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Abstract 

We construct a staggered-price dynamic general equilibrium model with overlapping 

generations based on uncertain lifetimes. Price stickiness plus lack of Ricardian Equivalence 

could be expected to make an increase in government debt, with associated changes in lump-

sum taxation, effective in raising short-run output. However we find this is very sensitive to 

the monetary policy rule. A permanent increase in debt under a basic Taylor Rule does not 

raise output. To make debt effective we need either a temporary nominal interest rate peg; or 

inertia in the rule; or an exogenous money supply policy; or to make the debt increase 

temporary. 
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1. Introduction 

The recent economic crisis has witnessed a strong reaction of monetary and fiscal 

policies to support the economy. In many developed countries, the nominal interest rate 

reached historically low levels. Unconventional monetary policy measures were 

implemented, together with large fiscal stimulus packages causing a worsening of the fiscal 

imbalances. A legacy of the crisis so far has been large deficits and major increases in 

government debt levels across the world. 

Not surprisingly, the academic literature has reacted with a renewed interest in 

monetary and fiscal policy interactions. The main research question regards the size of the 

fiscal multiplier depending on the particular fiscal instrument used and on the state of 

monetary policy. Given the historically low levels of the interest rate particular attention has 

been devoted to the effects of fiscal policy at a zero interest-rate bound. Eggertson (2009) and 

Christiano et al (2009) show that the fiscal multiplier can be much larger in this case. More 

generally, Woodford (2010) provides an insightful critical survey of this recent literature on 

monetary and fiscal policy interactions (See also Kirsanova et al., 2009).  

All the papers surveyed in Woodford (2010), however, employ the canonical ‘New 

Neoclassical Synthesis’ (NNS) model for monetary policy analysis. This embodies 

‘Ricardian Equivalence’, so that changes in government debt, when accompanied by changes 

in lump-sum taxation, have no real effects on the economy. Given the huge increase in debt 

which has recently occurred in many developed economies, we would like to have a model 

where government debt - and thus also government budget deficits financed by borrowing - 

has a more interesting and realistic role. In this paper, we thus consider a staggered-price 

model where Ricardian Equivalence does not hold because of overlapping generations 

(OLG). We then study monetary and fiscal policy interactions, showing how monetary policy 

is crucial in shaping the effects of a change in the debt level in this setting. It is worth noting 

from the outset that, in our framework (and as will be seen), it is the stock of government 

debt, rather than the size of the deficit, which provides the best single measure of the fiscal 

stance. Hence we focus on this variable as the primary fiscal instrument. 
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A plausible hypothesis about the effect of fiscal policy in such an environment might be 

as follows. A one-period tax cut financed by an increase in government debt which is then 

held permanently at its new higher level would stimulate consumption demand. This is for 

the standard reason that, although agents would rationally anticipate higher future taxes to 

service the increased debt interest, a proportion of the taxes would fall on agents not yet born, 

so that currently-alive agents - the recipients of the tax cut - would perceive their lifetime 

wealth to have risen. In the presence of temporary nominal rigidities, the increase in 

aggregate demand would then raise output in a typical Keynesian fashion. 

Below, we test this hypothesis by constructing a careful dynamic general equilibrium 

(DGE) model with the aforementioned features. Our purpose is analytical rather than 

empirical: we are not seeking to match our model quantitatively to the data, but to understand 

qualitatively, and in depth, the economic forces at work. So far as possible we therefore 

proceed using algebra rather than numerical simulations, although we also make use of the 

latter. We start by applying the model to the basic fiscal policy experiment just described. 

Surprisingly, we do not find that an expansionary short-run effect on output is bound to 

occur. Indeed, in the baseline version of our analysis, a permanent increase in government 

debt has no short-run effect on output different from its (relatively insignificant) long-run 

effect. In other words, it causes neither boom nor slump. Such a policy measure is therefore 

completely ineffective in raising output. This is despite setting it in a macromodel which 

deliberately incorporates features which might be expected to give it some leverage. 

What is the explanation for this ineffectiveness? We show that the critical factor is the 

monetary policy regime. In our baseline case, we assume a Taylor Rule for monetary policy, 

i.e. a rule which makes the nominal interest rate a function of current inflation.
1
 In recent 

years this has become the standard way to represent monetary policy, for reasons which have 

been widely discussed. In the case of a basic form of the Taylor Rule and a permanent 

increase in government debt, it is not possible to leave the parameters of the Taylor Rule 

unchanged if it is desired to ensure a particular level of long-run inflation, such as zero. The 

‘intercept’ term in the Taylor Rule has to be increased. This adjustment is the prima facie 

                                                 
1
 We omit output from the Taylor Rule but its inclusion would not change the result. 
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source of the neutralising effect on debt. A deeper discussion is presented in the body of the 

paper. 

This result is striking but one may ask how general it is. We hence proceed to explore 

ways of escaping from it. Firstly we seek to remain in a regime of Taylor Rules. Empirically 

realistic Taylor Rules allow for ‘interest-rate smoothing’, such that the nominal interest rate 

responds only gradually to changes in inflation and output. To study this analytically, we look 

at a monetary policy in which the nominal interest rate is pegged exogenously at its old level 

for one or more periods before the basic Taylor Rule takes over. We show that this delay in 

raising nominal interest rates also delays the rise in the real interest rate, and that this is 

crucial in enabling government debt to boost aggregate demand. We also allow for gradual 

adjustment using numerical simulation. We find that when this feature is incorporated, a 

short-run positive effect of a permanent debt increase on output is again restored. Another 

possible escape from fiscal ineffectiveness which we consider is to undertake a temporary 

rather than a permanent increase in government debt. Since the increase is temporary, it is 

feasible to leave the parameters of the Taylor Rule unchanged while still ensuring zero long-

run inflation. We show that a temporary increase in debt does increase short-run output even 

under the basic Taylor Rule. 

A second avenue for exploration is to consider what happens if monetary policy is 

instead conducted by fixing the money supply, which was the standard assumption until it 

was displaced by the Taylor Rule. In the later part of the paper we investigate this. A short-

run Keynesian boom once more re-emerges, both in response to a permanent increase in 

government debt, and also to a temporary increase. A comparison of this monetary regime 

with the Taylor Rule regime enables us to deepen our understanding of why debt can be 

ineffective in the latter. Under interest-rate control, the money supply is an endogenous 

variable. In the face of an increase in debt it jumps downward. This avoids the need for a 

period of inflation in order to reduce the stock of real money balances to its new long-run 

equilibrium level, and so avoids the need for a boom in output in order to generate such 

inflation. 
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Other authors have studied fiscal policy, and its interaction with monetary policy, in 

‘non-Ricardian’ DGE models. In particular, various contributions by Leith and Wren Lewis 

(e.g. 2000, 2006, 2008) have covered and highlighted many issues. To our knowledge, 

however, the potentially drastic effect of a Taylor Rule on the effectiveness of fiscal policy 

has not been noted before. A considerable number of papers have examined the determinacy 

of perfect-foresight equilibrium in DGE models with overlapping generations and money, 

with or without staggered prices and dynamics of government debt. These include Bénassy 

(2005, 2007b), Piergallini (2006), Leith and Wren-Lewis (2006) and Leith and von Thadden 

(2008). Bénassy (2007a) shows that fiscal policy can be effective in a simple Samuelson-type 

OLG model with one-period price rigidities. Galí et al. (2007) break Ricardian Equivalence 

by using ‘rule-of-thumb’ consumers and show that this can explain the econometric evidence 

of a positive effect of government spending on consumption. Finally, Chadha and Nolan 

(2007) look at optimal simple monetary and fiscal policy rules in a Blanchard-type 

framework. 

The structure of the paper is as follows. The microeconomic assumptions are presented 

in Section 2. Section 3 examines the effectiveness of fiscal policy when monetary policy is 

governed by a Taylor Rule. Section 4 does the same when monetary policy is governed by a 

money-supply rule, and Section 5 concludes. 

 

2. Structure of the Model 

The model brings together overlapping price setting in the manner of Calvo (1983) and 

overlapping generations in the manner of Blanchard (1985). Since we are interested in the 

qualitative features of such an economy rather than in quantitative matching of the data, we 

construct the model as sparingly as possible, abstracting from elements which would 

complicate the dynamics unnecessarily and increase the difficulty of understanding the 

mechanisms at work. A DGE model with overlapping generations and overlapping price 

setting already contains numerous intrinsic sources of dynamics. Amongst the elements 

omitted is capital accumulation. Although this is very commonly studied in conjunction with 
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overlapping generations, our focus here is on short- to medium-run time spans during which 

changes in capital can reasonably be ignored. 

(i) Household behaviour 

We use a discrete-time version of Blanchard’s (1985) ‘perpetual youth’ overlapping 

generations model, in which agents have an exogenous probability, q (0 < q  1) of surviving 

to the next period. This well-known framework conveniently permits the average length of 

life to be parameterised and includes infinite lives as a special case, namely where q = 1. In 

order to have a demand for money and an endogenous supply of labour we include real 

money balances and labour as arguments of the utility function. However the latter raises a 

potential difficulty, which is that if leisure is a ‘normal’ good a fraction of households will 

have a negative labour supply. To avoid this unsatisfactory implication, we assume a 

particular utility function which makes labour supply wealth-independent, as discussed 

below. 

Specifically, the household’s optimisation problem may be stated as: 

maximise  1
, , ,( ) ln [ / ] ( / )t n

t n s t s t t s tq C M P L      
   (1) 

subject to , , , , 1 1 , 1 ,(1/ )[ (1 ) ]N N
t s t s t s t s t t s t t s t t tPC M B q M i B W L T          , (2) 

 for t = n,...,. 

Here, n is the current period and s ( n) is the household’s birth-period. ,s tC  denotes the 

composite consumption in period t (defined below) of a household born in period s; and 

likewise for money holdings ,s tM , bond holdings ,
N
s tB  and labour supply ,s tL . tP , tW , ti  

indicate the price index, wage, and nominal interest rate, respectively; while t , tT  denote 

profit receipts from firms and a lump-sum tax, which are assumed age-independent. The 

parameters satisfy 0 < ,  < 1,  > 1,  > 0. Note also that, as in Blanchard (1985), the 

household receives an ‘annuity’ at the gross rate 1/q on its total financial wealth if it survives, 

this wealth passing to the insurance company if it dies. This is an actuarially fair scheme 
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which nets out across the population so that in equilibrium the profits of insurance companies 

are zero. 

The utility function (1) is a modified version of one originating with Greenwood, 

Hercowitz and Huffman (1988) (‘GHH’). The modification consists in introducing real 

money balances. Its implications for behaviour can be seen by deriving the first-order 

conditions for the above problem, which are as follows: 

 , 1 1 , 1 , 1 , 1 , , , ,( / ) ( / ) (1 ) ( / ) ( / )s t t s t s t s t t s t t s t s t s tC P C M L r C PC M L           
    
 

, (3) 

 1
, ,/ (1 ) (1 ) /s t t s t t tM PC i i    , (4) 

 1 1
, , ,/ (1 ) ( / )t t t s t s t s tW P PC M L     . (5) 

Here, 1 tr  denotes 1(1 ) /t t ti P P , the real interest rate. It is also helpful to define money 

demand per unit of consumption, , ,/s t t s tM PC , as ,s tZ . Then (4) shows that ,s tZ is 

independent of an agent’s birth date, s, and is a simple decreasing function of the nominal 

interest rate. From (5) we observe that an agent’s labour supply, ,s tL , does not depend on his 

consumption except through ,s tZ . Since ,s tZ  is the same for all agents, labour supply is 

therefore also independent of s. This is our reason for using GHH preferences: it eliminates 

the income effect on labour supply which would otherwise arise through the presence of ,s tC  

in (5), ,s tC  being a variable which is generally increasing with an agent’s age, t-s. This 

enables us to avoid the problem of old agents having negative labour supply.
2
 

Incorporating wealth-independent labour supply has a cost, however, which is that the 

utility function is not additively separable. One consequence is that there is a direct positive 

effect of real balances on labour supply, as can be seen from (5). This is the ‘Brock effect’ 

(Brock (1974)). Intuitively, higher holdings of real balances (or higher ,s tZ , to be precise) 

give the household an incentive to supply more labour since they complement consumption, 

raising the marginal utility of the latter. We would not expect this effect to be empirically 

important but since it is present we should be mindful of it when trying to understand the 

                                                 
2
 This issue is discussed in more detail in Ascari and Rankin (2007). The utility function used here is first 

proposed there. 
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model’s properties.
3
 Non-separability also introduces direct effects of labour supply and of 

real balances on consumption. This can be seen from the presence of ,s tL  and ,s tZ in (3), 

which is a version of the Euler equation for consumption. The composite term , ,( / )s t s tZ L   , 

which is subtracted from both sides of (3), acts like a ‘subsistence’ level of consumption. In 

our model the Euler equation can be viewed as determining the growth rate of ‘adjusted’ 

consumption, where the latter is defined as actual consumption minus its subsistence level. 

For the reasons given above, subsistence consumption is independent of age. 

Although households of different ages choose the same labour supply and money 

demand per unit of consumption, in general they will have different lifetime wealth levels 

and choose different consumption levels. Other things being equal, households who have the 

good fortune to live longer will have higher wealth, and there will be a distribution of 

consumption and wealth across the population in any period. For aggregate consumption to 

be a function only of aggregate wealth (and of relative prices), and thus for it to be 

independent of the shape of the wealth distribution, it is necessary that an individual 

household’s consumption be linear in its total lifetime wealth. For the utility function (1), we 

can confirm that this is the case. We thus preserve the feature that made easy aggregation 

possible in the original Blanchard (1985) paper. 

Given the above, we can derive a counterpart of the individual Euler equation, (5), in 

which individual is replaced by aggregate consumption: 

 1 1 1( / ) (1 ) ( / ) (1 )(1 )(1/ 1)t t t t t t t tC Z L r C Z L q q V          
  

        
 

. (6) 

Absence of an ‘s’ subscript indicates an aggregate value (or, equivalently, an average value, 

since the population size is one). The relationship of a generic aggregate variable, Xt, to its 

constituent individual variables, Xs,t, is ,(1 )t t s
t s s tX q q X

   . In the cases of Z and L we 

have already seen that individual and aggregate values are the same, but this is not generally 

true in the case of consumption. Nor is it true in the case of financial wealth, Vt, which, for an 

individual, is defined as the sum of his money and bond holdings in real terms: 

                                                 
3
 Obviously the Brock effect would be absent in a ‘cashless’ model. However, we need to have money in our 

model because we want to investigate also the case of a money supply rule, to show how the choice of the 

monetary policy instrument influences the effect of fiscal policy. 



 8 

 , , 1 1 , 1(1/ )[ (1 ) ] /s t s t t s t tV q M i B P     .
4
 (7) 

The ‘aggregate Euler equation’, (6), says that the growth rate of aggregate adjusted 

consumption depends positively on the real interest rate (as in the case of individual adjusted 

consumption), and (to the extent that q < 1) negatively on aggregate financial wealth. A 

similar relationship is found in Blanchard (1985) and other applications of the ‘perpetual 

youth’ model. The negative influence of financial wealth arises from the ‘generational 

turnover effect’.
5
 Such an effect occurs because some old agents are replaced by newborn 

agents between t and t+1, and in general the newborn, since they have no financial wealth, 

have lower consumption than old agents, who have had time to accumulate it over their 

lifetimes. 

It remains to define composite consumption. We assume a continuum of types of good, 

indexed by i  [0,1]. The household has CES utility over good types, given by: 

 
/( 1)

1 ( 1) /
, 0 , ,s t i s tC C di

 
 


  

 
,       > 1. (8) 

The subsidiary part of its optimisation problem is to allocate spending amongst good types to 

maximise (8) subject to a budget constraint 1
0 , , , ,i t i s t s tP C di I  , where ,s tI  is its income 

available to spend on goods. This leads to the familiar constant-elasticity demand function for 

good type i: 

 , , , ,( / ) ( / )i s t i t t s t tC P P I P       where 
1/(1 )

1 1
0 ,t i tP P di





  

 
. (9) 

Moreover, at an optimum, , , /s t s t tC I P . 

(ii) Firm behaviour 

Firms are monopolistic competitors who produce differentiated goods. As an input they 

use labour hired in a competitive market. Price staggering is introduced through Calvo’s 

                                                 
4
 The relationship of aggregate to individual financial wealth is slightly different from the general one just 

given, being, rather, (1/ ) (1 )
,

t t sq V q q V
t s s t

 


. This is because we have included the annuity payout in our 

definition of Vs,t. Such a payout does not apply to the aggregate variable since it is a redistribution from those 

who die to those who survive. 
5
 This effect is so named by Heijdra and Ligthart (2000). 



 9 

(1983) mechanism, in which a firm is allowed to adjust its nominal price with probability 1- 

in any period, while it has to keep it fixed with probability . The optimisation problem of a 

firm, i, which receives the opportunity to adjust its price in period n, can thus be stated as: 

maximise  , , /n t n n t i t tE P
    (10) 

where , , , ,i t i t i t t i tP Y W L   , 

 1 1 1
, 1 1(1 ) (1 ) ...(1 )n t n n tr r r  

            (with , 1n n  ), 

subject to , ,i t i tY L       0 <   1, (11) 

 , ,( / )i t i t t tY P P Y , (12) 

 , , 1i t i tP P        with probability , (13) 

 for t = n,...,. 

Here, ,i tY , ,i tP , ,i tL  are the output, price and labour input of firm i. Wt is the wage and ,n t  is 

the discount factor. The demand for good i is given by (12), which is the aggregation across 

all households of their individual demands, (9), plus the demand from the government (see 

below). Being infinitesimal relative to the economy as a whole, the firm treats the macro 

variables which shift its demand function, Yt and Pt, as given. It also treats Wt as given. This 

is a standard set-up in New Neoclassical Synthesis models. The nominal rigidity combined 

with monopolistic competition generates the Keynesian feature that output is demand-

determined. This is because firms will always prefer to satisfy any unexpected increase in 

demand, given that price will have been set above marginal cost as a result of the firm’s 

monopoly power.  

Solving the optimisation problem yields the following expression for firm i’s ‘new’ or 

‘reset’ price: 

 

1/(1 / )
1/ / 1

,

1
,

1

t n
t n n t t t t

n t n
t n n t t t

Y W P
X

Y P

  
  





 

 
  


  


  
  

    

. (14) 
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‘Xn’ denotes the new price set in period n. Symmetry amongst firms means that all firms able 

to change their prices in period n will choose the same new price, so that no ‘i’ subscript is 

needed. (14) is a forward-looking price-setting rule typical of models with Calvo-style price 

staggering. It says that the new price depends on current and expected future values of 

aggregate output, the general price level and the wage level. 

The general formula for the price index was given in (9). Combining this with the Calvo 

pricing assumption, we obtain an expression for the price index as a function of current and 

lagged values of Xt: 

 
1/(1 )

1
0(1 ) j

t j t jP X


 


 
 

   
 

. (15) 

This arises from the fact that, of all the prices in force in period t, the fraction which were last 

reset exactly j periods ago is (1-)j
. 

(iii) Government behaviour 

The government’s budget constraint in nominal terms is: 

 1 1 1 1( ) ( ) ( )N N N
t t t t t t t t tP G T i B B B M M         , (16) 

where Gt is purchases of firms’ outputs, measured in terms of the composite good. We 

assume government spending on good i, Git, is determined by a demand function analogous 

to a household’s demand function, (9), and with the same price elasticity. 

Defining the real value of government bonds as /N
t t tB B P , we can rewrite the budget 

constraint in real terms as: 

 1 1 1(1 ) ( ) /t t t t t t t tG T B r B M M P        . (17) 

Clearly, only three of the four policy instruments, (Gt,Tt,Bt,Mt), can be chosen independently 

in any period t. Below, we always take Gt to be fixed at some exogenous, time-invariant, 

value, G. We take the second independent fiscal instrument to be real government debt, 
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inclusive of interest, which we denote as (1 )t t tB r B   .
6
 With either Mt or it being 

determined by the monetary policy rule (see below), this leaves the lump-sum tax, Tt, to be 

determined by (17) as the residual instrument of policy. Such a fiscal regime allows us easily 

to study the effects of simple types of change in the level of government debt. It is not our 

goal here to study an empirically ‘realistic’ fiscal regime: for example, one that incorporates 

‘automatic fiscal stabilisers’, making Gt and Tt functions of output; or one that involves rules 

limiting the government deficit or debt levels to some percentage of GDP. Other authors (e.g. 

Leith and Wren-Lewis, op. cit.) have studied such regimes using models similar to the 

present one, but these have the drawback that several policy instruments are changing 

simultaneously, so that numerous effects become intertwined. Instead our objective is to 

conduct simple fiscal experiments which will elucidate the mechanics of how the 

macroeconomy is affected. Amongst other things, by choosing the time path of tB  

exogenously, we remove endogenous changes in the stock of government debt as an 

additional source of dynamics. 

(iv) Market-clearing conditions 

Equilibrium in the goods market requires that: 

 t t tY C G  . (18) 

This version of the equation is for the composite good, but a similar relationship also holds 

for every good, i. 

To write down the condition for equilibrium in the labour market, we first need the 

aggregate demand for labour. The derivation of this is given in Appendix A. Equating 

aggregate labour demand to aggregate labour supply, where the latter is given by the inverse 

of (5) (dropping the ‘s’ subscript, for reasons explained), we have: 

 
1/( 1)

1/ / 1( / ) (1 ) /t t t t t tY P P Z W P


    


  
 

. (19) 

                                                 
6
 Government debt should therefore be thought of as ‘indexed’ debt. More precisely, Bt is the number of ‘real 

treasury bills’ issued, i.e. it is a promise to deliver Bt units of the composite consumption good to the holders of 

the bonds at the start of period t+1. 
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Here, tP  is a price index very similar to tP  - see again Appendix A. Below, in order to study 

the macroeconomic implications of the model, we take a loglinear approximation to its 

equations. When we do this it turns out that, locally, tP  = tP , in which case tP  drops out of 

(19). In fact, the aggregate labour demand function on the LHS of (19) is then simply the 

inverse production function applied to aggregate output, as can easily be seen. 

Equilibrium in the bond market requires that the exogenous, government-determined 

stock of bonds should equal the aggregate demand for them by households. At this point, note 

that aggregate financial wealth can be written as: 

 1/t t t tV M P B   . (20) 

The tB  component is exogenous under our fiscal policy regime. The other component, 

Mt/Pt+1, is endogenous, and in money-market equilibrium this must equal money demand as 

given by the aggregate version of (4). 

(v) Steady-state general equilibrium 

It is useful at this point to note some features of the steady-state equilibrium in which 

all aggregate real variables are constant over time. We consider only steady states with zero 

inflation since, later, the monetary policy regime will be constructed to ensure long-run price 

stability. 

One important steady-state relationship is: 

 

/( )

/( )

( 1) (1 )
Y Z

  

  

  



 
  

  
. (21) 

(Absence of a time subscript denotes a steady-state value.) From this we see that, in the long 

run, output is positively related to money demand per unit of consumption, Z. The reason for 

this is the ‘Brock effect’ mentioned earlier: higher equilibrium real balances raise the 

marginal utility of consumption, due to non-separability of the utility function, which in turn 

stimulates households to increase labour supply. Note that in the steady state prices are 

effectively perfectly flexible, whence steady-state output is determined by the ‘supply side’ 
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of the model. The Brock effect will be weak to the extent that  is small, and empirically we 

would expect  to be close to zero. (21) also demonstrates that there is no direct effect of 

government debt, B, on steady-state output. This is despite the fact that under overlapping 

generations, i.e. q < 1, government bonds are ‘net wealth’ for households, i.e. despite the fact 

that Ricardian Equivalence does not hold (as will be seen in another context below). The 

explanation is that the ‘modified GHH’ utility function has eliminated the wealth effect on 

labour supply. Were such an effect present, an increase in B would directly reduce output by 

increasing the demand for leisure. In fact, an increase in B does reduce steady-state output in 

our model, but through the indirect channel of reducing Z, as will be shown later. 

A second important relationship is the steady-state version of (6), the ‘aggregate Euler 

equation’: 

 1 1/ (1 )(1/ )(1/ 1) /r q q V A        . (22) 

‘A’ here denotes ‘adjusted consumption’, as defined above. (22) makes clear that, with 

infinitely-lived agents (q =1), the long-run real interest rate is simply equal to the time 

preference rate, 1/ -1. However, with overlapping generations (q < 1), the real interest rate 

exceeds 1/ -1, the size of the gap depending positively on the ratio of financial assets to 

adjusted consumption. Intuitively, this is because (22) is the (inverse) ‘demand function for 

financial assets’. A high value of r causes households to choose a positive ‘tilt’ to their 

lifetime consumption profiles, and since they have time-invariant labour incomes in a steady 

state, in order to achieve this they need to accumulate financial assets during their lifetimes. 

In the aggregate, such behaviour generates a positive demand for financial assets as a store of 

value, and this demand is increasing in r. From (22) we can also see how Ricardian 

Equivalence fails when q < 1. Notice that an increase in the stock of government debt, B, 

adds to V and thus raises r. (For the moment consider, M/P, the other component of V, as 

given.) This means that when q < 1 government debt affects real variables and so is clearly 

‘non-neutral’. However, what remains to be seen is the form which this non-neutrality takes 

in full general equilibrium. 
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In a zero-inflation steady state where B = G = 0, we can derive the following 

completely reduced-form solution for r: 

  1 2 1/2

2
1/ 1 [(1/ 1 ) 4 ]r             (23) 

where 1(1/ )(1/ 1) [1 (1 ) ( 1) / ]q q             .
7
 We can easily see from (23) that 

when  = 0, r = 1/ -1; while when  > 0, r > 1/ -1. One special case in which  = 0 is when 

q = 1, which is the result noted above. However, another special case in which  = 0 is in the 

limit as   0. It is useful to understand why this occurs. As   0, the demand for real 

balances tends to zero, as is apparent from (4). The equilibrium level of real balances is 

determined by the demand for them, since even if the nominal money stock M is exogenous 

what matters is the money stock divided by the price level, and the latter is endogenous. 

Since we have already assumed that B = 0 in deriving (23), it can be seen that by letting  

tend to zero we reduce the total stock of financial assets, V, to zero. The earlier equation (22) 

tells us that, even if q < 1, in such an extreme case the real interest rate will still simply equal 

the time preference rate. The intuitive reason for this is that if the supply of financial assets is 

zero, then for the market to clear the demand for them must also be zero, and to achieve this 

the real interest rate must be driven down to the time preference rate. 

(vi) A loglinearised and partially-reduced form of the model 

In order to permit algebraic investigation of the model’s properties, we now loglinearise 

its equations. The ‘reference’ steady state about which we take the loglinear approximation is 

that in which inflation, government spending and government debt are all zero. The value of 

the real interest rate in this steady state is given by (23). Since it appears frequently as part of 

the coefficients of the loglinearised equations, we henceforth denote it as rR. 

Appendix B provides a complete list of the underlying loglinearised equations. In the 

New Neoclassical Synthesis model to which ours is closely related, the standard way of 

combining these equations is in the form of a ‘New Keynesian Phillips Curve’ (NKPC) 

                                                 
7
 (23) is the larger of the two solutions of a quadratic equation. We discard the smaller solution because it 

implies that r, and thus i, is negative, which is economically meaningless. 
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equation and an ‘IS’ equation. So far as possible, we adopt the same approach here. This 

yields the following equations (derived in Appendix B): 

 1 1
1(1 ) [ ( / 1) ]t R t t tr y z      
     , (24) 

 1
1 1[1 (1 )(1 1/ )] (1 )t ty z   
       

  1(1 ) [1 (1 )(1 1/ )] (1 )R t tr y z            

 1 1 1
1

ˆ(1 ) ( ) (1 )R t t R tr i r v      
     , (25) 

 1ˆ( )t t t t R tz m p y r i     , (26) 

 1t t t tv m p b    . (27) 

Unless otherwise stated, lower-case variables are the log-deviations of their upper-case 

counterparts; e.g. yt  ln Yt - ln YR (where ‘R’ denotes the value in the reference steady state). 

pt is just defined as ln Pt and the rate of inflation as t  pt - pt-1. The interest rate variables are 

defined as ˆ
ti   ln(1+it) - ln(1+iR), t̂r   ln(1+rt) - ln(1+rR). In the case of debt, since RB   0, 

the log-deviation of tB  is not well defined; hence we use ( ) /t t R Rb B B V    . In the above and 

henceforth we also set government spending, Gt, permanently to zero; hence yt and ct are the 

same variable. Two new composite parameters which appear here are 

1 1 1(1 )[ (1 ) ](1 / ) ( / 1)Rr                 and 1[1 (1 )(1 1/ ) / ]         , which 

are both positive. 

(24) is the NKPC equation for our model, giving inflation as an increasing function of 

current output and of expected future inflation. It essentially derives from the price-setting 

and price index equations, (14) and (15), together with the condition for labour market 

clearing, (19). Compared to the standard model, its novel feature is the inclusion of zt, which 

is the result of the ‘Brock effect’ of real balances in stimulating labour supply, as discussed 

earlier. (25) is the IS equation which, as in the related literature, derives from the Euler 

equation for consumption. One of its distinctive features here is the inclusion of financial 

wealth, vt. This is the result of the ‘generational turnover’ effect on aggregate consumption, 

as explained above. Another distinctive feature is the presence of zt and zt+1. These are 
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additional consequences of non-additively-separable utility, which causes Zt to be a 

component of ‘adjusted consumption’, as seen above. Having noted that zt enters the NKPC 

and IS equations, it is clear that our model, unlike the standard model, cannot be solved 

without also using the LM equation, given by (26). By substituting the LM equation into (24) 

and (25) we can eliminate zt, introducing further instances of ˆ
ti . 

The system consisting of (24)-(27) still does not provide a complete description of the 

economy’s time path because it remains to add a monetary policy rule. In the next section we 

do this using a Taylor Rule for the interest rate, and we study the macroeconomic behaviour 

which results. In the following section we re-work the analysis assuming instead a simple 

rule for the money supply. 

 

3. Fiscal Policy when Monetary Policy is Governed by a Taylor Rule 

The standard way to represent monetary policy in recent years has been to assume that 

the nominal interest rate is set as a function of the inflation rate and of output. The best 

known example of such a rule is that of Taylor (1993). In our log-deviation notation, such a 

rule could be expressed as: 

 ˆ
t t y ti i y     . (28) 

Here,   and y  are positive feedback parameters. In fact, in what follows, we shall simplify 

by assuming y  = 0. This reduces the amount of algebra while not affecting the main results. 

i  is the ‘intercept term’ and represents the value of the (nominal and real) interest rate 

in a steady state with zero inflation. In the standard, infinite-lives (q =1) model, the steady-

state real interest rate r is simply given by r = 1/ -1, as already noted. Using the ‘deviation’ 

measure it is given by r̂  = 0. Zero steady-state inflation is thus obtained by setting i  = 0. 

This can easily be seen from (28), which when y  = 0 implies ˆˆ ( ) ( 1)r i i         in 

the steady state. However, in the overlapping-generations (q < 1) model, r̂  has a more 

complex set of determinants, amongst which is the level of government debt. The level at 

which i  needs to be set in order to ensure zero steady-state inflation is therefore endogenous 
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and remains to be calculated: it will simply be whatever is the associated level of the steady-

state real interest rate. 

3.1 A permanent debt increase under the basic Taylor Rule 

We first consider a fiscal policy experiment in which the economy is at the reference 

steady state in period t = 0, and then in t = 1 the government raises the stock of debt, tb , to 

some positive value, b, and holds it there permanently. This implies that there is a cut in 

taxation, t, in period 1, and hence a budget deficit which lasts for one period only. 

Thereafter, taxation is raised to whatever level is required to restore the budget to balance and 

to keep it there. 

We start our analysis of this policy by examining the properties of the new steady state 

with which the higher debt level is associated. The question of whether and how the economy 

converges to this steady state is addressed subsequently. The Taylor Rule itself plays no role 

in determining the steady state other than via our assumption that it is parameterised to ensure 

steady-state inflation is zero. Hence for now we do not need (28) but we will return to it when 

considering the dynamics. 

Proposition 1. A permanent government debt increase. (i) When q < 1, a 

permanently higher government debt increases the steady-state interest rate (real as well as 

nominal, since inflation is zero) and reduces steady-state output. When q = 1 these effects are 

zero, and Ricardian Equivalence holds. (ii) Under a Taylor rule like (28), there are no short-

run effects on output different from the long-run effects, because the system entails an 

immediate jump to the new steady state with no transitional dynamics. 

To prove part (i), first we use the system (24)-(27) to solve for the new steady state 

values. In doing so, we substitute out mt - pt+1 from vt as zt + yt - t+1. Setting variables to 

time-invariant values and  to zero, we then have four equations in (y, î ,z,v). From these we 

can solve explicitly for the steady-state values (y, î ) as functions of the government debt 

level, b (see Appendix C): 

  
1

1 1(1 ) 1 [ (1 ) 1]R R Ry r r r b        


           
 

, (29) 
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  
1

1 1 1ˆ (1 ) 1 [ (1 ) 1]R R Ri r r r b          


             
 

. (30) 

Four new composite parameters are introduced in these expressions, namely: 

 1 1 1[1 (1 )(1 1/ )] (1 ) Rr           ,      1 1[1 (1 )(1 1/ )] (1 )Rr          , 

 1 1[1 (1 )(1 1/ )] [ (1 ) 1]Rr           ,      1 1( / 1) Rr       . 

,  and  are unambiguously positive.  is positive if q < 1 and zero if q = 1, since then 1+rB 

> 1/ or = 1/, respectively, as noted above. The signs of the coefficients on b in (29) and 

(30) can be seen to depend on the sign of the bracketed term {.}. {.} is common to both 

expressions and its sign is at first glance ambiguous. However the sign can in fact be resolved 

to be negative, as we show in Appendix C. Then part (i) of Proposition 1 follows. 

That higher government debt should raise the real interest rate is to be expected, since it 

is a standard result in other overlapping-generations models (e.g. Diamond (1965), Blanchard 

(1985)). It occurs because, as noted, overlapping generations give rise to a steady-state 

demand for financial assets which is increasing in the interest rate. Hence when the supply of 

such assets is expanded by increasing b, the interest rate has to rise to clear the asset market. 

The finding that output falls is perhaps less expected, especially since there is no capital in 

our model. One might be tempted to guess that it occurs because the increased bond stock, 

being perceived as ‘net wealth’ by households, increases the demand for leisure and so 

reduces labour supply. However, this is not correct, since our use of GHH preferences has 

removed the wealth effect on labour supply. Instead, the mechanism is the Brock effect: the 

increased nominal interest rate reduces the equilibrium stock of real money balances, which 

then reduces the marginal utility of consumption and the incentive to supply labour. We 

would not expect this effect to be empirically large because , the weight on real balances in 

the utility function, is likely to be close to zero in a realistic calibration. 

To prove part (ii), next consider the perfect-foresight transition path to the steady state 

following the once-and-for-all increase in government debt. Writing the economy’s laws of 

motion in a relatively compact form, we have: 
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 1
ˆ(1 )[ ]t R t t tr y i        , (31) 

 1
1 1 1 1

ˆ ˆ ˆ ˆ(1 )( ) ( ) ( )t t R t t t t t R t t ty i r y i i y r i b      
   

          , (32) 

 ˆ
t ti i    . (33) 

This system has been obtained from (24)-(27). (The definitions of (,,,) were given 

above.) (31) and (32) can be understood as slightly more reduced-form expressions for the 

NKPC and IS equations, respectively. Relative to the standard versions of these equations, 

the differences are, firstly, the term in  in the IS, which is present when q < 1 and represents 

the generational turnover effect; and, secondly, the terms in  and  in the NKPC and IS 

(respectively), which arise from non-separability of the utility function. 

Part (ii) of Proposition 1 is the benchmark result of the paper and one can see why it 

holds simply by inspecting the system (31)-(33). Note that (31) and (32), with ˆ
ti  governed by 

(33), constitute a pair of simultaneous first-order difference equations in (t,yt). t and yt are 

both non-predetermined variables. Therefore, for a determinate perfect-foresight equilibrium 

to exist, we need the two eigenvalues of the system to lie outside the unit circle. We shall 

discuss further this condition below, but for the moment let us assume that it holds. Now 

notice that if the economy is initially in a steady state with b = 0 (and hence  = y = 0), and 

then, in t = 1, tb  is raised to some positive value b and held there permanently, then there is 

no time-variation in any exogenous variable of the system over the interval t = 1,...,. This is 

because the only exogenous fiscal policy variable in (31)-(32) is tb , and by assumption it is 

held constant at b for t = 1,...,. It then follows that the economy must jump immediately to 

its new steady state. This means that the impact effect on output, inflation and all other 

endogenous variables is the same as the long-run effect. In other words, despite price 

stickiness and the lack of Ricardian Equivalence, the attempt to give a short-run Keynesian 

stimulus to output fails. Output moves straight to its new steady-state level which, as seen 

above, is lower - even if not much lower - than its initial level. The inflation rate, for its part, 

stays at zero in every period, and hence the price level does not change. 
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Everything we have said above holds only if the system admits a determinate perfect-

foresight equilibrium. Similarly to what was found in some other studies, Proposition 2 states 

that the determinacy condition is different in an OLG setup, relative to the standard NNS 

model. 

Proposition 2. Determinacy of the perfect-foresight equilibrium. Let y = 0 in (28). 

Then the minimum value of  needed to induce determinacy is increasing in the degree of 

price stickiness under overlapping generations (q < 1). 

As is usual, determinacy requires that the Taylor Rule parameter  be sufficiently 

large. Under infinite lives (q = 1), this condition would be simply  > 1. Appendix D, on the 

other hand, shows that the condition for determinacy under overlapping generations (q < 1) 

can be depicted as follows 

 

For high degrees of price stickiness (high , and thus low ), a value of  much greater than 

one may be needed for determinacy. Conversely, for low degrees of price stickiness (low , 

and thus high ), a value of  less than one may be sufficient. 

0 



1 

low P stickiness high P stickiness 

determinacy 

region 

indeterminacy 

region 



 21 

In the related literature, Bénassy (2005) finds that the magnitude of the feedback 

coefficient on inflation becomes irrelevant for determinacy when overlapping generations are 

introduced. However he assumes a different fiscal policy to ours, in which the total nominal 

stock of government liabilities (bonds plus money) is held constant over time. Piergallini 

(2006), meanwhile, finds that overlapping generations relax the normal Taylor Principle, 

independently of the degree of price stickiness. 

To give a specific illustration of the above effects of higher tb , we carried out a 

numerical simulation exercise. For this we used the full non-linear model. This also provides 

reassurance that the result does not depend on the use of linear approximation. The equations 

and the calibration of the non-linear model are described in detail in Appendix E. Figure 1 

gives the impulse response functions for a policy experiment in which tb  is increased 

permanently from zero to a value equal to 1% of pre-shock GDP. In addition to confirming 

the analytical results already discussed, Figure 1 shows that the nominal and real money 

supply fall. Nevertheless total real financial wealth rises, the fall in real balances being 

dominated by the increase in government debt. 

What is the intuitive explanation for the fiscal ineffectiveness? As we will show 

subsequently, the result is highly sensitive to the monetary policy regime, and thus to the use 

of the basic Taylor Rule. Note that under the basic Taylor Rule, the intercept term i  jumps 

up immediately when debt is increased. This is needed, as pointed out above, to keep steady-

state inflation at zero. Intuitively, then, there is an induced response in the setting of the 

interest rate which instantly wipes out any positive effect of debt on aggregate demand. 

Viewed in terms of a simplified version of the IS equation, (32), we can think of ‘current’ 

output, yt, as being determined by expected future output, yt+1, by the real interest rate 

1
ˆ
t ti    and by government debt tb . (For heuristic purposes ignore the terms in  and the 

real-balance term yt-
1ˆ

R tr i -t+1.) Moreover we can loosely treat yt+1 as exogenous because, 

relative to current output, future output is less affected by price stickiness and aggregate 

demand, and more by the economy’s supply side. From this simplified perspective, then, a 

rise in debt will raise current output unless it is offset by a rise in the real interest rate. The 

latter is what happens in the new steady state. In our policy experiment, however, this rise in 
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the real interest rate in fact occurs immediately. What makes this immediate rise in the real 

interest rate possible, despite the unchanged inflation, is the upward jump in the Taylor 

Rule’s intercept term and thus in the nominal interest rate. Another view of this is the 

following. Elsewhere it has been shown that the Taylor Rule is effective for stabilising output 

in the face of random shocks. To use it in this way, the authorities need to adjust the intercept 

term to match, one-for-one, fluctuations in the ‘natural’ rate of interest.
 8

 The present result 

shows that this idea remains valid when the shock is a change in government debt, and not 

just, for example, a change in productivity or preferences. Even though the debt increase is a 

deliberate fiscal policy change, the Taylor Rule neutralises its effect on output just as if it 

were a random private-sector disturbance. 

3.2 A permanent debt increase under a Taylor Rule with interest-rate inertia 

If the immediate increase in the Taylor Rule’s intercept term, and thus in the nominal 

interest rate, is what neutralises the output effect of the debt increase, this would suggest that 

a way of restoring fiscal policy effectiveness is to avoid the increase in the intercept term. It 

cannot be avoided forever, because if the long-run inflation rate is to remain at zero, there 

must eventually be a rise in the intercept term, for the reason explained earlier. However, 

what could be done is that the increase in the nominal interest rate could be delayed. Indeed, 

this scenario appears to capture well what happened in many western economies in the recent 

crisis, where an expansionary fiscal policy was assisted by monetary policy keeping the 

interest rate at historically low levels. 

Assume for the moment that monetary policy pegs the nominal interest rate 

exogenously at its original level for one or more periods at the start of the fiscal expansion, 

before reverting to the Taylor Rule, (28). This simple assumption about the inertial response 

of monetary policy allows us to derive analytical results. This is because, if the Taylor Rule is 

restored from period t = T onwards, we know that the economy will be in its new steady state 

from period t = T onwards. If the debt increase occurs in period T-1, we can then solve 

backwards in time to find the effect on yT-1. Indeed, if the debt increase occurs in period T-2, 

                                                 
8
 See for example Woodford (2003), Ch. 4. 
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or T-3, etc., we can extend the solution further backwards. The results are summarized in 

Proposition 3. 

Proposition 3. A permanent government debt increase with a delayed interest rate 

response. Under a temporary interest-rate peg, the debt increase causes a boom in output in 

the impact period. In the case of a multi-period peg, the size of the impact boom is increasing 

in the number of periods that the interest rate is pegged, and the boom dies away as the 

moment for the Taylor Rule to be re-instated approaches. 

Although we can derive these results algebraically, for brevity we shall not present the 

proofs here.
9
 Instead in Figure 2 we provide an illustration from a numerical simulation of the 

non-linear model (using the same parameter values as before) in which the nominal interest 

rate is kept fixed for 8 periods. It is clear that, far from immediately jumping upwards to its 

new, higher, long-run value, the real interest rate under such a policy must fall (relative to its 

original value) during the period of the interest rate peg, since there is inflation during this 

period. It is this which avoids the expansionary effect of government debt from being offset, 

and hence a short-run boom in output does now emerge. Indeed the fall in the real interest 

rate reinforces the boom. Referring to our earlier intuitive discussion in terms of a simplified 

IS relationship, the fact that the real interest rate is prevented from immediately attaining its 

new, higher, steady-state value is what permits the increase in debt to boost current 

consumption demand and thus output. 

More generally, it has often been noted that in practice central banks typically adjust 

interest rates only gradually. Accordingly, empirical studies of interest-rate setting find that, 

in place of (28), a relationship such as 

 1
ˆ ˆ(1 )( )t t y t ti i y i           (0   < 1) (34) 

fits the data better, where  captures the degree of nominal interest-rate inertia. 

The use of a Taylor Rule with inertia introduces a predetermined state variable into the 

model. Its laws of motion are now given by (31), (32) and (34) (in which we shall again set y 

= 0). The dynamics become third-order, and thus relatively complicated. Numerical 

                                                 
9
 They are available upon request. 
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simulation is the easiest way of investigating the properties of such a system quickly. 

Accordingly, Figure 3 shows a simulation of the effects of the same permanent debt increase 

as before, for the case where  = 0.9. It can be seen that a short-run boom in output occurs in 

this case too, dying away asymptotically. Again, the key to ‘releasing’ this expansionary 

effect is the sluggish response of the nominal interest rate, and thus also of the real interest 

rate. Inertia in the Taylor Rule thus makes a crucial difference to the effectiveness of 

government debt in influencing aggregate demand. Investigation of other parameter values 

shows that the inertia needs to be substantial in order for this to work. For example, if  = 

0.3, then there is no short-run boom: there is merely a delay in output falling from its original 

level to its new, slightly lower, steady-state level. 

Therefore, despite the negative ‘benchmark’ result in Proposition 1, our model can still 

explain how the ‘fiscal stimulus’ policy pursued by many governments in the 2008-9 ‘credit 

crunch’ recession almost certainly did contribute to alleviating that recession. During the 

recession, central banks cooperated with governments to keep the nominal interest rate 

pegged at a value close to zero, rather than raising it in the face of a big increase in 

government debt. Had they done the latter, the expansionary benefits would have been 

completely lost. 

3.3 A temporary debt increase under the basic Taylor Rule 

If the aim of fiscal policy is to stabilise output fluctuations in the face of temporary 

business cycle shocks, then any increase in the level of government debt should be 

temporary, rather than permanent. The government will presumably want to bring debt back 

to its original level, or to some target level, in the long run. Temporary changes in debt might 

therefore be a more relevant policy measure to consider than permanent changes. 

There is also a technical reason why a temporary increase in debt offers some potential 

for escaping from the ineffectiveness result of Proposition 1. With a permanent increase, the 

intercept term in the Taylor Rule eventually has to be increased if we want to keep long-run 

inflation at zero. However, if the increase is only temporary, it is possible to leave the 

intercept term unchanged and still ensure zero steady-state inflation. This suggests that a 
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temporary increase in debt, under an unchanged Taylor Rule, might also succeed in raising 

output. 

Proposition 4. A one-period government debt increase. An increase in tb  which lasts 

for only one period will cause a temporary (one-period) increase in output and inflation, if 

all the parameters of the Taylor Rule are left unchanged.  

Suppose debt is increased from zero to some positive value in period t, and then is 

returned to zero in period t+1 and held there ever after. It follows that, for period t+1 

onwards, the economy is back in the original steady state from which it started in period t-1, 

before the debt increase. In other words period-(t+1) and later variables are unaffected by a 

one-period debt increase and only period-t variables will change. This is due to the 

completely ‘forward-looking’ nature of the equilibrium under a Taylor Rule. Look again at 

the economy’s laws of motion, (31)-(33). By the argument just made we may treat                   

( 1 1 1
ˆ, ,t t ty i    ) as exogenous in these. The equilibrium in period t then reduces to the solution 

of two equations in which the only unknowns are ( , )t ty . These are shown below as (35) 

and (36). They are obtained by substituting out ˆ
ti  as t from (31) and (32) and regrouping 

terms. 

 1 (1 )[(1 ) ]t R t tr y         (35) 

 1 1( )t ty         

 1[ (1 ) ] [ (1 ) ]R t R R t tr y r r b                  (36) 

By the reasoning above, we observe that the left-hand sides of these equations are exogenous. 

(35) and (36) can be loosely interpreted as ‘short-run aggregate supply’ (SRAS) and 

‘short-run aggregate demand’ (SRAD) equations, respectively. This is because (35) still 

mainly derives from the ‘NKPC’ equation and (36) still mainly derives from the ‘IS’ 

equation. Although some of the composite coefficients on the right-hand-side variables are at 

first sight ambiguous in sign, in fact we may resolve all of them to be positive under 

reasonable assumptions, as Appendix F demonstrates. These equations can then be depicted 

in a familiar textbook manner: 
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It is now easy to see that, so long as q < 1 and thus  > 0, an increase in tb  will shift the 

SRAD curve to the right, and so will raise current output and inflation.  

Why does a temporary debt increase succeed where a permanent one failed? The reason 

is that in this case there is no offsetting increase in the Taylor Rule’s intercept term. 

Nevertheless, the nominal interest rate will still rise (if we assume  > 1; see again 

Proposition 2), because t rises. However, it will not rise by enough to choke off the boom. It 

would of course be possible to use monetary policy to choke off the boom, by accompanying 

the fiscal expansion by a one-period increase in the Taylor Rule’s intercept term, ti . The 

point here is simply that it is now not necessary to increase the intercept term in order to 

ensure zero long-run inflation. 

To study a temporary increase in debt which lasts for more than one period, we turn to 

numerical simulation. As above, the parameters of the Taylor Rule are left completely 

unchanged. Figure 4 shows the case of an increase in debt which lasts for exactly four 

periods. All other parameter values are identical to those in the earlier non-linear simulations. 

Again there is a short-run boom in output and inflation. An interesting feature is that the time 

path of output is hump-shaped, despite the fact that the level of debt is constant during the 

first four periods. By comparing it with the same simulation for a one-period debt increase 

(not shown), we can also say that the size of the boom in the first period is larger. 

Making the increase in government debt temporary thus provides a second way to 

escape from our earlier fiscal ineffectiveness result. As argued above, this point is also 

important for practical policy, because governments are likely to want to use the debt to 

SRAS 

SRAD 

SRAD 

yt 

t 



 27 

smooth out the effects of temporary business cycle shocks, and thus to make temporary 

changes to the debt itself. The study of permanent changes nevertheless remains important to 

the extent that governments may not always be able to credibly commit to making only 

temporary changes. In practice, changes in debt have often been very long-lasting. 

 

4. Fiscal Policy When Monetary Policy is Governed by a Money-Supply Rule 

In this section, we replace the Taylor Rule by a rule which makes the monetary growth 

rate the exogenous instrument of monetary policy: 

 1t t tm m   . 

Presently we will assume that t = 0 in all periods, i.e. that the money supply is pegged at a 

constant value; but to show how t enters the equations we begin with the more general case. 

The economy’s laws of motion under this regime are still given by (31) and (32). 

However the Taylor Rule, (33), is replaced by: 

 1 1 1 1
ˆ ˆ ˆ( )t t R t t t ti i r y y          . (37) 

This is just the first-differenced version of the LM equation, (26). We now note that (31), 

(32) and (37) constitute a system of three simultaneous first-order difference equations, i.e. a 

third-order system. The variables in this system, (t, yt, ˆ
ti ), all appear at first sight to be non-

predetermined, as was the case under a Taylor Rule. However, although this is true of each 

variable individually, it is not true of them jointly. To see this, add pt-1 to both sides of (26) 

and rearrange to obtain: 

 1
1

ˆ
t t R t t ty r i m p 

    . (38) 

As of period t, the RHS of (38) is clearly predetermined, and thus a linear combination of (t, 

yt, ˆ
ti ) is predetermined. This means there are only two degrees of freedom in the way the 

state variables can ‘jump’ if an unexpected shock occurs. Our third-order system is hence 

equivalent to a system with one predetermined and two non-predetermined state variables. 
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The fact that there is now a predetermined variable means that the economy will not in 

general jump straight to its new steady state when there is a permanent shock. This already 

suggests that, under a money supply rule, the short-run impact of an increase in government 

debt is unlikely to be the same as the long-run impact. More precisely, we can show that: 

Proposition 5. A permanent government debt increase under a money supply rule. 

If the money supply is held constant, then: (i) a determinate, bounded, perfect-foresight 

solution exists with no additional parameter restrictions; (ii) a permanent debt increase 

unambiguously raises short-run output, relative both to its new steady-state value and to its 

original steady-state value. 

To prove part (i), we need to demonstrate that, under a regime of a constant money 

supply ( ˆt  = 0 for all t), of the three eigenvalues of the system (31), (32) and (37), two lie 

outside the unit circle and one lies inside. Moreover we can show that the stable eigenvalue 

lies in the interval (0,1). Hence, following a shock, the economy converges gradually and 

monotonically to its new steady state. To prove part (ii), we need to show that the multiplier 

 1( )d y y

db




, (39) 

giving the impact effect of a permanent increase in debt on output relative to its effect on new 

steady-state output, is positive. Recall from Proposition 1 that, in the case of the Taylor Rule, 

this multiplier equals zero. In the present case we can show that it is positive with only mild 

extra conditions as sufficient conditions (in particular, that  be close to zero). Under this 

more traditional monetary policy regime, therefore, a permanent debt increase 

unambiguously causes a boom.
10

 

An illustration of this is provided in Figure 5. Here we chart the outcomes of a 

numerical simulation identical to that used for Figure 1, except that a constant money supply 

replaces the Taylor Rule. It is interesting to note that the nominal interest rate ‘overshoots’ its 

new steady-state level. This is in contrast to what happens under the Taylor Rule with inertia 

(Figure 2). Despite this overshoot, the short-run effect on output is a boom and not a slump. 

                                                 
10

 The proofs of the results reported in this paragraph are relatively heavy on algebra. For reasons of length we 

omit them from the paper but they are available on request. The proof furthermore shows that dy1/db > 0, i.e. 

that output in the impact period rises also relative to its original value. 
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The reason for this is that the real interest rate actually falls on impact, due to the rise in the 

inflation rate, as can also be seen in the figure. Hence it is not generally true that a permanent 

debt increase will only boost short-run output if the upward adjustment of the nominal 

interest rate is delayed, contrary to the impression which might be gained from section 3.2. 

Rather, the crucial requirement is that the upward adjustment of the real interest rate should 

be delayed. 

Why does the constant money supply rule delay the upward adjustment of the real 

interest rate whereas the basic Taylor Rule does not? A key point about any Taylor Rule is 

that it allows the money supply to ‘jump’. This is because, as is well known, the nominal 

interest rate and the money stock are linked through the money demand function, so that the 

authorities cannot choose arbitrary paths for both variables: if the nominal interest rate is 

determined by the Taylor Rule, the money supply must become endogenous. We know that a 

permanent increase in government debt must increase the real and nominal interest rates in 

the new zero-inflation steady state, and that the higher nominal interest rate must reduce the 

new steady-state equilibrium level of real money balances. Under the Taylor Rule, this lower 

level of real balances can be achieved instantly by a downward jump in the money supply 

with no change in the price level; but under a constant money supply rule, it can only be 

achieved by an increase in the price level.
 
However, with staggered price-setting, such an 

increase in the price level takes time. By contrast, the Taylor Rule ‘bypasses’ the price 

stickiness in the model by allowing the money supply to jump.
11

  

In the case of a temporary increase in government debt, the difference in outcomes 

under a Taylor Rule and a money supply rule is much less marked. Figure 6 is the counterpart 

of Figure 4 and shows the effects of a debt increase which lasts for exactly four periods, but 

now assuming that the money supply is held constant. All other parameter values in this 

simulation are the same. The responses of output, inflation, the nominal interest rate and real 

money balances are notably similar. 

 

                                                 
11

 A comparison of Figures 1 and 5 clearly shows the different speeds of adjustment of both nominal and real 

money balances under the two policies. 
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 6. Conclusions 

Our general conclusion is that the effectiveness of government debt for demand 

management is highly sensitive to the monetary policy rule. The standard way to model 

monetary policy in recent years has been to assume a Taylor Rule. The most basic type of 

Taylor Rule, however, completely neutralises the ability of a permanent increase in debt to 

raise short-run output. Government debt can be used effectively within a Taylor Rule regime, 

but care needs to be exercised over how this is done: either a temporary peg of the nominal 

interest rate is needed, or some inertia in the Taylor Rule; alternatively, the increase in debt 

should be chosen to be temporary rather than permanent. If, on the other hand, the monetary 

policy rule is to set an exogenous path for the money supply, then a permanent increase in 

debt will increase short-run output without additional qualifications. 

These findings are particularly relevant in a period of history such as the recent one. 

During the ‘credit crunch’ recession of 2008-9, many governments ran large budget deficits 

and dramatically increased government debt levels in a deliberate attempt to provide ‘fiscal 

stimulus’ to counteract the recession. Such a concerted attempt to use fiscal policy for 

demand management had not been seen since the 1970s. Our analysis implies that such 

policies would have been futile if central banks had not cooperated in keeping nominal 

interest rates low (at almost zero, in fact) while the fiscal stimulus was in progress. 

In this paper we have focused on the ‘positive’ rather than the ‘normative’ effects of 

government debt. Being a DGE model, our model also has implications for the effects of debt 

on welfare, since the impact on the underlying lifetime utility levels of agents can be 

investigated. However in an overlapping-generations model it is less straightforward to look 

at welfare than in a so-called ‘representative agent’ model, because different generations are 

affected differently by policy. A social welfare function is needed in order to assess optimal 

policy, and this raises subtle issues which take us beyond our present scope. A careful study 

of the welfare implications of the use of government debt for demand management we 

therefore leave for future work. 

 



Appendix A  The Aggregate Demand Function for Labour 

By inverting firm i’s production function we may write its demand for labour as a 

function of its output: 1/
it itL Y  . Yit is demand-determined and given by (12). If firm i last 

changed its price j periods ago, then Pit = Xt-j, so that firm i’s demand for labour is: 

 ( / )it t j t tL X P Y . (A1) 

The proportion of firms who last changed their price j periods ago is (1-)j
. Summing 

across j = 0,...,, we then obtain aggregate labour demand as: 

 / 1/
0(1 ) ( / )j

t j t j t tL X P Y    
    . (A2) 

If we define / /
0[ (1 ) ]j

t j t jP X       
     this can also be written in the form: 

 1/ /( / )t t t tL Y P P   , (A3) 

which yields the LHS of (19). 

 

Appendix B  The Underlying Loglinearised Equations 

 and the Derivation of the Partially-Reduced Form of the Model 

 1( ) (1 )t t t tp p p x     , (A4) 

 1 1 1
1(1 ) (1 )(1 ) (1 / ) [ (1/ 1)( )]t R t R R t t tx r x r r w p y        
           ,

 (A5) 

 1( 1)t t t tw p y z      , (A6) 

 t t ty c g  , (A7) 

 t t t tz m p c   , (A8) 

 1ˆ
t R tz r i  , (A9) 
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 1 ˆ(1 ) (1 ) (1 1/ )t R t R t R ta r a r r r v         , (A10) 

 1
ˆ

t̂ t tr i    , (A11) 

 1t t tp p   , (A12) 

 ( 1) ( 1)t t t ta c l z         , (A13) 

 1
t tl y  , (A14) 

 1t t t tv m p b    , (A15) 

 1 1 1
1 1(1 ) (1 )[(1 ) ]t t R R t t t tg r r b b m m     
 

         . (A16) 

Government spending and taxation are zero in the reference steady state, so their log-

deviations are not well defined. Hence we define gt  Gt/YR, t  Tt/YR. 

To derive the NKPC equation, (24), we first use (A6) to eliminate wt from (A5): 

 1
1 (1 )t R tx r x
    

 1 1 1(1 )[ (1 / ) ( / 1) (1 / ) ]R t t tr p y z                       . (A17) 

Next, we ‘quasi-difference’ the price-index equation, (A4), to the same pattern as the LHS of 

(A17). That is, we advance (A4) by one period, multiply through the original equation by 

1(1 )Rr   and then subtract the latter from the former. This gives: 

 1 1
1 1 1(1 ) (1 ) (1 )[ (1 ) ]t R t t R t t R tp r p p r p x r x    
           . (A18) 

(A17) can now be used to eliminate the x variables from (A18). The p variables can then be 

grouped such that they can be replaced by  variables, which yields (24). 

To derive the IS equation, (25), we substitute (A11), (A13) and (A14) into (A10). Then 

we use (A7), with gt set to zero, to replace ct by yt. 
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Appendix C  The Algebra of the Steady-State Solution 

To solve for the steady state we use the system (31) and (32). This is a slightly more 

reduced form of the system (24)-(27). Its derivation is described in the main text. Setting 

variables to time-invariant values in (31) and (32), and also setting  = 0, we obtain a pair of 

equations in (y, î ). Solving these then yields the steady-state solutions (29) and (30). 

The common denominator of (29) and (30), namely the bracketed term {.}, is at first 

sight of indeterminate sign. Here we show that the sign is in fact negative. Using the 

definitions of the composite parameters already introduced, we may re-express two of the 

terms which appear inside {.} as follows: 

 
(1 )(1 1/ )( / 1)

(1 ) 1 [ (1 ) 1]
1 (1 )(1 1/ )

R Rr r
   

  
 

  
     

  
, (A19) 

 
2

1 1(1 )(1 1/ ) / 1
[ (1 ) 1] [ (1 ) 1]

1 (1 )(1 1/ )
R R R Rr r r r

   
   

 

   
     

  
. (A20) 

Recall that 0 < , < 1 and , > 1. Moreover in the main text we saw that 1+rR > 1/ when q 

< 1. Hence both the expressions in (A19) and (A20) are negative. It then follows that the 

common denominator, {.}, in (29) and (30) is also negative. 

 

Appendix D  Determinacy of Equilibrium Under a Taylor Rule 

The characteristic equation of the system (31)-(33) can be computed as: 

 2 0a b c    , (A21) 

where  denotes an eigenvalue, a = 1 and 

  1(1 ) 1 [( / 1) / ]R Rb r r                    
 

, 

  1(1 ) [1 ( / 1) ( / ) ][ (1 ) ] [ (1 ) / ]R R R R Rc r r r r r                       . 

Necessary and sufficient conditions for both eigenvalues to lie outside the unit circle 

are: 
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 0
a b c

a b c

 


 
, (A22) 

 0
c a

a b c




 
. (A23) 

First, consider the sign of the common denominator a-b+c. By manipulation of the 

terms for b and c, we can obtain: 

 (2 )[1 (1 ) ]R Ra b c r r         

   1(1 ) [1 (1 )][( / 1) / ]R R Rr r r                    

 1[( / 1) / 1/ ]R Rr r        . (A24) 

We now claim that a-b+c > 0 for  sufficiently close to zero. As   0, 1+rR  -1
, as was 

shown in the main text (see the discussion of (23)). This implies that   0 (from the 

definition of ). Hence the term on the first line of (A24)  (1+-1
)2, which is positive. 

Concerning the term on the second line of (A24), note that - is always positive (from the 

definitions of  and ). The term {.} at first sight has an ambiguous sign. However, as   0, 

 remains strictly positive, while   0 (see the definitions of  and ). Therefore {.} is 

unambiguously positive for  sufficiently close to zero. Concerning the term on the third line 

of (A24), we note that it is always positive. This set of observations proves our claim. 

Second, consider the sign of c-a, the numerator of (A23). We can write c-a as: 

  1(1 ) (1 ) (1 )R R Rc a r r r         

  1(1 )[( / 1) / ]R Rr r              

 1[( / 1) / 1/ ]R Rr r        . (A25) 

We now claim that c-a > 0 for  sufficiently close to zero. As   0, 1+rR  -1
, as was 

shown in the main text (see the discussion of (23)). This implies that   0 (from the 

definition of ). Hence the term on the first line of (A25)  -1
(1-), which is positive. The 

term on the second line of (A25) at first sight has an ambiguous sign. However, as   0,  

remains strictly positive, while   0 (see the definitions of  and ). Therefore {.} is 
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unambiguously positive for  sufficiently close to zero. Concerning the term on the third line 

of (A25), we note that it is always positive. This set of observations proves our claim. 

From the foregoing it follows that, for  sufficiently close to zero, condition (A23) is 

satisfied with no further parameter restrictions. It also follows that, for  sufficiently close to 

zero, condition (A22) will be satisfied if and only if a+b+c > 0. Now, eliminating (,,) 

using their definitions, with some manipulation we can express a+b+c as: 

 1 1 2 1[1 (1 )(1 1/ )] (1 ) [ (1 ) 1]R R Ra b c r r r               

 
2

2 2

(1 ) 11 (1 )(1 1/ )(1 / )

1 (1 )(1 1/ ) / 1(1 ) 1 (1 ) 1

R R R

RR R

r r r

rr r


   


     

    
           

. (A26) 

a+b+c is clearly positive if and only if the term on the second line is positive. Thus, for  

sufficiently small, the necessary and sufficient condition for determinacy is that: 

 
2

2 2

(1 ) 11 (1 )(1 1/ )(1 / )

1 (1 )(1 1/ ) / 1(1 ) 1 (1 ) 1

R R R

RR R

r r r

rr r


   


     

   
 

      
. (A27) 

As the probability of price non-adjustment, , increases,  falls and so the critical value of  

for determinacy increases. Condition (A27) is sketched in the diagram in the main text which 

illustrates Proposition 2. 

 

Appendix E  Equations and Calibration of the Non-Linear Model 

The non-linear model that we use in the simulations is described by the following 

equations. (Some symbols here have different definitions from those in the main text. This is 

noted where relevant.) 

Household sector 

The household sector is described by the aggregation of the first-order conditions of the 

household’s problem, that is 

 1/ ( ) (1 ) (1 ) /t t t t t tM PC Z i i       (4) 
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 1 1/ (1 )t t t tW P Z L       (5) 

 1 1 1( / ) (1 ) ( / ) (1 )(1 )(1/ 1)t t t t t t t tC Z L r C Z L q q V          
  

        
 

. (6) 

 1 1/ /     t t t t t t tV M P B m B . (20) 

where mt  Mt/Pt and t  Pt/Pt-1. 

Prices 

The firm’s price setting equation (14) needs to be rearranged. It is easy to show that 

equation (14) 

 

1/ / 1
0 ,

1 /

1
0 ,

1

1

  

  




 

 

 
    

 

 
   

 


  

j
j t t j t j t j t j

t j
j t t j t j t j

Y W P

X
Y P

. (14) 

can be written in a recursive formulation as 

 1 /

1

   

 

  


t
t

t

x . (A28) 

 1/ /
1 1

1

1

  
  


  


t t t t t

t

Y w
r

. (A29) 

 1
1 1

1


    


t t t t

t

Y
r

. (A30) 

where xt  Xt/Pt and wt  Wt/Pt. 

The evolution of the price index can also be written in a recursive formulation as 

 
1/(1 )

1
0

(1 )


 


 


    
j

t t jP X dj . (15) 

1/(1 )
1 1

1 (1 )


  


 


   
 t t tP P X   1 11 (1 )     t tx          (A31) 

Aggregate labour demand 

Aggregate labour demand is given by 

 

/ /

, ,1 1 1 11/ 1/ 1/ 1/
, ,0 0 0 0

   

   
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   

          
   

i t i t
t i t i t t t t t

t t

P P
L L di Y di Y di Y di Y s

P P
 (A32) 
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where 

/

,1

0

i t
t

t

P
s di

P

 
 

   
 

 is an index of the price dispersion in period t. Schmitt-Grohé and 

Uribe (2007) show that st is bounded below by one, so that st represents the resource costs 

due to relative price dispersion under the Calvo mechanism. Indeed, the higher st, the more 

labour is needed to produce a given level of output. Note that st does not affect the real 

variables up to the first order if inflation is zero in steady state (see Ascari, 2004). The 

dynamics of st can be written in a recursive formulation as 

    
/ /

,1 / / /
1 10

1 1

   

        

 


 

   
          

   

i t t
t t t t t t

t t

P X
s di s x s

P P
. (A33) 

Government sector 

Fiscal policy is described by (17), that using mt  Mt/Pt, can be written as 

 1
1 1(1 ) /
 

      t t t t t t t tG T r B B m m . (A34) 

while monetary policy is described by the following inflation targeting Taylor Rule 

 1




 
   

 

i t
ti e . (A35) 

where   is the inflation target of the central bank.  

General equilibrium conditions 

To close the model, we just need to add the goods market equilibrium condition (18) 

 t t tY C G  , (18) 

the definition of the auxiliary variable Z 

 /t t tZ m C , (A36) 

the relationship between the nominal and the real interest rate, 

 
1

1
1 t

t
t

i
r

 


  , (A37) 

and the definition of the rate of growth of money supply, i.e. t, 
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1

t t
t

t

m

m






 . (A38) 

The model is then composed of the following 16 equations: (4)-(6), (18), (20), (A28)-

(A38), that describe the dynamics of the following 16 variables: Ct, Zt, Lt, Vt, rt, it, wt, xt, t, 

t, Yt, t, st, mt, Tt, t. 

It is immediate to note that there is only one state variable: st. Moreover its steady state 

depends just on the steady state value of the inflation rate, since 

 
 

 
1 (1 )

/

/ /

1
1

1 1

1 1


  

 

   




 

 


 



 
  

   
 

x
s . (A39) 

Hence, an immediate jump to the new steady state where the value of   does not change is 

compatible with the inertial adjustment of st implied by (A33), since st simply does not move 

at all. 

Calibration 

q = 1-1/120, such that the expected working life is 30 years, as in Leith and Wren-Lewis 

(2006).  = 0.75,  = 1,  = 10,  = (0.96)
0.25

,  = 0.01,  = 2,  = 1.5, while  is calibrated 

such that Y is normalized to 1 in a zero-inflation steady state where 0B G  . In the policy 

experiments,   = 1, 0B G   in the initial steady state; then B  increases unexpectedly to 

0.01. 

 

Appendix F  Signs of the Coefficients in Equations (35) and (36) 

(i) 1-. From what was noted in the main text, as   0,   0. This is sufficient to ensure 

1- > 0, but we also need to check that  remains in the range which ensures determinacy. 

From (A27), the critical value above which  must lie for determinacy tends to 1 as   0. 

Hence for any given  > 1, for  sufficiently close to 0, both 1- > 0 and determinacy hold. 

(ii) (1+rR)-. From what was noted in the main text, as q  1, (1+rR)-  1. (1+rR)- 

is therefore positive for q sufficiently close to 1. 
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(iii) 1 (1 )R Rr r      . From what was noted in the main text, as   0, ,  0 while 

,rR tend to strictly positive, finite values. Hence 1 (1 )R Rr r       is positive for  

sufficiently close to 0. 
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 Figure 1 Figure 2 

 Effects of a permanent debt increase Effects of a permanent debt increase 

 under the basic Taylor Rule under a Taylor Rule with a temporary  

  (8-period) nominal interest-rate peg  
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 Figure 3 Figure 4 

 Effects of a permanent debt increase Effects of a temporary (4-period) 

 under the Taylor Rule with inertia debt increase under the basic 

  Taylor Rule 
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 Figure 5 Figure 6 

 Effects of a permanent debt increase Effects of a temporary (4-period) 

 under a constant money supply debt increase under a constant 

  money supply 
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