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Abstract
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developed by Chernoff and collaborators, we solve a dynamic model of the
economic evaluation of a new health technology, deriving optimal rules for
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sample size. The model extends the existing literature to the case where an
adoption decision can be deferred and involves a degree of irreversibility. We
explore the model’s applicability in a case study of the economic evaluation
of Drug Eluting Stents (DES), deriving dynamic adoption and abandonment
thresholds which are a function of the model’s economic parameters. A key
result is that referring to a single cost-effectiveness threshold may be sub-
optimal.
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1 Introduction

The decision about whether or not to carry out more research to reduce the
uncertainty surrounding the estimate of cost-effectiveness associated with a
new health care technology has generated a voluminous literature (examples
include Claxton (1999), Chalkidou et al. (2007) and Griffin et al. (2010)).
Key to such decisions are the estimates of the value of waiting for new infor-
mation, which must balance the expected benefit associated with the reduc-
tion in uncertainty that new information provides with the costs of obtaining
that information: sampling, simulation or research costs themselves, together
with any expected benefits foregone if action is delayed. Central in this litera-
ture is the idea that, if the decision to adopt or not adopt the new technology
cannot be deferred, it should be separated from the decision about whether
to continue to research (Claxton, 1999, pages 347 - 350). However, assum-
ing that the decision cannot be deferred implies a ‘now-or-never’ view of the
adoption decision (Dixit and Pindyck, 1995); to what extent do decision rules
change if the decision-maker has the option to delay the decision and carry
out further research? More than ten years ago, Palmer and Smith (2000)
recognised that such a scenario, characterised as it is by uncertainty over
future states of the world and flexibility over the timing of a decision with
potential irreversibilities, fits well within a real option framework. To date,
however, there has been limited application of the real option approach to
health technology assessment (exceptions being Pertile (2009a,b)) and little
application elsewhere in the health economics literature (examples include
Driffield and Smith (2007) and Levaggi and Moretto (2008)).

Such limited uptake could be due, in part at least, to criticism of the
suitability of stochastic processes used by some real option models (such as
geometric Brownian motion) for use in economic evaluation, and the funda-
mental differences between decisions which are based upon the ‘passive’ ac-
cumulation of information (such as the evolution of stock market prices) and
those in which decision-makers must decide whether or not more research,
such as additional clinical trials, should be commissioned (Eckermann and
Willan, 2008). In this paper, we argue that these problems can, to some ex-
tent, be overcome by adopting the framework of a Bayesian decision-maker
developing optimal policy rules under sequential sampling that was devel-
oped in the mathematical statistics literature by Chernoff and collaborators
during the 1960s and 1970s (Chernoff and Ray, 1965; Chernoff, 1961, 1967,
1972) and which has recently been extended and linked to the real option
literature and the literature on the value of information (Lai and Lim, 2005;



Chick and Gans, 2009)."

Chernoff showed how a sequential decision problem to test for the mean
of a normal random variable in the presence of sampling costs could be recast
in continuous time and modelled as a free boundary problem using a Brow-
nian motion with drift as the stochastic process. Approximate solutions to
the problem could then be obtained in (sample size x posterior estimate of
mean) space as thresholds which separate the region in which it is optimal to
continue sampling from the regions in which the null hypothesis should be re-
jected in favour of the appropriate alternative. Chernoff’s approach involves
solving a partial differential equation derived using Bellman’s principle of op-
timality: ‘|A|n optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision’ (Bellman,
1957). Put another way, a decision-maker who, today, faces the choice about
whether to adopt a health care technology based upon existing information
or to commission more research, must make their decision accounting for the
fact that they should act optimally in all possible future states of the world;
the value of one’s ‘options’ today must incorporate valuation of one’s optimal
behaviour in the future.

The aim of the present paper is to bridge the gap that exists between
the absence of key economic variables from standard statistical approaches
to HTA and the absence of important statistical dimensions from the real
option approach to HTA, in situations when an adoption decision can be de-
ferred. We interpret the health technology assessment as a project with un-
certain returns, which depend on clinical (effectiveness) and economic (cost)
variables, including the costs of treatment, carrying out research, sunk in-
vestments and delaying adoption. We apply the model in a case study of the
economic evaluation of Drug Eluting Stents and compare our results with two
alternative approaches: a traditional, inferential, statistical approach and the
‘irrelevance of inference’ approach (Claxton, 1999). Our results highlight the
importance of considering the size of the population to be treated should
adoption take place and the degree of (im)patience of the decision maker,
which are typically ignored in the statistical approach. They also define a
dynamically optimal policy for the abandonment of research, which is typi-
cally overlooked in the literature.

Section 2 outlines the theory behind sequential sampling for an unknown
population mean, section 3 presents our case study and section 4 discusses

! Although Chick and Gans (2009) focus on simulation selection problems, their methods
are applicable also to problems involving sampling, based as they are on the work of
Chernoff.



the results. Section 5 concludes.

2 Optimal rules under sequential sampling

Our model is based on that proposed by Chick and Gans (2009) for comparing
a single simulation system to a known alternative. A risk-neutral decision-
maker (DM) is carrying out a project to investigate whether to adopt a new
health care technology which, in the case of adoption, will provide benefit to
P patients such that, if the decision is made to adopt the technology, P is
the number of patients that the DM will commit to treating in the interval
(0, 5), where 5 is the time at which the DM is able to revise his decision.? We
define the project as including both the process of research and the eventual
decision (whether to adopt the technology or to abandon research). The DM
faces a sunk investment cost I > 0 if the technology is adopted.

Let the impact of the technology at the individual level be expressed in
terms of net incremental monetary benefit (NIMB) W:

W = \E) — Ey) — (C1 — Cy), (1)

where {Ey, C1} and { Ey, Cy} are pairs of random variables denoting the effec-
tiveness and costs of the new and existing (base) technology, respectively, and
A is the acceptance threshold for the Incremental Cost-Effectiveness Ratio
(ICER), such that W > 0 corresponds to ICER < A.> The DM assumes that
W ~ N(puw,0od), where py is unknown and o3, is known. Let X = PW
be the random variable representing the total NIMB associated with adopt-
ing the technology.* Given the assumptions on W, the distribution of X is
Gaussian with unknown mean px = Puy and known variance 0% = P?03,.

2The size of P depends on a number of factors, including 3, the prevalence and in-
cidence of the disease requiring treatment, the nature of the technology (the decision to
reverse the use of a technology can be made more easily for some technologies than for
others) and the characteristics of the decision-maker. For example, the DM could be the
authority responsible for the decision to admit the use of the new technology in a partic-
ular jurisdiction, where the jurisdiction could be defined at a regional level or a national
one.

3Consistent with our dynamic approach, unlike in standard cost-effectiveness analyses,
the per patient component of I does not enter the measure of NIMB because, as a sunk
cost, it is incurred the time of adoption.

4We assume an exogenous ‘arrival process’ of patients presenting for treatment, such
that the rate of arrival equals the rate at which patients are treated (with the base or
the new technology), implying that P, the instantaneous stock of patients to be treated,
is constant over time. Strictly speaking, benefits upon adoption should be discounted
according to [ pWe ?'ds, where 5 is the time at which the adoption decision can be

revised and fos pds = P. For the sake of simplicity, we ignore this discounting, which is
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The DM has prior beliefs about px, represented by a Gaussian random
variable X' with expected value jiy o and variance 0% ,. Assume the DM
can observe sequentially drawn, independent and identically distributed re-
alisations of W, such that X; = PW;,i = 1,..., N, where N could fea-
sibly equal infinity, by paying a constant, per-realisation, research cost c.
We interpret this process as the DM carrying out, or monitoring the re-
sults of, research (such as a trial). After observing each realisation, the
DM updates his beliefs according to Bayes’ theorem. The posterior distri-
bution, after observing m realisations, will therefore also be Gaussian with
E[X,] = (pxoto + X0 X;)/(to +m) and var(X,) = 0% /(to + m), where
to = 0% /o2. We define each realisation of W as a stage of the project, im-
mediately after which point the DM must decide to take one of the following
actions: to adopt the technology immediately, to pay for another observa-
tion (to continue with research) or to abandon research. Paying for another
observation reduces the DM’s uncertainty concerning the value of px by re-
ducing var(A;), and so reduces the chances that the DM makes an incorrect
decision, but it costs ¢ and delays the payoff (of adoption or abandonment).
In choosing the optimal policy rule, the DM’s objective is to maximise total
net incremental monetary benefit minus project costs, which comprise the
research costs ¢, the sunk cost I that is incurred if adoption takes place, and
discounting costs.

Define Y, = pxoto + >y X; and t = to + m. The DM’s updating
process for E[X,,] may be recast in continuous time (m becomes continuous
and therefore so does t) in which var(X;) = 0%/t follows a deterministic path

and Y; follows a random walk with drift puy and variance 0—3(;

dY; = pxdt + oxdV;, (2)

where dV; is the increment of a Wiener process. The expected value of the
DM’s posterior beliefs concerning px at any t is given by E[X;] = y;/t and
var(X;) = 0% /t, where y; is the realisation of Y;.

Let the continuous time expected discounted reward of the project be
defined by the value function B(y,t). The DM must obtain the optimal
policy rule 7* which, in (¢,y) space, defines the DM’s optimal actions from
the set u; € {1,2,3}, where 1 means ‘adopt immediately’, 2 ‘pay for another
observation’ (continue to research) and 3 ‘abandon research’. The Bellman
equation is:

By, t) = max{(yt/t) — I, —cdt+ E[B( y: +dy,t+dt )|y, t], 0 }, (3)

14 pdt

consistent with the common practice in HTA as long as 5 is less than one year. Extending
the model to account for discounting would be straightforward.



for all ¢ and y, where p is the discount factor. The first term in brackets on
the right hand side of (3) is the expected value of the DM’s posterior beliefs
about px, the expected total NIMB if the DM adopts the technology, minus
the sunk cost I, the second is the continuation value - the value to the DM
of continuing to carry out research - and the third is the value associated
with abandoning research and not adopting the technology. The problem is
an optimal stopping problem with a free boundary whose solutions are two
thresholds for the posterior mean defining three regions such that, above the
upper threshold, immediate adoption of the technology is optimal, below the
lower threshold, stopping research is optimal and, in the ‘continuation region’
C lying between the two thresholds, continuing to research - that is, paying
for another draw from W - is optimal.
Given the Bellman equation, in C, the following equation must hold:

By, t) = —cdt + = pth [B( ys + dy,t +dt )| ys, t], (4)
where:
E[B(y +dy,t+dt)| v, t] = By, t) + E[dB], (5)
and, using [to’s Lemma:
dB = B,dt + B,dy, + (1/2) By, (dy;)?, (6)

where dy; is defined by Eq. (2) (y; is the realisation of Y;). Through sub-
stitutions we can obtain the partial differential equation satisfied by B in

C.5
2
9x

By, (7

O:_C_pB‘i_Bt‘i_By%_'_

The value-matching and smooth pasting conditions which define the upper
and lower thresholds are:

B(y,t) = D(y,t) =max{0, (y/t) — I} on OC; (8)
By(y,t) = Dy(y,t) on 9C, (9)

where JC is the free boundary of C and D is the value of B in the adoption
and abandonment regions. The objective of the problem is to solve for B,
the project’s maximum expected discounted reward, and the free boundaries,

which together are defined by (7), (8) and (9).

®We substitute (6) into (5) and (5) into (4). Applying the expectation operator, noting
that dV;? = dt and sending dt to 0, gives (7).
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To date there exists no closed form solution to this problem. For our case
study we use finite difference methods (Dixit and Pindyck (1994, pages 319-
339)) to obtain a numerical solution to the PDE and to derive the boundary
conditions.

3 Case study

In this section, we apply the model of section 2 to the economic evaluation of
drug eluting stents (DES) versus bare metal stents (BMS) for an unselected
population, using data from a published study (the ‘SIRIUS trial’, reported
in Cohen et al. (2004)). We do so for the purposes of illustration only; the
case study is not intended to be a contribution to the literature on whether
or not DES should be adopted by health care systems.

Stents may be employed in percutaneous coronary intervention (PCI),
with BMS the base technology and DES the new technology. DES was
launched some years ago with the promise of a potential reduction in the
rates of angiographic and clinical restenosis when compared with BMS, albeit
at a higher cost, and hence its value in the current health care environment
has been questioned. The cost-utility analysis asks whether the benefits of
the technology to the patient justify this higher cost.® Between February
and August 2001, 1058 patients undergoing PCI were randomly assigned to
receive either a DES” or a BMS. The trial reported the average incremental
cost associated with using DES to be $309 per patient and calculated the
incremental cost-effectiveness ratio to be $27540 per QALY gained. It con-
cluded that sirolimus-eluting stents ‘may be viewed as reasonably attractive’
from the perspective of the U.S. health care system (Cohen et al., 2004).

To apply the model of section 2 to the case study, we assume a nonin-
formative prior for the DM (that is, we assume that 03570 = oo and so t
becomes the sample size). We use the information on the point estimates of
incremental cost and the ICER to obtain a point estimate of mean NIMB
equal to $252 and we calculate the standard deviation of individual NIMB
to be o = $17538.% Since our prior is noninformative, this point estimate
is equivalent to the DM’s posterior estimate of expected NIMB. Since we

6Qther studies have concentrated on the adoption of DES for high risk populations,
where the benefits of the technology are likely to be greater. Most of these studies indicate
cost-effectiveness of DES for these selected patients.

"The type of DES used in the trial is Sirolimus.

8We estimate incremental effectiveness using a first order Taylor series approximation
for the ICER and we use Cohen et al.’s result that Pr(ICER < $50000) = 0.632 to infer
that Pr(E[NIM B] > 0) = 0.632. Under the DM’s assumption that NIMB has a Gaussian
distribution, this yields oy = $17538.



Parameter Definition Source Value
1. oxp Standard deviation of Assumption 00
prior beliefs on px
2. ¢ Marginal cost of sampling  Assumption $100
3. C1 —Cy Incremental cost Cohen et al. (2004) $309
4. F1 — Ey  Incremental effectiveness First order approximation 0.01122 QALY
of ICER in Cohen et al.
(2004)
5. A Shadow value of effective- Cohen et al. (2004) $50000
ness
6. ow Population standard devi- Cohen et al. (2004) result $17538
ation of individual NIMB  for ICER
7. E[NIMB] Estimate of expected net Rows 3, 4 and 5 of this ta- $252
incremental monetary ble
benefit
8. p Discount rate (annual) Assumption 0.03
9. - Rate of arrival of observa- Cohen et al. (2004) 904
tions (annual)
10. P Number of patients that Assumption 1000
will be treated before
adoption decision can be
revised
11. 1 ‘Sunk cost” associated Assumption 0
with adoption of technol-
ogy
12. T Maximum sample size Assumption 2000

Table 1: Parameter values used for the case study (baseline case) of section 3.

are dealing with a medical device, we assume that the irreversible invest-
ment cost may be considered negligible and so we set I equal to zero. We
adopt the standpoint of an authority responsible for the decision to introduce
DES for the treatment of unselected patients undergoing PCI and, in the ab-
sence of information on the value of P, we run our application assuming that
P =1000.

In section 2, we implicitly assume that the number of patients allocated
to each arm of the trial is the same, allowing us to interpret each pair of
observations as equating to one realisation. In the SIRIUS trial the arms
are slightly unbalanced, although the split is small: 533 for DES versus
522 for BMS. In order to approximate this situation, we set the number of
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Figure 1: Optimal thresholds and adoption, continuation and abandonment regions
(range for t restricted to (0,1000)) for the baseline model.

observations at the level such that the variance of the sample mean with 533
individuals in the DES group and 522 individuals in the base group equals the
variance of a hypothetical situation in which the numbers in each group are
equal and and the DM’s prior is noninformative.” This implies an equivalent
sample size of 527.

Consistent with the model in section 2, a discount rate accounts for the
cost of foregone treatments when the decision is postponed. We set p = 0.03
(an annual rate). Since the unit of ‘time’ in our problem corresponds to the
time needed to take one observation in each arm of the trial, the discount
rate must be adjusted for consistency with the sampling process. Assuming
a constant pace of accumulation of observations, n = 527 observations taken
over the seven months of the trial correspond to 904 observations in one
year. Hence the adjusted, per observation, discount rate is p = 0.03/904.
Lacking any useful information to estimate the cost of an additional pair of
observations, we assume that ¢ = $100. Table 1 summarises the parameter
values, together with their sources.

9See Joseph and Belisle (1997).
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Figure 2: Sensitivity of optimal thresholds to changes in: (a) research cost ¢; (b)
population standard deviation of individual NIMB (o ).

3.1 Optimal thresholds

With the values reported in Table 1, to which we refer as the ‘baseline case’
parameters, we numerically solve Eq. (7), together with the boundary con-
ditions, using the Crank-Nicholson finite-difference scheme and a mesh size
of 2000 x 2000. Figure 1 shows the upper and the lower thresholds and the
three regions - adoption, continuation and abandonment - at the individual
level, assuming a maximum sample size 7" = 2000. In Figure 1, we restrict
the range for ¢ to (0,1000) to show clearly the three regions.!® The area
above the upper threshold indicates the set of points (¢,y) for which adop-
tion of DES is optimal. In the area between the thresholds it is optimal to
continue with research. Below the lower threshold continuing to research is
not optimal, that is, the expected value of additional sample information is
outweighed by the costs of obtaining it. The dynamically optimal thresholds
are nonlinear and not symmetrical and, when I = 0, they converge to zero
as the sample size increases. It can be optimal for the DM not to adopt,
but continue to carry out research, when the posterior estimate of expected
NIMB is positive and it can be optimal for the DM to continue with research
even though the posterior estimate of expected NIMB is negative.

Figures 2(a) and (b) show the sensitivity of the optimal thresholds to
changes in the sampling cost ¢ and the standard deviation of NIMB, oy,
where the solid line corresponds to the baseline case of Figure 1. In Figure

10Choice of T affects the positioning of the thresholds, since ¢ appears in the PDE and
associated conditions (Eqs. (7) - (9)) which are solved using the finite difference method.
Chick and Gans (2009) use a loss function approach to choose the optimal 7. In this
preliminary work we fix T to illustrate the main characteristics of the model.
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Figure 3: Comparison of Cohen et al. (2004) point estimate with dynamic thresholds
from the baseline model and the statistical thresholds.

2(a), the dotted and the dashed lines are obtained by setting ¢ = 300 and
¢ = 10, respectively. The figure shows that the continuation region shrinks
as the cost of sampling increases, which is an unsurprising result.

As is well known from the real option literature, a greater degree of uncer-
tainty at the population level increases the option value, thus increasing the
value of waiting. Figure 2(b) confirms this result, showing how the thresholds
increase when the standard deviation is increased/decreased by 30%. The
figure shows that a larger population standard deviation implies a larger con-
tinuation region: for any ¢, the value of the posterior estimate of expected
NIMB required to induce optimal adoption is higher. In a similar manner,
abandonment of sampling is optimal for lower (higher in absolute terms)
values than in the baseline case.

3.2 A comparison with alternative decision rules

It is relatively straightforward to compare our thresholds with the adop-
tion/research rules that would be used in a traditional, inferential statistical
analysis and in the ‘irrelevance of inference’ (Iol) approach of Claxton (1999).
To assist our assessment, we assume a hypothetical situation in which we are
running the SIRIUS trial and, having sampled 527 pairs of subjects, we wish
to decide whether we should adopt DES, continue to sample, or abandon
our project, according to different decision rules. Figure 3 compares the
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thresholds from our baseline model with those of a standard statistical test
(two tail, 5% significance level).!! For n = 527, the figure also plots the
posterior estimate of expected NIMB, calculated using the parameter val-
ues reported in Table 1. Figure 3 shows that the point estimate of expected
NIMB lies between the upper and lower statistical thresholds, indicating that
the point estimate is not significant at a 5% significance level, implying that
the technology should not be adopted. This conclusion is consistent with
our decision rule, since the point lies within the continuation region defined
by our thresholds. However, although both approaches advise non-adoption,
the statistical approach has nothing to say about whether sampling should
be continued or abandoned whereas, with our thresholds, the DM’s optimal
strategy is to continue to research by paying for another realisation of W.

Figure 4(a) shows that, if the sampling cost ¢ is sufficiently high (¢ =
1300), our thresholds are pushed closer together and it becomes optimal
to adopt the technology immediately based on the estimate of NIMB from
Cohen et al. (the point estimate lies above our adoption threshold). Figure
4(b) shows a similar result for a sufficiently small value of P, P = 100, which
pushes the thresholds closer together because it reduces o%. Since neither
parameter change affects the statistical thresholds, our decision rule is no
longer consistent with that of the simple statistical approach.

According to the irrelevance of inference (Iol) approach, the decision con-
cerning adoption should be separated from that concerning whether to con-
tinue with research. The former should be based on the point estimate, the
latter on the comparison between the expected value of perfect information
(EVPI) and the cost of obtaining that information. Since the point estimate
of NIMB is positive for the SIRIUS study, lol advises adoption of the new
technology and a comparison of the costs of obtaining more information with
the EVPI to indicate whether more research should be carried out.'? In our
model, since the DM has the option to defer the adoption decision in order
to carry out further research, these decisions are not separated: above the
upper threshold, it is optimal to adopt and not carry out research; in the
continuation region, it is optimal to carry out research (and not adopt); be-
low the lower threshold, it is optimal to abandon the project. Our result is
therefore not consistent with the Iol result.

1At the individual level, the general form of the thresholds for a standard statistical
test would be I/P + 1.96(ow /v/t). In our case study, I = 0.

12Tn principle, it will be possible to calculate the expected value of perfect information,
but to do so would require information on the population likely to benefit from the new
technology.
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Figure 4: Effect of: (a) ¢ = $1300 and (b) P = 100 on optimal thresholds, showing
adoption to be optimal at Cohen et al. (2004) point estimate.

4 Discussion

Our case study shows how a sequential sampling approach to HTA can yield
clear, dynamic, policy rules based on maximising the expected net incremen-
tal monetary benefit of a health technology assessment project, accounting
for the costs associated with conducting research. Whereas the simple sta-
tistical approach relies on only the standard error and a chosen significance
level to define the individual thresholds of statistical significance, our ap-
proach sees the HTA project as a dynamic process with economic dimensions
- the marginal cost of sampling ¢, the population size P and the discount
rate p - which vary across different technology-adoption decisions and trial
contexts, leading to project-specific adoption and abandonment thresholds.
The model’s dynamic nature permits its use for analysing adoption decisions
which can be deferred while further research is carried out, in order to nar-
row the uncertainty surrounding the DM’s beliefs about mean NIMB. It thus
extends the irrelevance of inference approach of Claxton (1999), which as-
sumed that treatment decisions could not be deferred. In doing so, it shows
that, for positive values of posterior mean NIMB lying in the continuation
region, it is optimal for the DM not to adopt the technology but to carry
out further research. The model’s results are applicable to the population
of P patients who are to be treated should adoption occur. The decision to
treat or to conduct research for other groups of patients, such as those with
different characteristics, or a wider patient population (including those to be
treated after s, the time at which the DM has the opportunity to revise his
decision), should be separately addressed.

The sensitivity of the results with respect to changes in ¢ and P has
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been discussed in section 3.1. Given the comparatively rapid pace of accu-
mulation of observations in the case study (904 per year), the impact of the
discount rate p on the optimal thresholds is almost negligible. In general,
however, a greater level of impatience tends to restrict the continuation re-
gion, by forcing the upper and lower thresholds together. If p equals infinity,
that is, the decision to adopt the technology cannot be deferred, Eq. (3)
becomes max{(y;/t) — I, —cdt,0}, implying that adoption is optimal if the
posterior mean minus [ is positive. This is consistent with the result of the
Iol approach.

The sensitivity of our result to changes in the value of P - as shown in Fig-
ure 4(b) - is an important one: while large differences in the cost of sampling
c are more likely to exist for different technologies than for different studies
of the same technology, the size of P may vary substantially in different con-
texts, even for the same technology. The implication is that, ceteris paribus,
the expected sample size required to make the adoption/abandonment deci-
sion is lower the lower is P. As a result, it may be optimal to adopt a new
technology earlier in contexts where a smaller population is involved, or the
decision can be rapidly reversed on the basis of the new evidence. The value
of P may be further influenced by the characteristics of the DM. For exam-
ple, for adoption decisions being made at a national level, one would expect
a larger number of subjects to be sampled before the adoption/abandonment
decision is be made (because P is high) whereas, at a local level, one would
expect fewer subjects to be sampled (because P is lower). According to
our model, the dynamically optimal decision rules are different for these two
contexts, since they are functions of P: in the jargon of the real options
literature, P is directly related to the degree of irreversibility of the decision.

Another form of irreversibility arises when the DM must pay a sunk cost
I to adopt the technology. Although our case study sets I equal to zero, it
is straightforward to consider the case when / > 0. Figure 5 compares the
individual-level thresholds for the baseline version of the case study (solid
lines) with the case when I = $100000 (dashed lines, the range for ¢ is re-
stricted to (100, 2000)). The inclusion of the sunk cost means the individual-
level thresholds shift upwards, converging to I/P at the terminal time.

Although the size of the population to be treated in case of adoption,
before the decision can be revised, has yet to be formally recognized in the
HTA literature, it has been implicitly recognized in some health policy doc-
uments. For instance, the recommendations released by the UK National
Institute for Health and Clinical Excellence (NICE) typically include an in-
dication of the timing of review of the guidance. In the guidance for the use
of Drug Eluting Stents issued in July 2008, it is stated that ‘the guidance on
this technology will be considered for review in April 2009’ and that ‘This
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Figure 5: Comparison of thresholds for the baseline case with the case when
I = 100000 (range for ¢ restricted to (100,2000)).

decision will be taken in the light of information gathered by the Institute,
and in consultation with consultees and commentators’ (National Institute
for Health and Clinical Excellence, 2008, page 40). Such documents can then
become the basis for an estimate of P, given the prevalence and incidence of
the disease in the population.

Aside from the absence of a closed form solution to the problem, necessi-
tating reliance on numerical simulations, a possible limitation of our model
concerns the arrival rate of new sample information: our assumption that the
DM can observe this information in a sequential, deterministic manner, one
pair of observations at a time, might not always be appropriate. For exam-
ple, a DM carrying out a single trial might have more control over, and/or
knowledge about, the rate of arrival of new information than one assimilating
the results of published trials reporting in different jurisdictions. In the latter
case, it could be more appropriate to assume a stochastic arrival process for
new information.

5 Conclusion
The present paper aims to bridge the gap that exists between the absence of

key economic variables from existing statistical approaches to HTA and the
absence of important statistical dimensions from the real option approach to
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HTA, in situations when an adoption decision can be deferred. We interpret
the health technology assessment as a project with uncertain returns, which
depends on clinical (effectiveness) and economic (cost) variables. Our results
highlight the relevance of variables specific to each adoption decision, such
as the size of the population involved, the cost of carrying out research and
the degree of (im)patience of the decision maker, which are typically ignored
in the statistical approach. We are also able to define a dynamically opti-
mal policy for the abandonment of research, something which is typically
overlooked in the health economics and statistical literature.

The costs of moving away from strictly statistical criteria mainly lie in
the loss of standardization of the decision rules. However, we show that
standardization is, in general, inconsistent with the dynamic consistency of an
economic decision which seeks to maximise expected NIMB minus research,
sunk and discounting costs.
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