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Abstract
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1 INTRODUCTION

The problem of testing a model in the presence of a nonnested alternative has proved to be

of importance in both applied and theoretical econometric analyses; see McAleer (1995) and

Pesaran and Weeks (2001) for surveys and comments. McAleer reports that, of the various

methods that have been proposed for testing nonnested regression models after ordinary

least squares (OLS) estimation, the J test of Davidson and MacKinnon (1981) is the one

most often used by applied workers. In order to establish the asymptotic validity of the

J test, Davidson and MacKinnon make the classical assumptions that all regressors are

exogenous and the errors are normally and independently distributed (NID) with common

variance and zero means. However, as shown in MacKinnon et al. (1983), the J test remains

asymptotically valid when the errors are independently and identically distributed (IID),

but not necessarily normal, and some of the regressors are lagged values of the dependent

variable, provided there is dynamic stability.

Although the assumptions used in MacKinnon et al. (1983) are much weaker than those

in Davidson and MacKinnon (1981), the requirement that the errors of the model under test

be IID is clearly inconsistent with modern views about best practice techniques for applied

work; see, e.g., Hansen (1999) and Stock and Watson (2006) in which empirical workers are

urged to adopt heteroskedasticity-robust methods. Choi and Kiefer propose "robust tests

that generalize the J test ... for nonnested dynamic models with unknown serial correlation

and conditional heteroscedasticity"; see Choi and Kiefer (2008). Choi and Kiefer seek to

obtain a robust OLS-based J test by using heteroskedasticity and autocorrelation consistent
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(HAC) methods, based upon the non-standard (�xed-b) asymptotic theory for HAC tests

discussed in Kiefer et al. (2000) and Kiefer and Vogelsang (2002a, 2002b, 2005). In addition

to examining the J test, Choi and Kiefer obtain a HAC variant of the comprehensive model

(encompassing) F test that is sometimes used with nonnested linear regressions.

It is important to note that the asymptotic theory for robust OLS-based tests in Choi

and Kiefer (2008) does not apply to all types of dynamic regression models. Regression

models can be referred to as being dynamic when the regressors include lagged exogenous

variables and/or lagged values of the dependent variable. The strategy for testing advocated

by Choi and Kiefer is appropriate when all regressors can be taken to be current or lagged

values of strictly exogenous variables. However, it cannot be employed to obtain valid HAC

tests of the signi�cance of OLS estimates in the combined presence of lagged dependent

variables and serially correlated errors. The root of the problem for the HAC method and

the stimulus for proposing a di¤erent procedure is that standard and �xed-b asymptotics

both require that the OLS estimator be consistent; for discussions of the former and latter

theories, see Greene (2008) and Kiefer and Vogelsang (2005), respectively.

In general, OLS estimators will be inconsistent when the errors are autocorrelated and

there are lagged values of the dependent variable in the regressors. Consequently, if OLS-

based tests of nonnested regression models with lagged dependent variables are required,

it is not possible to allow the presence of unspeci�ed forms of autocorrelation and so the

assumption of serial independence is vital for the asymptotic validity of such tests. Thus,

the advice given in Choi and Kiefer (2008, p. 11) that "an empirical researcher need not
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test the existence of serial correlation" is inappropriate in such situations and such a test is

instead essential when some of the regressors are lagged values of the dependent variable.

Since the consistency of OLS estimators when the regressors include lagged dependent

variables requires that the model under test has the correct regression function and that its

errors have no autocorrelation, the data consistency of both of these assumptions should be

checked. Given that two assumptions are under test, an applied worker can use either a joint

test or two separate tests. It is argued below that, in the context of the problem examined

in this paper, a joint test is more appropriate. Although robustness to error autocorrelation

cannot be achieved when OLS estimation is used and the regressors include lagged dependent

variables, asymptotic robustness of tests to heteroskedasticity is still feasible and desirable.

The joint test is, therefore, constructed using a covariance matrix that is consistent under

either unspeci�ed forms of heteroskedasticity or homoskedasticity, provided regularity con-

ditions are satis�ed. The heteroskedasticity-robust joint tests can be implemented using

either asymptotic critical values or a wild bootstrap approach and Monte Carlo evidence is

provided that supports the use of the latter.

The absence of error autocorrelation is a key assumption for the consistency of OLS

estimators in regression models of the type examined in this paper. If, however, OLS were

replaced by an appropriate instrumental variable (IV) technique, autocorrelation would not

imply inconsistency of the estimators of regression coe¢ cients. It might be argued that it

would be useful to test for autocorrelation and, if the autocorrelation test were to have a

statistically signi�cant outcome, to adopt a modi�ed version of the robust test in Choi and
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Kiefer (2008) derived using an IV estimator that is consistent under unspeci�ed forms of au-

tocorrelation. However, statistically signi�cant outcomes of an autocorrelation test should be

interpreted as strong evidence against the null hypothesis but not as strong evidence either

for the speci�c autocorrelation model used as the alternative in the test, or for any form of

genuine error autocorrelation. As has been emphasized many times in textbooks and research

articles, tests of the null of no autocorrelation can be sensitive to many types of misspeci�ca-

tion, e.g., omitted variables. Inferences derived from estimated "autocorrelation-corrected"

covariance matrices may be very misleading when the regression function is actually under-

speci�ed. The aim of this paper is to provide heteroskedasticity-consistent tests that are

convenient and reliable checks for important misspeci�cations but, as discussed below, these

tests should not be relied upon to identify which misspeci�cations are present.

2 MODELS AND ASSUMPTIONS

Consider two competing nonnested regression models written as

H1 : yt = x0t�1 + u1t; (1)

and

H2 : yt = z0t�2 + u2t; (2)

in which: xt and zt are k1- and k2-dimensional vectors of regressors, with �1 and �2 being

the corresponding vectors of unknown coe¢ cients; u1t and u2t are errors terms; and there

are T observations, i.e., t = 1; :::; T . The regressors of xt and zt both contain at least one
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lagged value of yt. It is assumed that the true model is dynamically stable. (If no lagged

dependent variables were used as regressors, the OLS-based HAC methods in Choi and

Kiefer, 2008, could be employed.) A referee has pointed out that, with lagged variables used

as regressors, the assumption that estimation and testing are based upon T observations

implies that additional data for initial values must be available.

Suppose that the validity of H1 is to be tested using information about H2. (Either

model could be regarded as the null. The changes required when the roles of H1 and H2

are reversed are straightforward.) Also suppose that the autoregressive or moving average

model of order m is used as the alternative to the assumption of independent errors. Given

regularity conditions, any �xed value such that 1 > m > 0 will deliver an asymptotically

valid test under the null hypothesis. However, the choice of m will a¤ect power. It would

seem reasonable to take into account the nature of the time series data being used, e.g.,

m = 4 might be used when the data are quarterly.

It is useful to introduce the following notation: y = (y1; :::; yT )0, X = (x1; :::; xT )
0, Z =

(z1; :::; zT )
0, u1 = (u11; :::; u1T )0 and u2 = (u21; :::; u2T )0. The OLS estimation of (1) and (2)

yields vectors of coe¢ cient estimates, predicted values and residuals denoted by:

�̂1 = (X 0X)�1X 0y and ~�2 = (Z
0Z)�1Z 0y;

ŷ = X(X 0X)�1X 0y = P1y and ~y = Z(Z 0Z)�1Z 0y = P2y;

û1 = (IT � P1)y =M1y and ~u2 = (IT � P2)y =M2y;

respectively. It is usually the case that H1 and H2 have at least one regressor in common,

e.g., an intercept term. In such cases, assume, without loss of generality, that the regressor
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matrix of (2) can be partitioned as Z = (G;XA), with G0M1G (k3 � k3) being positive

de�nite and A being a known k1 � (k2 � k3) matrix. Thus the k3 variables in G are speci�c

to H2.

The tests of this paper can be implemented using arti�cial alternative models. The

quasi-error terms on all arti�cial regressions below are denoted by ut. Two joint tests are

considered. These procedures di¤er in the way in which information about H2 is incorpo-

rated.

If, as in the original J test, the predicted value from OLS estimation of H2, is used, the

arti�cial alternative for the joint test is

HJAC : yt = x0t�1 + �~yt + �1û1t�1 + :::+ �mû1t�m + ut; (3)

in which: ~yt is a typical element of ~y; and û1t�j is a lagged value of the residual from

OLS estimation of H1 when (t � j) > 0 and is set equal to zero when (t � j) � 0. A

heteroskedasticity-robust of the (1 +m) restrictions of � = �1 = ::: = �m = 0 derived from

the OLS estimation of (3) is, therefore, required. Let the OLS estimators of the coe¢ cients

in (3) be denoted by _�1, _� and ( _�1; :::; _�m).

If, rather than following the analysis in Davidson and MacKinnon (1981), the compre-

hensive model approach is preferred for utilizing information about H2, (3) is replaced by

HFAC : yt = x0t�1 + g0t
 + �1û1t�1 + :::+ �mû1t�m + ut; (4)

in which g0t denotes a typical row of G. A heteroskedasticity-robust test of the (k3 + m)

restrictions 
1 = ::: = 
k3 = �1 = ::: = �m = 0 is then to be derived. The OLS estimators

for (4) are denoted by ��1, �
 and (��1; :::; ��m).
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Assumptions must be made to ensure that, when the intersection null hypothesis is

true, the following two results hold: (i) the OLS estimators of the arti�cial alternative

regression are consistent and asymptotically normal; and (ii) a valid heteroskedasticity-

consistent covariance matrix estimator (HCCME) is available for these estimators. Given (i)

and (ii), it is possible to derive an asymptotically valid joint test using theWald principle with

the HCCME. A basic set of regularity conditions that permits heteroskedasticity-consistent

inference when regressors include lagged dependent variables is provided in Hsieh (1983).

However, modi�cations of these assumptions are required in the context of the arti�cial

regressions (3) and (4).

Typical observation vectors for the regressors of models (3) and (4) are written as

r̂0t = (x0t; ~yt; û1t�1; :::; û1t�m) and ŝ0t = (x0t; g
0
t; û1t�1; :::; û1t�m), respectively. It is useful to

introduce two vectors of quasi-regressors rt and st that can replace r̂t and ŝt, respectively,

without a¤ecting the asymptotic validity of tests. Let ��2(�1) denote the probability limit

of ~�2 when the joint null hypothesis is true. The vectors for quasi-regressors are then

r0t = (x
0
t; z

0
t
��2(�1); u1t�1; :::; u1t�m) and s

0
t = (x

0
t; g

0
t; u1t�1; :::; u1t�m). It is assumed that, when

the joint null hypothesis is true, (u1t; r0t) and (u1t; s
0
t) satisfy A.1 to A.7 in Hsieh (1983). For

example, the counterpart of A.1 in Hsieh (1983, p. 282) is the following assumption:

Assumption 1. When H1 is the true model, the errors u1t are assumed to satisfy

E(u1tjrt) = E(u1tjst) = 0, which excludes endogenous variables as regressors in H1 and

also excludes autocorrelated errors; see, e.g., Choi and Kiefer (2008, p. 11).

While Hsieh�s theorems provide theoretical foundations for heteroskedasticity-robust
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tests, practitioners need evidence about the usefulness of the asymptotic theory as a guide

to �nite sample behaviour. Much of the available evidence is derived from Monte Carlo stud-

ies of the behaviour of a quasi-t test, i.e., from experiments in which the null hypothesis

imposes a single linear restriction on the regression coe¢ cients. Important examples of such

studies are Cribari-Neto (2004), Long and Ervin (2000) and MacKinnon and White (1985).

These Monte Carlo investigations indicate that there can be substantial di¤erences between

estimates of �nite sample rejection probabilities under the null hypothesis and the desired

(asymptotically achieved) signi�cance levels. However, there is an asymptotically irrele-

vant adjustment that seems to have a marked bene�cial e¤ect on heteroskedasticity-robust t

tests. This important adjustment is to use squared restricted residuals, rather than squared

unrestricted residuals, in the HCCME.

The use of restricted residuals when forming the HCCME is found in simulation experi-

ments to yield evidence that the corresponding quasi-t test is well behaved in �nite samples

and that its performance is quite robust to the choice of the HCCME from the usual set of

asymptotically equivalent variants; see Davidson and MacKinnon (1985a) for details. Re-

placing unrestricted residuals by restricted residuals in the HCCME of White (1980) leads

to the estimator

ĈJAC =

"
TX
t=1

r̂tr̂
0
t

#�1 " TX
t=1

û21tr̂tr̂
0
t

#"
TX
t=1

r̂tr̂
0
t

#�1
; (5)

in which r̂0t = (x
0
t; ~yt; û1t�1; :::; û1t�m), when (3) is the arti�cial alternative, and to the esti-

mator

ĈFAC =

"
TX
t=1

ŝtŝ
0
t

#�1 " TX
t=1

û21tŝtŝ
0
t

#"
TX
t=1

ŝtŝ
0
t

#�1
; (6)
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in which ŝ0t = (x
0
t; g

0
t; û1t�1; :::; û1t�m), when (4) is the arti�cial alternative.

Heteroskedasticity-robust Wald test statistics can be de�ned using (5) and (6). When

testing � = �1 = ::: = �m = 0 in (3), the test statistic is

�JAC = (_�; _�1; :::; _�m)
h
R1ĈJACR

0
1

i�1
( _�; _�1; :::; _�m)

0; (7)

in which R1 = [01 : I1], 01 is a (1 +m) � k1 matrix with every element equal to zero and

I1 is the (1 +m)� (1 +m) identity matrix. The asymptotic critical values for interpreting

a sample value of �JAC should be taken from the �2(1 + m) distribution. Similarly, when

testing 
1 = ::: = 
k3 = �1 = ::: = �m = 0 in (4), the Wald criterion is

�FAC = (�
1; :::; �
k3 ; ��1; :::; ��m)
h
R2ĈFACR

0
2

i�1
(�
1; :::; �
k3 ; ��1; :::; ��m)

0; (8)

in which R2 = [02 : I2], 02 is a (k3 +m)� k1 matrix with every element equal to zero and I2

is the (k3 +m)� (k3 +m) identity matrix. Asymptotic critical values for �FAC come from

the �2(k3 +m) distribution.

A referee has suggested that asymptotically valid heteroskedasticity-robust tests of the

joint null hypothesis of correct mean speci�cation and no error autocorrelation could be

obtained by replacing ĈJAC in (7) and ĈFAC in (8) by the corresponding covariance matrix

estimators derived from the formulae employed in Choi and Kiefer (2008). These OLS-

based formulae give the covariance matrix estimator as the sum of two matrices: the �rst

matrix is a White-type HCCME, as used above, and the second is intended to correct for

autocorrelation when all regressors are exogenous (see, e.g., Greene, 2008, p.643). The cal-

culation of the second matrix is relatively complicated, involving the sample autocovariances

9



of cross-products of regressors and residuals, along with the choice of a kernel function and

associated bandwidth parameter. More importantly, the null hypothesis speci�es that there

is no autocorrelation; so that the Choi-Kiefer method includes the estimation of terms that

are known to be zero under the null hypothesis. The use of the Choi-Kiefer type of covariance

matrix estimator, therefore, requires the applied researcher to take on the cost of the task

of choosing the bandwidth and kernel function in order to end up in the position of basing

heteroskedasticity-robust tests upon a covariance matrix estimator that is asymptotically

ine¢ cient relative to the HCCME. (Note that the OLS-based covariance matrix estimators

in Choi and Kiefer, 2008, are not HAC for models of the type discussed here in which lagged

dependent variables are used as regressors.) In the context of this paper, there is no obvious

reason why the applied worker testing the joint null hypothesis would want to undertake

the calculation of the "autocorrelation-correction" matrix and the use of the White-type

covariance matrix estimators in (5) and (6) is preferred.

3 TEST PROCEDURES

The discussion in this section is in two parts. First, the choice between a joint test and

separate tests is examined. Second, a bootstrap method for implementing heteroskedasticity-

robust tests is described.
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3.1 JOINT OR SEPARATE TESTS?

Whenever checking for misspeci�cation involves testing several zero restrictions on the coef-

�cients of an arti�cial alternative regression model, there is the choice between using a single

joint test or a collection of separate tests. Under the null hypothesis, the joint test has the

advantage that, in general, its signi�cance level can be controlled (at least asymptotically)

in a straightforward way. In contrast, given the unknown dependencies between the sepa-

rate test statistics, the overall signi�cance level associated with the collection of separate

tests cannot be controlled, although an upper bound can be obtained using the Bonferroni

method.

It is, of course, important to also consider the relative merits of joint and separate testing

when there is misspeci�cation. If the joint (intersection) null hypothesis is untrue, it is to be

hoped that the joint test will produce a statistically signi�cant outcome with reasonably high

probability. However, such statistically signi�cant outcomes of a joint test cannot provide

information about the ways in which the null model is misspeci�ed. If it were the case

that separate tests could identify the source of misspeci�cation, there would be an argument

against the use of a joint test. However, there are good reasons in general settings and in

the particular context of this paper for believing that, when the intersection null hypothesis

is untrue, separate tests cannot be assumed to be reliable guides to re-speci�cation and/or

choice of an alternative estimator.

The general problem that impedes the constructive use of separate tests is that they can

be sensitive to misspeci�cations that are not in the class of alternative models for which they
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were designed. For example, it is stressed in textbooks, e.g., Greene (2008, Ch. 19), that

statistically signi�cant autocorrelations of OLS residuals can be caused by misspeci�cation

of the regression model and Mizon argues that "if the null hypothesis of no serial correlation

is rejected, there is not a unique alternative model to adopt, since all the test result has

established is that the present model is inadequate, probably by having an inappropriate

dynamic speci�cation"; see Mizon (1995). After an analysis of the asymptotic behaviour of

separate test statistics, it is concluded in Davidson and MacKinnon (1985b) that a separate

test statistic "can indeed tell us that a model is wrong, but by itself it can never tell us

why."

In terms of the speci�c framework of this paper, the separate autocorrelation test would

be likely to sensitive if H2 with independent errors were the true data generation process

(DGP) and H2 contained more lagged values of the dependent variable than H1; see the

discussion of the sensitivity of autocorrelation tests to the omission of relevant lagged de-

pendent variables provided in Davidson and MacKinnon (1985b, pp. 44-46). Turning to

separate nonnested hypothesis tests, a referee has pointed out that, when the DGP is H1

with autocorrelated errors, the inconsistency of OLS is likely to lead to non-zero probability

limits of the OLS estimators of coe¢ cients of the variables used to incorporate information

about H2 and hence to separate tests of H1 against H2 having rejection probabilities in

excess of their signi�cance levels.

The combination of H1 and autocorrelated errors is outside the null hypothesis of this

paper because it is being assumed that the applied worker wishes to use OLS to estimate
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equations with lagged dependent variables as regressors. However, this type of DGP may be

of interest in an empirical study. A referee has pointed out that if an IV estimator, derived

using only exogenous variables as instruments, were to be used in place of OLS, it might

be possible to extend the asymptotic analysis in Choi and Kiefer (2008) to obtain IV-based

HAC tests of H1 based upon information about H2. Discussions of the important issues

of the �nite sample behaviour of such IV-based procedures and the choice of instruments,

kernel and bandwidth for the construction of the test statistics are beyond the scope of this

paper but are interesting areas for future research.

It does, however, seem reasonable to conjecture that bootstrap methods, rather than

asymptotic critical values, will be needed to get good control of �nite sample signi�cance

levels of IV-based tests. The consistency of an IV estimator does not imply that bootstrap

applications in �nite samples will be without problems. In a study of homoskedasticity-only

bootstrap tests for serial correlation for models with lagged dependent variables included as

regressors, Godfrey �nds that the use of IV methods that are consistent under the alternative

hypothesis leads to problems in �nite samples. His Monte Carlo results show that the IV

estimates of regression coe¢ cients, which serve as the parameters of the bootstrap data

generation process, often fail to satisfy the conditions for dynamic stability; see Godfrey

(2007).
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3.2 BOOTSTRAP IMPLEMENTATION OF THE JOINT TEST

There is evidence that even the use of restricted residuals in the HCCME is not su¢ cient to

obtain good approximations from the asymptotic theory when the null hypothesis imposes

several restrictions, rather than just one. More precisely, it has been found that, when several

restrictions are under test, the use of asymptotic critical values with restricted residual

HCCME-based test statistics produces estimates of null hypothesis rejection probabilities

that are too small; see Godfrey and Orme (2004). This point is important here, given that

the J and F approaches, combined with a check for mth order autocorrelation, lead to joint

tests of (1 +m) > 1 and (k3 +m) > 1 restrictions, respectively. The failure of asymptotic

critical values to provide reliable inferences in general situations of empirical interest has led

several researchers to examine the use of bootstrap methods.

Results that are relevant to the implementation of bootstrap tests in conditionally het-

eroskedastic dynamic regression models are provided in Gonçalves and Kilian (2004). The

asymptotic validity of three methods is established by Gonçalves and Kilian who also report

Monte Carlo evidence on �nite sample behaviour. In two of the methods, referred to as the

"pairwise bootstrap" and the "�xed-design wild bootstrap", lagged values of the dependent

variable that are included as regressors are treated as if they were exogenous. The third

method, called the "recursive-design wild bootstrap", mimics the dynamic nature of the as-

sumed data process and allows for conditional heteroskedasticity by combining the recursive

bootstrap for autoregressions of Bose (1988) with the heteroskedasticity-valid wild bootstrap

of, e.g., Liu (1988). Thus, if the regressors of (1) are ordered so that x0t = (yt�1; :::; yt�l; q
0
t),
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with qt containing the exogenous regressors, the recursive-design wild bootstrap generates

arti�cial data according to

y�t = (y
�
t�1; :::; y

�
t�l; q

0
t)�̂1 + u�1t; with u

�
1t = û1t�t; t = 1; :::; T; (9)

in which required starting values are set equal to those for the actual data and the �t are IID

drawings from a "pick distribution" that has zero mean, variance equal to unity and �nite

fourth moment.

After considering the results from their Monte Carlo experiments, Gonçalves and Kilian

conclude that, of the three methods that they examine, the recursive-design wild bootstrap

of (9) "seems best suited for applications in empirical macroeconomics"; see Gonçalves and

Kilian (2004, p. 106). In general, when discussing Monte Carlo evidence, Gonçalves and

Kilian use the results obtained with the �t of (9) being distributed as standard normal.

They remark, however, that these results are robust to changes of the pick distribution in

which the standard normal is replaced by either of two well-known two-point distributions.

One of these two-point distributions is proposed in Mammen (1993) and the other is the

Rademacher distribution de�ned by

Pr(�t = �1) = Pr(�t = 1) = 0:5: (10)

Several researchers have reported evidence that supports the use of (10); see Davidson

et al. (2007), Davidson and Flachaire (2008) and Flachaire (2005) for results for models

with exogenous regressors and Godfrey and Tremayne (2005) for �ndings about models in

which lagged dependent variables are included in the regressors. The tests of Section 2 are,
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therefore, implemented using (9) with (10). The algorithm for carrying out the required

heteroskedasticity-robust joint test can then be described as follows.

Step 1. Estimate (1) and (2) by using OLS with the actual data � = (y;X;Z) to obtain

residuals from the former model and predicted values from the latter model if the J test

approach is to be used.

Step 2. According to the choice of general approach to testing H1 in the presence of

information about H2, while jointly testing for autocorrelation, estimate either (3) or (4) by

OLS and obtain the corresponding HCCME as de�ned in either (5) or (6). Use this HCCME

to calculate the heteroskedasticity-robust Wald statistic from the actual data �. Let the

sample value of the statistic be denoted by � .

Steps 3 to 5 are repeated B times. A bootstrap sample is produced and used to calculate

the bootstrap counterpart of � each time. In the descriptions of Steps 3 to 5, j is used to

denote a typical repetition, so j = 1; :::; B.

Step 3. Generate a sequence of arti�cial observations y�(j)t, t = 1; :::; T , using the recursive

wild bootstrap scheme that consists of (9) and (10). Values of exogenous regressors in (1) and

(2) are held �xed over bootstrap samples and the terms fy�(j)tg, combined with any required

actual starting values, provide the speci�ed lagged dependent variables for regressor sets; so

that the bootstrap sample ��
(j) = (y

�
(j);X

�
(j);Z

�
(j)) is now available.

Step 4. Perform the calculations of Step 1 with actual data � replaced by bootstrap

data ��
(j).

Step 5. Perform the calculations of Step 2 with actual data � replaced by bootstrap
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data ��
(j). Let the bootstrap test statistic be denoted by �

�
(j).

After Steps 3 to 5 have been carried out B times, the bootstrap p-value of the observed

test statistic � can be calculated as the proportion of the bootstrap test statistics that are

at least as large as the actual value, i.e., p̂�(�) = #(� �(j) � �)=B. The intersection null

hypothesis of interest is rejected if p̂�(�) � �, in which � denotes the desired signi�cance

level.

4 MONTE CARLO DESIGN

Following, e.g., Delgado and Stengos (1994) and Fan and Li (1995), the Monte Carlo exper-

iments are based upon designs in Godfrey and Pesaran (1983). Each of the two models has

yt�1 as the �rst regressor and all other regressors are exogenous. As in the previous sections,

it is assumed that the �rst model is under test.

4.1 Experiments in which the joint null hypothesis is true

When calculating rejection frequencies that correspond to �nite sample signi�cance levels of

heteroskedasticity-robust joint tests, data are generated under H1 according to

yt =  1x1t +

k1X
i=2

xit + u1t; with x1t = yt�1; t = 1; ::; T; (11)

 1 = (0:3; 0:5; 0:7), and the competing model H2 is written as

yt =

k2X
i=1

�izit + u2t; with z1t = yt�1; t = 1; ::; T: (12)
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The numbers of regressors in the experiments are (k1; k2) = f(3; 3), (3; 5), (5; 3), (5; 5)g.

Note that k1 and k2 in (11) and (12) correspond to k0 + 1 and k1 + 1, respectively, in the

notation of Godfrey and Pesaran (1983). The terms xit; i = 2; ::; k1, in (11) are exogenous

and are obtained as standard normal variates that are independent over i and t. The last

k2 � 1 regressor values in (12) are given by zit = �xit + �it, i = 2; :::;min(k1; k2) and, if

k1 < k2, zit = �it, i = k1 + 1; :::; k2, with the �it being standard normal variates that are

independent over i and t. The value of � is determined by �xing the positive population

correlation between xit and zit, which is denoted by �, with �2 = (0:3; 0:9).

The errors u1t are independently and normally distributed with zero means. (Using

transformations of drawings from either �2(5) or t(5) distributions to obtain the errors did

not alter the results in important ways.) Conditional variances are obtained in three ways.

First, there is conditional homoskedasticity with �21t = V ar(u1tjxt; zt) = �21, for all t, with �
2
1

determined via �21 = ((k1� 1)(1�R21))=(R21� 21), in which R21 = (0:5; 0:8) is the population

coe¢ cient of determination for H1. Second, the GARCH model is used with

�21t = c0 + 0:1u
2
1t�1 + 0:8�

2
1t�1; (13)

in which c0 is selected to yield an unconditional variance equal to �21 as de�ned for the case of

homoskedastic errors. The coe¢ cients of u21t�1 and �
2
1t�1 in (13) are similar to those reported

in empirical work. Third, a model based upon the HET1 scheme in Andrews (1991) is used,

with �21t = �21x
2
2t, in which �

2
1 is calculated as in the other two schemes.

There are T = (40; 80) observations, so it seems reasonable to think in terms of quarterly

data and to use m = 4 in the arti�cial regressions that correspond to (3) and (4). The joint
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test that uses the J test variable, therefore, tests 5 restrictions. There are (k2� 1) variables

that are speci�c to (12) and so the F -based joint test using the appropriate special case of

(4) tests (k2 + 3) zero restrictions for k2 = 3; 5. The desired signi�cance level is � = 5 per

cent. The corresponding �nite sample estimates are obtained using 25,000 replications. All

asymptotic critical values are taken from �2 distributions. The wild bootstrap versions of

the joint tests are carried out with B = 400 bootstrap samples.

4.2 Experiments in which the joint null hypothesis is untrue

Three departures from the model of the joint null hypothesis are used: �rst, the DGP is H2

with independent errors; second, the DGP is H1 with autocorrelated errors; and third, the

DGP is H2 with autocorrelated errors. In the �rst set of experiments, data are generated

under H2 according to

yt =  2z1t +

k2X
i=2

zit + u2t; with z1t = yt�1; t = 1; ::; T; (14)

 2 = (0:3; 0:5; 0:7), and the competing model is

yt =

k1X
i=1

!ixit + u1t; with x1t = yt�1; t = 1; ::; T: (15)

Generation of exogenous regressor values is exactly the same as when (11) is the Monte

Carlo DGP. Also the coe¢ cients used to determine conditional means are the same. Con-

ditional variance models only di¤er in non-trivial ways from those for experiments designed

to provide estimates of signi�cance levels because the expression for the unconditional error

variance must be altered. For example, in the HET1-type scheme for u2t of (14), �22t =
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V ar(u2tjxt; zt) = �22z
2
2t and the parameter �

2
2 is determined by �

2
2 = #2z(1 � R22)=(R

2
2 �  21),

in which: #2z = (k2 � 1)(1 + �2) if k1 � k2; #
2
z = f(k2 � 1) + (k1 � 1)�2g if k1 < k2; and

R22 = (0:5; 0:8) is the population coe¢ cient of determination for H2. The number of replica-

tions used to estimate power is 10,000; so that the maximum standard error of the estimator

of the rejection probability is 0.5 per cent, which seems adequate for practical purposes.

The second set of experiments, i.e., H1 with autocorrelated errors, is used to examine

the impact of the choice of m on power. In order to focus on the importance of the order of

the autocorrelation alternative, the nonnested alternative (12) is used with k2 = 2, implying

the equivalence of F and J test variables (and invariance of results with respect to �2).

Joint tests are obtained with m = 1 and m = 4, with the errors being generated using a

generalization of a scheme in Andrews (1991). More precisely, the errors are obtained from

vt =
4X
j=1

�jvt�j + at; at NID(0; �2a); (16)

and u1t = jx2tjvt, with vt in (16) being stationary. Two versions of (16) are employed. The

�rst of these schemes has �1 = 0:75 and �j = 0, j = 2; 3; 4; so that using m = 4 implies

that irrelevant test variables have been used and power losses relative to the test based on

m = 1 are expected. The second version of (16) has �1 = 0:7, �2 = �0:17, �3 = 0:017 and

�4 = �0:0006; so that (1 - 0.3L)(1 - 0.2L)(1 - 0.1L)2vt = at, in which L denotes the lag

operator. There is no generally valid prediction about the ranking by power of the tests

based upon m = 1 and m = 4 when this second autocorrelation scheme is part of the Monte

Carlo DGP. The value of �2a in (16) is selected by trial and error to avoid rejection frequencies

of the false intersection null hypothesis that are close either to the nominal signi�cance level
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or to 100 per cent. Required initial values are set equal to zero and T + 51 observations are

generated. The �rst 50 observations are dropped to reduce the impact of the �xed initial

values and the 51st observation is used for t = 0.

The third set of experiments uses, as the basic form of the DGP, H2 of (14), with k2 = 2

and errors given by u2t = jz2tjvt, in which vt is autocorrelated according to (16). As in the

experiments in which the DGP is H2 with independent errors, results depend upon the value

of �2. The two sets of values of the coe¢ cients f�jg in (16) are the same as in the second set

of experiments, as are the strategy for choosing �2a and the treatment of initial values. Joint

tests of the claim that the correct speci�cation is H1 with independent errors are conducted

by using both m = 1 and m = 4.

5 Monte Carlo Results

To save space, results are only discussed for experiments with conditional heteroskedastic-

ity of the HET1-type. The general �ndings that the recursive wild bootstrap leads to a

well-behaved procedure and gives better control of �nite sample signi�cance levels than as-

ymptotic critical values are not altered when either GARCH or homoskedastic errors are

used.

5.1 Results when null hypothesis is true

Tables 1 and 2 contain a representative sample of the results obtained when the intersection

null hypothesis that H1 is valid and has non-autocorrelated errors is true. The results for the
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combination of the arti�cial regressors of the J test and the Breusch-Godfrey test are given in

Table 1 and those for the combination of the F -type test variables and the Breusch-Godfrey

variables are given in Table 2. For each set of design parameters, rejection frequencies

are calculated using asymptotic and recursive wild bootstrap critical values. With 25,000

replications, the standard error of the proportion of rejections would be
p
5(95)=25; 000 =

0:14 per cent (approximately) if the true �nite sample signi�cance level were equal to the

desired value of 5 per cent.
TABLE 1

H1 versus HJAC: rejection frequencies when null hypothesis is true, with

desired level of 5 per cent, for asymptotic and recursive wild bootstrap tests

R21 �2  1 T (k1; k2) = (3, 3) (3, 5) (5, 3) (5, 5)

0.5 0.3 0.3 40 1.5 4.5 2.2 4.6 2.0 4.4 2.5 4.3

0.5 0.3 0.5 40 1.6 4.5 2.5 4.6 2.2 4.5 2.7 4.5

0.5 0.3 0.7 40 2.1 4.8 3.6 4.7 2.6 4.7 4.0 4.7

0.5 0.9 0.3 40 1.6 4.5 2.3 4.5 2.0 4.5 2.0 4.4

0.5 0.9 0.5 40 1.6 4.6 2.4 4.5 2.1 4.5 2.1 4.4

0.5 0.9 0.7 40 1.8 4.6 2.7 4.6 2.0 4.3 2.3 4.5

0.5 0.3 0.3 80 2.9 5.2 3.5 5.0 3.2 5.1 3.6 4.9

0.5 0.3 0.5 80 3.0 5.1 4.0 5.0 3.4 5.0 3.9 5.0

0.5 0.3 0.7 80 3.6 5.2 6.7 5.0 3.9 5.0 6.4 5.4

0.5 0.9 0.3 80 2.9 5.2 3.8 4.8 3.1 5.0 3.1 4.9

0.5 0.9 0.5 80 2.9 5.2 4.0 4.8 3.1 5.0 3.1 4.8

0.5 0.9 0.7 80 3.0 5.2 4.9 4.8 3.1 4.7 3.4 5.0

Notes: The �rst �gure of each pair is derived using asymptotic critical values and

the second �gure (given in bold) is derived using the recursive wild bootstrap

method. All results are reported as percentages, rounded to one decimal place.

Consider �rst the strategy in which use is made of the test variable of Davidson and
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MacKinnon (1981) and, in the notation of Section 2, H1 is tested againstHJAC . Experiments

based upon the Monte Carlo DGPs described above produce strong evidence against the

claim that asymptotic theory provides a good approximation to the �nite sample behaviour of

test statistics. When T = 40, the majority of rejection frequencies obtained using asymptotic

critical values do not exceed half of the required rejection probability of 5 per cent. Increasing

the sample size and using T = 80 improves the approximation provided by asymptotic theory,

but there is still evidence that marked under-rejection is common. Some results for cases with

R21 = 0:5 and  1 = 0:7 are larger than those associated with other cases. However,  1 = 0:7

implies that  21 = 0:49; so that, when R21 = 0:5, the exogenous variables xit; i = 2; :::; k1,

have very little impact on the population goodness of �t. If these exogenous variables were

actually irrelevant, it would follow that: R21 =  21 = 0:49; (11) would be nested in (12); and

there would be a breakdown of the standard asymptotic theory of the J test.

In contrast to the results derived from asymptotic critical values, the rejection frequencies

in Table 1 that are obtained using the recursive wild bootstrap approach suggest much better

control of �nite sample rejection probabilities. When T = 40, there is clearly a small degree

of under-rejection, with rejection frequencies �uctuating around 4.5 per cent, rather than the

nominal value of 5 per cent. This good performance is improved by increasing the sample

size to T = 80, with almost all of the rejection frequencies then being within 1.5 standard

errors of the nominal value and the general level of agreement being very good as judged by,

e.g., the criteria in Serling (2000).

The results for the heteroskedasticity-robust joint test derived by combining the arti�cial
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comprehensive model for the F -test with the arti�cial regression of the Breusch-Godfrey test

are presented in Table 2. The derivation ofH1 as the null model whenHFAC is the alternative

model requires more restrictions to be imposed than when HJAC plays the latter role. It is,

therefore, not surprising that Table 2 shows poorer approximations from asymptotic theory

than are seen in Table 1. Table 2 contains clear evidence that the true signi�cance levels

implied by using asymptotic critical values are much smaller than the desired level of 5 per

cent. The rejection frequencies for T = 40 in Table 2 are in the range 0.7 to 1.8 per cent

and those for T = 80 are between 1.9 and 3.0 per cent. Fortunately, as observed in Table 1,

the recursive wild bootstrap provides much more useful approximations.
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TABLE 2

H1 versus HFAC: rejection frequencies when null hypothesis is true, with

desired level of 5 per cent, for asymptotic and recursive wild bootstrap tests

R21 �2  1 T (k1; k2) = (3, 3) (3, 5) (5, 3) (5, 5)

0.5 0.3 0.3 40 1.2 4.4 0.7 4.6 1.6 4.3 1.0 4.0

0.5 0.3 0.5 40 1.2 4.3 0.8 4.5 1.8 4.5 1.0 4.2

0.5 0.3 0.7 40 1.3 4.5 0.7 4.5 1.8 4.4 0.9 4.1

0.5 0.9 0.3 40 1.2 4.4 0.7 4.6 1.6 4.3 1.0 4.0

0.5 0.9 0.5 40 1.2 4.3 0.8 4.5 1.8 4.5 1.0 4.2

0.5 0.9 0.7 40 1.3 4.5 0.7 4.5 1.8 4.4 0.9 4.1

0.5 0.3 0.3 80 2.6 5.2 2.0 4.9 3.0 5.2 2.4 4.9

0.5 0.3 0.5 80 2.6 5.2 2.0 5.0 2.9 5.0 2.4 4.8

0.5 0.3 0.7 80 2.6 5.3 2.0 4.8 2.7 4.7 2.3 4.7

0.5 0.9 0.3 80 2.6 5.2 2.0 4.9 3.0 5.2 2.4 4.9

0.5 0.9 0.5 80 2.6 5.2 2.0 5.0 2.9 5.0 2.4 4.8

0.5 0.9 0.7 80 2.6 5.3 2.0 4.8 2.7 4.7 2.3 4.7

Notes: The �rst �gure of each pair is derived using asymptotic critical values and

the second �gure (given in bold) is derived using the recursive wild bootstrap

method. All results are reported as percentages, rounded to one decimal place.

When the recursive wild bootstrap is employed in the test ofH1 against HFAC , the results

for T = 40 can reasonably be viewed as consistent with the claim that, for each case studied,

the true signi�cance level is in the range 4:4 � 0:2 per cent. The rejection frequencies in

Table 2 for cases with T = 80 are even closer to the desired value of 5 per cent and they are

all consistent with the claim that the corresponding true signi�cance level is in the range

5:0� 0:2 per cent.
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5.2 Results when null hypothesis is untrue

Since the evidence obtained when the intersection null hypothesis is true suggests that re-

cursive wild bootstrap tests of H1 against HJAC and of H1 against HFAC have similar and

well-behaved signi�cance levels in �nite samples, it seems reasonable to compare their rejec-

tion frequencies when the intersection null hypothesis is false. In contrast, the corresponding

tests that use asymptotic critical values are excluded because of the failure of asymptotic

theory to give good control of �nite sample signi�cance levels. No attempt is made to in-

clude the asymptotic tests after using so-called size-corrections derived from Monte Carlo

results because, as argued persuasively in Horowitz and Savin (2000), such corrections are

not relevant to empirical research.

5.2.1 DGP is H2 with no autocorrelation of the errors

Consider �rst some results obtained by generating samples under a data process of the type

H2 with independent conditionally heteroskedastic errors, with the wild bootstrap tests

being carried out with a nominal signi�cance level of 5 per cent. The tests derived from the

counterparts of (3) and (4) di¤er in the way in which information about the speci�cation of

H2 is incorporated. For the models used in the Monte Carlo experiments, the test variables

employed in the comprehensive model F -test method are the (k2 � 1) exogenous regressors

that are speci�c to H2, k2 = 3; 5. The Davidson-MacKinnon approach is equivalent to

weighting these regressors by the OLS estimators of the corresponding coe¢ cients in order

to obtain a single test variable, rather than (k2 � 1) test variables, k2 = 3; 5. When H2 is
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the true model, these OLS estimators have probability limits equal to genuine parameters

of interest and the weighting is well-founded. It is not surprising that previous research

has found the J-test to be more powerful than the F -test when H1 is tested and H2 is

the true DGP; see, e.g., Godfrey (1998) in which an IID-valid residual bootstrap method

is used for both tests. The results in Table 3 provide some evidence on the relative merits

of these approaches to non-nested testing when they are both combined with a check for

autocorrelation in a way that gives asymptotic robustness to conditional heteroskedasticity.

The results in Table 3 are for R22 = 0:8, with other design parameters being selected

to give rejection rates for the untrue intersection null hypothesis that are neither too small

nor too large to provide interesting comparisons. The general features of the results are as

expected. First, holding other things constant, increasing T from 40 to 80 increases rejection

frequencies. Second, as the positive coe¢ cient  2 increases, other features �xed, estimates of

power fall, which re�ects the increasing importance of the lagged dependent variable, which

is a regressor in both (14) and (15), relative to the model-speci�c exogenous regressors in

(14). (The same general features are observed when R22 = 0:5.)
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TABLE 3

Rejection frequencies, with a nominal signi�cance level of 5 per cent, when

the intersection null hypothesis is untrue and the true model is H2 with

independent conditionally heteroskedastic errors and R22 = 0:8

T = 40 T = 80

�2  2 k1 k2 Arti�cial alternative is HFAC HJAC HFAC HJAC

0.9 0.3 3 3 59.7 65.4 94.4 95.6

0.9 0.5 3 3 52.1 57.4 89.6 91.5

0.9 0.7 3 3 36.3 40.4 72.3 74.8

0.9 0.3 3 5 64.6 80.6 98.5 99.4

0.9 0.5 3 5 58.4 74.0 96.6 98.4

0.9 0.7 3 5 44.0 56.7 86.8 92.5

0.9 0.3 5 3 56.1 61.9 93.8 95.3

0.9 0.5 5 3 48.3 54.0 88.6 90.8

0.9 0.7 5 3 31.9 36.6 69.9 73.4

0.9 0.3 5 5 45.2 62.6 91.0 95.7

0.9 0.5 5 5 38.6 54.4 85.0 91.7

0.9 0.7 5 5 26.3 37.2 65.3 73.3

Notes: Both tests of the untrue model H1 are carried out using the recursive wild

bootstrap method, with the Rademacher pick distribution. All results are

reported as percentages, rounded to one decimal place. Results for the test

that combines the J-test with the autocorrelation test are given in bold.

Turning to the comparison of the two joint tests �JAC and �FAC , the results in Table

3 show that using the J-type method with the lagged residuals always leads to a greater

rejection frequency than the corresponding heteroskedasticity-robust joint test based on the

F (comprehensive model) approach. Also, other things being equal, the shortfall of the joint

test that uses the comprehensive model F approach increases when k2 increases from 3 to

5. Neither of these outcomes is surprising, given the discussion above concerning the use
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and construction of test variables. However, it is important to recognize that, if H1 and H2

were both untrue, the F approach would yield a heteroskedasticity-robust joint test that was

consistent against a wider range of alternatives than the J approach; see Mizon and Richard

(1986, Section 4). The power di¤erences observed in Table 3 can be seen as costs of some

insurance against the event that both models under consideration are misspeci�ed.

Some additional experiments are carried out to assess the e¤ects of the coe¢ cient of the

lagged dependent variable being greater than the value used in the main set of experiments,

i.e., 0.7. Setting ( 1 = 0:9; R
2
1 = 0:95) in (11) and ( 2 = 0:9; R

2
2 = 0:95) in (14) does not

lead to evidence of either poor control of signi�cance levels or low power. As anticipated

from the results of Table 3, the lowest rejection frequencies for an untrue null hypothesis

are observed when, in addition to the common lagged variable having a high coe¢ cient,

the exogenous regressors of the competing models are highly correlated. Table 4 contains

results for �2 = 0:9 that suggest that, under the most demanding combination of design

parameters, false models can be detected with reasonable probability with T = 40 and

rather more frequently when T = 80. The rejection frequencies in Table 4 also provide

another illustration of the good control over the signi�cance level that is obtained by using

the wild bootstrap approach.
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TABLE 4

Rejection frequencies for tests of H1, with a nominal signi�cance level of 5 per

cent and independent conditionally heteroskedastic errors, when the lagged

dependent variable has a coe¢ cient equal to 0.9 and �2 = 0.9

DGP is H1 of (11) T = 40 T = 80

R21  1 k1 k2 Arti�cial alternative is HFAC HJAC HFAC HJAC

0.95 0.9 3 3 4.6 4.6 5.2 5.1

0.95 0.9 3 5 4.3 4.5 4.7 4.8

0.95 0.9 5 3 4.3 4.6 5.0 4.9

0.95 0.9 5 5 4.1 4.6 4.9 5.0

DGP is H2 of (14) T = 40 T = 80

R22  2 k1 k2 Arti�cial alternative is HFAC HJAC HFAC HJAC

0.95 0.9 3 3 52.8 57.9 89.9 91.7

0.95 0.9 3 5 58.9 74.6 96.8 98.6

0.95 0.9 5 3 48.5 54.3 98.5 99.4

0.95 0.9 5 5 38.5 54.9 85.2 91.8

Notes: Both tests of the intersection null hypothesis are carried out using the

recursive wild bootstrap method, with the Rademacher pick distribution. All

results are reported as percentages, rounded to one decimal place. Results for

the test that combines the J-test with the autocorrelation test are given in bold.

5.2.2 DGP is H1 with autocorrelation of the errors

As explained above, the nonnested alternative model H2 with k2 = 2 is used in the exper-

iments based upon a DGP consisting of H1 with autocorrelated errors. Thus there is only

one regressor that is speci�c to the nonnested alternative model, implying that the F and J

approaches coincide, and it is possible to focus on sensitivity to the choice of lag-length in

the Breusch-Godfrey component of the arti�cial alternative. Table 5 contains a sample of
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the results concerning this sensitivity.

TABLE 5

Rejection frequencies, with a nominal signi�cance level of 5 per cent, when

the DGP is H1 with autocorrelated and heteroskedastic errors

(a) Coe¢ cients of (16): �1 = 0:75; �2 = 0; �3 = 0; �4 = 0; �
2
a = 0:1

T = 40 T = 80

 1 k1 k2 Value of m is 1 4 1 4

0.3 3 2 59.4 44.6 92.8 88.9

0.5 3 2 56.7 42.0 91.3 86.6

0.7 3 2 55.6 39.8 91.0 84.8

(b) Coe¢ cients of (16): �1 = 0:7; �2 = �0:17; �3 = 0:017; �4 = �0:0006; �2a = 0:1
T = 40 T = 80

 1 k1 k2 Value of m is 1 4 1 4

0.3 3 2 44.5 26.7 84.9 67.4

0.5 3 2 43.4 26.0 84.9 67.0

0.7 3 2 43.1 25.7 85.4 66.8

Notes: The test of the untrue intersection null hypothesis is carried out using the

recursive wild bootstrap method, with the Rademacher pick distribution. All

results are reported as percentages, rounded to one decimal place.

Panel (a) of Table 5 provides an illustration of the costs of using too high a lag-length.

It is clear that using m = 4 when m = 1 is appropriate can lead substantial reductions

in rejection frequencies; so that there is evidence of the usual problem of irrelevant test

variables causing loss of power. The results in panel (b) of Table 5 are for cases in which

m = 4 is appropriate and so the use of m = 1 implies underspeci�cation of the arti�cial

alternative. In the evidence reported in panel (b), it is clear that underspeci�cation has

produced greater rejection rates than the correct choice. There is no generally valid result
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that is supported by this evidence. Using too small a value for m can, in other situations,

lead to reductions relative to the correct choice. For example, the results in Godfrey and

Tremayne (1988, p. 33, Table 3) illustrate that, when the true error model is a simple fourth-

order autoregression, the use of an underspeci�ed �rst-order alternative produces a test that

is less sensitive than the test using the correct alternative and is also inferior to the test

obtained from an overspeci�ed sixth-order scheme. It is not only the number of restrictions

being tested that matters but also the ability of the test variables for the assumed alternative

to approximate those appropriate for the true error process. The results in panel (b) do, of

course, illustrate the general dangers of assuming that errors are �rst-order autoregressive

just because a test with m = 1 produces a statistically signi�cant result.

When the DGP is H1 with autocorrelated and heteroskedastic errors, rejection rates

will depend upon the strength of autocorrelation. For example, weakening the degree of

autocorrelation by using �1 = 0:4, rather than �1 = 0:75, in the �rst scheme leads to the

correct choice of m = 1 producing rejection frequencies of about 20 per cent when T = 40

and about 50 per cent when T = 80. (The corresponding approximate �gures when there

is overspeci�cation, with m = 4 being used, are 10 per cent when T = 40 and 30 per cent

when T = 80.)

5.2.3 DGP is H2 with autocorrelation of the errors

In the �nal set of experiments, the DGP is H2 with autocorrelated and heteroskedastic

errors. When H1 is false and H2 has autocorrelated errors and lagged dependent variables in
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its regressor set, the OLS estimators for H1 and H2 are, in general, both inconsistent. The

limited but important purpose of this paper is to help applied workers to detect situations in

which OLS estimators cannot be assumed to be consistent and asymptotically normal, with

heteroskedasticity-robust inference being available. Hence, in the experiments of this section,

the desired outcome of the test procedure is rejection of the intersection null hypothesis that

H1 is the correct model and has independent errors. (The objective of providing tests of H1

against H2 that are robust against autocorrelation is much more ambitious and would seem

to require OLS to be abandoned in favour of IV, as discussed in Section 3.1 above.)

The data are generated by a DGP that consists of (14) with k2 = 2 and errors given by

u2t = jz2tjvt, in which the variate vt is obtained from the autoregression (16). A sample of

results is provided in Table 6, with T = 40, and (16) having the two sets of values of �j,

j = 1; :::; 4, given in Table 5. (The error models in Tables 5 and 6 do not use the same value

of �2a because rejection rates are too close to 100 per cent to provide interesting comparisons

when �2a = 0:1 is used with H2.)
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TABLE 6

Rejection frequencies, with T = 40 and a nominal signi�cance level of 5 per

cent, when the DGP is H2 with autocorrelated and heteroskedastic errors

(a) Coe¢ cients of (16): �1 = 0:75; �2 = 0; �3 = 0; �4 = 0; �
2
a = 1:0

m = 1 m = 4

 2 k1 k2 Value of �2 is 0:3 0:9 0:3 0:9

0.3 3 2 63.0 31.0 42.6 25.1

0.5 3 2 64.2 34.2 42.8 24.7

0.7 3 2 67.6 42.8 45.8 30.0

(b) Coe¢ cients of (16): �1 = 0:7; �2 = �0:17; �3 = 0:017; �4 = �0:0006; �2a = 1:0
m = 1 m = 4

 2 k1 k2 Value of �2 is 0:3 0:9 0:3 0:9

0.3 3 2 72.6 41.0 49.9 28.0

0.5 3 2 74.0 44.7 51.2 30.1

0.7 3 2 76.8 50.8 53.8 34.2

Notes: The test of the untrue intersection null hypothesis is carried out using the

recursive wild bootstrap method, with the Rademacher pick distribution. All

results are reported as percentages, rounded to one decimal place.

As in Table 5, every rejection frequency for the joint test with m = 1 in Table 6 is

greater than the corresponding value that is obtained withm = 4. As expected, the rejection

frequencies decrease as �2 (the squared population correlation coe¢ cient between x2t and

z2t) increases, when other design parameters are held constant. Also, in most cases, rejection

rates increase with  2, other things being equal, but not by large amounts.
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6 Conclusions

The problem of testing nonnested models in which the regressors include lagged dependent

variables has been discussed under the assumption that estimates and tests are derived using

OLS. The application of OLS techniques to models with some lagged dependent variables

as regressors is common in applied work. However, standard results concerning the consis-

tency of OLS estimators and the asymptotic validity of associated con�dence intervals and

tests require that the errors are not autocorrelated. It follows that OLS results cannot be

used to obtain heteroskedasticity and autocorrelation consistent tests of nonnested dynamic

regression models. However, if the errors are independent, it is possible to derive OLS-based

tests that are asymptotically valid in the presence of unspeci�ed forms of conditional het-

eroskedasticity. It would clearly be wrong to assume independence without examining the

strength of the evidence that the sample provides against this assumption, given that the

consequences of autocorrelation are so serious in models of the type discussed in this paper.

It has, therefore, been argued that, when lagged dependent variables are regressors, it is

essential to check for autocorrelation of the errors, as well as to test the speci�cation of the

regression function using information about the nonnested alternative model. An approach

to implementing a heteroskedasticity-robust joint test has been proposed. Monte Carlo

evidence suggests that a recursive wild bootstrap method produces good control of the �nite

sample signi�cance levels of the heteroskedasticity-robust joint test, but asymptotic critical

values fail to give reliable approximations. The general strategy of using a wild bootstrap

with heteroskedasticity-robust tests to detect misspeci�cations that lead to the inconsistency
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of OLS estimators could be applied in many other contexts. The key requirement is that the

diagnostic checks that are to be combined should be capable of being calculated by testing

the signi�cance of variables that are added to the regressors of the model under scrutiny.
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