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Abstract

In this note it is shown that in contradiction to the well-known claim in

Cox [4] (repeated in a number of subsequent works), the uncovered set in

a spatial voting situation does not necessarily coincide with the core even

when the core is non-empty.
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1 Introduction

In this note it is shown that in contradiction to the well-known claim in Cox [4]

(repeated in a number of subsequent works), the uncovered set in a spatial voting

situation does not necessarily coincide with the core even when the core is non-

empty.

In our framework, the set of outcomes or policies under consideration is some con-

vex subset of some finite dimensional Euclidean space and any majority coalition

of voters can enforce any outcome from another.

For such an environment Cox made the claim that if individual preferences satisfy

a very innocuous symmetry condition then the uncovered set coincides with the

core whenever the latter is non-empty. However, he worked with an odd number of

voters “for expositional convenience” ([4] p. 409). But his proof used the assump-

tion that the cardinality of the voter set is odd in a non-trivial way. This result has

been repeated in subsequent literature. For example, Austen-Smith and Banks [2]

state that “the uncovered set coincides with the core when the latter is nonempty

and singleton” (p. 274) (though, the definition of the uncovered set they use gives

a superset of the uncovered set we have defined here.) A similar remark appears

in the recent paper by Penn ([6], p.44).

However, in this note we show that there is a voting situation for which the cardi-

nality of the set of voters is even, the core is non-empty and singleton but for that
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situation, the uncovered set does not coincide with the core.

This result of ours is a technical note. We do not see an immediate real-world

significance of this result.

The next section gives the preliminary definitions and notation and a few already

well-known results useful for our subsequent discussion. Section 3 gives the main

result.

2 Preliminary Definitions and Notation

Let Z ⊆ Rk be a convex subset of some finite (k-)dimensional Euclidean space.

This set, Z, is identified to be the feasible set of policies or outcomes on which a

voter votes. Let N = {1, 2 . . . , n} be the finite set of players or voters. Suppose that

the preferences of a player i on Z is represented by a real-valued continuous and

strictly concave pay-off function ui ∈ C0(Z,R) (and thus, every voter’s preference

ordering is continuous and strictly convex on Z). The spatial voting situation we

consider below is obtained by introducing the method of majority rule voting.

Definition 2.1 (Domination by Majority Rule) Given x, y ∈ Z, the policy x

beats/dominates policy y via coalition S ⊆ N, if and only if |S| > |N |/2 and

ui(x) > ui(y) for each i ∈ S. We denote this as x ≻S y. If there exists a majority

coalition S via which x dominates y, we denote that as x ≻ y.

The collection G = (Z,N, (ui)i∈N) is a spatial voting situation with majority rule.

Recall the two well-known solution concepts for such situations that we shall dis-

cuss: the core and the uncovered set.

Definition 2.2 (The Core of a Voting Situation) The core of such a voting

situation is the following subset

K = {y ∈ Z : ̸ ∃z ∈ Z such that z ≻ y}.
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Definition 2.3 (The Uncovered Set) Let x, y ∈ Z. be two policies. We say

that x covers y, denoted as y <c x if the following hold:

x ≻ y;

z ∈ Z, z ≻ x =⇒ z ≻ y.

The uncovered set is given by:3

UC = {y ∈ Z : ̸ ∃z such that y <c z}

Next we recall and collect some more preliminary definitions and concepts use-

ful for our subsequent discussions. We mostly follow [1].

For nonempty set A ⊆ N , we say a function π : A → A is pairing if π is one-one

and if, for all i ∈ A, π(π(i)) = i.

Definition 2.4 (Plott Condition) Let A ⊆ N , x ∈ X. The set of gradient

vectors {∇ui(x)}i∈A satisfies the Plott conditions at x if there exists a pairing

π : A → A such that ∇ui(x) = −λi∇uπ(i)(x) for some λi ∈ R++.

Recall the following useful result.

Result 2.1 (Sufficient Condition for majority Core) Take a voting situation

G and take x ∈ Z. Let A = {i ∈ N : ∇ui(x) ̸= 0}. If {∇ui(x)}i∈A satisfies the

Plott conditions at x then x ∈ K.

Definition 2.5 For any x ∈ Z and y ∈ Rk, let

Lx(y) = {z ∈ Rk : z = tx+ (1− t)y for some t ∈ R}

Γ(x) = {Lx(y) : y ∈ Z}.

A generic element Lx(y) ∈ Γ(x) for some y ∈ Rk will be simply denoted by Lx.
3As this note is concerned with Cox ([4]), we are using the definition he has used. However,

the solution defined here is actually the set of the maximal elements of the Gillies subrelation

rather than the Miller’s subrelation. For clarification, we refer to Bordes, Le Breton and Salles

[3].
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So, Lx denotes a straight line passing through x and Γ(x) denotes the set of all

such straight lines.

Next we recall the following obvious but useful fact.

Lemma 2.1 (Useful Fact) Let u : Z → R be a strictly concave function on Z.

Let x ∈ Z and Lx ∈ Γ(x). Then, the function u restricted on the subdomain Lx∩Z

u |Lx∩Z : Lx ∩ Z → R

is strictly concave on Lx ∩ Z.

From the fact we recall the notion of induced ideal points on a line.

Definition 2.6 (Induced Ideal Point) For any x ∈ Z, the voter i ’s induced

ideal point on Lx ∈ Γ(x) is given by

bi(Lx) = z ∈ Lx ∩ Z : ∀y ∈ Lx ∩ Z ui(y) < ui(z).

It represents the unique maximum point of ui on Lx ∩ Z.

Recall that each voter i’s preference ordering is single-peaked on Lx∩Z with bi(Lx)

being the peak of player i ([1], p. 135).

Next recall that the preferences are said to be Euclidean or circular if for every

voter i ∈ N, there exists x̄i ∈ Z such that for any policy x ∈ Z, ui(x) = −(x− x̄i)
2.

For any point y ∈ Lx, we can construct two open half-lines h+
y (Lx), h−

y (Lx). Then,

L+(y) = {i ∈ N : bi(Lx) ∈ h+
y (Lx)} and L−(y) = {i ∈ N : bi(Lx) ∈ h−

y (Lx)}.

Definition 2.7 (Median Points on Lx) For any x ∈ Z,Lx ∈ Γ(x), the set of

induced median points in Z on Lx is

{z ∈ Z ∩ Lx : L+(z), L+(z) are not majority coalitions}

Then, a complete characterization of the core is given as:

Result 2.2 (A characterization of the core) Take a voting situation G. Then,

x ∈ K if and only if x is an induced median point on Lx for all Lx ∈ Γ(x).
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Cox introduces a notion of “limited” asymmetry of preferences as given below.

Definition 2.8 (Limited asymmetry in preferences) We say that preferences

are limited in asymmetry by α < ∞ if for all y ∈ Z,Ly ∈ Γ(y), i ∈ N, r ∈ R

V i
Ly
(r) = {x ∈ Ly : ui(x) = r} ̸= ∅ =⇒

max
x∈V i

Ly
(r)

∥∥x− bi(Ly)
∥∥

min
x∈V i

Ly
(r)

∥∥x− bi(Ly)
∥∥ ≤ α.

Circular preferences obviously satisfy this condition.

3 The Core and the Uncovered Set

Cox’s result is as follows.

Proposition 3.1 [4] Take a voting situation G. Suppose the condition of limited

asymmetry of preferences holds for every voter. Now suppose K ̸= ∅. Then K =

UC.

As we mentioned in the introduction, this result has been repeated in a number of

subsequent literature.

However, we find the following.

Proposition 3.2 There is a voting situation G for which |N | is even, the core K

is non-empty and singleton, and the uncovered set does not coincide with the core.

To prove this proposition we shall use an intermediate result. First recall the

definition of a von-Neumann-Morgenstern stable set for such situations.

Definition 3.1 (von-Neumann-Morgenstern Stable Sets) The set V ⊆ Z is

a (von-Neumann-Morgenstern) stable set for G if it satisfies

• (internal stability:) there do not exist x, y ∈ V such that x ≻ y;

• (external stability) if x /∈ V it must be the case that there exists y ∈ V such

that y ≻ x.
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The following proposition is well-known. Although this result is well-known

(see, e.g., [5]) for completeness we provide a short proof below.

Proposition 3.3 If a stable set V exists then K ⊆ V ⊆ UC.

Proof. If K ̸⊆ V then that violates the external stability of V. Let V be a stable

set and take, if possible, and x ∈ V \ UC. That is, there exists y ∈ Z such that

x <c y. This implies that y ≻ x. Since, y /∈ V (otherwise, the internal stability

of V is violated), by external stability of V , there exists z ∈ V such that z ≻ y.

But, then, by the definition of the covering relation, z ≻ x which again violates

the internal stability of V . 2

Proof of the Proposition 3.2: Below we give an example of a situation where

the core is singleton, a stable set exists and the stable set does not coincide with

the core. Then, by Proposition 3.3 we are done.

Let N = {1, 2, 3, 4}. The set of outcomes, Z = {x ∈ R2|x1 ∈ [−1, 1];x2 ∈ [−1, 1]}.

Each player i has an ideal point x̄i whose coordinates are given as follows. The

point x̄1 (labelled by A′)= (−1,−1); x̄2 (labelled by B′)= (1,−1); x̄3 (labelled by

C ′)= (1, 1) and x̄4 (labelled by D′)= (−1, 1). The players’ preferences are circular,

i.e., for any i ∈ N, and x ∈ Z, ui(x) = −(x− x̄i)
2.

[We refer to the figure given at the very end.]

We show below that the core of this situation is the singleton set containing the

point (0, 0) (labelled as point O) while the set V = {x ∈ Z|x1 = 0 or x2 = 0} is

a stable set. For convenience later call the set {x ∈ Z|x1 = 0} as V1 and the set

{x ∈ Z|x2 = 0} as V2.

We take the following steps.

Step 1 : Notice that the point O = (0, 0) satisfies the Plott condition (Definition

2.5 above) and so, it is in the core of this voting situation.
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Step 2 : Next we show that no point other than O is in the core. We start with

the subset ∆1 = {x ∈ Z|x1 < 0, x2 ≤ 0, x1 ≥ x2}. Note that this is a triangle.

Choose, without loss of generality, a point x ∈ ∆1 such that x1 < 0, x2 < 0

and x1 > x2. Draw a line of slope 1, Lx, passing through this x and let the

line intersect the line V1 at the point y. It is obvious that y dominates x

via coalition {2, 3, 4}. Now choose a point x ∈ ∆1 such that x1 < 0 and

x2 = 0, i.e., the point is on a segment of V2. Again, draw a line of slope 1, Lx,

passing through x and let that intersect the line given by {x ∈ Z|x1 = −x2}

at a point y. Again, it is obvious that y dominates x via coalition {2, 3, 4}.

Finally, take a point x ∈ ∆1 such that x1 = x2. Then it is obvious that (0, 0)

dominates such a point via {2, 3, 4}.

Thus, no point of ∆1 is in the core.

Note that Z \{(0, 0)} can be partitioned into 8 such triangles like ∆1. There-

fore, using the symmetry between these triangles we can show that no point

other than O is in the core.

Next we show that V is a stable set.

Step 3 : (External stability of V :) From Step 2 itself we see that for any x ∈ Z\V,

there exists an y ∈ V such that y ≻ x.

Step 4 : (Internal stability of V :) It is obvious that a point in V1 cannot be

dominated by another point in V1 and a point in V2 cannot be dominated by

another point in V2.

Next we show that a point in V1 cannot dominate, nor can be dominated by

a point in V2.

Let p be a point in V1 such that p2 < 0. Let q be a point in V2 such that

q1 > 0. Let the length of the line segment Op be 0 < r ≤ 1 and let the

angle Opq be θ. (Please refer to the figure at the end.) Let, without loss

of generality, 0 < θ ≤ π/4. Call the line passing through p and q, L. Let
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the perpendiculars from A′, B′, C ′ and D′ on L be denoted respectively by

A,B,C and D. Note that if θ = π/4, then the points B and D coincide and

then it is obvious that, neither p can dominate q, nor q can dominate p.

Now suppose 0 < θ < π/4. It is easy to see that the length of qD is less than

that of pD. Since Cq is certainly less than Cp, p cannot dominate q. Next we

show that the line segment Bp ≤ Bq and thus, q also does not dominate p.

If p lies between B and q, then this is obvious. Now suppose B lies between

p and q. A little elementary calculation gives that

Bq = cos θ − sin θ + r tan θ sin θ

whereas Bp = r/ cos θ − [cos θ − sin θ + r tan θsinθ].

(To establish this we take the following steps. Draw a straight line parallel to

pq passing through O. Let this line intersect the segment D′C ′ at the point

l′′. Drop perpendiculars from D′ and B′ on this straight line and suppose the

points of intersection of these perpendiculars with the straight line be D′′ and

B′′ respectively. Also, let O′ be the point on pq at which the perpendicular

from O on pq intersects pq. The length of the segment Bq equals the sum of

the the length of the segments BO′ and O′q.

Let B′B′′ intersect the line V1 at the point m and let D′D′′ intersect the line

V1 at the point m′′.

Note that the triangles OmB′′ and Om′D′′ are congruent and thus, BO′ =

B′′O = OD′′.

Next we calculate the length of OD′′ in terms of θ using the triangles Oml′′

and D′D′′l′′. Note that OD′′ = Ol′′ −D′′l′′. Now, Ol′′ = Om/cosθ = 1/cosθ.

And D′′l′′ = D′l′′sinθ = (D′m + ml′′)sinθ = (1 + Om × tanθ)sinθ =

(1 + tanθ)sinθ. Therefore, OD′′ = Ol′′ −D′′l′′ = 1/cosθ − (1 + tanθ)sinθ =

cosθ − sinθ.
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The length of O′q = Oq × sinθ = Op × tanθsinθ = rsinθtanθ. These yield

the expression for the length of Bq. And the length of Bp is simply pq−Bq.)

Therefore,

Bq −Bp = 2[cos θ − sin θ]− r[cos θ − tan θ sin θ]

and so

Bq −Bp ≥ 2[cos θ − sinθ]− [cos θ − tan θ sin θ]

= cos θ − sin θ − sin θ + tan θ sin θ

= (cos θ − sin θ)(1− tan θ)

since 0 < θ < π/4, Bq −Bp ≥ 0. Since Ap ≤ Aq, q cannot dominate p.

From this, using the symmetry of this example, we can show that no point

in V1 can dominate another point in V2 and vice versa.
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