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1 IntrodutionThe deision about whether or not to arry out more researh to redue theunertainty surrounding the estimate of ost-e�etiveness assoiated with anew health are tehnology has generated a voluminous literature (examplesinlude Claxton (1999), Chalkidou et al. (2007) and Gri�n et al. (2010)).Key to suh deisions are the estimates of the value of waiting for new infor-mation, whih must balane the expeted bene�t assoiated with the redu-tion in unertainty that new information provides with the osts of obtainingthat information: sampling, simulation or researh osts themselves, togetherwith any expeted bene�ts foregone if ation is delayed. Central in this litera-ture is the idea that, if the deision to adopt or not adopt the new tehnologyannot be deferred, it should be separated from the deision about whetherto ontinue to researh (Claxton, 1999, pages 347 - 350). However, assum-ing that the deision annot be deferred implies a `now-or-never' view of theadoption deision (Dixit and Pindyk, 1995); to what extent do deision ruleshange if the deision-maker has the option to delay the deision and arryout further researh? More than ten years ago, Palmer and Smith (2000)reognised that suh a senario, haraterised as it is by unertainty overfuture states of the world and �exibility over the timing of a deision withpotential irreversibilities, �ts well within a real option framework. To date,however, there has been limited appliation of the real option approah tohealth tehnology assessment (exeptions being Pertile (2009a,b)) and littleappliation elsewhere in the health eonomis literature (examples inludeDri�eld and Smith (2007) and Levaggi and Moretto (2008)).Suh limited uptake ould be due, in part at least, to ritiism of thesuitability of stohasti proesses used by some real option models (suh asgeometri Brownian motion) for use in eonomi evaluation, and the funda-mental di�erenes between deisions whih are based upon the `passive' a-umulation of information (suh as the evolution of stok market pries) andthose in whih deision-makers must deide whether or not more researh,suh as additional linial trials, should be ommissioned (Ekermann andWillan, 2008). In this paper, we argue that these problems an, to some ex-tent, be overome by adopting the framework of a Bayesian deision-makerdeveloping optimal poliy rules under sequential sampling that was devel-oped in the mathematial statistis literature by Cherno� and ollaboratorsduring the 1960s and 1970s (Cherno� and Ray, 1965; Cherno�, 1961, 1967,1972) and whih has reently been extended and linked to the real optionliterature and the literature on the value of information (Lai and Lim, 2005;
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Chik and Gans, 2009).1Cherno� showed how a sequential deision problem to test for the meanof a normal random variable in the presene of sampling osts ould be reastin ontinuous time and modelled as a free boundary problem using a Brow-nian motion with drift as the stohasti proess. Approximate solutions tothe problem ould then be obtained in (sample size × posterior estimate ofmean) spae as thresholds whih separate the region in whih it is optimal toontinue sampling from the regions in whih the null hypothesis should be re-jeted in favour of the appropriate alternative. Cherno�'s approah involvessolving a partial di�erential equation derived using Bellman's priniple of op-timality: `[A℄n optimal poliy has the property that whatever the initial stateand initial deision are, the remaining deisions must onstitute an optimalpoliy with regard to the state resulting from the �rst deision' (Bellman,1957). Put another way, a deision-maker who, today, faes the hoie aboutwhether to adopt a health are tehnology based upon existing informationor to ommission more researh, must make their deision aounting for thefat that they should at optimally in all possible future states of the world;the value of one's `options' today must inorporate valuation of one's optimalbehaviour in the future.The aim of the present paper is to bridge the gap that exists betweenthe absene of key eonomi variables from standard statistial approahesto HTA and the absene of important statistial dimensions from the realoption approah to HTA, in situations when an adoption deision an be de-ferred. We interpret the health tehnology assessment as a projet with un-ertain returns, whih depend on linial (e�etiveness) and eonomi (ost)variables, inluding the osts of treatment, arrying out researh, sunk in-vestments and delaying adoption. We apply the model in a ase study of theeonomi evaluation of Drug Eluting Stents and ompare our results with twoalternative approahes: a traditional, inferential, statistial approah and the`irrelevane of inferene' approah (Claxton, 1999). Our results highlight theimportane of onsidering the size of the population to be treated shouldadoption take plae and the degree of (im)patiene of the deision maker,whih are typially ignored in the statistial approah. They also de�ne adynamially optimal poliy for the abandonment of researh, whih is typi-ally overlooked in the literature.Setion 2 outlines the theory behind sequential sampling for an unknownpopulation mean, setion 3 presents our ase study and setion 4 disusses1Although Chik and Gans (2009) fous on simulation seletion problems, their methodsare appliable also to problems involving sampling, based as they are on the work ofCherno�. 3



the results. Setion 5 onludes.2 Optimal rules under sequential samplingOur model is based on that proposed by Chik and Gans (2009) for omparinga single simulation system to a known alternative. A risk-neutral deision-maker (DM) is arrying out a projet to investigate whether to adopt a newhealth are tehnology whih, in the ase of adoption, will provide bene�t to
P patients suh that, if the deision is made to adopt the tehnology, P isthe number of patients that the DM will ommit to treating in the interval
(0, s̄), where s̄ is the time at whih the DM is able to revise his deision.2 Wede�ne the projet as inluding both the proess of researh and the eventualdeision (whether to adopt the tehnology or to abandon researh). The DMfaes a sunk investment ost I ≥ 0 if the tehnology is adopted.Let the impat of the tehnology at the individual level be expressed interms of net inremental monetary bene�t (NIMB) W :

W = λ(E1 − E0) − (C1 − C0), (1)where {E1, C1} and {E0, C0} are pairs of random variables denoting the e�e-tiveness and osts of the new and existing (base) tehnology, respetively, and
λ is the aeptane threshold for the Inremental Cost-E�etiveness Ratio(ICER), suh that W > 0 orresponds to ICER < λ.3 The DM assumes that
W ∼ N(µW , σ2

W ), where µW is unknown and σ2

W is known. Let X = PWbe the random variable representing the total NIMB assoiated with adopt-ing the tehnology.4 Given the assumptions on W , the distribution of X isGaussian with unknown mean µX = PµW and known variane σ2

X = P 2σ2

W .2The size of P depends on a number of fators, inluding s̄, the prevalene and in-idene of the disease requiring treatment, the nature of the tehnology (the deision toreverse the use of a tehnology an be made more easily for some tehnologies than forothers) and the harateristis of the deision-maker. For example, the DM ould be theauthority responsible for the deision to admit the use of the new tehnology in a parti-ular jurisdition, where the jurisdition ould be de�ned at a regional level or a nationalone.3Consistent with our dynami approah, unlike in standard ost-e�etiveness analyses,the per patient omponent of I does not enter the measure of NIMB beause, as a sunkost, it is inurred the time of adoption.4We assume an exogenous `arrival proess' of patients presenting for treatment, suhthat the rate of arrival equals the rate at whih patients are treated (with the base orthe new tehnology), implying that P , the instantaneous stok of patients to be treated,is onstant over time. Stritly speaking, bene�ts upon adoption should be disountedaording to ∫ s̄

0
pWe−ρtds, where s̄ is the time at whih the adoption deision an berevised and ∫ s̄

0
pds = P . For the sake of simpliity, we ignore this disounting, whih is4



The DM has prior beliefs about µX , represented by a Gaussian randomvariable X with expeted value µX ,0 and variane σ2

X ,0. Assume the DMan observe sequentially drawn, independent and identially distributed re-alisations of W , suh that Xi = PWi, i = 1, . . . , N , where N ould fea-sibly equal in�nity, by paying a onstant, per-realisation, researh ost c.We interpret this proess as the DM arrying out, or monitoring the re-sults of, researh (suh as a trial). After observing eah realisation, theDM updates his beliefs aording to Bayes' theorem. The posterior distri-bution, after observing m realisations, will therefore also be Gaussian with
E[Xm] = (µX ,0t0 +

∑m
i=1

Xi)/(t0 + m) and var(Xm) = σ2

X/(t0 + m), where
t0 = σ2

X/σ2

0
. We de�ne eah realisation of W as a stage of the projet, im-mediately after whih point the DM must deide to take one of the followingations: to adopt the tehnology immediately, to pay for another observa-tion (to ontinue with researh) or to abandon researh. Paying for anotherobservation redues the DM's unertainty onerning the value of µX by re-duing var(Xi), and so redues the hanes that the DM makes an inorretdeision, but it osts c and delays the payo� (of adoption or abandonment).In hoosing the optimal poliy rule, the DM's objetive is to maximise totalnet inremental monetary bene�t minus projet osts, whih omprise theresearh osts c, the sunk ost I that is inurred if adoption takes plae, anddisounting osts.De�ne Ym = µX ,0t0 +

∑m
i=1

Xi and t = t0 + m. The DM's updatingproess for E[Xm] may be reast in ontinuous time (m beomes ontinuousand therefore so does t) in whih var(Xt) = σ2

X/t follows a deterministi pathand Yt follows a random walk with drift µX and variane σ2

X :
dYt = µXdt + σXdVt, (2)where dVt is the inrement of a Wiener proess. The expeted value of theDM's posterior beliefs onerning µX at any t is given by E[Xt] = yt/t andvar(Xt) = σ2

X/t, where yt is the realisation of Yt.Let the ontinuous time expeted disounted reward of the projet bede�ned by the value funtion B(y, t). The DM must obtain the optimalpoliy rule π∗ whih, in (t, y) spae, de�nes the DM's optimal ations fromthe set ut ∈ {1, 2, 3}, where 1 means `adopt immediately', 2 `pay for anotherobservation' (ontinue to researh) and 3 `abandon researh'. The Bellmanequation is:
B(yt, t) = max

{

(yt/t) − I, − cdt +
1

1 + ρdt
E[B( yt + dy, t + dt )|yt, t], 0

}

, (3)onsistent with the ommon pratie in HTA as long as s̄ is less than one year. Extendingthe model to aount for disounting would be straightforward.5



for all t and y, where ρ is the disount fator. The �rst term in brakets onthe right hand side of (3) is the expeted value of the DM's posterior beliefsabout µX , the expeted total NIMB if the DM adopts the tehnology, minusthe sunk ost I, the seond is the ontinuation value - the value to the DMof ontinuing to arry out researh - and the third is the value assoiatedwith abandoning researh and not adopting the tehnology. The problem isan optimal stopping problem with a free boundary whose solutions are twothresholds for the posterior mean de�ning three regions suh that, above theupper threshold, immediate adoption of the tehnology is optimal, below thelower threshold, stopping researh is optimal and, in the `ontinuation region'
C lying between the two thresholds, ontinuing to researh - that is, payingfor another draw from W - is optimal.Given the Bellman equation, in C, the following equation must hold:

B(yt, t) = −cdt +
1

1 + ρdt
E [B( yt + dy, t + dt )| yt, t] , (4)where:

E [B( yt + dy, t + dt )| yt, t] = B(yt, t) + E [dB] , (5)and, using Ito's Lemma:
dB = Btdt + Bydyt + (1/2)Byy(dyt)

2, (6)where dyt is de�ned by Eq. (2) (yt is the realisation of Yt). Through sub-stitutions we an obtain the partial di�erential equation satis�ed by B in
C:5

0 = −c − ρB + Bt + By

y

t
+

σ2

X

2
Byy. (7)The value-mathing and smooth pasting onditions whih de�ne the upperand lower thresholds are:

B(y, t) = D(y, t) = max{0, (y/t)− I} on ∂C; (8)
By(y, t) = Dy(y, t) on ∂C, (9)where ∂C is the free boundary of C and D is the value of B in the adoptionand abandonment regions. The objetive of the problem is to solve for B,the projet's maximum expeted disounted reward, and the free boundaries,whih together are de�ned by (7), (8) and (9).5We substitute (6) into (5) and (5) into (4). Applying the expetation operator, notingthat dV 2

t = dt and sending dt to 0, gives (7).6



To date there exists no losed form solution to this problem. For our asestudy we use �nite di�erene methods (Dixit and Pindyk (1994, pages 319-339)) to obtain a numerial solution to the PDE and to derive the boundaryonditions.3 Case studyIn this setion, we apply the model of setion 2 to the eonomi evaluation ofdrug eluting stents (DES) versus bare metal stents (BMS) for an unseletedpopulation, using data from a published study (the `SIRIUS trial', reportedin Cohen et al. (2004)). We do so for the purposes of illustration only; thease study is not intended to be a ontribution to the literature on whetheror not DES should be adopted by health are systems.Stents may be employed in perutaneous oronary intervention (PCI),with BMS the base tehnology and DES the new tehnology. DES waslaunhed some years ago with the promise of a potential redution in therates of angiographi and linial restenosis when ompared with BMS, albeitat a higher ost, and hene its value in the urrent health are environmenthas been questioned. The ost-utility analysis asks whether the bene�ts ofthe tehnology to the patient justify this higher ost.6 Between Februaryand August 2001, 1058 patients undergoing PCI were randomly assigned toreeive either a DES7 or a BMS. The trial reported the average inrementalost assoiated with using DES to be $309 per patient and alulated theinremental ost-e�etiveness ratio to be $27540 per QALY gained. It on-luded that sirolimus-eluting stents `may be viewed as reasonably attrative'from the perspetive of the U.S. health are system (Cohen et al., 2004).To apply the model of setion 2 to the ase study, we assume a nonin-formative prior for the DM (that is, we assume that σ2

X ,0 = ∞ and so tbeomes the sample size). We use the information on the point estimates ofinremental ost and the ICER to obtain a point estimate of mean NIMBequal to $252 and we alulate the standard deviation of individual NIMBto be σW = $17538.8 Sine our prior is noninformative, this point estimateis equivalent to the DM's posterior estimate of expeted NIMB. Sine we6Other studies have onentrated on the adoption of DES for high risk populations,where the bene�ts of the tehnology are likely to be greater. Most of these studies indiateost-e�etiveness of DES for these seleted patients.7The type of DES used in the trial is Sirolimus.8We estimate inremental e�etiveness using a �rst order Taylor series approximationfor the ICER and we use Cohen et al.'s result that Pr(ICER < $50000) = 0.632 to inferthat Pr(E[NIMB] > 0) = 0.632. Under the DM's assumption that NIMB has a Gaussiandistribution, this yields σW = $17538. 7



Parameter De�nition Soure Value1. σX ,0 Standard deviation ofprior beliefs on µX

Assumption ∞2. c Marginal ost of sampling Assumption $1003. C1 − C0 Inremental ost Cohen et al. (2004) $3094. E1 − E0 Inremental e�etiveness First order approximationof ICER in Cohen et al.(2004) 0.01122 QALY5. λ Shadow value of e�etive-ness Cohen et al. (2004) $500006. σW Population standard devi-ation of individual NIMB Cohen et al. (2004) resultfor ICER $175387. E[NIMB℄ Estimate of expeted netinremental monetarybene�t Rows 3, 4 and 5 of this ta-ble $2528. ρ Disount rate (annual) Assumption 0.039. - Rate of arrival of observa-tions (annual) Cohen et al. (2004) 90410. P Number of patients thatwill be treated beforeadoption deision an berevised Assumption 100011. I `Sunk ost' assoiatedwith adoption of tehnol-ogy Assumption 012. T Maximum sample size Assumption 2000Table 1: Parameter values used for the ase study (baseline ase) of setion 3.are dealing with a medial devie, we assume that the irreversible invest-ment ost may be onsidered negligible and so we set I equal to zero. Weadopt the standpoint of an authority responsible for the deision to introdueDES for the treatment of unseleted patients undergoing PCI and, in the ab-sene of information on the value of P , we run our appliation assuming that
P = 1000.In setion 2, we impliitly assume that the number of patients alloatedto eah arm of the trial is the same, allowing us to interpret eah pair ofobservations as equating to one realisation. In the SIRIUS trial the armsare slightly unbalaned, although the split is small: 533 for DES versus
522 for BMS. In order to approximate this situation, we set the number of8
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Figure 1: Optimal thresholds and adoption, ontinuation and abandonment regions(range for t restrited to (0, 1000)) for the baseline model.observations at the level suh that the variane of the sample mean with 533individuals in the DES group and 522 individuals in the base group equals thevariane of a hypothetial situation in whih the numbers in eah group areequal and and the DM's prior is noninformative.9 This implies an equivalentsample size of 527.Consistent with the model in setion 2, a disount rate aounts for theost of foregone treatments when the deision is postponed. We set ρ = 0.03(an annual rate). Sine the unit of `time' in our problem orresponds to thetime needed to take one observation in eah arm of the trial, the disountrate must be adjusted for onsisteny with the sampling proess. Assuminga onstant pae of aumulation of observations, n = 527 observations takenover the seven months of the trial orrespond to 904 observations in oneyear. Hene the adjusted, per observation, disount rate is ρ = 0.03/904.Laking any useful information to estimate the ost of an additional pair ofobservations, we assume that c = $100. Table 1 summarises the parametervalues, together with their soures.9See Joseph and Belisle (1997).
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(b)Figure 2: Sensitivity of optimal thresholds to hanges in: (a) researh ost c; (b)population standard deviation of individual NIMB (σW ).3.1 Optimal thresholdsWith the values reported in Table 1, to whih we refer as the `baseline ase'parameters, we numerially solve Eq. (7), together with the boundary on-ditions, using the Crank-Niholson �nite-di�erene sheme and a mesh sizeof 2000 × 2000. Figure 1 shows the upper and the lower thresholds and thethree regions - adoption, ontinuation and abandonment - at the individuallevel, assuming a maximum sample size T = 2000. In Figure 1, we restritthe range for t to (0, 1000) to show learly the three regions.10 The areaabove the upper threshold indiates the set of points (t, y) for whih adop-tion of DES is optimal. In the area between the thresholds it is optimal toontinue with researh. Below the lower threshold ontinuing to researh isnot optimal, that is, the expeted value of additional sample information isoutweighed by the osts of obtaining it. The dynamially optimal thresholdsare nonlinear and not symmetrial and, when I = 0, they onverge to zeroas the sample size inreases. It an be optimal for the DM not to adopt,but ontinue to arry out researh, when the posterior estimate of expetedNIMB is positive and it an be optimal for the DM to ontinue with researheven though the posterior estimate of expeted NIMB is negative.Figures 2(a) and (b) show the sensitivity of the optimal thresholds tohanges in the sampling ost c and the standard deviation of NIMB, σW ,where the solid line orresponds to the baseline ase of Figure 1. In Figure10Choie of T a�ets the positioning of the thresholds, sine t appears in the PDE andassoiated onditions (Eqs. (7) - (9)) whih are solved using the �nite di�erene method.Chik and Gans (2009) use a loss funtion approah to hoose the optimal T . In thispreliminary work we �x T to illustrate the main harateristis of the model.10
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Figure 3: Comparison of Cohen et al. (2004) point estimate with dynami thresholdsfrom the baseline model and the statistial thresholds.2(a), the dotted and the dashed lines are obtained by setting c = 300 and
c = 10, respetively. The �gure shows that the ontinuation region shrinksas the ost of sampling inreases, whih is an unsurprising result.As is well known from the real option literature, a greater degree of uner-tainty at the population level inreases the option value, thus inreasing thevalue of waiting. Figure 2(b) on�rms this result, showing how the thresholdsinrease when the standard deviation is inreased/dereased by 30%. The�gure shows that a larger population standard deviation implies a larger on-tinuation region: for any t, the value of the posterior estimate of expetedNIMB required to indue optimal adoption is higher. In a similar manner,abandonment of sampling is optimal for lower (higher in absolute terms)values than in the baseline ase.3.2 A omparison with alternative deision rulesIt is relatively straightforward to ompare our thresholds with the adop-tion/researh rules that would be used in a traditional, inferential statistialanalysis and in the `irrelevane of inferene' (IoI) approah of Claxton (1999).To assist our assessment, we assume a hypothetial situation in whih we arerunning the SIRIUS trial and, having sampled 527 pairs of subjets, we wishto deide whether we should adopt DES, ontinue to sample, or abandonour projet, aording to di�erent deision rules. Figure 3 ompares the11



thresholds from our baseline model with those of a standard statistial test(two tail, 5% signi�ane level).11 For n = 527, the �gure also plots theposterior estimate of expeted NIMB, alulated using the parameter val-ues reported in Table 1. Figure 3 shows that the point estimate of expetedNIMB lies between the upper and lower statistial thresholds, indiating thatthe point estimate is not signi�ant at a 5% signi�ane level, implying thatthe tehnology should not be adopted. This onlusion is onsistent withour deision rule, sine the point lies within the ontinuation region de�nedby our thresholds. However, although both approahes advise non-adoption,the statistial approah has nothing to say about whether sampling shouldbe ontinued or abandoned whereas, with our thresholds, the DM's optimalstrategy is to ontinue to researh by paying for another realisation of W .Figure 4(a) shows that, if the sampling ost c is su�iently high (c =
1300), our thresholds are pushed loser together and it beomes optimalto adopt the tehnology immediately based on the estimate of NIMB fromCohen et al. (the point estimate lies above our adoption threshold). Figure4(b) shows a similar result for a su�iently small value of P , P = 100, whihpushes the thresholds loser together beause it redues σ2

X . Sine neitherparameter hange a�ets the statistial thresholds, our deision rule is nolonger onsistent with that of the simple statistial approah.Aording to the irrelevane of inferene (IoI) approah, the deision on-erning adoption should be separated from that onerning whether to on-tinue with researh. The former should be based on the point estimate, thelatter on the omparison between the expeted value of perfet information(EVPI) and the ost of obtaining that information. Sine the point estimateof NIMB is positive for the SIRIUS study, IoI advises adoption of the newtehnology and a omparison of the osts of obtaining more information withthe EVPI to indiate whether more researh should be arried out.12 In ourmodel, sine the DM has the option to defer the adoption deision in orderto arry out further researh, these deisions are not separated: above theupper threshold, it is optimal to adopt and not arry out researh; in theontinuation region, it is optimal to arry out researh (and not adopt); be-low the lower threshold, it is optimal to abandon the projet. Our result istherefore not onsistent with the IoI result.11At the individual level, the general form of the thresholds for a standard statistialtest would be I/P ± 1.96(σW /
√

t). In our ase study, I = 0.12In priniple, it will be possible to alulate the expeted value of perfet information,but to do so would require information on the population likely to bene�t from the newtehnology.
12
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(b)Figure 4: E�et of: (a) c = $1300 and (b) P = 100 on optimal thresholds, showingadoption to be optimal at Cohen et al. (2004) point estimate.4 DisussionOur ase study shows how a sequential sampling approah to HTA an yieldlear, dynami, poliy rules based on maximising the expeted net inremen-tal monetary bene�t of a health tehnology assessment projet, aountingfor the osts assoiated with onduting researh. Whereas the simple sta-tistial approah relies on only the standard error and a hosen signi�anelevel to de�ne the individual thresholds of statistial signi�ane, our ap-proah sees the HTA projet as a dynami proess with eonomi dimensions- the marginal ost of sampling c, the population size P and the disountrate ρ - whih vary aross di�erent tehnology-adoption deisions and trialontexts, leading to projet-spei� adoption and abandonment thresholds.The model's dynami nature permits its use for analysing adoption deisionswhih an be deferred while further researh is arried out, in order to nar-row the unertainty surrounding the DM's beliefs about mean NIMB. It thusextends the irrelevane of inferene approah of Claxton (1999), whih as-sumed that treatment deisions ould not be deferred. In doing so, it showsthat, for positive values of posterior mean NIMB lying in the ontinuationregion, it is optimal for the DM not to adopt the tehnology but to arryout further researh. The model's results are appliable to the populationof P patients who are to be treated should adoption our. The deision totreat or to ondut researh for other groups of patients, suh as those withdi�erent harateristis, or a wider patient population (inluding those to betreated after s̄, the time at whih the DM has the opportunity to revise hisdeision), should be separately addressed.The sensitivity of the results with respet to hanges in c and P has13



been disussed in setion 3.1. Given the omparatively rapid pae of au-mulation of observations in the ase study (904 per year), the impat of thedisount rate ρ on the optimal thresholds is almost negligible. In general,however, a greater level of impatiene tends to restrit the ontinuation re-gion, by foring the upper and lower thresholds together. If ρ equals in�nity,that is, the deision to adopt the tehnology annot be deferred, Eq. (3)beomes max{(yt/t) − I,−cdt, 0}, implying that adoption is optimal if theposterior mean minus I is positive. This is onsistent with the result of theIoI approah.The sensitivity of our result to hanges in the value of P - as shown in Fig-ure 4(b) - is an important one: while large di�erenes in the ost of sampling
c are more likely to exist for di�erent tehnologies than for di�erent studiesof the same tehnology, the size of P may vary substantially in di�erent on-texts, even for the same tehnology. The impliation is that, eteris paribus,the expeted sample size required to make the adoption/abandonment dei-sion is lower the lower is P . As a result, it may be optimal to adopt a newtehnology earlier in ontexts where a smaller population is involved, or thedeision an be rapidly reversed on the basis of the new evidene. The valueof P may be further in�uened by the harateristis of the DM. For exam-ple, for adoption deisions being made at a national level, one would expeta larger number of subjets to be sampled before the adoption/abandonmentdeision is be made (beause P is high) whereas, at a loal level, one wouldexpet fewer subjets to be sampled (beause P is lower). Aording toour model, the dynamially optimal deision rules are di�erent for these twoontexts, sine they are funtions of P : in the jargon of the real optionsliterature, P is diretly related to the degree of irreversibility of the deision.Another form of irreversibility arises when the DM must pay a sunk ost
I to adopt the tehnology. Although our ase study sets I equal to zero, itis straightforward to onsider the ase when I > 0. Figure 5 ompares theindividual-level thresholds for the baseline version of the ase study (solidlines) with the ase when I = $100000 (dashed lines, the range for t is re-strited to (100, 2000)). The inlusion of the sunk ost means the individual-level thresholds shift upwards, onverging to I/P at the terminal time.Although the size of the population to be treated in ase of adoption,before the deision an be revised, has yet to be formally reognized in theHTA literature, it has been impliitly reognized in some health poliy do-uments. For instane, the reommendations released by the UK NationalInstitute for Health and Clinial Exellene (NICE) typially inlude an in-diation of the timing of review of the guidane. In the guidane for the useof Drug Eluting Stents issued in July 2008, it is stated that `the guidane onthis tehnology will be onsidered for review in April 2009' and that `This14
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Figure 5: Comparison of thresholds for the baseline ase with the ase when
I = 100000 (range for t restrited to (100,2000)).deision will be taken in the light of information gathered by the Institute,and in onsultation with onsultees and ommentators' (National Institutefor Health and Clinial Exellene, 2008, page 40). Suh douments an thenbeome the basis for an estimate of P , given the prevalene and inidene ofthe disease in the population.Aside from the absene of a losed form solution to the problem, neessi-tating reliane on numerial simulations, a possible limitation of our modelonerns the arrival rate of new sample information: our assumption that theDM an observe this information in a sequential, deterministi manner, onepair of observations at a time, might not always be appropriate. For exam-ple, a DM arrying out a single trial might have more ontrol over, and/orknowledge about, the rate of arrival of new information than one assimilatingthe results of published trials reporting in di�erent jurisditions. In the latterase, it ould be more appropriate to assume a stohasti arrival proess fornew information.5 ConlusionThe present paper aims to bridge the gap that exists between the absene ofkey eonomi variables from existing statistial approahes to HTA and theabsene of important statistial dimensions from the real option approah to15
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