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1 Introduction

As discussed in Moscone and Tosetti (2009), there is considerable interest in the problem of

checking for cross-section dependence in panel data. Following Pesaran et al. (2008), the

panel data model is written as

yit = �
0
ixit + uit; for i = 1; 2; :::; N and t = 1; 2; :::; T; (1)

in which: i and t index the cross-section and time-series dimensions, respectively; xit is a

k-dimensional vector with its �rst element always equal to unity and all other elements being

observations on strictly exogenous regressors; and the errors uit are serially independent over

time periods with common zero mean.

The null hypothesis to be tested is H0 : �ij = Corr(uit; ujt) = 0, for all t and i 6= j,

where Corr(:; :) denotes a population correlation coe¢ cient. If all the errors are assumed

to have normal distributions, H0 implies cross-section independence. The assumption of

normality is used in Breusch and Pagan (1980) to obtain a Lagrange multiplier (LM) test

of H0. Under normality and H0, maximum likelihood estimation of parameters reduces to

applying ordinary least squares (OLS) estimation to

yit = �
0
ixit + uit; t = 1; 2; :::; T; (2)

for each cross-section unit. Let a typical OLS residual be denoted by ûit. The OLS residuals

can be used to estimate �ij by

�̂ij =

P
ûitûjtq

[
P
û2it][

P
û2jt]

; i = 1; 2; :::; (N � 1) and j > i:
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Under the classical assumptions in Breusch and Pagan (1980), i.e., with uit being normally

distributed, homoskedastic over t and serially independent, the LM statistic is

BP = T

N�1X
i=1

NX
j=i+1

�̂2ij: (3)

When H0 is true and T ! 1, with N �xed, BP is asymptotically distributed as �2� with

� = N(N � 1)=2 degrees of freedom. Large values of the test statistic are interpreted as

strong evidence against the null hypothesis. This test is now widely used and is discussed

in standard textbooks.

However, as pointed out in Pesaran et al. (2008), the Breusch-Pagan test based upon

asymptotic critical values from the �2� distribution can su¤er from serious size distortion,

especially when N=T is not small. Pesaran et al. make use of analytical adjustments in

order to correct the bias of the LM statistic. These analytical adjustments are derived under

the strong assumptions that the errors of (2) are normally distributed and homoskedastic for

each cross-section unit. As explained by Beran, an alternative to the derivation of analytical

adjustments based upon restrictive assumptions is to employ bootstrap methods that have

the great practical advantage of allowing "direct nonanalytical implementation"; see Beran

(1988).

The purpose of this paper is to propose bootstrap methods for testing H0 that are based

upon much weaker assumptions than those used in Pesaran et al. (2008). Consequently

the procedures of this paper are more widely applicable. First, for the test of this paper,

the strong assumption of normality can be replaced simply by the requirement that each

error have a �nite fourth-order moment. Second, the assumption that the errors of (2) are
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homoskedastic is dropped and heteroskedasticity is permitted with variance terms �2it =

E(u2it) varying with t and only having to be �nite and positive, i.e.,

0 < min
t
(�2it) � max

t
(�2it) <1; for each i,

which covers both homoskedasticity and unspeci�ed forms of heteroskedasticity. Since het-

eroskedasticity is allowed, a wild bootstrap is adopted, with the external distribution being

as recommended in Davidson and Flachaire (2008). Thus the only classical assumption

about the errors that is not relaxed is serial independence.

The plan of the paper is as follows. The bootstrap test is described in Section 2. Monte

Carlo evidence is reported in Section 3. This evidence indicates that the wild bootstrap test

works well. Section 4 contains some concluding remarks.

2 The wild bootstrap test

The wild bootstrap data process that corresponds to (1) can be written as

y�it = �
�0
i xit + u

�
it; for i = 1; 2; :::; N and t = 1; 2; :::; T; (4)

in which ��i is speci�ed by the user and u
�
it = ûit�it, where the variates �it are independent

drawings from an external distribution with zero mean and variance equal to unity. While

��i = �̂i is an obvious choice, it is easy to show that �
�
i = 0 yields exactly the same residuals

after OLS estimation of

y�it = �
�0
i xit + u

�
it; t = 1; 2; :::; T: (5)
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Hence ��i = �̂i and �
�
i = 0 produce the same value of the Breusch-Pagan statistic that is the

bootstrap sample counterpart of BP in (3). It is, therefore, convenient to generate bootstrap

data using y�it = u�it = ûit�it and, in view of the results in Davidson and Flachaire (2008),

the external distribution is de�ned by Pr(�it = 1) = Pr(�it = �1) = 0:5:

The test is implemented as follows.

Step 1 Use the actual data to estimate (2) for i = 1; 2; :::; N to obtain the OLS residuals

fûit; i = 1; 2; :::; N ; t = 1; 2; :::; Tg and the statistic BP of (3).

Step 2 (which is repeated B times) Use the OLS residuals from Step 1 with the wild boot-

strap data process described above to generate arti�cial data fy�it = ûit�it; i = 1; 2; :::; N ; t =

1; 2; :::; Tg. Next estimate (5) by OLS for i = 1; 2; :::; N and calculate the implied value of

the bootstrap counterpart of BP in (3). Let the bootstrap test statistic be denoted by BP�.

Step 3 Calculate the proportion of bootstrap test statistics from the B repetitions of

Step 2 that are at least as large as the actual value of BP . Let this proportion be denoted

by ~p and the desired signi�cance level be denoted by �. The asymptotically valid rejection

rule is that H0 is rejected if ~p � �.

Standard regularity conditions are required to justify the bootstrap approach above; see,

e.g., Mammen (1993). It is assumed here that, for each i, T 1=2(�̂i � �i) is asymptotically

normally distributed with zero mean vector and �nite positive-de�nite covariance matrix as

T !1. It is not necessary to regard N as �xed. The analysis in Mammen (1993) suggests

that it is only necessary to restrict the rate at which N grows, so that N3=2=T ! 0 as

T !1.
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3 Monte Carlo experiments

The data generating process is speci�ed by

yit =
X3

`=1
�`ix`it + uit; i = 1; 2; :::; N and t = 1; 2; :::; T; (6)

where, without loss of generality, �`i = 0 for all ` and i. The six values of (N; T ) used

are obtained by taking all combinations of N = 25; 50 and T = 25; 50; 100. The regression

model (6) has an intercept with x1it = 1 for all i and t. The two non-constant regressors,

denoted by x2it and x3it, are generated for (N = 25; T = 25) as independent random draws

from the standard lognormal distribution. This block of regressor values is then reused as

necessary to build up data for the other combinations (N; T ). Clearly the values of (N; T )

include cases in which T is not large and N=T is not small; so that the experiments provide

a stringent check of the usefulness of the wild bootstrap method.

The error term in (6) is written as

uit = �it"it; i = 1; 2; :::; N and t = 1; 2; :::; T: (7)

Four models for �it are considered. First, there is homoskedasticity under scheme VAR1,

with �it = 1 for all t. Second, a one-break-in-volatility model, henceforth scheme VAR2, is

employed with �it = 1 for t = 1; 2; :::;m = bT=2c and �it = 1:2 for t = m;m+1; :::; T , where

bAc is the largest integer part of A. Third, scheme VAR3 is a trending volatility model,

with �it = �0� (�1 � �0)
�
t�1
T�1

�
; see "Model 2" in Cavaliere and Taylor (2008), where �0 = 1

and �1 = 1:2. Fourth, there is conditional heteroskedasticity under scheme VAR4, with

�it =
p
exp fcx2itg, t = 1; :::; T ; this sort of skedastic function is discussed in Lima et al.
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(2010). The value of c in VAR4 is chosen to be 0.5; so that max(�2it)=min(�
2
it), which is a

well-known measure of the strength of heteroskedasticity, is 22.29.

The term "it in (7) is generated as

"it =
p
1� �2�it + ��t

where �it � iid(0; 1) and �t � iid(0; 1), which are independent of each other. For estimating

signi�cance levels, the value of � is set to zero. Power is investigated using � = 0:2. Three

distributions are used to obtain the iid standardized errors for �it and �t: the standard

normal distribution; the t-distribution with �ve degrees of freedom (t5); and the chi-square

distribution with two degrees of freedom (�22).

Samples are simulated for all combinations of N = 25; 50 and T = 25; 50; 100. Rejection

frequencies are based upon 2000 replications and 400 wild bootstrap samples are used. All

tests are implemented with a nominal signi�cance level of 5 per cent.

Additional estimates are obtained with serially correlated regressors, as in Pesaran et

al. (2008), in order to see how sensitive �ndings are to changes in the experimental design.

Serial correlation of the regressors is generated using the �rst-order autoregressive model

x`it = 0:8x`it�1 + v`it, with v`it � iidN(0; 1=(1� 0:82)) for all i, t and ` = 2; 3.

The Breusch-Pagan LM test (BP), the bias-adjusted LM test proposed by Pesaran et

al. (2008) (BPadj) and the proposed wild-bootstrap LM test (BPWB) are all considered

in the experiments. Table 1 reports the rejection frequencies of tests at a nominal 5 per

cent signi�cance level with homoskedastic standard normal errors. The use of critical values

from a �2� , � = N(N � 1)=2, distribution in the BP test leads to the true null hypothesis
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being rejected more frequently than is predicted by asymptotic theory. The size-distortion

decreases as T increases, but the best size result is 6.4 per cent when N = 25 and T = 100.

On the other hand, the bias-adjusted version of the BP test, BPadj, and the wild-bootstrap

BP test, BPWB, both perform very well for all combinations of N and T .

The estimates for the original form of the Breusch-Pagan test when the null hypothesis

is untrue are not included in Table 1. The over-rejection under the null that is associated

with BP makes "power" comparisons with the two well-behaved procedures BPWB and

BPadj inappropriate. Given the results in Table 1 that correspond to signi�cance levels,

BPWB and BPadj can, however, be compared. The rejection frequencies of these tests di¤er

by small amounts when the null hypothesis is false; so that there is evidence that, under

homoskedastic and normal errors, BPWB and BPadj have similar levels of power. Hence

the results suggest that, when the restrictive classical assumptions hold, the use of the wild

bootstrap test, while unnecessary, does not harm sampling properties under either the null

or alternative hypothesis. No attempt is made to use Monte Carlo results to derive "size-

corrections" to allow inclusion of BP in power comparisons because, as argued persuasively

in Horowitz and Savin (2000), such corrections are not relevant to empirical research.

Table 2 reports the rejection frequencies of tests at a nominal 5 per cent signi�cance level

with various skedastic schemes under standardized �22 errors; so that classical assumptions

do not hold.1 The BP test rejects the true null hypothesis too frequently relative to the

1 To save the space, we do not report the results under standardised t5 errors nor with serially correlated
regressors since these were similar. A full set of results is available upon request from the corresponding
author.
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nominal signi�cance level for all the variances schemes that are considered. Under VAR1,

i.e., homoskedastic errors, BPadj is subject to mild size-distortion, which is not accentuated

as N increases, and the size of BPWB is close to the nominal size. Under the time-series

heteroskedastic schemes of VAR2, VAR3 and VAR4, BPadj tends to be over-sized and the

size-distortion becomes more substantial as N increases. In contrast, the wild bootstrap

works well for all skedastic schemes and the �nite sample signi�cance levels of BPWB appear

to be much better controlled than those of BPadj.

4 Conclusions

A wild bootstrap method has been proposed that allows applied workers to carry out a new

test for error cross-section correlation in panel models. The wild bootstrap procedure, like

other tests in the literature, requires serial independence of the errors and strict exogeneity

of the regressors. However, in contrast to checks described in, e.g., Pesaran et al. (2008), the

wild bootstrap test is asymptotically valid in the presence of time-variation in error variances,

as well as nonnormality. Monte Carlo results suggest that the wild bootstrap procedure is

well-behaved in �nite samples under heteroskedasticity and matches the performance of less

robust tests under classical assumptions.
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Table 1: Rejection frequencies of tests at a nominal 5% signi�cance level with homoskedastic

standard normal errors

BP BPadj BPWB

N = 25 N = 50 N = 25 N = 50 N = 25 N = 50
Null hypothesis is true

T = 25 10.3 25.7 5.0 6.7 4.6 5.4
T = 50 8.1 13.4 5.5 5.2 4.4 5.1
T = 100 6.4 8.8 5.6 5.1 4.7 5.2

Null hypothesis is untrue
T = 25 n/a n/a 20.5 44.4 18.5 40.1
T = 50 n/a n/a 49.5 83.9 46.2 82.1
T = 100 n/a n/a 87.2 99.7 85.6 99.7

Notes: BP denotes the Breusch-Pagan LM test; BPadj denotes the bias-adjusted LM test

proposed by Pesaran et al. (2008); BPWB is the wild-bootstrap LM test. Also "n/a" denotes

that "power" comparisons of the asymptotic BP test with either BPadj or BPWB are not

appropriate; see the discussion in the text.
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Table 2: Rejection frequencies with a nominal 5% signi�cance level with various skedastic

schemes under standardized �22 errors

BP BPadj BPWB

N = 25 N = 50 N = 25 N = 50 N = 25 N = 50
VAR1
T = 25 12.2 28.6 6.1 6.3 4.9 4.7
T = 50 9.9 12.9 6.8 5.3 5.2 4.8
T = 100 7.1 9.1 6.3 6.1 4.5 4.6
VAR2
T = 25 17.9 44.2 10.5 15.9 5.1 5.2
T = 50 16.7 29.5 12.1 15.5 5.6 5.2
T = 100 13.4 24.1 11.6 18.2 4.9 5.1
VAR3
T = 25 14.5 33.5 7.9 9.6 4.8 4.9
T = 50 11.6 17.3 8.3 8.2 5.5 5.1
T = 100 8.8 13.9 7.6 9.8 4.8 4.7
VAR4
T = 25 12.0 29.7 6.0 7.0 4.1 4.4
T = 50 9.5 17.4 7.0 7.5 5.0 5.3
T = 100 7.5 14.4 6.6 10.1 4.3 5.1

Notes: BP denotes the Breusch-Pagan LM test; BPadj denotes the bias-adjusted LM test

proposed by Pesaran et al. (2008); BPWB is the wild-bootstrap LM test.
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