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Abstract

This paper provides a (saddlepoint) tail probability approximation for the

distribution of an optimal unit root test. Under restrictive assumptions, Gaus-

sianity and known covariance structure, the order of error of the approximation

is given. More generally, when innovations are a linear process in martingale

differences, the estimated saddlepoint is proven to yield valid asymptotic infer-

ence. Numerical evidence demonstrates superiority over approximations for a

directly comparable test based on simulation of its limiting stochastic represen-

tation. In addition, because the saddlepoint offers an explicit representation

P-value sensitivity to model specification is easily analyzed, here in the context

of the Nelson and Plosser data.
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1 Introduction

Critical values for unit root tests are most commonly found by simulation of numerical

approximations to the limiting forms of those tests. Those limiting forms are them-

selves usually characterized by functionals of Brownian motion using the techniques

pioneered in Phillips (1987a,b). Indeed most significant innovations in the literature,

for example Phillips and Perron (1988), Elliott, Rothenberg and Stock (1996) and Ng

and Perron (2001), yield tests whose properties are evaluated in this way. Some very

noteworthy exceptions are Nabeya and Tanaka (1990), Abadir (1993a,b) and Juhl

and Xiao (2003).

This paper uses a test based on the optimal procedures of Dufour and King (1991)

and the marginal likelihood approach of Francke and de Vos (2007). Since the optimal

test statistic takes the form of a ratio of quadratic forms its asymptotic distribution

(which is constant under general assumptions on the innovation process) is approx-

imated directly with the Lugannani and Rice (1980) tail probability (saddlepoint)

approximation, and as previously employed in Lieberman (1994) and Marsh (1998).

See also Phillips (1978), Lieberman (1996) and Larsson (1998) for applications closely

related to the current context. Under general assumptions, the test is non-pivotal.

Thus we provide an asymptotic order of error (O (T−1) , for sample size T ) for the tail

probability and then prove that plugging in a consistent estimator for the covariance

structure of the innovations yields asymptotically valid inference. Such estimated sad-

dlepoint procedures have some history, for example see Butler and Paolella (2002).

From Francke and de Vos (2007), Dufour and King’s (1991) point optimal test

is the ratio (rather than the difference) of the two residual sum of squares detailed

in Elliott, Rothenberg and Stock (1996, page 817) and forming their LT and P ∗
T

tests. The aims of this paper are thus twofold. First, we establish that an explicit

approximation, such as the saddlepoint, can yield asymptotically valid inference with

the kind of generality expected in the literature. Second, we compare the finite sample

properties of the procedures developed here with the method detailed above applied

to the LT and P ∗
T test when the innovations follow a simple moving average process.

For the P ∗
T tests (and also Dickey and Fuller (1979) type tests), the asymptotic

nuisance parameter is the long run variance of the innovations process. In the context

of a Dickey-Fuller regression it is consistently estimable via the autoregressive spectral
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density estimator, see Ng and Perron (2001). It has been conjectured, Seo (2006),

that using more efficient estimators (such as estimating a moving average parameter

via maximum likelihood) would improve the finite sample performance of such tests.

The results of this paper directly undermine this idea. Using the true value (the

perfect estimator) implies tests having zero size for small and moderate sample sizes

while using efficient estimators gives tests which are more undersized at higher sample

sizes than lower.

The saddlepoint based procedure does not suffer from these issues. In terms of fi-

nite sample size and power it outperforms the LT or P ∗
T tests whether the nuisance pa-

rameters are known, efficiently parametrically estimated or even non-parametrically

estimated. Moreover, because the implied distributional approximation is explicit

it can be exploited to give P-values for the test applied to the (extended) Nelson

and Plosser (1982) data set. This allows a direct examination of the influence of the

specification of the deterministic component on the outcome of the test.

The plan for the rest of the paper is as follows. The next section describes the

optimal unit root test, Section 3 approximates its distribution via a saddlepoint ap-

proximation under the assumption the covariance structure is known. Section 4 proves

that under a general innovation assumption the estimated saddlepoint will asymp-

totically valid inference. Section 5 presents the numerical analysis of the estimated

saddlepoint test as well as applying it to the Nelson and Plosser data. Following the

conclusion and references an appendix contains proofs of the main results.

2 The Model, Assumptions and Tests

2.1 Optimal unit root tests

We consider the following specification for the generation of time series (yt)
T
t=1,

yt = x′tβ + ut : ut = ρut−1 + ξt , (1)

and tests of the hypotheses,

H0 : ρ = 1 vs. H1 : |ρ| < 1. (2)

In (1) xt is a k× 1 deterministic regressor, β a k× 1 unknown parameter and (ξt)
T
t=1

is a random innovation. Before giving the most general assumptions on both the
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distribution of ξt, and also the initial condition u0, we first derive a point optimal

test under more restrictive assumptions. The asymptotic properties of the resulting

test will then be detailed under conditions very similar to those which have become

standard in the unit root testing literature.

Suppose that the innovations are independent Gaussian, i.e. ξt ∼ iidN(0, σ2),

with finite variance σ2. Define the following vectors and matrices; y = (y1, .., yT )
′ and

ξ = (ξ1, .., ξT )
′, and let X = (x1, ..., xT )

′ and β = (β1, ..., βk)
′ . With u0 = 0, (1)

defines the following generalized Gaussian linear regression model,

y = Xβ +∆−1
ρ ξ ∼ N

(
Xβ, σ2∆−1

ρ

(
∆−1

ρ

)′)
, (3)

where ∆ρ = I−ρL(1) and L(j) is the lower triangular matrix with 1
′

s on the jth lower

diagonal and 0′s elsewhere.

The problem of testing H0 is invariant under the group of transformations G =

(σ, β) , with σ ∈ R and β ∈ Rk and with action, y → σy+Xβ and so the optimal tests

we seek must also be invariant under this group. Such tests are fully characterized

through transformation of the data to the maximal invariant, see Dufour and King

(1991), with properties, such as Information and Entropy, detailed in Marsh (2007,

2009). Francke and de Vos (2007) instead derive such tests via the alternative formu-

lation of marginal likelihood. Following the latter shows that optimal tests may be

constructed though a ratio of residual sums of squares from two simple regressions.

To proceed, quasi-difference the regression in (3),

yρ̄ = Xρ̄β + ξρ̄, (4)

where yρ̄ = ∆ρ̄y, Xρ̄ = ∆ρ̄X and ξρ̄ = ∆ρ̄ξ. The residual sum of squares from the

regression in (4) is,

RSSρ̄ = y′ρ̄Mρ̄yρ̄ ; Mρ̄ = I −Xρ̄

(
X ′

ρ̄Xρ̄

)−1
X ′

ρ̄. (5)

Consider the singular value decomposition of Mρ̄,

Cρ̄C
′
ρ̄ = Mρ̄ ; C ′

ρ̄Cρ̄ = In, (6)

where n = T − k, so that RSSρ̄ = w′ρ̄wρ̄, where wρ̄ = C ′
ρ̄yρ̄ has density function

(marginal likelihood),

f
(
wρ̄, ρ, σ

2
)
=
(
2πσ2

)−n/2

√√√√
det [X ′X]

det
[
X ′∆−1

ρ

(
∆−1

ρ

)′
X
] exp

{

−
y′∆−1

ρ

(
∆−1

ρ

)′
MXy

2σ2

}

,
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where MX = I−X
(
X ′∆−1

ρ

(
∆−1

ρ

)′
X
)
X ′, see Francke and de Vos (2007, eqn 4), and

notice that det
[
∆−1

ρ

]
= 1.

To remove dependence on σ2, let vρ̄ = wρ̄/
√

w′ρ̄wρ̄, having density

f (vρ̄, ρ) =
Γ
(
n
2

)
|X ′X|1/2

2πn/2 det
[
X ′∆−1

ρ

(
∆−1

ρ

)′
X
]

(
y′∆−1

ρ

(
∆−1

ρ

)′
MXy

y′ρ̄Mρ̄yρ̄

)−n/2

.

The Neyman-Pearson Point Optimal invariant test of size α for (2) is to reject H0 if,

NP =
f (vρ̄, ρ)

f (vρ̄, 1)
> k̄α, (7)

where k̄α is a constant chosen so that Pr
[
NP > k̄α |H0

]
= α. To focus on a specific

test, here we follow Elliott, Rothenberg and Stock (1996) and choose as an ‘optimal’

test the Point Optimal test against the alternative, i.e. ρ̄, where the (asymptotic)

power envelope reaches 0.5,so

POT =
y′ρ̄Mρ̄yρ̄

y′1M1y
=

RSSρ̄

RSS1
. (8)

The test is thus the ratio of the residual sums of squares of two regressions, one

involving quasi-differenced data and one involving first-differenced data.

The optimal test in (8) is very similar to those given in Elliott, Rothenberg and

Stock (1996) and before deriving fully feasible tests based on POT we will contrast

its properties with those of their test,

LT = y′ρ̄Mρ̄yρ̄ − ρ̄y′1M1y = RSSρ̄ − ρ̄RSS1. (9)

As in that paper we will ultimately seek to detail the asymptotic properties of our test

under much more general assumptions than those under which the test was derived.

First assume;

Assumption 1 In the model defined by (1) assume that;

(i) The initial condition u0 random and is such that E[u20] ≤ σ20 <∞.

(ii) The innovation process (ξt) is such that for all t, E [ξt] = 0,

∞∑

j=−∞
γj > 0 and

∞∑

j=−∞

∣∣γj

∣∣ = mγ <∞, (10)
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where γj = E
[
ξtξt−j

]
, and

T−1/2ω−1
[rT ]∑

t=1

ξt ⇒ B(r), (11)

where B(r) is standard Brownian motion on [0, 1] and ω2 =
∑∞

j=−∞ γj .

Asymptotic representations for the majority of unit root test statistics are constant

under Assumption 1, at least when xt is either a constant or a constant and a trend,

and under either the null or local alternatives parameterized by ρ = 1− c/T , c > 0.

Such follow from the invariance principles detailed in, for example Phillips (1987a,b).

Indeed, immediate from Elliott, Rothenberg and Stock (1996, Theorems 1 and 2) and

Francke and de Vos (2007, Section 3.3) is that both LT and POT converge almost

surely to continuous random variables as the sample size becomes infinite. Before

proceeding note that (10) implies that the long run variance is finite, but is not

necessarily implied by it.

3 Saddlepoint Approximation for the Distribution

of POT

Since the asymptotic distribution of POT is constant under Assumption 1 a repre-

sentation for it may be found from any specific process satisfying it. Here we will

derive a formal saddlepoint approximation under the following;

Condition 1A In addition to Assumption 1, suppose also that

(i) The initial condition is u0 = 0.

(ii) The innovation sequence (ξt)
T
1 is a stationary Gaussian random variable,

with

E [ξt] = 0 ; E
[
ξtξt−j

]
= γj ; γ0 = σ2.

Under Condition 1A, we have ξ ∼ N (0,Γ) , where Γ is T × T Toeplitz and notice

that the condition on the long run variance (10) ensures that Γ is bounded with

respect to the matrix p-norms on the space of square matrices, with ‖Γ‖1 = ‖Γ‖∞ =
∑T

j=0

∣∣γj

∣∣ ≤ mγ, where ‖Γ‖p is the Lp norm on RT × RT .
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Define ε = (ε1, ..., εT )
′ , where εt ∼ iidN(0, 1), then we can write,

y = Xβ +∆−1
ρ Kε,

where K is any matrix satisfying KK ′ = Γ. Consequently, and since by construction

Mρ̄Xρ̄ = 0,

POT =
ε′K ′ (∆−1

ρ

)′
∆′

ρ̄Mρ̄∆ρ̄∆
−1
ρ Kε

ε′K ′Mρ̄Kε
,

with ε ∼ N (0, IT ) . Denote the distribution function of POT and its limit for c =

T (1− ρ) , by

F T
Γ,ρ (κ) = Pr [POT < κ] ; lim

T→∞
F T
Γ,ρ (κ) = FΓ,1−c(κ),

then the purpose here is to provide an explicit asymptotic approximation for the

distribution function, initially assuming that Γ is known.

Consider the rank n = T − k matrix,

B(ρ) = K ′ (∆−1
ρ

)′ [
∆′

ρ̄Mρ̄∆ρ̄ − κ′∆′
1M1∆1

]
∆−1

ρ K, (12)

and its n non-zero eigenvalues (λt)
n
t=1, and the functions,

Rn(θ) = − 1

2n

n∑

t=1

log (1− 2θλt) ,

ηρ (θ) = sign [θ]
√
−2nRn (θ) and δρ (θ) = θ

√

n
d2Rn (θ)

dθ2
, (13)

then the following theorem presents a saddlepoint approximation, with order of error

O(T−1), for the distribution of POT .

Theorem 1 Under Condition 1A,

F T
Γ,ρ (κ) = Φ(η̃ρ)− ϕ(η̃ρ)

(
1

η̃ρ
− 1

δ̃ρ

)

+O(T−1), (14)

where Φ(.) and ϕ(.) are the standard normal CDF and PDF,

η̃ρ = γρ(θ̃ρ) and δ̃ρ = δρ(θ̃ρ),

and the saddlepoint θ̃ρ is the unique solution to,

n∑

t=1

λt

1− 2θ̃ρλt

= 0 ;
1

2λn
≤ θ̃ρ ≤

1

2λ1
.
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Theorem 1 presents a standard leading term saddlepoint approximation for the

distribution of POT , which is, under Condition 1A, a ratio of quadratic forms in nor-

mal variables. The Theorem compliments previous results, in particular Lieberman

(1994) and Marsh (1998), in that the order of error, O(T−1), is established for the

for the distribution function. This result is crucial here for two reasons. Later it will

allow for consistent asymptotic inference in case where the correlations structure in

Γ is not known, and must be estimated. First, the following corollary (which follows

trivially from the transformation in Jing and Robinson (1994) and the invariance

principle under Assumption 1) details how critical values obtained from a Gaussian

approximation to the leading term in (14) are asymptotically correctly sized.

Corollary 1 Under Assumption 1 and the null hypothesis, H0 : ρ = 1, denote the

leading term approximation by

F̃Γ,1 (κ) = Φ (r̃1(κ)) , ; r̂1 (κ) = η̃1 +
1

η̃1
ln

(
δ̃1
η̃1

)

, (15)

where η̃1 and δ̃1 are defined above and the limiting distribution of POT is FΓ,1(κ),

then for all κ,

lim
T→∞

F̃Γ,1 (κ) = FΓ,1(κ) + o(1).

Before detailing how Corollary 1 generalizes to give fully feasible unit root tests,

we first compare the properties of the critical values obtained for POT from (15), with

asymptotic critical values for the LT test of Elliott, Rothenberg and Stock (1996).

Throughout this paper experiments will be performed using data generated according

to the following:

Experimental Design Data (yt)
T
t=1 is generated via,

M1 : yt = β1 + ut ; ut = (1− c/T )ut−1 + ξt,

M2 : yt = β1 + β2t+ ut ; ut = (1− c/T )ut−1 + ξt, (16)

with u0 = 0 and the innovation sequence (ξt)
T
1 is generated according to the

MA(1) process,

ξt = ψεt + εt−1 ; ψ = {−0.8,−0.5, 0, 0.5, 0.8} , (17)
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with two possible error distributions for (εt)
T
1 ,

D1 : εt ∼ iidN(0, 1) ; D2 : εt ∼
iidχ2(1)− 1√

2
. (18)

Under H0 LT has the asymptotic representation,

(LT − c̄)⇒ ω2c̄2
∫ 1

0

V 2
0 (r, c̄) dr + (1 + c̄)V 2

0 (1, c̄), (19)

where V0 (r, c̄) is defined in Elliott, Rothenberg and Stock (1996, eqn 7). Critical val-

ues for LT are then usually obtained via partial sum approximations to the stochastic

integrals in (19). Based on 5000 steps in the partial sum and 20000 replications, Ng

and Perron (2001) give,

M1 : cv5 = 3.15 & cv10 = 4.45,

M2 : cv5 = 5.48 & cv10 = 6.67. (20)

H0 is to be rejected by LT or POT , respectively, if

ω−2LT < cvα or F̃Γ,1 (POT ) < α (21)

In the first series of experiments, the accuracy of the asymptotic rejection rules

in (21), is examined. Experiments involve 10000 Monte Carlo replications for both

M1 and M2, over all MA(1) parameter values, with samples sizes, T = 50, 100, 200

and for both distributional assumptions D1 and D2. Although no author explicitly

recommends use of such approximations in sample sizes this small it is worth noting

that the range of sample sizes in the Nelson and Plosser (1982) data sets, as examined

below, falls within that considered here. The results are presented in Tables 1 to 4

(in the Appendix). For both tests the known values of ψ were used to compute

ω2 = (1 + ψ)2 and Γ =
(
IT + ψL(1)

) (
IT + ψL(1)

)′

To briefly detail the findings, Table 1 confirms the known high accuracy of the sad-

dlepoint approximation for ratios of quadratic forms in normal variables, see Lieber-

man (1994, 1996) and Marsh (1998) for additional evidence. Table 3 confirms this

accuracy has some robustness, in that for all sample sizes and over all ψ, this accu-

racy is retained even for non-normal, here skewed, variables. The accuracy is seen to

improve with the sample size. In Tables 2 and 4, the standard asymptotic approx-

imation for LT fairs less well, particularly when ψ < 0. For large sample sizes and
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ψ ≥ 0 the results are comparable with the saddlepoint approximation, but to a much

lesser extent for D2, the shifted Chi-squared. In summary, the saddlepoint seems to

offer a more uniformly accurate method of approximating the critical values of these

very similar optimal unit root tests.

Analysis of the dramatically poor performance of LT for ψ < 0 is necessary in

understanding both why the standard asymptotic representations for unit root tests

may not always provide accurate inference. Condition 1 requires that ω2 > 0, which

here implies that ψ > −1. Asymptotic implications of the failure of this requirement
have been explored in the literature, see Pantula (1991) and Nabeya and Perron

(1994). Suppose the innovations were generated from,

ξt =

(
−1 + d

T ε

)
εt + εt−1, ε > 0 (22)

so that

ω2 = ω2T = σ2
d

T ε
,

and hence rather than part (ii) of Condition 1 holding, we instead have,

(
T ε

T

)1/2 [rT ]∑

1

ξt ⇒
√
dσB(r). (23)

Limit theory, for ε = 1/2, for autoregressive estimators and Dickey-Fuller tests under

such processes are detailed in Pantula (1991) under the unit root null and in Nabeya

and Perron (1994) under local to unity alternatives, see also Theorem 1 of Seo (2006).

Deriving asymptotic distributions for test statistics based on the limit in (23)

will not prove useful for two reasons. First such asymptotic distributions will not

be pivotal with respect to the local nuisance parameter d which, in turn, is not

consistently estimable. Second, any approximate critical values derived from such

distributions will not be accurate for processes not having a moving average root

near −1. In any case, the results of Seo (2006) do not suggest a dramatic increase in

accuracy for values which are. In addition, it has been an implicit assumption that

the properties of unit root tests will improve if, in the case where ω2 is unknown, more

accurate estimators of the long run variance are used. This assumption is directly

contradicted by these results. Knowing ω2 is equivalent to having a perfect estimator

and does not yield accurate critical values.
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4 Estimated Saddlepoint Tests

Corollary 1 essentially defines a saddlepoint point optimal (SPO) test, as in;

Definition 1 The SPO test at size α, consists of rejecting H0 : ρ = 1, if

F̃Γ,1 (POT ) < α. (24)

In practice this is not feasible. To construct a feasible test let Γ̂ be an estimator

of the covariance structure of ξ and define the matrix,

B̂1 = K̂ ′ (∆−1
1

)′ [
∆′

ρ̄Mρ̄∆ρ̄ − κ′∆′
1M1∆1

]
∆−1
1 K̂,

where Γ̂ = K̂K̂ ′, and let the non-zero eigenvalues of B̂1 be
{
λ̂t

}n

t=1
. Now define

F̂Γ̂,1 (κ) = Φ (r̂1 (κ)) ; r̂1 (κ) = η̂1 +
1

η̂1
ln

(
δ̂1
η̂1

)

, (25)

where

η̂1 = sign (ω̂1)

√√√√
n∑

t=1

log
(
1− 2ω1λ̂t

)
; δ̂1 = ω̂1

√√√√2
n∑

t=1

(
λ̂t

1− 2ω̂1λ̂t

)2
, (26)

and the saddlepoint solves
n∑

t=1

(
λ̂t

1− 2ω̂1λ̂t

)

= 0, (27)

then the estimated saddlepoint point optimal test (ESPO) is defined by;

Definition 2 The ESPO test at size α, consists of rejecting H0 : ρ = 1, if

F̂Γ̂,1 (POT ) < α. (28)

In essence the ESPO test involves nothing more than substituting an estimator

for the nuisance parameters in Γ. The most general assumptions under which Γ can

be consistently estimated are detailed in Assumption A of Bühlmann (1995) and

Assumptions 1 and 2 of Chang and Park (2002), i.e.

Assumption 2 In addition to Assumption 1, assume also that

(i) (εt,Ft) is a martingale difference sequence with filtration Ft, and such that

a) E [ε2t ] = σ2, b) plimT−1
∑T

1 ε
2
t = σ2, c) E [|εt|s] ≤ mε <∞ for s ≥ 4,

(ii) ξt =
∑∞

j=0 ψjεt−j, where
∑∞

j=0 |j|
r
∣∣ψj

∣∣ ≤ mψ <∞, ψ0 = 1, for r ≥ 1, and

(iii) u0 = 0.
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In the context of an Augmented Dickey-Fuller (ADF) regression Perron and Ng

(2001) exploit a modified model selection criteria to deliver ADF (and other) tests

which are asymptotically correctly sized. Such, along with the work of Chang and

Park (2002), are based on an autoregressive approximation to the inverse of the

transfer function of the (ξt) ,

Ξ (z) =
∞∑

j=0

αjz
j =

1

Ψ(z)
=

( ∞∑

j=0

ψjz
j

)−1
.

Instead, and following Bühlmann (1995 & 1998), a consistent estimator for Ξ (z) is,

lim
pT→∞

Ξ̂ (z) =

pT∑

j=1

α̂j,T z
j , for |z| ≤ 1,

where pT = o
(
T 1/2

)
where α̂j,T are Yule-Walker autoregressive estimators obtained

from the autocovariance function of the residuals from the Dickey-Fuller regression

∆ỹt = α̂ỹt−1 + υ̂t. (29)

That is, defining α̂p = {α̂j,T}pTj=1 , γ̂p =
{
γ̂j,T

}pT
j=1

where γ̂j,T = (T − |j|)−1∑T
1+|j| υ̂tυ̂t−j

and the matrix Γ̂p =
{
γ̂|i−j|,T

}pT
i,j=1

, then α̂p satisfies

Γ̂pα̂p = −γ̂p. (30)

Here we employ this Yule-Walker approach, reparameterized in terms of the linear

process coefficients, to prove asymptotic validity of the ESPO procedure, as follows.

Theorem 2 Under Assumption 2, let hT →∞ and hT = o (pT )and let
(
ψ̂j,T

)hT
j=1

be

the first hT coefficients in the expansion
(
Ξ̂ (z)

)−1
=
∑∞

j=1 ψ̂j,T z
j , and write

Γ̂h =

(

IT +

hT∑

j=1

ψ̂j,TL
j

)(

IT +

hT∑

j=1

ψ̂j,TL
j

)′

,

then for all κ,

lim
T→∞

∣∣∣F̃Γ̂h,1 (κ)− FΓ,1(κ)
∣∣∣→ 0, almost surely.
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Theorem 2 generalizes Corollary 1 such that inference based on the saddlepoint

approximation remains asymptotically valid when the unknown covariance structure

is estimated. For parametric assumptions, such as an explicit ARMA model, an

obvious simplification of the Theorem would prove validity for inference based on a

more efficient estimator, such as the maximum likelihood. In the next section we

will explore the accuracy of the ESPO procedure, again based upon the framework

described in Section 3, and also use the approximation to give approximate P-values

for optimal tests applied in the context of the (extended) Nelson and Plosser (1981)

data.

5 Illustration and application of the ESPO proce-

dure

5.1 Finite sample performance

Here we assess the finite sample properties, both size and power, of the ESPO test

defined in (28) and compare with those of the P ∗
T test of Elliot, Rothenberg and Stock

(1996). The latter involves rejecting H0 if

P ∗
T = ω̂−2LT < cvα,

where ω̂ is a consistent estimator for ω and the critical values cvα are given in (20).

The experiments are repeated for both models in (16) and the MA parameter values

in (17), but only the Gaussian distribution, with two sample sizes T = 100, 200 and

results are presented on the basis of 10000 Monte Carlo replications.

We consider three different estimators for the nuisance parameters Γ (for the

ESPO test) and ω2 (for the P ∗
T test). The first two are based on the parametric

Gaussian ARMA(p, q) likelihood, defined (up to constants not depending on para-

meters) by,

l (β, ρ, a, b) = −
T∑

1

εt (β, ρ, a, b)
2 , (31)
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where a = (a1, .., ap−1) and b = (b1, .., bq) , and

εt (β, ρ, a, b) = (1− ρL)

(

1−
p−1∑

j=1

ajl
(j)

)−1(

1 +

q∑

j=1

bjl
(j)

)
(
yt − µk,t(β)

)
, k = 1, 2,

(32)

where l(j)yt = yt−j and for model M1, µ1,t(β) = β1 while for model M2, µ2,t(β) =

β1 + β2t. In (32) it is assumed εt = 0 for all t ≤ 0.

First take the parametric case of b1 being unknown but it is known that p = 1

and q = 1. This yields the estimators

I): Γ̂I = K̂IK̂
′
I , KI =

(
I + b̂1L

(1)
)

; ω̂2I =
(
1 + b̂1

)2
,

required for the ESPO and P ∗
T tests respectively. Alternatively, suppose that p and

q are unknown, and estimated, for model Mk, via the BIC,

p̂, q̂ =argmin
p,q



ln

[

T−1
T∑

1

εt
(
β̂, ρ̂, â, b̂

)]2
+

ln (T )

T
(p+ q + k)



 , (33)

where 1 ≤ p ≤ 2 and q ≤ 2, this yields the estimators,

II) :

Γ̂II = K̂IIK̂
′
II , K̂II =

(

IT −
p̂−1∑

j=1

âjL
(j)

)−1(
IT +

q̂∑

1

b̂jL
(j)

)
,

ω̂2II =

(

1+
q̂∑

j=1

b̂j

)
2

(

1−
p̂−1∑

j=1

âj

)
2 .

Lastly we take the residuals from the Dickey-Fuller regression in (29) and run the

auxiliary regression, also using the BIC,

υ̂t =

p̂∗∑

1

αjυ̂t−j + εt, p̂∗ = argmin
α1,..,αp∗ ,pL≤p∗≤pU

ln

[

T−1
T∑

1

ε̂2t

]

+
lnT

T
(p∗ + k) ,

for each Mk, k = 1, 2,where the ε̂t are the auxiliary residuals and we chose pL = 3

and pU = 6, as in Elliott, Rothenberg and Stock (1996). Using first p̂∗ residual

autocovariances we construct

III): Γ̂III = Γ̂p̂∗ ; ω̂2III = 1 + 2

p̂∗∑

j=1

γ̂j,T ,
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and note that since an invertible MA(p̂∗) is uniquely defined by its covariances we

may simply take Γ̂p̂∗ to be the residual autocovariance matrix.

The results for the ESPO test are given in Table 5, while those for the P ∗
T test are

in Table 6. For the ESPO test the results using the maximum likelihood estimator

Γ̂I are very similar to those obtained when the parameter is assumed known, it

delivers stable and accurate inference across the range of experiments. When an

ARMA model, with lag length selected by (33), is used to estimate the covariance

structure the results are slightly less accurate, although still within around 1.5% of

nominal at the 5% level and within 2% at the 10% level. Simply plugging in the

sample autocovariance matrix is less accurate, particularly for the case of ψ = −0.8,
although unlike with the parametric estimators the is clearly improved for the larger

sample size.

The results for the P ∗
T test highlight the difficulties with using pure asymptotic

results, particularly when ψ is large and negative. In such cases, when the efficient

estimator is used ω̂I the test is severely undersized and is worse for the larger sample

size. The slightly less efficient estimator gives a test which is slightly more accurate,

but again worsens as the sample size increases. Using the sample autocovariance esti-

mator (not employing the modified criteria of Ng and Perron (2001)) gives oversized

tests although for the larger sample size they are closer to nominal. On the other

hand when ψ is not large and negative the size of the P ∗
T test is quite close to nominal,

regardless of how the long run variance is estimated.

In direct comparisons the ESPO procedure is generally more accurate over the

whole range of experiments. Using parametric estimators gives results which are

very similar to those obtained in the known parameter case. Using a nonparametric

estimator does imply less accuracy, although still better than the P ∗
T procedure and

indeed those presented in Perron and Qu (2007) using a refined selection criteria. As

an alternative to pure asymptotic results recent developments in the literature have

exploited sieve bootstrap methods for processes satisfying Condition 1B, above. For

model M1 and T = 100, Cavaliere and Taylor (2008) report a size of 3.8% for an

AR-based sieve applied to a GLS detrended Dickey-Fuller test, while Richard (2007)

reports much less favorable results for an MA-based sieve. The latter results are

surprising given the experimental design is also based on an MA(1).
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The ESPO test, implemented with the maximum likelihood estimator, has very

high accuracy when the model is correctly or over-specified. However, it is also

important to demonstrate some robustness to mis-specification. To this end the

results in Table 7 give sizes when the ESPO test is applied by fitting an MA(1), to

model M2, when in fact the innovations are generated by either an ARMA(1, 1) or

an MA(2), i.e. ξt = ψ(l)εt, where either,

E4 : ψ(l) = (1− ϑl)−1 (1− 0.8l) or E5 : ψ(l) = (1 + ϑl) (1− 0.8L) . (34)

In each case values of ϑ = {±0.15,±0.1± 0.05} were used and the null rejection fre-

quencies recorded. In both cases the effect of small, negative values of ϑ is negligible.

With small positive values the effect is more significant, the size never exceeds that

of the best asymptotic tests, such as those in Perron and Qu (2007). In practice such

mis-specification can either be tested for, or other versions of the test used instead.

In terms of power both POT and LT are constructed using power optimality

criteria. Under Condition 1A both are point optimal invariant, against the alternative

H1 : ρ = ρ̄, with only the invariance groups differing; POT is also scale invariant.

Numerical evidence in the literature, e.g. in Perron and Qu (2007) and Seo (2006),

suggests that P ∗
T is, in practice, slightly more powerful than Dickey-Fuller type tests.

Here we compare the size-corrected power of the feasible versions ESPO and P ∗
T

tests in both M1 and M2 in (16) and for all MA parameters in (17), of both tests for

H0 : ρ = 1 vs. H1 : ρ = 0.95, 0.90, ..., 0.70,

with T = 100 and for 10000 replications. The nuisance parameters were estimated

using the residual auto-covariance estimators, i.e. Γ̂III and ω̂III , although, because

we are size-correcting, powers obtained from using either of the other two estimators

are almost identical. The results are presented in Tables 8 (for ESPO) and 9 (P ∗
T ).

As expected the powers of these two procedures are very similar. The ESPO test

has a slender advantage when the MA parameter is large and negative, particularly

in the constant model, M1.

5.2 Application: P -values for the Nelson and Plosser data

Here we exploit the explicit characterization of probabilities given by the saddlepoint

method to report the P-values obtained from the outcome of the ESPO test, when
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applied to real data.

Each Nelson and Plosser (1982) series was estimated for three different models,

M1 and M2 as above, and also;

M3 : yt = β1 + β2t
ν + ut ; ut = (1− c/T )ut−1 + ξt,

where the value of ν, for each series, was taken from the nonlinear regressions pre-

sented in Marsh (2009). All models were estimated via maximum likelihood, as in

(32) (with µ3,t = β1 + β2t
ν), using the BIC in (33) to determine the orders p and q.

Here, however, the focus is solely to examine the sensitivity of the ESPO test to the

specification of the mean function.

For models M1 and M2 the P -value is found from just F̃Γ̂II ,1(POT ) as recorded in

Table 10. For M3, this is less straight forward. First, the value ρ̄ = 1− c̄/T at which

asymptotic power is 0.5 will be a function of ν if ν ≥ 0.5. For all values of ν < 0.5,

the value for ρ̄ used in M1 was employed, otherwise we approximate this value by

utilizing the saddlepoint approximation in Theorem 1, and solving F̃IT ,ρ̄(κ5) = 0.5.

Once the relevant value for ρ̄ has been found for each series, the P -values are then

obtained as described forM1 andM2. These values, along with the trend parameter ν

are also given in Table 10. This process is vastly more straight forward than having to

first characterize the asymptotic distribution in each such case and then simulate the

power envelope to find the relevant value of ρ̄. The results are mostly self-explanatory.

For most of the series we do not reject a unit root for any of the mean specifications,

but the P -value is generally lower when a linear trend is included. Although for the

majority of series the ESPO tests are not particularly sensitive to the mean function,

the exceptions make the exercise worthwhile.

For Unemployment when there is just a constant the P -value is 0.1%, while in-

cluding a trend the P -value becomes 1%. Potentially, therefore, if we were to test

at the 1% level, whether or not a trend is included (and if so whether to impose a

linear trend) could influence the outcome of the test. Bond Yields and Velocity are

unusual, in the sense that the P -value is lower without a trend, of any kind. Most

interesting of all is Industrial Production. When no trend is included the P -value is

in the far-right tail (93%) while if a trend is included the P -value is in the far-left tail

(7%). Using a nonlinear trend instead gives a P -value of 32%. Potentially, therefore,

each specification could lead a practitioner to a different conclusion, M1 giving an
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outcome consistent with an explosive root, M2 with a stationary root and M3 with a

unit root.

6 Conclusions

This paper has provided a feasible method for obtaining approximate critical values

for an optimal unit root test. Under restrictive assumptions the order of error of the

approximation is proven to be O(T−1) while under a general assumption on the inno-

vation process, inference based on the feasible estimated saddlepoint approximation

is shown to be asymptotically valid. In addition, because the saddlepoint provides an

explicit distributional approximation, unlike numerical approximations to the distri-

bution of limiting forms involving stochastic integrals, the former may be employed

to examine the sensitivity of P-values under deterministic components.

The test statistic is that previously considered in Dufour and King (1991) and,

via Francke and de Vos (2007), is directly related to that of Elliott, Rothenberg and

Stock (1996). Numerical comparisons between the estimated saddlepoint procedure

and pure asymptotic approximations demonstrate clear superiority for the former,

demonstrated over different distributional assumptions and different methods of es-

timating the nuisance parameters involved in the innovation covariance structure.

Although the performance of the saddlepoint are comparable with the few given

for bootstrap based inference they are not, as yet, available with quite the same gen-

erality, for example the wild bootstrap of Cavaliere and Taylor (2009). Importantly

here there is no compromise in terms of power, such has yet to be clearly demonstrated

for bootstrap based methods. Although beyond the scope of this paper extending the

analysis to bootstrap based saddlepoint inference, i.e. bootstrapping the estimated

saddlepoint P-value, for comparison with sieve based methods for Dickey-Fuller type

tests is an obvious avenue for future research.
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Appendix I

(1) Proof of Theorem 1

The leading term saddlepoint approximation under Condition 1A have previously

been detailed, see Lieberman (1994 & 1996) and Marsh (1998). Here what is relevant,

since in general the covariances γj will be unknown and will have to be consistently

estimated, is establishing the asymptotic order of error. To do so we demonstrate

that the integral defining the probabilities F T
Γ,1−ρ (κ) satisfies the conditions required

for the asymptotic analysis of Lugannani and Rice (1980) and Daniels (1987).

To proceed, define for any ρ̄,

wρ̄ = C ′
ρ̄∆ρ̄y ∼ N (0, Aρ̄) , Aρ̄ = C ′

ρ̄∆ρ̄∆
−1
ρ Γ
(
∆−1

ρ

)′
∆′

ρ̄Cρ̄.

where Cρ̄ is the singular value decomposition in (6). Standardizing, so that z =

A
−1/2
ρ̄ wρ̄ ∼ N (0, In) and n = T −k, then the test statistic can be written as the ratio

of quadratic forms in standard normal variables, as in

POT =
z′Aρ̄z

z′A1z
.

As a consequence,

F T
Γ,1−ρ (κ) = Pr

[
z′Aρ̄z

z′A1z
< κ

]
= Pr [z′ (Aρ̄ − κA1) z < 0] = Pr

[
n∑

t=1

λtz
2
t < 0

]

, (35)

where zt ∼ N(0, 1) and the non-zero eigenvalues of B(ρ) as defined in (12) are also

the n eigenvalues of the matrix A = Aρ̄ − κA1, with

Art = λtrt ; r′trt = 1, r′trs = 0 if t �= s. (36)
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Let Q =
∑n

t=1 λtz
2
t ,then F T

Γ,1−ρ (κ) can be evaluated via,

F T
Γ,1−ρ (κ) = FQ(0) ; FQ(q) = Pr [Q < q] .

The mean moment generating and cumulant generating functions of Q are, respec-

tively

ϕ̄n (χ) =
n∏

t=1

(1− 2χλt)
− 1

2n and Rn (χ) = −
1

2n

n∑

t=1

ln (1− 2χλt) .

Let θ = iχ, then from Goutis and Casella (1999, eqn 18) the density of Q is,

fQ(q) =
1

2πi

∫ τ+i∞

τ−i∞
exp {nRn(θ)− θq} dθ,

for some small τ . The distribution is,

FQ(q) = 1−
∫ ∞

q

fQ(w)dw = 1−
∫ ∞

q

1

2πi

∫ τ+i∞

τ−i∞
exp {nRn(θ)− θq} dθdw

= 1− 1

2πi

∫ τ+i∞

τ−i∞

exp {nRn(θ)− θq}
θ

dθ,

and since we only require evaluation of the distribution at q = 0, we set x = n−1q

and evaluate the integral,

FQ(x) = 1− 1

2πi

∫ τ+i∞

τ−i∞

exp {n (Rn (θ)− θx)}
θ

dθ. (37)

Following the development of Lugannani and Rice (1980) and also Daniels (1987) a

formal asymptotic series approximation in powers of n−1 for (37) applies under the

following conditions on the mean characteristic function of Q: let θ̃ρ,x solve

dRn (θ)

dθ
=

n∑

t=1

(
2λt

1− 2θ̃ρ,xλt

)

= x,
1

2λn
≤ θ̃ρ,x ≤

1

2λ1
(38)

and let ε, α, c0 and c1 be positive constants, then we require

a) ϕ̄n (θ) is analytic on the strip Θ =
{
θ : Im (θ) ≤ ±

(
θ̃ρ,x + ε

)}
,

b) |ϕ̄n (θ)| < c0
|θ|α when |θ| > c, and

c) The derivatives of Rn (θ) are O(1).

. (39)

In (39) a) and b) ensure the path of integration in (37) can be deformed as in,

FQ(x) = 1−
∫ ∞

q

1

2πi

∫ θ̃ρ,x+i∞

θ̃ρ,x−i∞

exp {n (Rn(θ)− θx)}
θ

dθ,
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while c) ensures that the resulting asymptotic series approximation is in powers of

T−1.

Whether or not they hold depends entirely on the properties of the eigenvalues of

Aρ̄, say {µt}nt=1 . To proceed, notice that the critical value κ is determined by,

Pr [POT < κ] = Pr

[
z′Aρ̄z

z′A1z
< κ

]
= α, (40)

for α < 1. Since Aρ̄ is symmetric, the eigenvalues of A′ρ̄Aρ̄ = A2ρ̄ are {µ2t}
n
t=1 ,and

consequently the maximum eigenvalue norm is given by

sup
t
|µt| = ‖Aρ̄‖2 =

∥∥∥C ′
ρ̄∆ρ̄∆

−1
ρ Γ
(
∆−1

ρ

)′
∆′

ρ̄Cρ̄

∥∥∥
2

≤ ‖Mρ̄‖2
∥∥∆ρ̄∆

−1
ρ

∥∥2
2
‖Γ‖2 ,

since all ‖.‖p-norms are submultiplicative. Since Mρ̄ is idempotent then ‖Mρ̄‖2 = 1,

while exploiting the matrix norm inequality ‖R‖22 ≤ ‖R‖1 ‖R‖∞ for any n×n matrix

R, then

‖Γ‖2 ≤ mγ <∞ and
∥∥∆ρ̄∆

−1
ρ

∥∥2
2
≤
∥∥∆ρ̄∆

−1
ρ

∥∥
1

∥∥∆ρ̄∆
−1
ρ

∥∥
∞ .

Since ∆ρ̄∆
−1
ρ is Toeplitz then

∥∥∆ρ̄∆
−1
ρ

∥∥
∞ =

∥∥∆ρ̄∆
−1
ρ

∥∥
1
, and

∥∥∆ρ̄∆
−1
ρ

∥∥
1

=
n−1∑

j=0

ρj − ρ̄
n−1∑

j=1

ρj−1 = (1− ρ̄)
n−1∑

j=0

ρj + ρn−1

=
(1− ρ̄)

(1− ρ)

(
1− ρn−1

)
+ ρn−1 =

c̄

c
− c̄− c

c

(
1− c

T

)(T−k)−1
,

so that

lim
T→∞

∥∥∆ρ̄∆
−1
ρ

∥∥
1
= 1.

Consequently,

lim
T→∞

‖Aρ̄‖2 ≤ mγ <∞, (41)

moreover, since both Aρ̄ and A1 are positive definite then POT = Op(1) and so for

any α < 1, κ defined by (40) is positive and finite. Now note that the {λt}nt=1 are the
eigenvalues of the symmetric n× n matrix A = Aρ̄ − κA1, and so λt is real for all t.

Moreover, the eigenvalues of A′A = A2 are
{
λ2t
}n
t=1

and hence

sup
t
|λt| = ‖A‖2 = ‖Aρ̄ − κA1‖2 ≤ ‖Aρ̄‖2 + κ ‖A1‖2 ,
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using (41), which also holds for ρ̄ = 1, we find

sup
t
|λt| ≤ (1 + κ)mγ = O(1).

Since the eigenvalues {λt}nt=1 are all finite for any n,then ϕ̄n (θ) is continuous (and

infinitely differentiable) in θ and bounded away from zero as |θ| → 0. Hence ϕ̄n (θ) is

analytic on Θ and condition (a) in (39) holds, see also Marsh (1998, Theorem 1(ii)).

To continue, since

|ϕ̄n (θ)| ≤ |1− 2θλt∗|−
1

2 , t∗ = argmax sup
t
|1− 2θλt|−

1

2

so that for any α < 1/2, c1 =
1

2λt∗−1 , and c0 = 1, we have

|θ|α |ϕ̄n (θ)| < c0 for all |θ| > c1,

and hence the condition b) also holds in this case. Under these conditions the leading

term saddlepoint approximation evaluated at x = 0 is,

F̃Q(0) = Φ
(
η̃ρ
)
− ϕ(η̃ρ)

(
1

η̃ρ
− 1

δ̃ρ

)

, (42)

where η̃ρ and δ̃ρ are defined as in the statement of the Theorem and the saddlepoint

θ̃ρ = θ̃ρ,0 satisfies,

n∑

t=1

(
2λt

1− 2θ̃ρλt

)

= 0 ;
1

2λn
≤ θ̃ρ ≤

1

2λ1
.

Details on the construction of F̃Q(q) are given in Section 4 of Daniels (1987) and

applied for the problem of a ratio quadratic forms in Lieberman (1994) and Marsh

(1998).

The order of error of the leading term (and subsequent corrections to it) is deter-

mined by condition (c). The sth derivative of Rn (θ) is

Rs
n (θ) =

dsRn (θ)

dθs
=

(−1)s (s− 1)!

n

n∑

t=1

(
2λt

1− 2θλt

)s

,

so that Rs
n (θ) = O(1), as required. As an immediate consequence we have that

FQ(0) = F̃Q(0) +O(n−1),

which then gives the order of error as required.
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(2) Proof of Theorem 2

It is required to show that the Estimated Saddlepoint P-value is a consistent

estimator for the asymptotic P-value of the POT test. To do so we parameterize the

covariance matrix as

Γ = KψK
′
ψ, Kψ = IT +

T∑

j=1

ψjL
j,

Now similar to Richard (2007) let hT = o (pT ) and define the estimators ψ̂h ={
ψ̂j,T

}hT

j=1
, where

(
Ξ̂h (z)

)−1
=

∞∑

j=1

ψ̂j,T z
j , (43)

then according to the proof of Theorem 2 of Bühlmann (1995),

lim
hT→∞

hT∑

j=1

∣∣∣ψ̂j,T − ψj

∣∣∣→ 0, almost surely. (44)

Letting Γ̂h = Kψ̂T
K ′

ψ̂T
, then we can write

∣∣∣F̃Γ̂h,1 (κ)− FΓ,1(κ)
∣∣∣ =

∣∣∣
(
F̃Γ̂h,1 (κ)− F̃Γ,1 (κ)

)
+
(
F̃Γ,1 (κ)− FΓ,1(κ)

)∣∣∣

≤
∣∣∣
(
F̃Γ̂h,1 (κ)− F̃Γ,1 (κ)

)∣∣∣+
∣∣∣
(
F̃Γ,1 (κ)− FΓ,1(κ)

)∣∣∣ , (45)

via the triangle inequality. Immediately from Corollary 1 the second term in (45)

satisfies ∣∣∣F̃Γ,1 (κ)− FΓ,1(κ)
∣∣∣ = o(1),

for all κ, and can thus be neglected.

For the first term, write the estimator for ψT =
{
ψj

}T
j=1

as ψ̂T =
{
ψ̂j

}T

j=1
,

ψ̂j =





ψ̂j,T if j ≤ hT

0 otherwise
,

and finally define the mean value ψ∗T which lies on a line segment joining ψ̂T and ψT .

Indexing the distributions by the parameters, rather than the covariance matrix, we

have,

F̃ψ̂T ,1
(κ)− F̃ψT ,1(κ) =

(
ψ̂T − ψT

)′ ∂F̃ψ∗T ,1
(κ)

∂ψT

,
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where the first derivative is evaluated at ψ∗T ,and so

F̃ψ̂T ,1
(κ)− F̃ψT ,1(κ) =

hT∑

j=1

(
ψ̂j,T − ψj

) ∂F̃ψ∗T ,1
(κ)

∂ψj

−
T∑

hT+1

ψj

∂F̃ψ∗T ,1
(κ)

∂ψj

. (46)

To proceed, from Corollary 1 we constructed the leading term by F̃Γ,1 (κ) =

Φ (r̂1(κ)), with r̂1(κ) defined by (25), (26) and (27). Immediately, therefore, Φ (r̂1(κ))

is a differentiable function of the eigenvalues (λt)
T
t=1 . Moreover, from Magnus and

Neudecker (1999, Theorem 7, p. 158), the eigenvalues are differentiable (with respect

to ψj), with first derivative

∂λt

∂ψj

= r′t

(
∂A

∂ϕj

)
rt, A = Aρ̄ − κA1.

The derivative of Aρ̄ (in the current parametrization of Γ) is

∂Aρ̄

∂ψj

= C ′
ρ̄∆ρ̄∆

−1
ρ

(
∂KψK

′
ψ

∂ψj

)(
∆−1

ρ

)′
∆′

ρ̄Cρ̄ = 2C ′
ρ̄∆ρ̄∆

−1
ρ L(j)K ′

ψ

(
∆−1

ρ

)′
∆′

ρ̄Cρ̄.

Since r′trt = 1, then

lim
T→∞

∣∣∣∣
∂λt

∂ψj

∣∣∣∣ ≤ lim
T→∞

∥∥∥∥
∂ (Aρ̄ − κA1)

∂ϕj

∥∥∥∥
2

= O(1),

by arguments identical to those proving that the maximum eigenvalue of A, itself,

is finite. As a consequence F̃Γ,1 (κ) has bounded derivatives with respect to the

parameters ψj, i.e. we have

lim
T→∞

max
j

∣∣∣∣∣
∂F̃ψ∗T ,1

(κ)

∂ψj

∣∣∣∣∣
= O(1). (47)

Hence from (46) and the triangle inequality, we have for all finite κ,

lim
T→∞

∣∣∣F̃ψ̂T ,1
(κ)− F̃ψT ,1(κ)

∣∣∣ ≤ lim
T→∞

max
j

∣∣∣∣∣
∂F̃ψ∗T ,1

(κ)

∂ψj

∣∣∣∣∣

(
hT∑

j=1

∣∣∣ψ̂j,T − ψj

∣∣∣+
T∑

hT+1

∣∣ψj

∣∣
)

.

The first term in the parentheses is op(1) almost surely, as in (44), while

T∑

hT+1

∣∣ψj

∣∣ = o
(
h−r
T

)
,

and so since κ is finite for any significance level α < 1 then,

lim
T→∞

∣∣∣F̃Γ̂h,1 (κ)− FΓ,1(κ)
∣∣∣→ 0, almost surely,

as required.
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Appendix II Tables

Table 1): Nominal size of critical values for the POT test, ξt ∼ iidN(0, 1).

M1 M2

T
ψ

α
-0.8 -05 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

50 5% 5.10 5.41 4.36 4.16 4.49 5.59 4.56 4.71 4.74 4.71

50 10% 9.23 9.70 9.51 9.48 9.34 10.6 9.48 9.70 9.65 9.68

100 5% 5.16 4.67 4.89 4.64 4.46 5.50 5.22 5.13 5.69 5.36

100 10% 9.86 9.69 10.1 9.36 9.45 10.4 9.84 9.86 10.4 10.3

200 5% 5.10 5.21 4.86 5.31 5.23 5.00 4.95 4.83 5.28 5.28

200 10% 9.92 9.95 10.1 10.5 10.2 10.1 10.1 9.84 10.3 10.2

Table 2): Nominal size of critical values for the LT test, ξt ∼ iidN(0, 1).

M1 M2

T
ψ

α
-0.8 -05 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

50 5% 0.00 0.00 7.42 8.62 8.44 0.00 0.00 6.69 11.4 12.0

50 10% 0.00 0.00 15.2 16.2 16.7 0.00 0.00 13.5 18.7 19.9

100 5% 0.00 0.00 6.92 6.58 6.85 0.00 0.00 5.92 7.84 7.25

100 10% 0.00 0.00 13.7 12.7 13.5 0.00 0.00 12.4 14.3 13.6

200 5% 0.00 0.00 5.62 5.63 5.08 0.00 0.00 5.28 5.79 5.67

200 10% 0.00 0.00 11.5 11.7 11.3 0.00 0.00 10.3 11.6 10.9
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Table 3): Nominal size of critical values for the POT test, ξt ∼ iidχ2(1)−1√
2

.

M1 M2

T
ψ

α
-0.8 -0.5 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

50 5% 4.15 3.88 4.18 4.27 4.22 4.15 3.88 4.18 4.29 4.21

50 10% 8.92 8.90 8.26 8.64 8.87 8.72 8.61 8.72 8.63 8.69

100 5% 4.52 3.87 4.02 5.33 4.23 3.97 4.63 4.32 4.37 4.17

100 10% 9.31 8.85 9.00 11.3 8.98 8.75 9.16 9.11 8.85 8.91

200 5% 4.78 5.33 4.32 4.68 4.47 4.28 4.73 4.88 4.63 5.78

200 10% 9.66 9.81 9.11 9.31 9.24 9.71 9.15 10.3 8.88 11.0

Table 4): Nominal size of critical values for the LT test, ξt ∼ iidχ2(1)−1√
2

.

M1 M2

T
ψ

α
-0.8 -0.5 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

50 5% 0.00 0.00 8.16 9.56 9.17 0.00 0.00 15.1 18.3 17.9

50 10% 0.00 0.00 16.0 17.7 17.9 0.00 0.00 22.1 26.0 25.4

100 5% 0.00 0.00 6.16 7.30 7.27 0.00 0.00 9.72 11.5 11.8

100 10% 0.00 0.00 12.5 13.9 13.8 0.00 0.00 15.8 18.2 18.5

200 5% 0.00 0.00 5.92 5.56 5.65 0.00 0.00 6.87 7.94 8.21

200 10% 0.00 0.00 11.7 11.0 11.8 0.00 0.00 12.6 13.2 13.7
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Table 5): Size of ESPO procedures, nominal size α :

(a) ψ estimated via MA(1),

(b) ψ estimated via BIC selection, (c) Γ estimated by sample autocovariances.

i) T = 100

M1 M2

ψ

α
-0.8 -0.5 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

(a) 5% 4.87 3.92 4.56 5.72 5.81 5.64 4.13 4.32 5.26 5.04

10% 9.43 8.36 10.1 9.67 10.9 11.0 8.28 9.17 10.9 10.7

(b) 5% 5.54 6.55 4.93 5.69 5.41 5.63 5.49 4.40 5.41 4.96

10% 11.1 11.9 10.5 10.8 10.6 11.0 11.5 9.09 11.1 10.6

(c) 5% 8.72 5.79 4.30 6.29 6.56 8.01 5.19 3.38 6.39 5.87

10% 13.7 11.5 8.65 11.3 12.0 13.1 10.1 8.37 10.8 11.6

ii) T = 200

M1 M2

ψ

α
-0.8 -0.5 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

(a) 5% 4.23 4.25 5.17 5.89 5.71 4.39 3.97 5.10 5.61 5.73

10% 7.87 8.35 10.5 11.3 10.8 9.67 8.86 9.43 10.8 11.3

(b) 5% 6.01 5.71 5.30 5.79 5.44 5.64 5.51 5.31 6.04 4.76

10% 10.8 11.3 9.79 10.6 10.4 10.3 10.6 10.7 11.1 10.1

(c) 5% 8.08 5.51 4.83 6.01 5.44 4.65 5.59 4.28 6.15 6.74

10% 13.4 10.2 8.75 11.1 9.24 11.0 10.5 8.79 8.93 11.7
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Table 6): Size of P ∗
T test, nominal size α :

(a) ω known, (b) ω estimated via MA(1),

(c) ω estimated via BIC selection, (d) ω estimatred by sample autocovariances.

i) T = 100

M1 M2

ψ

α
-0.8 -0.5 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

(a) 5% 1.23 1.40 6.44 6.67 6.66 0.74 0.98 5.55 7.28 7.52

10% 1.68 1.99 12.8 12.9 13.2 0.99 1.22 11.6 14.1 14.4

(b) 5% 2.09 2.18 6.34 6.27 7.23 1.23 1.39 4.75 6.63 6.97

10% 2.88 3.46 13.2 13.6 14.3 1.44 1.68 8.99 13.4 14.7

(c) 5% 15.2 13.3 5.23 5.83 4.58 6.25 6.29 3.46 4.83 3.66

10% 21.2 17.8 10.5 11.6 10.8 9.56 10.2 7.17 11.3 7.89

ii) T = 200

M1 M2

ψ

α
-0.8 -0.5 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

(a) 5% 0.42 0.72 6.05 5.85 5.61 0.33 0.48 4.92 6.83 6.41

10% 0.59 0.94 12.2 11.9 11.8 0.36 0.56 10.2 11.7 11.5

(b) 5% 0.89 1.15 6.18 5.86 6.38 0.38 0.50 4.32 3.81 8.54

10% 1.77 2.66 12.3 11.7 13.1 0.51 0.65 11.1 10.7 14.5

(c) 5% 18.6 15.1 4.62 5.58 4.92 10.0 9.11 3.96 5.85 4.65

10% 25.7 22.4 10.1 11.7 10.8 14.8 13.3 8.97 11.3 9.44
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Table 7): Size of ESPO test in model M2 with ψ = −0.8,
estimated by MA(1), under the mis-specification in (34); T = 100.

i) ξt generated by E4

α 5% 10%

-0.15 5.42 11.0

-0.10 5.90 11.1

ϑ -0.05 6.42 12.1

0.05 8.58 15.0

0.10 9.52 16.2

0.15 11.2 18.3

ii) ξt generated by E5

α 5% 10%

-0.15 5.84 10.9

-0.10 6.06 11.6

ϑ -0.05 6.17 11.8

0.05 7.88 14.1

0.10 9.34 16.4

0.15 10.9 17.9

Table 8): Size corrected power of the ESPO test; T = 100, size α = 5%

M1 M2

ψ -0.8 -0.5 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

.95 18.2 22.2 28.3 26.1 25.8 10.8 10.5 11.3 11.2 11.3

.90 38.5 48.9 64.8 61.7 58.5 21.0 29.2 31.6 28.3 27.3

ρ .85 57.2 75.9 86.4 89.3 86.2 40.8 60.8 61.1 55.1 54.7

.80 68.4 81.7 97.0 98.6 97.1 57.5 74.3 77.5 80.4 75.6

.75 75.3 88.4 98.3 99.8 98.2 65.2 82.4 89.9 91.0 84.8

.70 81.8 91.7 99.9 99.9 99.9 78.6 88.1 95.7 95.3 91.2

Table 9): Size corrected power of the P ∗
T test; T = 100, size α = 5%

i) Model M1

M1 M2

ψ -0.8 -0.5 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

.95 18.1 21.6 27.1 26.0 24.6 10.3 10.5 11.4 10.8 10.1

.90 38.5 47.7 58.9 57.4 58.1 17.4 28.4 30.2 24.6 23.5

ρ .85 52.0 71.5 81.9 79.1 80.2 36.8 54.2 56.4 43.7 40.6

.80 64.6 78.7 90.4 88.9 89.7 51.6 65.2 72.7 59.2 55.4

.75 67.4 80.8 94.5 93.0 94.3 64.3 78.1 85.4 73.7 68.3

.70 68.2 81.5 96.3 95.5 95.4 72.3 82.8 94.6 82.8 79.6
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Table 10): P -values for the ESPO test

applied to the Nelson and Plosser data

M1 M2 M3

Series T P -val. P -val. P -val. : ν

Real GNP 80 95.8 41.7 99.9 : -0.01

Nom. GNP 80 97.8 90.5 98.4 : 0.825

GNP Per.Cap. 80 97.7 43.1 89.8 : 0.518

Bond 89 73.3 93.0 85.6 : 1.47

Real Wage 89 99.5 70.6 99.5 : 0.813

Nom. Wage 89 97.7 88.8 98.6 : 0.305

Unemp. 99 0.10 1.00 0.31 : -0.16

Employ. 99 93.2 26.5 25.2 : 0.81

Money 100 96.6 82.5 82.6 : 0.999

S&P500 118 93.6 70.4 53.8 : 1.17

Velocity 120 55.9 94.3 78.7 : -0.57

I. Prod. 129 92.9 6.61 32.2 : 1.10

CPI 129 99.6 99.8 99.9 : 0.571
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Table n): Powers of the SPO and LT tests against the alternative H1 : ρ = 1− c̄/T

M1 M2

T
ψ

Test
-0.8 -0.5 0.0 0.5 0.8 -0.8 -0.5 0.0 0.5 0.8

50 SPO 22.4 29.5 41.7 44.4 45.6 30.4 35.1 49.9 50.2 50.8

50 LT 13.1 18.4 32.0 37.1 37.6 5.54 6.67 25.5 30.3 32.6

100 SPO 27.9 34.1 44.9 47.0 47.6 33.6 39.1 50.2 48.6 49.2

100 LT 23.5 29.4 41.5 43.7 45.3 15.6 22.4 38.6 38.7 41.8

200 SPO 33.1 38.0 47.6 48.7 47.3 38.1 41.6 49.8 49.9 48.8

200 LT 31.2 35.4 45.0 47.2 46.8 32.2 35.4 48.1 47.2 46.9
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