in some minimal overdemanded set were increased in the

previous round. Recall that when in round t + 1 Step 2 is reached from Step 4, the price

vector pt+1 is equal to the price vector pt−1, except that some item k has been deleted.

Lemma 5.3 Let U be a minimal underdemanded set in round t that appears after in round

t− 1 the prices of the items in a minimal overdemanded set O were increased, and let, in

Step 4, k ∈ U ∩ O be the item assigned to some bidder h ∈ {i ∈ M t | Di(pt−1) ⊆ O} such
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that k ∈ Dh(pt−1), but k 6∈ Dh(pt). When the auction proceeds to round t + 1 and returns

to Step 2, then there will be no underdemanded set of items.

The final lemma states that when in Step 4 an item has been assigned, the new

set of bidders M t+1 cannot become empty. This is obvious when the number of bidders is

bigger than the number of items. However, it also holds when the set of bidders is at most

equal to the number of items. The reason is that when the auction returns from Step 4 to

Step 2 with precisely one bidder, the auction goes to Step 5 and stops.

Lemma 5.4 When in some round t an item k is assigned to some bidder h ∈ M t at Step

4 of the auction, then |M t+1| ≥ 1.

The lemmas above show that all steps of the auction are feasible. This gives the

following theorem.

Theorem 5.5 All Steps of the ascending auction are feasible. Moreover the auction

terminates with a feasible assignment and price system in a finite number of rounds.

Proof: The auction starts in Step 1 with all prices equal to the seller’s reservation prices

and the auction goes to Step 2. Now, pj = c(j) for all j and thus, by definition, there

cannot be underdemand and the auction goes to Step 3. When there is also no overdemand,

the auction goes to Step 5 and stops. Otherwise, the prices of all items in a minimal

overdemanded set are increased and the auction returns to Step 2. The auction continues

with alternating Steps 2 and 3 until there is neither overdemand nor underdemand and

the auction goes to Step 5 and stops, or underdemand arises for the first time. Since the

value of any item to any bidder i is finite and any initial endowment mi is also finite, one

of these cases occurs within a finite number of rounds. When the auction goes to Step

4 and assigns an item k to some bidder h. By Lemmas 5.1 and 5.2 this step is feasible.

After that the auction either stops in Step 4 because all items are assigned or, according to

Lemma 5.4 returns to Step 2 with at least one remaining bidder. According to Lemma 5.3

there is no underdemand when the auction returns to Step 2 after Step 4. Hence, either

there is neither overdemand nor underdemand and the auction goes to Step 5 and stops,

or there is overdemand again. Then, similarly as above, within a finite number of rounds

again one item is assigned in Step 4, or the auction goes to Step 5 and stops. Repeating

this every time after the auction returns in Step 2 after Step 4, it follows that the auction

terminates in finitely many rounds, because the number of items is finite.

When the auction stops in Step 4, all items are assigned to different bidders and

the auction ends up with a feasible assignment and price system. When the auction stops

in Step 5 in some round t, then according to Lemma 3.7 there is a Walrasian equilibrium
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assignment with respect to the set of items N t and the set of bidders M t. Together with

the items that have been assigned already before in Step 4, this Walrasian assignment

forms a feasible assignment for N and M . Hence the auction terminates with a feasible

assignment and a price system in finitely many rounds. 2

6 The outcome of the auction

According to Theorem 5.5 the auction finds a feasible assignment in finitely many rounds.

In this section we prove that the feasible assignment and the resulting price system induces

an equilibrium under allotment. Let π∗ be the assignment resulting from the auction, i.e.,

π∗(i) = k for some k ∈ N when bidder i was assigned an item in either Step 4 or Step

5, and π∗(i) = 0 otherwise; and let p∗ be the resulting price vector, i.e., when item k is

assigned, then p∗k is the price at which item k is assigned to some bidder h, otherwise p∗k
is the price of the item in the round t in which the auction stops in Step 5. Since the

auction starts with the reservation price vector C, we have that pt
k > c(k) when in round

t item k is assigned in Step 4, pt
k ≥ c(k) for all items k ∈ N t when in round t the auction

stops in Step 5, and pt
0 = c(0) = 0 for all t. Hence p∗k = pt−1

k = pt
k − 1 ≥ c(k) when item

k is assigned in round t by Step 4, p∗k = pt
k ≥ c(k) for any item k that is assigned in the

final round t by Step 5 and p∗0 = c(0) and thus p∗ is feasible. Further, when a bidder gets

assigned an item in either Step 4 or 5, then the item is in his demand set and thus every

bidder i can afford to buy the item π∗(i) assigned to him. Hence (p∗, π∗) is implementable.

We further define the allotment scheme R∗ as follows. For i ∈ M , define Ri∗ by

Ri∗
k =

 0 if k ∈ {j ∈ N \ π∗(i) | p∗j ≤ mi and V i(j)− p∗j > V i(π∗(i))− p∗π∗(i)},
1 otherwise.

(6.1)

Theorem 6.1 The implementable pair (p∗, π∗) and the allotment scheme R∗ yield an

equilibrium under allotment (p∗, π∗, R∗).

Proof. We have shown above that (p∗, π∗) is an implementable pair. So, it remains to

prove that the conditions (i)-(iii) of Definition 3.1 hold. To prove (i), first consider a bidder

i that got assigned an item k in Step 4 at some round t against price pt−1
k . Then according

to Step 4,

k ∈ Di(pt−1) = {j ∈ N t−1 | pj ≤ mi, V i(j)− pj = max
{`∈Nt−1∪{0} | p`≤mi}

(V i(`)− p`) }

After item k has been assigned to bidder i in round t, the auction continues with Step

2 in round t + 1 with the remaining set of items N t+1 = N t−1 \ {k}. Since at any stage

τ ≥ t + 1, pτ
j ≥ pt−1

j for all j ∈ N t+1, it follows that

V i(k)− p∗k ≥ V i(j)− p∗j , for all j ∈ N t+1 with p∗j ≤ mi.

21



Further, observe that any j ∈ N \N t−1 has been assigned in some round τ ≤ t− 1, before

in round t the item k is assigned to bidder i. According to (6.1) we have that R∗i
j = 0 for

all j ∈ N \ N t−1 satisfying p∗j ≤ mi and V i(j) − p∗j > V i(k) − p∗k. Hence k ∈ Di(p∗, R∗i).

Second we consider a bidder i who was assigned item k in Step 5 in the final round t. Such

a bidder i has item k in his demand set Di(pt) with respect to the items in N t. Again,

for any j ∈ N \ N t that was assigned before in some round τ ≤ t − 1, we have that

R∗i
j = 0 when p∗j ≤ mi and V i(j)− p∗j > V i(k)− p∗k. Hence, also in this case we have that

k ∈ Di(p∗, R∗i).

To prove (ii), observe that when an item k is not assigned to a bidder i, then k

belongs to the set N t when the auction stops in Step 5 in the final round t. Then there

is neither underdemand nor overdemand and, according to Lemma 3.7, then the auction

ends with a Walrasian equilibrium allocation with respect to the remaining items in N t

and the remaining bidders in M t. By definition of the Walrasan equilibrium we then have

that p∗k = pt
k = c(k) for any unassigned item k.

Condition (iiia) immediately follows from (6.1). Further, since there is a Walrasian

equilibrium for the remaining items N t and bidders M t when in the final round t the

auction stops in Step 5, it also follows from (6.1) that rationing only occurs for items that

have been assigned in some Step 4 before the final round t. To show that the bidder who

is assigned a rationed item pays his full budget for that item, again observe that, when for

some item j we have that π(h) = j and Ri∗
j = 0 for some bidder i 6= h, then item j has

been allocated in some Step 4 before the end of the auction. Let item j be allocated in

some round t. Then item j was in a minimal overdemanded set O at pt−1 and for bidder

h to which j is assigned it holds that (i) h ∈ {h′ ∈ M t | Dh′(pt) ⊆ O}, (ii) j ∈ Dh(pt−1)

and (iii) for all k ∈ Dh(pt) it holds that pt
k ≤ pt−1

j . Since pt
k = pt−1

k + 1 for all k ∈ O and

pt
k = pt−1

k for all k ∈ N t \{O}, it follows that pt−1
j = mh, otherwise j should still have been

in the demand set of h at pt. Hence p∗j = pt−1
j = mh, which shows (iiib). 2

First, Theorem 6.1 shows that the auction finds an equilibrium under allotment

in a finite number of price adjustments. Note that the associated allotment scheme is

endogenously generated. Second, Theorem 6.1 immediately implies that the existence The-

orem 3.2 of Section 3 is true: the assignment model with financially constrained bidders

has an equilibrium under allotment. Since at an equilibrium under allotment trade takes

place at non-Walrasian prices, the corresponding allocation is typically suboptimal.8 Given

this suboptimality principle, Example 2 in Section 3 has shown that our ascending auction

can realize both a high total value and high revenue for the seller. Property (iiib) of the

equilibrium definition also stresses that the seller extracts all the money from the buyer of

8It is known from the literature on equilibria under price rigidities that equilibria with rationing are
typically not Pareto efficient, see e.g. Herings and Konovalov (2009).
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an item, when other bidders feel themselves rationed for that item.

So far we have considered the case that some or all bidders may confront financial

constraints. We have shown that the proposed ascending auction can handle such a sit-

uation and always finds an equilibrium under allotment. One may naturally ask whether

the proposed auction can find a Walrasian equilibrium when no bidder faces a budget con-

straint. The following theorem demonstrates that this is indeed the case. This shows that

the current auction is indeed an appropriate generalization of the DGS auction to the more

complex situation where bidders have budget constraints.

Theorem 6.2 If mi ≥ maxj∈N V i(j) for all i ∈ M , then the auction for markets

with financially constrained bidders coincides with the DGS auction and finds a Walrasian

equilibrium with a minimal equilibrium price vector p∗ in finitely many rounds.

Proof. It is sufficient to show that the ascending auction never generates an underde-

manded set of items. It is true in round 1 because the ascending auction starts with the

reservation price vector C. Suppose that in some round t, there is no underdemanded

set of items and O is the minimal overdemanded set of items chosen by the auctioneer as

described in Step 3. We show that there will be no underdemanded set of items in round

t + 1.

We first prove that no subset S of the set O is underdemanded at pt+1. Because

mi ≥ maxj∈N V i(j) and 0 6∈ O, every bidder i ∈ D−
O(pt) who demands items from S at pt

will continue to demand the same items in S and may demand other items as well at pt+1.

It follows from Lemma 3.4 that the set S cannot be underdemanded at pt+1. Second, no

subset S of N t \ O is underdemanded at pt+1, because S is not underdemanded at pt and

the price of each item in N t \ O in round t + 1 is the same as in round t and the price

of each item in O is increased by one in round t + 1. Combining the two reasonings for

the case S ⊆ O and S ⊆ N t \ O, it follows that also any S ⊆ N t with S ∩ O 6= ∅ and

S ∩ (N t \ O) 6= ∅ is not underdemanded at pt+1. So the ascending auction never goes to

Step 4 and thus coincides exactly with the DGS auction. It is known that the DGS auction

finds an equilibrium with the minimal equilibrium price vector. 2

7 Efficiency and strategic issues

7.1 Efficiency

We have seen that under financial constraints a Walrasian equilibrium may not exist.

Here we can easily show that under financial constraints even if a Walrasian equilibrium

exists, it need not be socially efficient. Consider a simple market with two bidders and
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one item. When V 1(1) > V 2(1) > c(1) = 0, then social efficiency requires to assign the

item to bidder 1. Now, suppose that m1 < min(m2, V 2(1)). Then there exists a Walrasian

equilibrium, but at any equilibrium the item is assigned to bidder 2 at some (integer) price

p1, m1 < p1 ≤ min(m2, V 2(1)). So, all equilibria are socially inefficient. However, we will

prove that under financial constraints every Walrasian equilibrium is Pareto efficient. To

discuss Pareto efficiency we first need to give the utilities of all agents, seller and bidders,

at an allocation. An allocation is a pair (π, x) with π a feasible assignment and x ∈ IRm
+

a nonnegative vector of money, assigning amount xi ≥ 0 of money to bidder i, i ∈ M .

Everything that is not assigned to the bidders at allocation (π, x), is assigned to the seller.

So at allocation (π, x) the seller receives the total amount of money
∑

i∈M (mi − xi) from

the bidders and keeps all unsold items for himself. It follows that allocation (π, x) yields

utilities

U i(π(i), xi) = V i(π(i)) + xi −mi, i ∈ M,

to the bidders and utility

U s(π, x) =
∑
i∈M

(mi − xi) +
∑

j∈Nπ

c(j)

to the seller, i.e., the utility of the seller is equal to the total amount of money he receives

plus the sum of his reservation values of the unassigned items. Following the standard

definition, we say an allocation (π∗, x∗) is Pareto efficient if there does not exist another

allocation (π, x) such that

U i(π(i), xi) ≥ U i(π∗(i), x∗i ), for all i ∈ M and U s(π, x) ≥ U s(π∗, x∗)

with strict inequality for at least one of the agents.

If (p∗, π∗) is a WE, with p∗ the (Walrasian) equilibrium price vector and π∗ the

(Walrasian) equilibrium assignment, the corresponding allocation (π∗, x∗) with x∗i = mi −
p∗π∗(i) is called a (Walrasian) equilibrium allocation. It is well-known (see e.g., Mas-Colell et

al. (1995)) that for exchange economies with divisible goods, under certain conditions every

Walrasian equilibrium allocation is Pareto efficient. However, this result does not apply

to our model with a number of indivisible items and each bidder consuming at most one

item, nor does the result on Pareto efficiency of the standard assignment model without

financial constraints apply to our model with financial constraints.

Theorem 7.1 For the market model with financially constrained bidders, let (p∗, π∗)

be an implementable pair. If (p∗, π∗) is a Walrasian equilibrium, then its corresponding

equilibrium allocation (π∗, x∗) is Pareto efficient.
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Proof. Suppose that (π∗, x∗) is not Pareto efficient. Then there exists an allocation (π, x)

such that

V i(π(i)) + xi −mi ≥ V i(π∗(i)) + x∗i −mi = V i(π∗(i))− p∗π∗(i), (7.2)

for every bidder i ∈ M , and for the seller∑
i∈M

(mi − xi) +
∑

j∈Nπ

c(j) ≥
∑
i∈M

(mi − x∗i ) +
∑

j∈Nπ∗

c(j),

where at least one of these m + 1 inequalities is strict. Define qj = c(j) for j ∈ Nπ,

qπ(i) = mi − xi for every i ∈ M with π(i) 6= 0 and Q =
∑

{i∈M |π(i)=0} (mi − xi). Since

p∗j = c(j) when j ∈ Nπ∗ , the seller’s condition becomes

Q +
∑
j∈N

qj ≥
∑
j∈N

p∗j . (7.3)

Since π∗(i) ∈ Di(p∗), 0 ∈ Bi(p∗) and p∗0 = 0, we have for every i ∈ M that

V i(π∗(i))− p∗π∗(i) ≥ V i(0)− p∗0 = 0, i ∈ M.

So, for every i ∈ M with π(i) = 0 it follows from (7.2) that xi ≥ mi and thus Q ≤ 0.

Suppose qj > p∗j for some j ∈ N . Since qj > p∗j ≥ c(j), and qh = c(h) when h ∈ Nπ, we

must have that π(i) = j for some i ∈ M . So, in (π, x), bidder i receives item j and money

amount xi ≥ 0. The latter inequality implies that qj ≤ mi. So p∗j < qj ≤ mi, i.e., item j is

in the budget set Bi(p∗) of i at p∗. On the other hand

U i(j, xi) = V i(j) + xi −mi = V i(j)− qj ≥ V i(π∗(i))− p∗π∗(i)

and thus

V i(j)− p∗j > V i(j)− qj ≥ V i(π∗(i))− p∗π∗(i),

which contradicts that π∗(i) ∈ Di(p∗). Hence qj ≤ p∗j for all j. With Q ≤ 0, it follows from

inequality (7.3) that Q = 0 (and thus xi = mi for all i with π(i) = 0) and qj = p∗j for all

j ∈ Nπ. So, the seller’s inequality holds with equality.

Suppose that there is a bidder i with strict inequality, thus

V i(π(i)) + xi −mi > V i(π∗(i))− p∗π∗(i). (7.4)

Since xi = mi and thus V i(π(i)) + xi − mi = 0 if π(i) = 0, we must have that π(i) 6= 0.

Then mi − xi = qπ(i) = p∗π(i) and the inequality (7.4) becomes

V i(π(i))− p∗π(i) > V i(π∗(i))− p∗π∗(i).

Since xi ≥ mi − p∗π(i) ≥ 0 and thus p∗π(i) = qπ(i) ≤ mi, this again contradicts that π∗(i) ∈
D(p∗). 2
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7.2 Strategic issues

When the auction results in a Walrasian equilibrium, it also preserves the strategic prop-

erties of the DGS auction and thus truthful bidding is optimal for the bidders; see Leonard

(1983). It should be noticed, however, that without financial constraints in the DGS auc-

tion bidders only drop out for their bidding on an item when another item (maybe the

dummy item) becomes more preferred. Under financial constraints it might also happen

that a bidder drops out for an item because the price of the item rises above his budget.

However, this does not affect the strategic properties of the auction as long as there is no

underdemand. In conclusion, if underdemand never appears in Step 2, the auction behaves

as the DGS auction, and no bidder has incentive to manipulate the auction.

In general, due to budget constraints a Walrasian equilibrium does not exist and our

auction generates an equilibrium under allotment at which some bidders are rationed on

their demands. In Borgs et al. (2005) it is shown that it is impossible to design truthful

bidding multi-unit auctions in case of budget-constrained bidders. Indeed, it could be

possible for a rationed bidder to attain a better outcome by misreporting his demands if

this bidder knew all valuations and budgets of all other bidders and convinced that all

other bidders would bid honestly. On the other hand, truthful bidding is optimal when the

auction terminates with a Walrasian equilibrium. Observe in this case that at the outcome

of the auction no bidder is rationed on his demand. We conjecture that this is still true in

case of financially constrained bidders: for every unrationed bidder at the outcome of the

auction it is in his best interest to bid truthfully. We prove this conjecture for the case of

at most two real items.

Theorem 7.2 For the market model with at most two items and many financially

constrained bidders, let (p∗, π∗) be the outcome of the auction when bidders report truthfully,

and let i be a bidder that does not find himself rationed in (p∗, π∗). Then there do not exist

values W i(j), j = 1, 2, and outcome (q, ρ) when i reports his demands according to W i,

such that U i(ρ(i), mi − qρ(i)) > U i(π∗(i), mi − p∗π∗(i)).

Proof. We prove the case of two items, i.e., N = {1, 2}. The case of one item can be

shown similarly. Suppose that there exist W i(j), j = 1, 2, and (q, ρ) such that

U i(ρ(i), mi − qρ(i)) > U i(π∗(i), mi − p∗π∗(i)). (7.5)

For ease of notation, denote π∗(i) = j and ρ(i) = k. If p∗k > mi, then qk < p∗k. When

p∗k ≤ mi, then either k = j and thus qk < p∗k (because of inequality (7.5)) or k 6= j. In the

latter case

U i(k, mi − qk) = V i(k)− qk > U i(j, mi − p∗j) = V i(j)− p∗j ≥ V i(k)− p∗k,
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because bidder i is rationed, and thus also in this case qk < p∗k. So, qk < p∗k must hold.

Since V i(k) − qk > V i(j) − p∗j , we must have that k 6= 0. So, when reporting

according to W i, bidder i gets a real item. Without loss of generality, take k = 1 and thus

q1 < p∗1. Suppose q2 < p∗2. Then, by the feature of the ascending auction, the number of

bidders h satisfying

Dh(q) ⊆ {1, 2}

is at least equal to 3, because otherwise there are at most two bidders that demand a

real item at q and the auction cannot reach an outcome in which both prices are higher.

So, also when bidder i misreports his demands there are at least two other bidders that

demand a real item from {1, 2}. Since also at least two bidders can afford the prices p∗1
and p∗2, the auction cannot terminate with price system q and assigning item 1 to bidder i.

It remains to consider the case that q2 ≥ p∗2. Then under the true valuations, there

has been some round t with pt such that pt
1 = q1 < p∗1, pt

2 ≤ p∗2 ≤ q2 and pτ
1 > pt

1 for all

τ > t (thus the price of item 1 was higher in every round after t). Then at pt either {1} or

{1, 2} was a minimal overdemanded set. In the first case there was at least one bidder h 6= i

that preferred item 1 to any other item. Since q2 ≥ pt
2, also at q all these bidders prefer

item 1 to any other item. Since item j was sold at p∗1 and thus at least one bidder has item

1 in his demand set at p∗ and could afford p∗1, also under W i the auction cannot terminate

with price system q and assigning item 1 to bidder i. Finally, in case {1, 2} was a minimal

overdemanded set, then there were at least two bidders h 6= i with Dh(pt) = {1, 2}. Then

for all these bidders also Dh(q) = {1, 2} when q2 = pt
2 and Dh(q) = {1} if q2 > pt

2. Since

again a bidder paid p∗1 > q1, also in this case the auction cannot terminate under W i with

price system q and assigning item 1 to bidder i. 2

8 Concluding remarks

In this paper we investigated a general and practical market model in which an auctioneer

wants to sell a number of items to a group of financially constrained bidders. Every bidder

knows his values over the items and his budget privately and the auctioneer does not know

this private information unless bidders tell her. When bidders face budget constraints,

a Walrasian equilibrium typically fails to exist. An ascending auction has been designed

which, starting with the seller’s reservation price of each item, always ends up with an

equilibrium under allotment in finitely many steps. This auction provides an effective

allocation mechanism in situations with financially constrained bidders which can generate

high revenues for the seller and arguably efficient assignment of items among the bidders.

Another interesting feature of the auction is that it can extract all the money from those
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bidders who receive an item on which some other bidder is rationed. We have further

shown that when no bidder is financially constrained, the proposed auction reduces to the

auction of Demange et al. (1986) and thus preserves the strategic properties of the DGS

auction. We have also examined strategic and efficiency properties of the proposed auction

and its outcome.

Finally it is worth mentioning that that Ausubel (2006), Gul and Stacchetti (2000),

Kelso and Crawford (1982), Milgrom (2000), Sun and Yang (2009) have proposed dynamic

auctions for more general environments in which each bidder may consume several goods

but has no budget constraint. It will be interesting but also significantly more difficult to

study this more general situation with financially constrained bidders.

9 Appendix

9.1 Proofs of the Lemmas of Section 3

Proof of Lemma 3.4. Since O is overdemanded at p, the constant d = |D−
O(p)| − |O|

must be a positive integer. By definition the lemma holds (with equality) for S = O. For

any nonempty strict subset S of O, define DS = {i ∈ D−
O(p) | Di(p) ∩ S 6= ∅}. Then we

have

D−
O(p) \DS = {i ∈ D−

O(p) | Di(p) ⊆ O \ S}.

Suppose to the contrary that |DS| < |S|+ d. Since 0 < |S| ≤ |O| − 1, we have that

|D−
O(p) \DS| = |D−

O(p)| − |DS| > |D−
O(p)| − (|S|+ d) =

= |D−
O(p)| − |S| − (|D−

O(p)| − |O|) = |O| − |S| = |O \ S|.

This means that the set O \S is overdemanded, contradicting the fact that O is a minimal

overdemanded set. Hence, |DS| ≥ |S|+ d = |S|+ |D−
O(p)| − |O|. 2

Proof of Lemma 3.6. If |U | = 1, then U consists of an overpriced item and |D+
U (p)| = 0.

So, both statements are true.

For |U | ≥ 2, denote T = D+
U (p). To prove the first part, suppose |T | ≤ |U | − 2.

Then take any element k of U and denote T ′ = D+
U\{k}(p). Clearly, T ′ ⊆ T and thus

|T ′| ≤ |T |. Hence

|T ′| ≤ |T | ≤ |U | − 2 = |U \ {k}| − 1

and thus U \ {k} is underdemanded, contradicting the assumption that U is a minimal

underdemanded set.
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To prove the second part, suppose there is a bidder i having only one element of U

in his demand set. Let k be this element. Then T ′ does not contain bidder i ∈ T . Hence

|T ′| ≤ |T | − 1 and thus

|T ′| ≤ |T | − 1 = |U | − 2 = |U \ {k}| − 1,

showing that U \{k} is underdemanded. Again this contradicts the fact that U is a minimal

underdemanded set. 2

Proof of Lemma 3.7.9 First, let (p, π) be a Walrasian equilibrium (p, π). Clearly, at p

no set of items is overdemanded and no set of items is underdemanded.

To prove the other direction, let M1 = {i ∈ M | 0 6∈ Di(p)} and N1 = {j ∈
N | pj > c(j)}. First, consider any T ⊆ M1 and let DT = ∪i∈T Di(p). Because DT is

not overdemanded, |DT | ≥ |T |. By the well-known Hall’s Theorem (1935), there exists a

one-to-one mapping τ : M1 → N such that τ(i) ∈ Di(p) for all i ∈ M1. We can extend τ

to a mapping from M to N ∪ {0} by setting τ(i) = 0 for all i 6∈ M1. Next, consider any

S ⊆ N1. Because S is not underdemanded, |D−
S (p)| ≥ |S|. Again by Hall’s Theorem, there

exists a one-to-one mapping ρ : N1 → M such that j ∈ Dρ(j)(p) for all j ∈ N1.

With respect to τ and ρ, denote K = {i | τ(i) ∈ N1}, L = {τ(i) | i ∈ K} and

Q = {ρ(j) | j ∈ N1 \ L} and define the mapping π: M → N ∪ {0} by

π(i) =

 τ(i), for i ∈ M \Q,

ρ−1(i), for i ∈ Q.

Clearly, π(i) ∈ Di(p) for all i ∈ M , and no real item is assigned by π to two different

bidders, and for every item j ∈ N1, there is a bidder i who demands the item at p and is

assigned the item. This shows that (p, π) is a Walrasian equilibrium. 2

9.2 Proofs of the lemmas of Section 5

In proofs of this subsection it should be noticed that the sets D−
S (pτ ) and D+

S (pτ ) are

defined with respect to the current set of bidders M τ , for any set S ⊂ N τ and for any

τ = t− 1, t.

Proof of Lemma 5.1. Suppose to the contrary that U ∩ O = ∅. Since U is under-

demanded at round t, we have that pt
j > c(j) for any j ∈ U . Further, since U ∩O = ∅, we

have for any j ∈ U that j 6∈ O. Hence pt
j = pt−1

j and thus also pt−1
j > c(j) for all j ∈ U .

Since there is no underdemand in round t− 1, it follows that |D+
U (pt−1)| ≥ |U |. Moreover,

9This proof is much simpler than the original one given by Mishra and Talman (2006).
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any bidder that demands some item j ∈ U at pt−1, also demands this item at pt, because

only prices of the items in O are increased. Hence |D+
U (pt)| ≥ |D+

U (pt−1)| ≥ |U | and thus

U is not underdemanded at pt, yielding a contradiction. Hence U ∩O 6= ∅. 2

Proof of Lemma 5.2. Since O is overdemanded at pt−1, we have |D−
O(pt−1)| > |O|. Now,

consider the set S = U ∩ O. By Lemma 5.1 this set is not empty. When U = O and thus

S = O, then by Lemma 3.6 there are |U | − 1 = |O| − 1 bidders demanding at least one

item from U at pt, because U is underdemanded at pt. So, in this case there are at least

two bidders in D−
O(pt−1) not demanding any item from U = O anymore at price pt. Select

h from this set of bidders and select k from the set Dh(pt−1) (recall that this set is never

empty and does not contain any dummy item). Since Dh(pt−1) ⊆ O and for each bidder

h ∈ D−
O(pt−1), this item k and this bidder h satisfy the requirements.

Next, consider the case that S is a strict subset of O. Denote H = {i ∈ D−
O(pt−1) |

Di(pt−1) ∩ S 6= ∅}. From Lemma 3.4 we have that

|H| ≥ |S|+ |D−
O(pt−1)| − |O| ≥ |S|+ 1,

i.e., the number of bidders in D−
O(pt−1) that demand an item of S at pt−1 is at least one

more than the number of items in S. Next, consider the set T = U \ O. Since there is no

underdemand at pt−1 we have that

|D+
T (pt−1)| ≥ |T |.

Since pt
j = pt−1

j for all j ∈ T = U \ O, any bidder that demands an item from T at

pt−1, is still demanding this item at pt, so D+
T (pt−1) ⊆ D+

T (pt). On the other hand, U is

underdemanded at pt, so

|D+
U (pt)| < |U |.

Further, observe that H∩D+
T (pt−1) = ∅, since H ⊆ D−

O(pt−1) and the members of D−
O(pt−1)

demand only items in O, whereas the members of D+
T (pt−1) demand at least one item from

T = U \O at pt−1. Therefore, the number of bidders in H that still demand items in S at

pt can be at most |S| − 1. Suppose not, i.e., the number is at least |S|. Then the number

of bidders in D+
U (pt) (demanding at least one item of U at pt) is at least equal to |S| plus

the number of bidders in D+
T (pt−1), i.e.

|D+
U (pt)| ≥ |S|+ |T | = |U ∩O|+ |U \O| = |U |,

contradicting the fact that U is underdemanded. Hence there are at least two bidders in

H that are no longer demanding items in U ∩ O at pt. Select h as one of these bidders

and k as one of the elements in the non-empty set Dh(pt−1) ∩ S. Then item k and bidder

h satisfy the requirements. 2
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Proof of Lemma 5.3. First, observe that, by definition of the auction, M t+1 = M t−1\{h},
N t+1 = N t−1 \ {k} and N t+1 6= ∅ (otherwise the auction ends in Step 4). Further, pt+1

j =

pt−1
j for all j ∈ N t+1. Denote Õ = O \ {k}. For S ⊆ N t+1 we consider two cases, namely

S ⊆ Õ and S \Õ 6= ∅. In the first case we have by Lemma 3.4 that at least |S|+1 members

of the set D−
O(pt−1) = {i ∈ M t−1 | Di(pt−1) ⊆ O} demanded at least one item of S in round

t− 1. Since pt+1
j = pt−1

j for all j ∈ N t+1, for any bidder i in M t+1 it holds that

Di(pt+1) = Di(pt−1) \ {k}

and thus any bidder i ∈ M t+1∩D−
O(pt−1) = D−

O(pt−1)\{h} that demanded an item of S at

round t− 1 is still demanding an item of S at round t + 1. So, when h demanded an item

of S at round t− 1, the number of bidders of M t+1 demanding an item of S at round t + 1

is at least |S|, otherwise the number is at least |S|+ 1. Hence S is not underdemanded.

For the second case S \ Õ 6= ∅ we consider the partition of S given by S1 = S ∩ Õ

and S2 = S \ Õ. Denote

K1 = {i ∈ D−
O(pt−1) | Di(pt−1) ∩ S1 6= ∅}

and

K2 = {i ∈ M t−1 | Di(pt−1) ∩ S2 6= ∅}.

Since Di(pt−1) ⊆ O for all i ∈ D−
O(pt−1) and S2 ⊆ N t−1 \ O, it follows that K1 ∩K2 = ∅.

Since O is a minimal overdemanded set in round t − 1 and there is no underdemand in

round t−1, we have that S1 is neither overdemanded nor underdemanded at pt−1, because

it is a strict subset of O. By Lemma 3.4 we have that at least |S1|+1 members of D−
O(pt−1)

demanded at least one item of S1 in round t− 1 and similarly as above it follows that at

least |S1| members of D−
O(pt−1) \ {h} are still demanding an item of S1 at round t + 1.

Furthermore, none of these bidders belong to K2, because D−
O(pt−1) ∩ K2 = ∅. Further

|K2| ≥ |S2|, because there is no underdemand at round t− 1. Clearly, any member of K2

is still demanding an item of S2 at round t+1, because all prices of the remaining items in

N t+1 are equal to the prices in round t− 1. Therefore the number of bidders that demand

at least one item of S = S1 ∪ S2 is at least equal to

|S1|+ |K2| ≥ |S1|+ |S2| = |S|

and thus S is not underdemanded in round t + 1. 2

Proof of Lemma 5.4. Each time when an item is assigned in Step 4, the number of

items and the number of bidders decreases with one. Suppose that in some round t Step 4

is performed for the `th time. As long as ` < |M | − 1, we have that M t+1 = |M | − ` > 1.

Now, suppose that ` = |M | − 1. Then |M t+1| = 1 and the auction returns to Step 2.
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According to Lemma 5.3, there is no underdemand in Step 2 and thus the auction goes to

Step 3. However, because only one bidder is left, also overdemand cannot occur and thus

the auction goes to Step 5 and terminates. 2
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