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1 Introdu
tionThe de
ision about whether or not to 
arry out more resear
h to redu
e theun
ertainty surrounding the estimate of 
ost-e�e
tiveness asso
iated with anew health 
are te
hnology has generated a voluminous literature (examplesin
lude Claxton (1999), Chalkidou et al. (2007) and Gri�n et al. (2010)).Key to su
h de
isions are the estimates of the value of waiting for new infor-mation, whi
h must balan
e the expe
ted bene�t asso
iated with the redu
-tion in un
ertainty that new information provides with the 
osts of obtainingthat information: sampling, simulation or resear
h 
osts themselves, togetherwith any expe
ted bene�ts foregone if a
tion is delayed. Central in this litera-ture is the idea that, if the de
ision to adopt or not adopt the new te
hnology
annot be deferred, it should be separated from the de
ision about whetherto 
ontinue to resear
h (Claxton, 1999, pages 347 - 350). However, assum-ing that the de
ision 
annot be deferred implies a `now-or-never' view of theadoption de
ision (Dixit and Pindy
k, 1995); to what extent do de
ision rules
hange if the de
ision-maker has the option to delay the de
ision and 
arryout further resear
h? More than ten years ago, Palmer and Smith (2000)re
ognised that su
h a s
enario, 
hara
terised as it is by un
ertainty overfuture states of the world and �exibility over the timing of a de
ision withpotential irreversibilities, �ts well within a real option framework. To date,however, there has been limited appli
ation of the real option approa
h tohealth te
hnology assessment (ex
eptions being Pertile (2009a,b)) and littleappli
ation elsewhere in the health e
onomi
s literature (examples in
ludeDri�eld and Smith (2007) and Levaggi and Moretto (2008)).Su
h limited uptake 
ould be due, in part at least, to 
riti
ism of thesuitability of sto
hasti
 pro
esses used by some real option models (su
h asgeometri
 Brownian motion) for use in e
onomi
 evaluation, and the funda-mental di�eren
es between de
isions whi
h are based upon the `passive' a
-
umulation of information (su
h as the evolution of sto
k market pri
es) andthose in whi
h de
ision-makers must de
ide whether or not more resear
h,su
h as additional 
lini
al trials, should be 
ommissioned (E
kermann andWillan, 2008). In this paper, we argue that these problems 
an, to some ex-tent, be over
ome by adopting the framework of a Bayesian de
ision-makerdeveloping optimal poli
y rules under sequential sampling that was devel-oped in the mathemati
al statisti
s literature by Cherno� and 
ollaboratorsduring the 1960s and 1970s (Cherno� and Ray, 1965; Cherno�, 1961, 1967,1972) and whi
h has re
ently been extended and linked to the real optionliterature and the literature on the value of information (Lai and Lim, 2005;
2



Chi
k and Gans, 2009).1Cherno� showed how a sequential de
ision problem to test for the meanof a normal random variable in the presen
e of sampling 
osts 
ould be re
astin 
ontinuous time and modelled as a free boundary problem using a Brow-nian motion with drift as the sto
hasti
 pro
ess. Approximate solutions tothe problem 
ould then be obtained in (sample size × posterior estimate ofmean) spa
e as thresholds whi
h separate the region in whi
h it is optimal to
ontinue sampling from the regions in whi
h the null hypothesis should be re-je
ted in favour of the appropriate alternative. Cherno�'s approa
h involvessolving a partial di�erential equation derived using Bellman's prin
iple of op-timality: `[A℄n optimal poli
y has the property that whatever the initial stateand initial de
ision are, the remaining de
isions must 
onstitute an optimalpoli
y with regard to the state resulting from the �rst de
ision' (Bellman,1957). Put another way, a de
ision-maker who, today, fa
es the 
hoi
e aboutwhether to adopt a health 
are te
hnology based upon existing informationor to 
ommission more resear
h, must make their de
ision a

ounting for thefa
t that they should a
t optimally in all possible future states of the world;the value of one's `options' today must in
orporate valuation of one's optimalbehaviour in the future.The aim of the present paper is to bridge the gap that exists betweenthe absen
e of key e
onomi
 variables from standard statisti
al approa
hesto HTA and the absen
e of important statisti
al dimensions from the realoption approa
h to HTA, in situations when an adoption de
ision 
an be de-ferred. We interpret the health te
hnology assessment as a proje
t with un-
ertain returns, whi
h depend on 
lini
al (e�e
tiveness) and e
onomi
 (
ost)variables, in
luding the 
osts of treatment, 
arrying out resear
h, sunk in-vestments and delaying adoption. We apply the model in a 
ase study of thee
onomi
 evaluation of Drug Eluting Stents and 
ompare our results with twoalternative approa
hes: a traditional, inferential, statisti
al approa
h and the`irrelevan
e of inferen
e' approa
h (Claxton, 1999). Our results highlight theimportan
e of 
onsidering the size of the population to be treated shouldadoption take pla
e and the degree of (im)patien
e of the de
ision maker,whi
h are typi
ally ignored in the statisti
al approa
h. They also de�ne adynami
ally optimal poli
y for the abandonment of resear
h, whi
h is typi-
ally overlooked in the literature.Se
tion 2 outlines the theory behind sequential sampling for an unknownpopulation mean, se
tion 3 presents our 
ase study and se
tion 4 dis
usses1Although Chi
k and Gans (2009) fo
us on simulation sele
tion problems, their methodsare appli
able also to problems involving sampling, based as they are on the work ofCherno�. 3



the results. Se
tion 5 
on
ludes.2 Optimal rules under sequential samplingOur model is based on that proposed by Chi
k and Gans (2009) for 
omparinga single simulation system to a known alternative. A risk-neutral de
ision-maker (DM) is 
arrying out a proje
t to investigate whether to adopt a newhealth 
are te
hnology whi
h, in the 
ase of adoption, will provide bene�t to
P patients su
h that, if the de
ision is made to adopt the te
hnology, P isthe number of patients that the DM will 
ommit to treating in the interval
(0, s̄), where s̄ is the time at whi
h the DM is able to revise his de
ision.2 Wede�ne the proje
t as in
luding both the pro
ess of resear
h and the eventualde
ision (whether to adopt the te
hnology or to abandon resear
h). The DMfa
es a sunk investment 
ost I ≥ 0 if the te
hnology is adopted.Let the impa
t of the te
hnology at the individual level be expressed interms of net in
remental monetary bene�t (NIMB) W :

W = λ(E1 − E0) − (C1 − C0), (1)where {E1, C1} and {E0, C0} are pairs of random variables denoting the e�e
-tiveness and 
osts of the new and existing (base) te
hnology, respe
tively, and
λ is the a

eptan
e threshold for the In
remental Cost-E�e
tiveness Ratio(ICER), su
h that W > 0 
orresponds to ICER < λ.3 The DM assumes that
W ∼ N(µW , σ2

W ), where µW is unknown and σ2

W is known. Let X = PWbe the random variable representing the total NIMB asso
iated with adopt-ing the te
hnology.4 Given the assumptions on W , the distribution of X isGaussian with unknown mean µX = PµW and known varian
e σ2

X = P 2σ2

W .2The size of P depends on a number of fa
tors, in
luding s̄, the prevalen
e and in-
iden
e of the disease requiring treatment, the nature of the te
hnology (the de
ision toreverse the use of a te
hnology 
an be made more easily for some te
hnologies than forothers) and the 
hara
teristi
s of the de
ision-maker. For example, the DM 
ould be theauthority responsible for the de
ision to admit the use of the new te
hnology in a parti
-ular jurisdi
tion, where the jurisdi
tion 
ould be de�ned at a regional level or a nationalone.3Consistent with our dynami
 approa
h, unlike in standard 
ost-e�e
tiveness analyses,the per patient 
omponent of I does not enter the measure of NIMB be
ause, as a sunk
ost, it is in
urred the time of adoption.4We assume an exogenous `arrival pro
ess' of patients presenting for treatment, su
hthat the rate of arrival equals the rate at whi
h patients are treated (with the base orthe new te
hnology), implying that P , the instantaneous sto
k of patients to be treated,is 
onstant over time. Stri
tly speaking, bene�ts upon adoption should be dis
ounteda

ording to ∫ s̄

0
pWe−ρtds, where s̄ is the time at whi
h the adoption de
ision 
an berevised and ∫ s̄

0
pds = P . For the sake of simpli
ity, we ignore this dis
ounting, whi
h is4



The DM has prior beliefs about µX , represented by a Gaussian randomvariable X with expe
ted value µX ,0 and varian
e σ2

X ,0. Assume the DM
an observe sequentially drawn, independent and identi
ally distributed re-alisations of W , su
h that Xi = PWi, i = 1, . . . , N , where N 
ould fea-sibly equal in�nity, by paying a 
onstant, per-realisation, resear
h 
ost c.We interpret this pro
ess as the DM 
arrying out, or monitoring the re-sults of, resear
h (su
h as a trial). After observing ea
h realisation, theDM updates his beliefs a

ording to Bayes' theorem. The posterior distri-bution, after observing m realisations, will therefore also be Gaussian with
E[Xm] = (µX ,0t0 +

∑m
i=1

Xi)/(t0 + m) and var(Xm) = σ2

X/(t0 + m), where
t0 = σ2

X/σ2

0
. We de�ne ea
h realisation of W as a stage of the proje
t, im-mediately after whi
h point the DM must de
ide to take one of the followinga
tions: to adopt the te
hnology immediately, to pay for another observa-tion (to 
ontinue with resear
h) or to abandon resear
h. Paying for anotherobservation redu
es the DM's un
ertainty 
on
erning the value of µX by re-du
ing var(Xi), and so redu
es the 
han
es that the DM makes an in
orre
tde
ision, but it 
osts c and delays the payo� (of adoption or abandonment).In 
hoosing the optimal poli
y rule, the DM's obje
tive is to maximise totalnet in
remental monetary bene�t minus proje
t 
osts, whi
h 
omprise theresear
h 
osts c, the sunk 
ost I that is in
urred if adoption takes pla
e, anddis
ounting 
osts.De�ne Ym = µX ,0t0 +

∑m
i=1

Xi and t = t0 + m. The DM's updatingpro
ess for E[Xm] may be re
ast in 
ontinuous time (m be
omes 
ontinuousand therefore so does t) in whi
h var(Xt) = σ2

X/t follows a deterministi
 pathand Yt follows a random walk with drift µX and varian
e σ2

X :
dYt = µXdt + σXdVt, (2)where dVt is the in
rement of a Wiener pro
ess. The expe
ted value of theDM's posterior beliefs 
on
erning µX at any t is given by E[Xt] = yt/t andvar(Xt) = σ2

X/t, where yt is the realisation of Yt.Let the 
ontinuous time expe
ted dis
ounted reward of the proje
t bede�ned by the value fun
tion B(y, t). The DM must obtain the optimalpoli
y rule π∗ whi
h, in (t, y) spa
e, de�nes the DM's optimal a
tions fromthe set ut ∈ {1, 2, 3}, where 1 means `adopt immediately', 2 `pay for anotherobservation' (
ontinue to resear
h) and 3 `abandon resear
h'. The Bellmanequation is:
B(yt, t) = max

{

(yt/t) − I, − cdt +
1

1 + ρdt
E[B( yt + dy, t + dt )|yt, t], 0

}

, (3)
onsistent with the 
ommon pra
ti
e in HTA as long as s̄ is less than one year. Extendingthe model to a

ount for dis
ounting would be straightforward.5



for all t and y, where ρ is the dis
ount fa
tor. The �rst term in bra
kets onthe right hand side of (3) is the expe
ted value of the DM's posterior beliefsabout µX , the expe
ted total NIMB if the DM adopts the te
hnology, minusthe sunk 
ost I, the se
ond is the 
ontinuation value - the value to the DMof 
ontinuing to 
arry out resear
h - and the third is the value asso
iatedwith abandoning resear
h and not adopting the te
hnology. The problem isan optimal stopping problem with a free boundary whose solutions are twothresholds for the posterior mean de�ning three regions su
h that, above theupper threshold, immediate adoption of the te
hnology is optimal, below thelower threshold, stopping resear
h is optimal and, in the `
ontinuation region'
C lying between the two thresholds, 
ontinuing to resear
h - that is, payingfor another draw from W - is optimal.Given the Bellman equation, in C, the following equation must hold:

B(yt, t) = −cdt +
1

1 + ρdt
E [B( yt + dy, t + dt )| yt, t] , (4)where:

E [B( yt + dy, t + dt )| yt, t] = B(yt, t) + E [dB] , (5)and, using Ito's Lemma:
dB = Btdt + Bydyt + (1/2)Byy(dyt)

2, (6)where dyt is de�ned by Eq. (2) (yt is the realisation of Yt). Through sub-stitutions we 
an obtain the partial di�erential equation satis�ed by B in
C:5

0 = −c − ρB + Bt + By

y

t
+

σ2

X

2
Byy. (7)The value-mat
hing and smooth pasting 
onditions whi
h de�ne the upperand lower thresholds are:

B(y, t) = D(y, t) = max{0, (y/t)− I} on ∂C; (8)
By(y, t) = Dy(y, t) on ∂C, (9)where ∂C is the free boundary of C and D is the value of B in the adoptionand abandonment regions. The obje
tive of the problem is to solve for B,the proje
t's maximum expe
ted dis
ounted reward, and the free boundaries,whi
h together are de�ned by (7), (8) and (9).5We substitute (6) into (5) and (5) into (4). Applying the expe
tation operator, notingthat dV 2

t = dt and sending dt to 0, gives (7).6



To date there exists no 
losed form solution to this problem. For our 
asestudy we use �nite di�eren
e methods (Dixit and Pindy
k (1994, pages 319-339)) to obtain a numeri
al solution to the PDE and to derive the boundary
onditions.3 Case studyIn this se
tion, we apply the model of se
tion 2 to the e
onomi
 evaluation ofdrug eluting stents (DES) versus bare metal stents (BMS) for an unsele
tedpopulation, using data from a published study (the `SIRIUS trial', reportedin Cohen et al. (2004)). We do so for the purposes of illustration only; the
ase study is not intended to be a 
ontribution to the literature on whetheror not DES should be adopted by health 
are systems.Stents may be employed in per
utaneous 
oronary intervention (PCI),with BMS the base te
hnology and DES the new te
hnology. DES waslaun
hed some years ago with the promise of a potential redu
tion in therates of angiographi
 and 
lini
al restenosis when 
ompared with BMS, albeitat a higher 
ost, and hen
e its value in the 
urrent health 
are environmenthas been questioned. The 
ost-utility analysis asks whether the bene�ts ofthe te
hnology to the patient justify this higher 
ost.6 Between Februaryand August 2001, 1058 patients undergoing PCI were randomly assigned tore
eive either a DES7 or a BMS. The trial reported the average in
remental
ost asso
iated with using DES to be $309 per patient and 
al
ulated thein
remental 
ost-e�e
tiveness ratio to be $27540 per QALY gained. It 
on-
luded that sirolimus-eluting stents `may be viewed as reasonably attra
tive'from the perspe
tive of the U.S. health 
are system (Cohen et al., 2004).To apply the model of se
tion 2 to the 
ase study, we assume a nonin-formative prior for the DM (that is, we assume that σ2

X ,0 = ∞ and so tbe
omes the sample size). We use the information on the point estimates ofin
remental 
ost and the ICER to obtain a point estimate of mean NIMBequal to $252 and we 
al
ulate the standard deviation of individual NIMBto be σW = $17538.8 Sin
e our prior is noninformative, this point estimateis equivalent to the DM's posterior estimate of expe
ted NIMB. Sin
e we6Other studies have 
on
entrated on the adoption of DES for high risk populations,where the bene�ts of the te
hnology are likely to be greater. Most of these studies indi
ate
ost-e�e
tiveness of DES for these sele
ted patients.7The type of DES used in the trial is Sirolimus.8We estimate in
remental e�e
tiveness using a �rst order Taylor series approximationfor the ICER and we use Cohen et al.'s result that Pr(ICER < $50000) = 0.632 to inferthat Pr(E[NIMB] > 0) = 0.632. Under the DM's assumption that NIMB has a Gaussiandistribution, this yields σW = $17538. 7



Parameter De�nition Sour
e Value1. σX ,0 Standard deviation ofprior beliefs on µX

Assumption ∞2. c Marginal 
ost of sampling Assumption $1003. C1 − C0 In
remental 
ost Cohen et al. (2004) $3094. E1 − E0 In
remental e�e
tiveness First order approximationof ICER in Cohen et al.(2004) 0.01122 QALY5. λ Shadow value of e�e
tive-ness Cohen et al. (2004) $500006. σW Population standard devi-ation of individual NIMB Cohen et al. (2004) resultfor ICER $175387. E[NIMB℄ Estimate of expe
ted netin
remental monetarybene�t Rows 3, 4 and 5 of this ta-ble $2528. ρ Dis
ount rate (annual) Assumption 0.039. - Rate of arrival of observa-tions (annual) Cohen et al. (2004) 90410. P Number of patients thatwill be treated beforeadoption de
ision 
an berevised Assumption 100011. I `Sunk 
ost' asso
iatedwith adoption of te
hnol-ogy Assumption 012. T Maximum sample size Assumption 2000Table 1: Parameter values used for the 
ase study (baseline 
ase) of se
tion 3.are dealing with a medi
al devi
e, we assume that the irreversible invest-ment 
ost may be 
onsidered negligible and so we set I equal to zero. Weadopt the standpoint of an authority responsible for the de
ision to introdu
eDES for the treatment of unsele
ted patients undergoing PCI and, in the ab-sen
e of information on the value of P , we run our appli
ation assuming that
P = 1000.In se
tion 2, we impli
itly assume that the number of patients allo
atedto ea
h arm of the trial is the same, allowing us to interpret ea
h pair ofobservations as equating to one realisation. In the SIRIUS trial the armsare slightly unbalan
ed, although the split is small: 533 for DES versus
522 for BMS. In order to approximate this situation, we set the number of8
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Figure 1: Optimal thresholds and adoption, 
ontinuation and abandonment regions(range for t restri
ted to (0, 1000)) for the baseline model.observations at the level su
h that the varian
e of the sample mean with 533individuals in the DES group and 522 individuals in the base group equals thevarian
e of a hypotheti
al situation in whi
h the numbers in ea
h group areequal and and the DM's prior is noninformative.9 This implies an equivalentsample size of 527.Consistent with the model in se
tion 2, a dis
ount rate a

ounts for the
ost of foregone treatments when the de
ision is postponed. We set ρ = 0.03(an annual rate). Sin
e the unit of `time' in our problem 
orresponds to thetime needed to take one observation in ea
h arm of the trial, the dis
ountrate must be adjusted for 
onsisten
y with the sampling pro
ess. Assuminga 
onstant pa
e of a

umulation of observations, n = 527 observations takenover the seven months of the trial 
orrespond to 904 observations in oneyear. Hen
e the adjusted, per observation, dis
ount rate is ρ = 0.03/904.La
king any useful information to estimate the 
ost of an additional pair ofobservations, we assume that c = $100. Table 1 summarises the parametervalues, together with their sour
es.9See Joseph and Belisle (1997).
9
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(b)Figure 2: Sensitivity of optimal thresholds to 
hanges in: (a) resear
h 
ost c; (b)population standard deviation of individual NIMB (σW ).3.1 Optimal thresholdsWith the values reported in Table 1, to whi
h we refer as the `baseline 
ase'parameters, we numeri
ally solve Eq. (7), together with the boundary 
on-ditions, using the Crank-Ni
holson �nite-di�eren
e s
heme and a mesh sizeof 2000 × 2000. Figure 1 shows the upper and the lower thresholds and thethree regions - adoption, 
ontinuation and abandonment - at the individuallevel, assuming a maximum sample size T = 2000. In Figure 1, we restri
tthe range for t to (0, 1000) to show 
learly the three regions.10 The areaabove the upper threshold indi
ates the set of points (t, y) for whi
h adop-tion of DES is optimal. In the area between the thresholds it is optimal to
ontinue with resear
h. Below the lower threshold 
ontinuing to resear
h isnot optimal, that is, the expe
ted value of additional sample information isoutweighed by the 
osts of obtaining it. The dynami
ally optimal thresholdsare nonlinear and not symmetri
al and, when I = 0, they 
onverge to zeroas the sample size in
reases. It 
an be optimal for the DM not to adopt,but 
ontinue to 
arry out resear
h, when the posterior estimate of expe
tedNIMB is positive and it 
an be optimal for the DM to 
ontinue with resear
heven though the posterior estimate of expe
ted NIMB is negative.Figures 2(a) and (b) show the sensitivity of the optimal thresholds to
hanges in the sampling 
ost c and the standard deviation of NIMB, σW ,where the solid line 
orresponds to the baseline 
ase of Figure 1. In Figure10Choi
e of T a�e
ts the positioning of the thresholds, sin
e t appears in the PDE andasso
iated 
onditions (Eqs. (7) - (9)) whi
h are solved using the �nite di�eren
e method.Chi
k and Gans (2009) use a loss fun
tion approa
h to 
hoose the optimal T . In thispreliminary work we �x T to illustrate the main 
hara
teristi
s of the model.10



0 100 200 300 400 500 600 700 800 900 1000
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

Sample Size (t)

P
os

te
rio

r 
M

ea
n

Upper and lower thresholds (individual level)

x

Sequential Sampling
Standard Statistics

Cohen et al. (2004)

Figure 3: Comparison of Cohen et al. (2004) point estimate with dynami
 thresholdsfrom the baseline model and the statisti
al thresholds.2(a), the dotted and the dashed lines are obtained by setting c = 300 and
c = 10, respe
tively. The �gure shows that the 
ontinuation region shrinksas the 
ost of sampling in
reases, whi
h is an unsurprising result.As is well known from the real option literature, a greater degree of un
er-tainty at the population level in
reases the option value, thus in
reasing thevalue of waiting. Figure 2(b) 
on�rms this result, showing how the thresholdsin
rease when the standard deviation is in
reased/de
reased by 30%. The�gure shows that a larger population standard deviation implies a larger 
on-tinuation region: for any t, the value of the posterior estimate of expe
tedNIMB required to indu
e optimal adoption is higher. In a similar manner,abandonment of sampling is optimal for lower (higher in absolute terms)values than in the baseline 
ase.3.2 A 
omparison with alternative de
ision rulesIt is relatively straightforward to 
ompare our thresholds with the adop-tion/resear
h rules that would be used in a traditional, inferential statisti
alanalysis and in the `irrelevan
e of inferen
e' (IoI) approa
h of Claxton (1999).To assist our assessment, we assume a hypotheti
al situation in whi
h we arerunning the SIRIUS trial and, having sampled 527 pairs of subje
ts, we wishto de
ide whether we should adopt DES, 
ontinue to sample, or abandonour proje
t, a

ording to di�erent de
ision rules. Figure 3 
ompares the11



thresholds from our baseline model with those of a standard statisti
al test(two tail, 5% signi�
an
e level).11 For n = 527, the �gure also plots theposterior estimate of expe
ted NIMB, 
al
ulated using the parameter val-ues reported in Table 1. Figure 3 shows that the point estimate of expe
tedNIMB lies between the upper and lower statisti
al thresholds, indi
ating thatthe point estimate is not signi�
ant at a 5% signi�
an
e level, implying thatthe te
hnology should not be adopted. This 
on
lusion is 
onsistent withour de
ision rule, sin
e the point lies within the 
ontinuation region de�nedby our thresholds. However, although both approa
hes advise non-adoption,the statisti
al approa
h has nothing to say about whether sampling shouldbe 
ontinued or abandoned whereas, with our thresholds, the DM's optimalstrategy is to 
ontinue to resear
h by paying for another realisation of W .Figure 4(a) shows that, if the sampling 
ost c is su�
iently high (c =
1300), our thresholds are pushed 
loser together and it be
omes optimalto adopt the te
hnology immediately based on the estimate of NIMB fromCohen et al. (the point estimate lies above our adoption threshold). Figure4(b) shows a similar result for a su�
iently small value of P , P = 100, whi
hpushes the thresholds 
loser together be
ause it redu
es σ2

X . Sin
e neitherparameter 
hange a�e
ts the statisti
al thresholds, our de
ision rule is nolonger 
onsistent with that of the simple statisti
al approa
h.A

ording to the irrelevan
e of inferen
e (IoI) approa
h, the de
ision 
on-
erning adoption should be separated from that 
on
erning whether to 
on-tinue with resear
h. The former should be based on the point estimate, thelatter on the 
omparison between the expe
ted value of perfe
t information(EVPI) and the 
ost of obtaining that information. Sin
e the point estimateof NIMB is positive for the SIRIUS study, IoI advises adoption of the newte
hnology and a 
omparison of the 
osts of obtaining more information withthe EVPI to indi
ate whether more resear
h should be 
arried out.12 In ourmodel, sin
e the DM has the option to defer the adoption de
ision in orderto 
arry out further resear
h, these de
isions are not separated: above theupper threshold, it is optimal to adopt and not 
arry out resear
h; in the
ontinuation region, it is optimal to 
arry out resear
h (and not adopt); be-low the lower threshold, it is optimal to abandon the proje
t. Our result istherefore not 
onsistent with the IoI result.11At the individual level, the general form of the thresholds for a standard statisti
altest would be I/P ± 1.96(σW /
√

t). In our 
ase study, I = 0.12In prin
iple, it will be possible to 
al
ulate the expe
ted value of perfe
t information,but to do so would require information on the population likely to bene�t from the newte
hnology.
12
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(b)Figure 4: E�e
t of: (a) c = $1300 and (b) P = 100 on optimal thresholds, showingadoption to be optimal at Cohen et al. (2004) point estimate.4 Dis
ussionOur 
ase study shows how a sequential sampling approa
h to HTA 
an yield
lear, dynami
, poli
y rules based on maximising the expe
ted net in
remen-tal monetary bene�t of a health te
hnology assessment proje
t, a

ountingfor the 
osts asso
iated with 
ondu
ting resear
h. Whereas the simple sta-tisti
al approa
h relies on only the standard error and a 
hosen signi�
an
elevel to de�ne the individual thresholds of statisti
al signi�
an
e, our ap-proa
h sees the HTA proje
t as a dynami
 pro
ess with e
onomi
 dimensions- the marginal 
ost of sampling c, the population size P and the dis
ountrate ρ - whi
h vary a
ross di�erent te
hnology-adoption de
isions and trial
ontexts, leading to proje
t-spe
i�
 adoption and abandonment thresholds.The model's dynami
 nature permits its use for analysing adoption de
isionswhi
h 
an be deferred while further resear
h is 
arried out, in order to nar-row the un
ertainty surrounding the DM's beliefs about mean NIMB. It thusextends the irrelevan
e of inferen
e approa
h of Claxton (1999), whi
h as-sumed that treatment de
isions 
ould not be deferred. In doing so, it showsthat, for positive values of posterior mean NIMB lying in the 
ontinuationregion, it is optimal for the DM not to adopt the te
hnology but to 
arryout further resear
h. The model's results are appli
able to the populationof P patients who are to be treated should adoption o

ur. The de
ision totreat or to 
ondu
t resear
h for other groups of patients, su
h as those withdi�erent 
hara
teristi
s, or a wider patient population (in
luding those to betreated after s̄, the time at whi
h the DM has the opportunity to revise hisde
ision), should be separately addressed.The sensitivity of the results with respe
t to 
hanges in c and P has13



been dis
ussed in se
tion 3.1. Given the 
omparatively rapid pa
e of a

u-mulation of observations in the 
ase study (904 per year), the impa
t of thedis
ount rate ρ on the optimal thresholds is almost negligible. In general,however, a greater level of impatien
e tends to restri
t the 
ontinuation re-gion, by for
ing the upper and lower thresholds together. If ρ equals in�nity,that is, the de
ision to adopt the te
hnology 
annot be deferred, Eq. (3)be
omes max{(yt/t) − I,−cdt, 0}, implying that adoption is optimal if theposterior mean minus I is positive. This is 
onsistent with the result of theIoI approa
h.The sensitivity of our result to 
hanges in the value of P - as shown in Fig-ure 4(b) - is an important one: while large di�eren
es in the 
ost of sampling
c are more likely to exist for di�erent te
hnologies than for di�erent studiesof the same te
hnology, the size of P may vary substantially in di�erent 
on-texts, even for the same te
hnology. The impli
ation is that, 
eteris paribus,the expe
ted sample size required to make the adoption/abandonment de
i-sion is lower the lower is P . As a result, it may be optimal to adopt a newte
hnology earlier in 
ontexts where a smaller population is involved, or thede
ision 
an be rapidly reversed on the basis of the new eviden
e. The valueof P may be further in�uen
ed by the 
hara
teristi
s of the DM. For exam-ple, for adoption de
isions being made at a national level, one would expe
ta larger number of subje
ts to be sampled before the adoption/abandonmentde
ision is be made (be
ause P is high) whereas, at a lo
al level, one wouldexpe
t fewer subje
ts to be sampled (be
ause P is lower). A

ording toour model, the dynami
ally optimal de
ision rules are di�erent for these two
ontexts, sin
e they are fun
tions of P : in the jargon of the real optionsliterature, P is dire
tly related to the degree of irreversibility of the de
ision.Another form of irreversibility arises when the DM must pay a sunk 
ost
I to adopt the te
hnology. Although our 
ase study sets I equal to zero, itis straightforward to 
onsider the 
ase when I > 0. Figure 5 
ompares theindividual-level thresholds for the baseline version of the 
ase study (solidlines) with the 
ase when I = $100000 (dashed lines, the range for t is re-stri
ted to (100, 2000)). The in
lusion of the sunk 
ost means the individual-level thresholds shift upwards, 
onverging to I/P at the terminal time.Although the size of the population to be treated in 
ase of adoption,before the de
ision 
an be revised, has yet to be formally re
ognized in theHTA literature, it has been impli
itly re
ognized in some health poli
y do
-uments. For instan
e, the re
ommendations released by the UK NationalInstitute for Health and Clini
al Ex
ellen
e (NICE) typi
ally in
lude an in-di
ation of the timing of review of the guidan
e. In the guidan
e for the useof Drug Eluting Stents issued in July 2008, it is stated that `the guidan
e onthis te
hnology will be 
onsidered for review in April 2009' and that `This14
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Figure 5: Comparison of thresholds for the baseline 
ase with the 
ase when
I = 100000 (range for t restri
ted to (100,2000)).de
ision will be taken in the light of information gathered by the Institute,and in 
onsultation with 
onsultees and 
ommentators' (National Institutefor Health and Clini
al Ex
ellen
e, 2008, page 40). Su
h do
uments 
an thenbe
ome the basis for an estimate of P , given the prevalen
e and in
iden
e ofthe disease in the population.Aside from the absen
e of a 
losed form solution to the problem, ne
essi-tating relian
e on numeri
al simulations, a possible limitation of our model
on
erns the arrival rate of new sample information: our assumption that theDM 
an observe this information in a sequential, deterministi
 manner, onepair of observations at a time, might not always be appropriate. For exam-ple, a DM 
arrying out a single trial might have more 
ontrol over, and/orknowledge about, the rate of arrival of new information than one assimilatingthe results of published trials reporting in di�erent jurisdi
tions. In the latter
ase, it 
ould be more appropriate to assume a sto
hasti
 arrival pro
ess fornew information.5 Con
lusionThe present paper aims to bridge the gap that exists between the absen
e ofkey e
onomi
 variables from existing statisti
al approa
hes to HTA and theabsen
e of important statisti
al dimensions from the real option approa
h to15



HTA, in situations when an adoption de
ision 
an be deferred. We interpretthe health te
hnology assessment as a proje
t with un
ertain returns, whi
hdepends on 
lini
al (e�e
tiveness) and e
onomi
 (
ost) variables. Our resultshighlight the relevan
e of variables spe
i�
 to ea
h adoption de
ision, su
has the size of the population involved, the 
ost of 
arrying out resear
h andthe degree of (im)patien
e of the de
ision maker, whi
h are typi
ally ignoredin the statisti
al approa
h. We are also able to de�ne a dynami
ally opti-mal poli
y for the abandonment of resear
h, something whi
h is typi
allyoverlooked in the health e
onomi
s and statisti
al literature.The 
osts of moving away from stri
tly statisti
al 
riteria mainly lie inthe loss of standardization of the de
ision rules. However, we show thatstandardization is, in general, in
onsistent with the dynami
 
onsisten
y of ane
onomi
 de
ision whi
h seeks to maximise expe
ted NIMB minus resear
h,sunk and dis
ounting 
osts.A
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