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Abstract 

Power indices suggest that adding new members to a voting body may affect the balance of 

power between the original members even if their number of votes and the decision rule remain 

constant. Some of the original members may actually gain even if voters are bargaining over a 

fixed budget. We show that this phenomenon can occur as an equilibrium of a non-cooperative 

bargaining game based on the Baron-Ferejohn (1989) model of legislative bargaining. We 

implement this game in the laboratory and find that power can be gained by adding new 

members as the theory predicts. 

 

Keywords: voting, non-cooperative bargaining, power indices, experiments 

JEL classification: C70; C92 

                                                 
1 Drouvelis: Department of Economics and Related Studies, University of York; Montero: School of Economics, 
University of Nottingham; Sefton: School of Economics, University of Nottingham. Corresponding author: Maria 
Montero, School of Economics, University of Nottingham, University Park, Nottingham NG7 2RD, United 
Kingdom (E-mail: maria.montero @nottingham.ac.uk, Tel: 44 115 951 5468, Fax: 44 115 951 4159). We thank an 
advisory editor and referee for their comments. We also thank Steven Brams, Robin Cubitt, Jens Grosser and his 
Experimental Economics Reading Group at Florida State University, seminar participants at the University of Vigo, 
the 2007 CREED-CeDEx workshop, the Nijmegen School of Management Decision Lab Opening Workshop, the 
2007 Spain-Italy-Netherlands Meeting on Game Theory, the 2008 Royal Economic Society Conference, and the 
2008 Economic Science Association European Meeting for comments. We are grateful to the Nuffield Foundation 
and the University of Nottingham New Lecturers fund for financial support. 



 2 

1. Introduction 

Power indices suggest that the addition of a new member to a voting body may increase the 

voting power of some original members, even if the voting body is deciding over the allocation 

of a fixed pie, and the relative voting weights of the original members and the decision rule 

remain constant. Brams and Affuso (1976) refer to this possibility as the ‘paradox of new 

members’. Brams and Affuso describe two instances of this phenomenon. In one, the addition of 

a new member causes an existing member to lose his veto power and this empowers the other 

existing members who can use the new member as a coalition partner. In the second instance, 

however, a voter gains from the addition of a new member who is of no use to him as a coalition 

partner. Brams and Affuso base their analysis on the application of Shapley and Banzhaf power 

indices to cooperative games. In this paper we show that gaining power through enlargement can 

occur as an equilibrium outcome of a noncooperative legislative bargaining game. We also 

implement this game in the laboratory, and observe comparative statics in line with equilibrium 

predictions.  

It has been claimed that EU enlargements have increased the power of some original 

members. For example, in 1981 Greece was admitted to the EU. In an attempt to preserve the 

balance of power among existing members, the number of votes held by each country on the 

Council of Ministers and the percentage of the total votes required to pass a proposal was kept 

unchanged. Nevertheless, Brams and Affuso (1985) showed that Luxembourg’s power index 

increased, leading them to conclude that “if … seemingly plausible but nevertheless arbitrary 

voting weights and decision rules are selected - without benefit of formal voting-power analysis - 

then the effects may be not only unanticipated but also bizarre” (p.137). One might ask whether 

there is any empirical evidence of an existing member benefitting from an enlargement by 

enjoying a larger share of the resource being bargained over. Kauppi and Widgrén (2004) 

analyze data on EU budget shares from 1976-2001. According to their Figure 2, Ireland, Italy, 

and the UK enjoyed higher budget shares after Greece joined the EU. Of course, this may not be 

a manifestation of the ‘paradox of new members’. It may be that measured budget shares do not 

accurately measure what is being bargained over, or that the shift in budget shares reflected other 

factors that changed after Greece joined. These qualifying remarks illustrate the difficulties of 

using field data for examining the relationship between voting weights and voting power. 
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In our experiment participants bargain over a fixed budget, and we measure power by the 

average earnings of each voter type. In order to study weighted voting games in the laboratory it 

is necessary to impose a protocol. The bargaining game we study uses the same bargaining 

procedure as the Baron and Ferejohn (1989) model, which is the leading model of legislative 

bargaining. A player is randomly selected to submit a proposal, which is then voted on. If the 

proposal passes the proposal is implemented (closed rule), otherwise the game goes to the next 

round and the procedure is repeated. Whereas the Baron-Ferejohn model uses a one-person one-

vote and majority voting rule, we examine weighted voting rules. We study three treatments, 

corresponding to the examples in Brams and Affuso (1976). In our VETO treatment there are 

three voters, one of whom is a ‘strong’ player with veto power. Our ENLARGED treatment adds 

a fourth voter, so that the strong player loses his veto power. Comparing these two treatments, 

the theory predicts that the addition of a new member empowers the non-veto players and allows 

them to get a higher payoff. In our SYMMETRIC treatment the three voters have the same 

nominal voting weights as in VETO, but the quota is modified so that any two voters can form a 

winning coalition. In the comparison of SYMMETRIC and ENLARGED theory predicts that the 

addition of a new member increases the strong player’s expected payoff. This is despite the fact 

that the strong player and new member never vote together. 

In analyzing this bargaining procedure we add to the existing experimental literature 

investigating the Baron-Ferejohn procedure. Fréchette et al. (2005a, 2005b) study several 

treatments similar to our SYMMETRIC treatment, while Kagel et al. (2007) study treatments 

similar to our SYMMETRIC and VETO treatments. As we report later, our results are 

remarkably consistent with theirs given the wide range of procedural differences between the 

experiments. The ENLARGED treatment has not been previously studied, and of course it is the 

comparison of this treatment with the others that allows us to test whether a player can gain 

power after enlargement. We find that the addition of a new member does indeed cause average 

earnings to change in the direction implied by the equilibrium predictions.2 

                                                 
2 Other related experimental studies of the Baron-Ferejohn procedure include McKelvey (1991), Diermeier and 
Morton (2005), and Fréchette et al. (2005c). Montero et al. (2008) investigate the effect of enlargement on the 
balance of power using a relatively unstructured bargaining procedure whereby any player can put or amend a 
proposal on the table at any time. They observe that earnings can increase after enlargement but, as we report later, 
there are some important differences between their results and those reported here. 
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The remainder of the paper is organized as follows. In the next section we describe our 

theoretical framework and apply this to three bargaining games. In section 3 we describe how we 

implement these games experimentally, and in section 4 we present our results. Section 5 

discusses the results and offers concluding comments. 

2. Strategic Foundations 

2.1 Brams and Affuso’s Examples 

Brams and Affuso (1976) discusses the three examples given in Table 1.  

Table 1. Brams and Affuso’s Examples 

 Votes 

controlled 

by player 1 

Votes 

controlled 

by player 2 

Votes 

controlled 

by player 3 

Votes 

controlled 

by player 4 

Votes needed 

to pass a 

proposal 

VETO 3 2 2 – 5 

SYMMETRIC 3 2 2 – 4 

ENLARGED 3 2 2 1 5 

 

In all examples player 1, who we will refer to as the ‘strong’ player, has three votes while 

players 2 and 3 (the ‘weak’ players) have two votes each. In the first example these three players 

comprise the voting body, and five votes are needed to pass a proposal. Here, the strong player 

has veto power, since no proposal can be passed without his votes, thus we refer to this as the 

VETO example. The second example is identical except that only four votes are needed to pass a 

proposal. As a consequence no player has a strategic advantage over the others, since any two 

members have enough votes to pass a proposal, and so we refer to this as the SYMMETRIC 

example. In the third example, ENLARGED, five votes are needed to pass a proposal, and there 

is an additional member with a single vote. 

Clearly, the voting weights of strong and weak players are the same in all examples. 

Relative to VETO, ENLARGED holds the total number of votes required to pass a proposal 

constant. Brams and Affuso show that if voting power is represented by the Shapley value or 

Banzhaf index, the weak players have greater voting power in ENLARGED. Relative to 
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SYMMETRIC, ENLARGED holds constant a simple majority decision rule. Brams and Affuso 

show that the power indices give the strong player greater voting power in ENLARGED. 

2.2 A Non-cooperative Bargaining Procedure 

Here we study a non-cooperative game based on extending the Baron-Ferejohn model to 

weighted voting games. There is a budget of 120 points to be divided among n voters using 

weighted majority rule. Each voter is assumed to maximize the expected number of points 

allocated to them, i.e., they are selfish and risk neutral. The bargaining procedure starts in round 

one with a voter being randomly selected to make a proposal, with each voter having an equal 

chance of being selected. The proposer proposes a division of the budget such that each voter 

receives a nonnegative whole number of points, and the whole budget is distributed. The voters 

vote on the proposal simultaneously. If the total number of votes in favor is sufficient to pass the 

proposal, the proposal is implemented and each voter receives the amount of points specified in 

the proposal. Otherwise, round two begins. A new proposer is selected, again each voter with the 

same probability, and proposes a division of 120 points etc. As in our experiment, we consider a 

finite horizon of 20 rounds. If no agreement is reached by the end of the 20 rounds all voters get 

zero.3 

There is a multiplicity of subgame perfect equilibria (cf. Norman, 2002). Our goal is not 

to analyze them all, but to show that a player’s equilibrium payoff may increase after 

enlargement, and more specifically that a weak player’s equilibrium payoff can be higher in 

ENLARGED than VETO, and a strong player’s equilibrium payoff can be higher in 

ENLARGED than SYMMETRIC. In order to do this, we focus on equilibria in which strategies 

do not depend on past offers or voting behavior. We also assume that all voters vote as if their 

vote is pivotal in order to eliminate equilibria in which a proposal is accepted or rejected by all 

voters regardless of whether the voters actually prefer the proposal to pass, because no one of the 

voters can unilaterally change the outcome. We also assume that a voter accepts an offer if he is 

indifferent between accepting and rejecting. Furthermore, we assume that strategies are 

symmetric in the sense that voters of the same type play the same strategy and strategies also 

treat voters of the same type symmetrically.  

                                                 
3 Notice that, as in our experiment, points are indivisible and the game is finitely repeated with no discounting from 
round to round until the termination round, after which the pie disappears. We show in Appendix A of our working 
paper (Drouvelis et al., 2007) that the same comparative static predictions hold in the standard model with a 
perfectly divisible budget, an infinite horizon and discounting provided the discount factor is sufficiently large. 
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Denote voter i ’s equilibrium payoff at the beginning of round t  by .t
iy  Given our 

assumptions, this value does not depend on past offers and counteroffers. At time 1−t , it is 

optimal for a voter to accept an offer that gives him at least .t
iy  The proposer will then look for 

the cheapest group of voters that control enough votes to achieve a majority, and offer them 

exactly these values (rounded up to the nearest integer), keeping the residual. Following common 

practice, we will say that the proposer ‘proposes to’ the voters that are offered at leastt
iy , and, if 

the offer is accepted, we refer to these players as the ‘coalition partners’. 

2.3 The VETO Treatment 

This game is analyzed by Winter (1996) with a perfectly divisible budget. Since there is a finite 

horizon, the game can be solved by backward induction.  

Recall voters are assumed to care only about their own material payoffs. This implies 

that, in a subgame perfect equilibrium, a voter must accept any offer giving him a positive 

number of points at round 20, and he is indifferent between accepting and rejecting offers giving 

him 0 points. Given our assumption that a voter must accept if he is indifferent, the proposer 

allocates 120 to himself and 0 to everybody else in round 20, and 4020
=iy for all i.  

In round 19, suppose the strong player is the proposer. He has a choice between making 

the best acceptable offer (i.e., offering 40 to one of the weak players) and an offer that will be 

rejected. Since 120 – 40 > 40, the strong player strictly prefers to make an acceptable proposal, 

and is indifferent between proposing to any of the weak players. Our symmetry assumption 

implies that he will propose to each of them with probability ½. As for the weak players, they 

strictly prefer to offer 40 to the strong player and keep 80 rather than make an unacceptable 

proposal and expect 40 on average in round 20. The expected payoff for the strong player at the 

beginning of round 19 is given by [ ] 20
1

20
2

19
1 3

2
120

3

1
yyy +−= . Since 4020

2
20
1 == yy , .

3

16019
1 =y   

For a weak player, [ ] 20
2

20
1

19
2 6

1
120

3

1
yyy +−= , or .

3

10019
2 =y   

In round 18, the same reasoning applies, except that since proposals must be integers 

player 1 must be offered at least 54, and players 2 and 3 must be offered at least 34. Denoting 
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rounded up expected payoffs by
t

iy , expected payoffs can be obtained recursively using  

[ ] 1

1

1

21 3

2
120

3

1 ++

+−=
ttt yyy  and [ ] 1

2

1

12
6

1
120

3

1 ++

+−=
ttt yyy , where t = 1, …, 19 and 40

20

2

20

1 == yy . 

Iterating this equation we obtain 2,118
2

2

2

1 == yy . Thus, in round 1, the strong player 

offers 2 to one of the weak players if he is the proposer, and a weak player offers 118 to the 

strong player if he is the proposer. These strategies imply expected payoffs 1,118 1
2

1
1 == yy .  

2.4 The SYMMETRIC Treatment 

This is the original game analyzed by Baron and Ferejohn. Under our assumption of symmetry of 

equilibrium strategies, the equilibrium is very simple. In round 20 the proposer will take all 120 

points, and since all players are equally likely to be proposers 4020
=iy  for all i . In the previous 

round, the proposer offers 40 to another player and keeps 80; under symmetry each player is 

equally likely to propose to the other two and we obtain 4019
=iy  for all i , and indeed 40=

t
iy  

for all i  and t .  

Before the game starts, the expected payoff of each player is 40. However, once the 

proposer for round one is selected, this player will propose that he gets 80 and another, randomly 

selected, player gets 40. This proposal will be passed.  

2.5 The ENLARGED Treatment 

If the strong player is selected to be proposer, he will seek the favorable vote of one weak player 

(the new member is never of use to the strong player). As for a weak player, he will seek the 

favorable vote of either the strong player or the other two players depending on which votes are 

cheaper to obtain. The new member will seek the favorable vote of two others.  

Expected payoffs in round 20 are 3020
=iy  for all i . In round 19, the strong player will 

offer 30 to one weak player (the symmetry assumption implies that he will be equally likely to 

propose to any of the weak players). As for the weak players, they strictly prefer to offer 30 to 

the strong player. The situation facing the new member is more complicated. He could offer 30 

to any two others. Assuming that he chooses to propose to the two weak players, expected 

payoffs in round 19 are 15,75.33,5.37 19
4

19
2

19
1 === yyy  and iterating this reasoning, allowing 

only integer offers, we obtain the minimal acceptable offers for each type in round one: 
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15,31,45
2

4

2

2

2

1 === yyy . It turns out that if the new member breaks ties differently, then 

expected payoffs in round 19 will be different, but by the end of the iterative process the minimal 

acceptable offers in round one are unaffected.  

Given these minimal acceptable offers it is clear that when the strong player is proposer 

he will randomize between (89,31,0,0) and (89,0,31,0), when player 2 is the proposer he will 

propose (45,75,0,0), when player 3 is the proposer he will propose (45,0,75,0), and when the new 

member is the proposer he will propose (0,31,31,58).  

2.6 The Effects of Enlargement 

If proposers are chosen randomly with equal probability, then it is straightforward to compute 

the expected payoff of each type of player from the equilibria identified above. These are 

presented in Table 2. 

Table 2. Expected Payoffs 

 Strong Player Weak Player New Player 

VETO 118 1 NA 

SYMMETRIC 40 40 NA 

ENLARGED 44.75 30.375 14.5 

There are two cases in which enlargements have a positive impact on an existing 

member. First, beginning from the VETO treatment, the addition of the new player clearly 

benefits the weak player. The new player breaks the monopoly of the strong player by providing 

the weak player with alternative opportunities to pass proposals.4 This prediction is quite 

intuitive. However, note that from a behavioral point of view the outcome of a test is not obvious 

a priori as the intuition is based on the premise that in VETO the strong player can exploit his 

veto power. It is well known that responders in ultimatum games reject small offers and so 

proposers are unable to fully exploit their theoretical bargaining power (Forsythe et al., 1994). If 

                                                 
4 This prediction can be easily generalized. Consider a model with equal recognition probabilities and an infinite 
horizon without discounting. Starting from a game with veto players, if the addition of a new member eliminates all 
veto power, any original non-veto players must gain. This is a direct consequence of non-veto players receiving a 
zero payoff in a game with veto players and a positive payoff in games without veto players. 
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non-veto players reject inequitable proposals, the veto player might similarly fail to extract his 

predicted share and enlargement may not have the predicted effect.  

Second, beginning from SYMMETRIC the addition of the new player benefits the strong 

player. The mechanism at work here is less straightforward. While it is clear that enlargement 

breaks the original symmetry between strong and weak players so that the strong player gets 

more than a weak player, it is far from obvious that the strong player gains also in absolute 

terms. After all, the new member is of no use whatsoever to the strong player: neither ever 

proposes to the other and, with all players having the same chance of being proposers, the strong 

player expects to be excluded whenever the new member is selected, i.e., ¼ of the time. The 

source of the gain in power of the strong player is mainly that the weak players now propose to 

the strong player with certainty rather than 50% of the time.5  

Many assumptions lie behind these results. First our results are based on the analysis of a 

game of complete information. We assumed players are expected utility maximizers, that utility 

depends only on own point earnings, that players are risk neutral, and that all of this is common 

knowledge. Second, equilibrium analysis of this game provides many subgame perfect equilibria, 

and we adopt several refinement criteria in order to select one. Thus, it is not clear how 

empirically relevant the theoretical predictions may be. 

3. Experimental Design and Procedures 

The experiment was conducted at the University of Nottingham using subjects recruited from a 

university-wide pool of undergraduate students.6 Four sessions were conducted with each 

treatment, with either 12 subjects (VETO and SYMMETRIC treatments) or 16 subjects 

(ENLARGED treatment) per session. Thus, 160 subjects participated in total. 

 All sessions used an identical protocol. Upon arrival, subjects were given a written set of 

instructions that the experimenter read aloud. Subjects were then allowed to ask questions by 

raising their hands and speaking to the experimenter in private. Subjects were not allowed to 

                                                 
5 It turns out this prediction also generalizes. Start from a game with n > 2 players in which any coalition of n – 1 is 
minimal winning, so that each receives an expected payoff in equilibrium of 1/n. Now suppose adding a new 
member results in two classes of minimal winning coalitions: one ‘strong’ player with any n – 2 ‘weak’ original 
members and the n – 1 ‘weak’ original members with the new member. It can be shown that the strong player’s 
expected payoff is now n/(n² – n + 2). This exceeds 1/n; thus enlargement benefits the strong player. 
6 We recruited subjects using the ORSEE software (Greiner, 2004). The experiment was programmed and conducted 
with the software z-Tree (Fischbacher, 2007). Instructions for the VETO treatment are included in an Appendix. 
Instructions for other treatments paralleled these. 
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communicate with one another throughout the session, except via the decisions they entered on 

their terminals. 

 The decision-making phase of the session then consisted of 10 periods, where in each 

period a group played a multi-round bargaining game over the division of 120 points. At the 

beginning of each period subjects were assigned to groups of either three or four (depending on 

treatment). Subjects were informed that they would not know who of the other people in the 

room were in their group, that group compositions would change from period to period, and that 

the same set of subjects would never be matched together twice. At the beginning of each period 

subjects were assigned an ID that changed from period to period. They were also assigned roles 

determining how many votes they controlled, and roles also varied across periods.  

The main reason for having subjects play repeatedly was to give them experience with 

the strategic environment. We did not expect subjects to calculate the equilibrium and play 

accordingly, but nevertheless considered that if subjects learn to respond to the strategic 

incentives theoretical predictions may still be relevant. A potential drawback of having subjects 

play a repeated game is that it might lead to unintended strategic effects. For example a subject 

may reject offers in early periods in order to establish a tough reputation. For this reason we 

implemented anonymous decision making together with changing roles and group compositions 

in order to make it difficult for a subject to build up a reputation across periods.7 

In each period at the beginning of round one all group members submitted proposals over 

how to divide the 120 points. When all group members had submitted a proposal, one was 

selected at random and revealed to all group members. Group members then voted for or against 

the proposal. If the total number of votes for the proposal met the quota of 5 votes (VETO and 

ENLARGED) or 4 votes (SYMMETRIC) the proposal was passed and each group member 

received the proposed number of points. Otherwise bargaining proceeded to round two. All 

                                                 
7 There are some potential downsides from having subjects change roles from period to period. First, this procedure 
may impair learning because subjects may understand their role better if it is the same in every period. However, it 
is also possible that their understanding of the situation is enhanced by experiencing what it is like to be in another 
voter-type’s shoes. Second, changing roles may affect subject attitudes and expectations about what proposals are 
acceptable. Since changing roles randomly creates a ‘procedurally fair’ experiment, subjects may be more willing to 
exploit their bargaining power, or be more willing to allow others to exploit their power, than if roles were constant. 
As we note later, the results from our VETO treatment are qualitatively similar to a comparable treatment in Kagel 
et al. (2007), and the results from our SYMMETRIC treatment are qualitatively similar to a comparable treatment in 
Fréchette et al. (2005b). These studies used fixed roles. 
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rounds had the same structure up to round 20. If no agreement was reached by the end of round 

20, the period would end with each group member earning zero points.8  

 An important aspect of this design is that in each round all players submit proposals, then 

one is randomly selected, and then all players observe and vote on the randomly selected 

proposal. From a theoretical point of view this is equivalent to the more common description of 

the game in the theoretical literature, where a player is randomly selected to be the proposer and 

then only the randomly selected player makes a proposal. The advantage of our version is that it 

allows us to observe proposals from all players in every round. As we shall see in the next 

section, this information is useful not only for analyzing the determinants of proposals, but also 

for the analysis of voting patterns.  

 At the end of the experiment subjects were privately paid according to their accumulated 

point earnings from all 10 periods, using an exchange rate of 3p per point (VETO and 

SYMMETRIC treatments) or 4p per point (ENLARGED treatment). Earnings averaged £12 per 

subject and ranged from a minimum of £3.90 to a maximum of £20.20 (at the time of the 

experiment £1 = $1.92). Sessions lasted, on average, 50 minutes, and at most 70 minutes.  

A final noteworthy aspect of our design was that subjects were divided into two equally-

sized matching groups at the beginning of a session, and groups were formed from within these 

matching groups, with no information passing across the two matching groups.9 This feature of 

our design has the disadvantage that individuals within a matching group interact more 

frequently than if groups were formed from all session participants, so our procedure may 

strengthen correlations between decisions within a matching group. Because of likely 

dependencies between decisions within matching groups, tests of our primary hypotheses 

(reported below in 4.2) take the matching group as our unit of observation. The advantage of the 

procedure is that it generates two observations per session. We treat these observations as 

independent for performing statistical tests. Our primary hypotheses refer to the impact of 

enlargement on existing members’ earnings. We test the hypotheses that average earnings for the 

                                                 
8 Subjects had 90 seconds to submit a proposal and 30 seconds to cast their votes. If they failed to make a decision 
within this time constraint, the computer made a default decision. The default proposal was that each group member 
received zero, and the default voting decision was to reject. In fact this time constraint was rarely binding: across all 
sessions only 7 of 2824 proposals were made by the computer, and only 8 of 2824 voting decisions were made by 
the computer. 
9 To ensure comparability between matching groups, we formed groups, assigned roles, and selected proposers for 
one matching group prior to the first session by rolling die and then used the same random draws for all matching 
groups. 
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weak player are higher in ENLARGED than in VETO, and that average earnings for the strong 

player are higher in ENLARGED than in SYMMETRIC.10 After using this conservative 

approach to test our primary hypotheses, we analyze individual voting decisions using 

disaggregated data (reported below in 4.3). The analysis of the disaggregated data uses 

econometric methods that adjust for intra-group correlations within matching groups.  

4. Results 

4.1 Overview 

We observed rapid agreements in the experiment. Figure 1 shows the distribution of rounds in 

which agreement was reached. Out of the 480 games, 62% resulted in an agreement in the first 

round, and more than 90% ended within 3 rounds. Very few games got close to the 20-round 

deadline, and none actually reached the deadline. 

Figure 1. Distribution of Rounds in which Groups reached an Agreement 
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In all three treatments a proposal can be implemented without unanimous support, and so 

within a group a subset of the players can pass a proposal that gives zero to outsiders. Thus, the 

                                                 
10 Note that these hypotheses are derived from the expected payoffs in the equilibria identified in Section 2, which 
assumed players were equally likely to be the proposer in any round. We can also identify expected payoffs on the 
basis of the experimental realizations of who would be proposer in round one. This distinction is irrelevant for 
VETO, where the average earnings of a player type are independent of the proposer frequencies. In contrast, in 
SYMMETRIC and ENLARGED the actual frequencies matter, but the comparative statics predictions still hold. The 
weak player’s average earnings would change from 1 in VETO to 29.3 (rather that 30.375) in ENLARGED, and the 
strong player’s earnings would change from 41 (rather than 40) in SYMMETRIC to 47 (rather than 44.75) in 
ENLARGED. 
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reason for fast agreements in SYMMETRIC and ENLARGED may be that, though there are 20 

rounds available for bargaining and there is no discounting from round to round, players have a 

strong incentive to accept a positive offer as otherwise they may end up with nothing. In VETO 

weak players similarly have a strong incentive to accept positive offers, but the strong player can 

afford to be patient since his vote is required for an agreement. Interestingly, only in VETO did 

we observe any trend in the duration of bargaining: we found that as the session progressed the 

duration of bargaining increased. Figure 2 shows how the average round of agreement changed 

across periods. For formal statistical tests we use the matching group as the unit of observation. 

In VETO the Spearman rank correlation coefficient between period and average round of 

agreement is positive for all eight matching groups indicating a significant trend (p = 0.008); for 

SYMMETRIC and ENLARGED the corresponding p-values are both 0.727.  

Figure 2. Average Duration of Bargaining 
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In the first period agreements to divide the 120 points equally among all members were 

quite frequent, occurring in 17 of the 48 (≈ 35%) groups. For many subjects this must have 

seemed a natural and acceptable outcome. However, as shown in Figure 3, equal divisions were 

observed less frequently in later periods, and in the last period only 2 groups (≈ 4%) agreed upon 

an equal division. Equal divisions are most commonly observed in the SYMMETRIC treatment, 

where theoretically all players have, ex ante, equal bargaining power; even here, an equal 

division of the pie is quite rare, occurring in only 20/160 (≈ 13%) games.  
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Figure 3. Proportion of Equal Divisions 
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Agreements to split the pie equally tended to be replaced by agreements that gave some 

players zero. Thus, while in two-person ultimatum game bargaining experiments it is well-

known that subjects resist small offers, here as in other experiments on multi-person bargaining 

subjects are willing to propose distributions that give zero to another subject, and others are 

willing to vote for such a proposal (see, e.g., Güth and van Damme, 1998, Okada and Riedl, 

2005). A winning coalition in which the votes of all coalition members are essential to pass a 

proposal and the coalition maximizes its point earnings by allocating zero points to outsiders is 

called a minimal winning coalition. In the equilibria discussed in Section 2, all formed coalitions 

are minimal. The frequency of minimal winning coalitions in our data is shown in Figure 4. 

Figure 4. Proportion of Minimal Winning Coalitions 
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In all treatments the frequency of minimal winning coalitions increases across periods. 

Taking all three treatments together, minimal winning coalitions formed in 17/48 groups (≈ 35%) 

in the first period, compared with 43/48 (≈ 90%) in the last period. We interpret the increase in 

the frequency of minimal winning coalitions as reflecting a tendency toward more strategic 

behavior. Indeed, if one looks at all periods of data there are substantial deviations from 

equilibrium predictions, but if one focuses on later periods there is more conformity with 

equilibrium predictions. For example grand coalitions, in which all players get a strictly positive 

payoff, form in 124/480 games (≈26%), but in only 23/192 games (≈12%) in the last four 

periods. Table 3 shows the distribution of agreed coalitions for each treatment, based on both all 

periods and just the last four periods.  

Table 3. Observed Distribution of Agreed Coalitions1 

 VETO SYMMETRIC ENLARGED 

 All 
periods 

Last 4 
periods 

All 
periods 

Last 4 
periods 

All 
periods 

Last 4 
periods 

Grand 28 14 34 14 15 8 

Minimal  
(strong included) 

72 86 41 55 67 67 

Minimal 
(strong excluded) 

0 0 24 31 12 19 

Other 0 0 1 0 6 6 

1 Each entry is the percentage of games that resulted in a type of coalition.  

In VETO, minimal winning coalitions, which must include the strong player, formed in 

115/160 (≈72%) of all games, and in 55/64 (≈86%) of the games in the last four periods. In 

SYMMETRIC, minimal winning coalitions, which can be comprised of any two players, formed 

in 104/160 (≈ 65%) of all games, increasing to 55/64 (≈86%) of the games in the last four 

periods. These coalitions could either include or exclude the strong player. In our analysis in 

section 2 we assumed that strong and weak players behave and are treated symmetrically, and so 

strong players should be included in 2/3rd of minimal winning coalitions. Our data is consistent 

with this symmetry assumption: 65% of the games resulted in a minimal winning coalition and 
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63% of these included the strong player (64% of minimal winning coalitions in the last four 

periods featured the strong player). In ENLARGED there can be two different types of minimal 

winning coalition: the strong player with one of the weak players, or the two weak players with 

the new member. In equilibrium the latter type of coalition occurs one quarter of the time (when 

the new player is the randomly selected proposer). In our data minimal winning coalitions 

formed in 79% of games (86% in the last four periods), and 15% of these (22% in the last four 

periods) excluded the strong player. 

On top of this, within minimal winning coalitions we see a tendency for the division of 

the pie to change over the course of the session. Figure 5 shows that in the first period the pie 

was often split equally among members of the coalition, but that by the last period this kind of 

outcome was much less frequent. This pattern is particularly clear in VETO, where players 

quickly realized that the strong player only needed the vote of one of the weak players, and that 

weak players were willing to accept proposals that excluded the other weak player. In the final 

period minimal winning coalitions formed in 15 of 16 VETO groups, but only in one of these did 

the members of that coalition share the pie equally. The pattern is less pronounced in the other 

treatments. In the last four periods of the ENLARGED treatment about a third of the minimal 

winning coalitions divided the pie equally among its members, and in the last four periods of the 

SYMMETRIC treatment about a half of the minimal winning coalitions divided the pie equally 

among its members. 

Figure 5. Proportion of Minimal Winning Coalitions that Divide Equally 
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The trend in Figure 5 seems to reflect a process where players learn from experience 

about their bargaining power and how to exploit it. At the same time, examining the proposals 

agreed by minimal winning coalitions suggests that some players were unable to fully extract 

their equilibrium shares. Table 4 reports average earnings within minimal winning coalitions. We 

break down earnings according to whether the player was the proposer or partner in the minimal 

winning coalition. 

Table 4. Proposer Power in Minimal Winning Coalitions 

 VETO SYMMETRIC ENLARGED 

 All 
Periods 

Last 4 
Periods 

All 
Periods 

Last 4 
Periods 

All 
Periods 

Last 4 
Periods 

Strong 
Proposer 

80.60 83.45 66.76 64.91 69.28 70.17 

Strong 
Partner 

73.02 79.42 59.48 60.77 63.44 64.16 

Weak 
Proposer 

46.98 40.58 61.41 60.76 55.75 55.91 

Weak 
Partner 

39.40 36.55 55.68 56.60 47.95 47.07 

New 
Proposer 

– – – – 33.64 32.50 

New 
Partner 

– – – – 26.25 20.00 

In the VETO treatment the strong player’s theoretical bargaining power is due to his 

voting weight and is independent of proposer power: he is predicted to get 118 points regardless 

of whether he is the proposer or partner in the minimal winning coalition. In the data he gets 

more as a proposer than as a partner, but in any case much less than 118 points. In contrast to 

VETO, in the SYMMETRIC treatment voting weights do not confer a theoretical advantage to 

any player but being proposer does: ex post equilibrium divisions give 80 points to the proposer 

and 40 points to the partner. In our data we find that minimal winning coalitions divide the pie 

much more closely to 60-60. For testing the significance of proposer power we use one-sided 

binomial tests. For both players and both treatments the proposer advantage is significant across 

all periods (largest p-value = 0.035), but in all cases declines across periods and is insignificant 

in the last four periods (smallest p-value = 0.363). In summary, proposer power in these two 

treatments is small and diminishes as subjects gain experience. 
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In the ENLARGED treatment players can derive a theoretical bargaining advantage 

either from having more votes than other players or from being the proposer. The strong player is 

predicted to get 89 points as a proposer and 45 points as a partner, while the weak player is 

predicted to get 75 as a proposer and 31 as a partner. The proposer advantage in the data is much 

smaller than this. 11 Thus, while proposer power theoretically leads to highly inequitable 

outcomes within minimal winning coalitions, actual divisions are much more equitable. 

At first sight, our observation that minimal winning coalitions form frequently in all three 

treatments, as predicted by standard theory, but that payoff allocations within minimal winning 

coalitions tend to be more equitable than predicted, would appear to be consistent with recent 

theories of social preferences. For example, if subjects receive disutility from earning less than 

others (see, for example, Fehr and Schmidt, 1999), then in a multi-player ultimatum game the 

proposer would still propose a minimal winning coalition, but would have to offer positive 

shares in order to buy the votes of coalition partners (see Okada and Riedl, 2005). However, in 

the multi-stage symmetric game inequality aversion results in more unequal divisions than 

predicted (see Montero, 2007a). Thus, these observations cannot be explained by simple models 

of social preferences in which agents dislike inequality, although they may be explained by a 

model which combines disadvantageous inequity aversion with myopic behavior. 

It is interesting to compare the patterns from our SYMMETRIC and VETO treatments 

with those observed in previous experiments. Our SYMMETRIC treatment is similar to some of 

the treatments reported in Fréchette et al. (2005a, 2005b) and Kagel et al. (2007) in that, while 

voting weights may vary across voters, any two of the three voters can form a winning coalition. 

We focus on the (inexperienced, undiscounted) treatment of Fréchette et al. (2005b) as this is 

procedurally closest to ours. In both experiments agreements happen quickly: on average their 

games lasted 1.6 rounds (our games lasted 1.4 rounds), and immediate agreements occurred in 

68% of their games (73% of our games). Also in both experiments egalitarian outcomes are 

uncommon: 7% of their games resulted in egalitarian divisions (12% of our games). In both 

experiments most games resulted in minimal coalitions: 69% of their games resulted in a 

minimal winning coalition (66% of our games). These patterns broadly support the Baron-

                                                 
11 In contrast to the other treatments this is significant for both strong and weak players whether we base tests on all 
or just the last four periods (largest p-value 0.0625). For the new player we have insufficient data for meaningful 
tests as there are too few matching groups where the new player appears in both proposer and partner roles. 
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Ferejohn model predictions. At the same time, there are some notable deviations from the model 

predictions. The model predicts ex post divisions that give the proposer 2/3 of the pie and one of 

the other players 1/3 of the pie. In their data the average allocation gives the proposer just 51% 

of the pie (in our data 47% of the pie), and even focusing on minimal winning coalitions, their 

proposers only get 55% of the pie (ours get 52% of the pie).   

The results from our VETO treatment are also qualitatively similar to results from the 

(inexperienced, low delay cost) treatment of Kagel et al.’s (2007) Veto Game.12 In their Veto 

Games agreements happened quickly (although not as quickly as in a control treatment 

somewhat similar to our SYMMETRIC treatment): 54% of their games (and 51% of our games) 

ended in round one and on average their games lasted 1.95 rounds (our games lasted 2.38 

rounds). As in our VETO treatment, they observe an increasing tendency toward minimal 

winning coalitions over the course of the session, and overall 59% of their games (72% of our 

games) result in minimal winning coalitions. Just like in our experiment, however, the veto 

player’s earnings are considerably less than predicted. He is predicted to get 92% as the proposer 

and 80% as the recipient of a proposal. Even within minimal winning coalitions he only gets 

62% as proposer and 52% as recipient. In our VETO treatment the strong player is predicted to 

get 98% either as proposer or recipient, and even within minimal winning coalitions he only gets 

67% as proposer and 61% as recipient.  

4.2 Formal Analysis of Voting Power 

In this section we look at the implication of the developments in coalition formation and payoffs 

within coalitions for players’ average earnings, which we use to measure voting power. Figure 6 

shows how this develops across periods for each treatment and player-role.  

In SYMMETRIC and ENLARGED the voting power of each player-type appears to be 

stable while in VETO trends in voting power appear. In VETO the Spearman rank correlation 

coefficients between the strong player's earnings and period are positive for each matching 

group, so we can reject the null hypothesis that earnings are equally likely to increase or decrease 

with experience (p-value = 0.008). The significant increase in the strong player's earnings is due 

to changes in earlier periods: there is no evidence of a relationship between earnings and period 

                                                 
12 Although we emphasize that on top of the many procedural differences between experiments, their use of 
discounting makes us hesitant to read too much into quantitative differences between our results and theirs.  
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in the last four periods (the p-value based on Spearman rank correlation coefficients is 0.727). A 

similar analysis reveals no significant trends in SYMMETRIC or ENLARGED. 13 

Figure 6. Evolution of Average Earnings 
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13 For SYMMETRIC and ENLARGED the corresponding p-values based on all periods are both 0.727; based on the 
last four periods they are 1.000 (SYMMETRIC) and 0.727 (ENLARGED). 
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Average earnings for each player type are presented in Table 5. In this table and in 

subsequent analysis we present results based on all periods and last four periods. For 

SYMMETRIC and ENLARGED this does not make much difference. Interestingly, for these 

treatments average earnings are quite close to the equilibrium expected payoffs given in Table 2. 

On the other hand in VETO, the strong player’s earnings are substantially below the equilibrium 

expected payoff given in Table 2, but the discrepancy is smaller in the last four periods. 

Table 5. Average earnings 

 VETO SYMMETRIC ENLARGED 

 All 

periods 

Last 4 

periods 

All 

periods 

Last 4 

periods 

All 

periods 

Last 4 

periods 

Strong 

player 

69.51 78.70 41.39 40.81 52.81 50.98 

Weak 

player 

25.24 20.64 38.92 39.59 29.78 30.64 

New 

player 

– – – – 7.61 7.71 

 

There is strong evidence that voting weights affect voting power in the VETO and 

ENLARGED treatments. In both treatments the strong player earns more than a weak player in 

every single matching group, whether we focus on all periods or just the last four periods, and 

thus the strong player earns significantly more than the weak player (one-sided sign-test p-value 

= 0.004). Similarly, the weak player earns significantly more than the new player in 

ENLARGED (one-sided sign-test p-value = 0.004). In the SYMMETRIC treatment we find that 

the earnings of the strong player are not significantly different from the earnings of the weak 

players (all periods: two-sided sign-test p-value = 1.000; last four periods: two-sided sign-test p-

value = 0.727).  

The main question motivating the design of our experiment was whether adding a new 

player to a weighted voting game, while retaining the relative voting weights of original players, 

could increase the voting power of an original player. Our first test of whether members can gain 
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from enlargement, as theoretically predicted, is based on a comparison of the weak player's 

earnings in VETO and ENLARGED, displayed in Figure 7. 

Figure 7. Effect of Enlargement on Weak Player’s Earnings  
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We test the null hypothesis that the weak player's earnings are the same in VETO and 

ENLARGED against the alternative hypothesis that the weak player's earnings are greater in 

ENLARGED.14 We reject the null hypothesis: the weak player's earnings are significantly higher 

in ENLARGED (based on all periods the one-sided Wilcoxon test p-value is 0.023; based on just 

the last four periods the one sided Wilcoxon test p-value is 0.001). Intuitively, the reason for this 

effect is that the addition of a new member provides the weak players with an alternative 

minimal winning coalition. This possibility appears to enhance a weak player’s ability to extract 

larger shares of the pie from the strong player, despite the fact that the alternative coalition very 

seldom forms. For example, looking at winning coalitions from the last four periods consisting of 

the strong player and one of the weak players we see that in VETO the strong player gets about 

77 points, compared with about 66 points in ENLARGED. 

Our experimental design provides a second opportunity to test the prediction that 

enlargement benefits an existing member. Starting from the SYMMETRIC voting game, adding 

a new player with one vote and increasing the quota from 4 votes (out of 7) to 5 votes (out of 8) 

produces the ENLARGED voting game, and can in equilibrium increase the strong player’s 

voting power. Figure 8 displays the strong player’s voting power in these two treatments. 

                                                 
14 Thus, the null hypothesis is that there is no treatment effect, and the alternative hypothesis is that there is a 
treatment effect in the theoretically predicted direction. 
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Figure 8. Effect of Enlargement on Strong Player’s Earnings  
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In our experiment the strong player earns significantly more in ENLARGED than 

SYMMETRIC (based on all periods the one-sided Wilcoxon test p-value is 0.001; based on just 

the last four periods the one-sided Wilcoxon test p-value is 0.029). Here, the source of the power 

increase is rather different. The strong player’s bargaining power within a minimal winning 

coalition does not appear to be very different between SYMMETRIC and ENLARGED 

treatments. In a minimal winning coalition the strong player gets 64 points in SYMMETRIC (63 

if we focus on the last four periods) and 66 in ENLARGED (68 if we focus on last four periods). 

Instead, the main reason why the strong player earns more in ENLARGED than SYMMETRIC 

is that he is included more often in minimal winning coalitions. He is included in 85% of 

minimal winning coalitions in ENLARGED (78% if we focus on last four periods), compared 

with 63% in SYMMETRIC (64% if we focus on last four periods). This is qualitatively 

consistent with the equilibrium discussed in Section 2. There, ex ante, the strong player is 

expected to be included in 75% of minimal winning coalitions in ENLARGED compared with 

67% in SYMMETRIC, while when included in a minimal winning coalition the strong player 

expects to get 60 points in both ENLARGED and SYMMETRIC. 

 

4.3 Analysis of Voting Patterns 

The primary determinant of whether a given player type votes in favor of a proposal is, perhaps 

unsurprisingly, how much that player is offered. A player is more likely to accept higher offers. 
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For example, the strong player accepted 10/22 (45%) offers of 40 points in ENLARGED, 

compared with 37/47 (79%) offers of 60 points. However, the amount that must be offered to 

secure an acceptance varies considerably across player types. In ENLARGED the weak player 

accepted 39/52 (75%) of offers giving him 40 points, and the new player accepted 5/5 (100%) 

offers giving him 40 points. Also, the propensity for a given type to accept a given proposal 

varies across treatments. Looking again at offers of 40 points we see that the strong player 

accepted 12/22 (55%) of these in SYMMETRIC and 7/27 (26%) in VETO, while the weak 

player accepted 27/47 (57%) in SYMMETRIC and 39/58 (67%) in VETO. 15 

While these patterns are very stable in ENLARGED, in SYMMETRIC and VETO we 

observe a decrease in the propensity to accept offers of 40 points. Based on the last four periods 

the strong player accepts 6/18 (33%) and the weak players accept 2/6 (33%) of such offers in 

SYMMETRIC, while the strong player accepted 0/5 and the weak player accepted 8/19 (42%) of 

such offers in VETO.  

Figure 9 displays the empirical cumulative distribution functions of accepted offers. 

Votes of proposers are excluded from the analysis, and we focus on the last four periods.16 In 

VETO it is clear that accepted offers tend to be lower for weak players than for strong players. 

Half of the acceptances by weak players were for offers less than or equal to 40, whereas for the 

strong player half of acceptances were for offers less than or equal to 80. Likewise in 

ENLARGED there is a natural ordering whereby accepted offers by strong players tend to be 

higher than the accepted offers of weak players, which in turn tend to be higher than the accepted 

offers of new players. In SYMMETRIC we present separate functions for strong and weak 

players. However, the functions are not very different and as we report below differences in the 

acceptance behavior of the different types are insignificant. Thus, in SYMMETRIC the strong 

player with three votes behaves no differently from a weak player with two votes in terms of 

voting behavior. 

 

 

                                                 
15 We focus on offers of 40 points since, pooling over all treatments, this is the most common offer made (other than 
offers of 0 points). 
16 The functions are quite stable across periods in ENLARGED, and are stable across the last four periods in 
SYMMETRIC and VETO. The functions in SYMMETRIC tend to be further to the left in earlier periods, and those 
in VETO tend to be closer together in earlier periods.  
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Figure 9. Voting Patterns 
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For a formal statistical analysis of voting behavior we estimated probit models where the 

dependent variable is whether or not a player voted for a proposal. Again, we excluded proposers 
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from the analysis and focus on the last four periods.17 As explanatory variables we included the 

number of points offered to the player and the number of points the player demanded in his own 

proposal. Since we treat observations as independent across, but not within, matching groups, we 

cluster on independent matching groups to obtain robust standard errors. The results are 

presented in Table 6. 

Table 6. Probit Analysis of Voting Behavior1 

Dependent Variable: Accept=1, Reject=0 Independent 

Variables VETO SYMMETRIC ENLARGED 

 Strong 

Player 

Weak 

Player 

Strong 

Player 

Weak 

Player 

Strong 

Player 

Weak 

Player 

New 

Player 

Share 

offered  

0.009***  

(0.003) 

0.011***  

(0.001) 

0.012***  

(0.003) 

0.015***  

(0.002) 

0.015***  

(0.008) 

0.030***  

(0.004) 

0.088***  

(0.027) 

Share 

demanded 

–0.008**  

(0.003) 

–0.000 

(0.003) 

–0.005 

(0.002) 

–0.004 

(0.003) 

–0.025**  

(0.023) 

–0.016**  

(0.006) 

–0.011***  

(0.005) 

Obs. 115 273 58 146 61 154 73 

Pseudo R2 0.3624 0.4707 0.4557 0.3985 0.6445 0.6845 0.7261 
1 Based on data from last four periods. Table lists marginal effects, evaluated at the means of the independent 
variables, and standard errors, clustered on independent matching groups, in parentheses. * denotes significance at 
the 10-percent level, ** at the 5-percent level, and *** at the 1-percent level. 

As expected, the share offered to a player is a strong explanatory factor for whether a 

player will accept an offer. For all player types in all treatments, the more a player is offered the 

more likely he is to accept. Offering one additional point increases the probability of acceptance 

by between 0.9 percentage points (strong player in VETO treatment) and 8.8 percentage points 

(new player in ENLARGED). We also included the share that a player demanded in their own 

proposal as an explanatory variable – recall that all subjects, not just the randomly selected 

                                                 
17 We also conducted probit estimations on all periods including period dummies, and found significant period 
effects in the VETO and SYMMETRIC treatments. For this reason we restrict attention to the last four periods. For 
the last four periods we also conducted estimations including period dummies, and found these to be jointly 
insignificant in all cases. 
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proposer, completed a proposal in every round. We expected that the share demanded would 

reveal an aspiration level of a subject, and so a given offer would more likely be accepted if the 

share demanded is lower. As can be seen in Table 6, the marginal effect of this variable is indeed 

negative in all cases, although it is not significant for the weak player in the VETO treatment, or 

for either player type in the SYMMETRIC treatment. 

We also examined whether the voting behavior of different types within a treatment 

differ. Based on Wald tests the behavior of strong and weak players in the VETO treatment 

differ significantly (two-sided p-value = 0.000), as does behavior of strong, weak, and new 

players in ENLARGED (two-sided p-value = 0.000). However, in SYMMETRIC there is no 

significant difference between the voting behavior of strong and weak players (two-sided p-value 

= 0.968). Finally, we examined whether the voting behavior of a given player type varied across 

treatments. Again using Wald tests, we find voting behavior differs significantly across 

treatments at the 10% level for strong players (two-sided p-value = 0.082) and at the 1% level for 

weak players (two-sided p-value = 0.000). 18 

5. Discussion and Conclusion 

There are two approaches in the theoretical literature for solving games: the axiomatic approach, 

which is based on specifying some desirable properties for the solution and the strategic 

approach, which is based on the equilibrium of an explicit bargaining game. The ‘paradox of 

new members’ was introduced into the literature in terms of power indices grounded in the 

axiomatic approach. In this paper we follow the strategic approach and show that the addition of 

a new member to a voting body can increase the equilibrium payoffs of original members in the 

context of a specific bargaining procedure.  

The bargaining procedure we use was introduced by Baron and Ferejohn and is widely 

used in political science. Other theoretical analyses of the Baron-Ferejohn procedure with 

weighted voting include Banks and Duggan (2000), Montero (2002), Diermeier et al. (2003), 

Snyder et al. (2005), Montero (2006), Kalandrakis (2006) and Eraslan and McLennan (2006). 

There are other bargaining procedures we could have chosen. In particular, since it is possible to 

                                                 
18 To conduct Wald tests for differences between the voting behavior of voter types within a treatment we ran a 
probit for that treatment, including as explanatory variables voter type dummy variables and interactions between 
the dummy variables and the share offered and share demanded variables. We then tested for the joint significance 
of the coefficients on the dummy and interaction terms. An analogous approach was used for testing for differences 
in behavior across treatments for a given voter type. 
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devise a bargaining procedure to make equilibrium payoffs coincide with the Shapley value, and 

the Shapley value displays this result, the possibility of a positive impact of enlargement in a 

non-cooperative setting was already implicitly established. However, while the Baron-Ferejohn 

procedure seems a natural abstraction of bargaining under majority rule, these other bargaining 

procedures seem more contrived. In particular, these other procedures require unanimity rather 

than majority in order to pass a proposal: Hart and Mas-Colell (1996), Pérez-Castrillo and 

Wettstein (2001) and Laruelle and Valenciano (2008) require the unanimous consent of all 

players; in Vidal-Puga (2008) a coalition is formed gradually, with players having the option to 

join it or leave the game in a random order, and the final allocation must be accepted 

unanimously by all members of the coalition. Other implementations of the Shapley value, such 

as Gul (1989), apply only to particular classes of games that do not include majority games. Our 

theoretical contribution is to demonstrate that gaining power through enlargement is possible in 

the leading model of legislative bargaining. 

The theoretical possibility of gaining power through enlargement motivated us to ask 

whether this phenomenon can be observed in the laboratory. Our answer is affirmative. In all of 

our treatments we find that as sessions progress subjects become less and less willing to propose 

and vote for equal divisions of the pie and more and more willing to propose and vote for 

proposals that give zero to other subjects. Although these trends lead to minimal winning 

coalitions, as predicted in equilibrium, we see some substantial deviations from equilibrium, 

even in later periods. In particular, players are generally unable to exploit either proposer power 

or advantageous voting weights to the full extent predicted by equilibrium. Despite these 

deviations we find that average earnings of each player-type are quite stable in our 

SYMMETRIC and ENLARGED treatments, and not far from equilibrium expected payoffs. 

Consequently, when comparing these treatments the theoretical comparative static prediction is 

observed. In our VETO treatment, although the weak players’ earnings move closer to 

equilibrium with experience, even by the end of the experiment the weak player’s earnings are 

far above equilibrium. This makes it harder to observe a treatment effect in the comparison of the 

VETO and ENLARGED treatments, but we do observe it in this case as well: the weak players’ 

earnings are higher in the enlarged voting body.  

Previously, Montero et al. (2008) studied the effect of enlargement on the balance of 

power in a less structured environment where any player could place (or amend) a proposal on 
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the table at any time, any player could vote for or against any proposal on the table at any time, 

and the first proposal on the table to achieve the quota was implemented. They found that voting 

powers are quite close to Shapley values and so Brams and Affuso’s ‘paradox’ is also observed 

in their experiment. This environment seemed natural for testing hypotheses based on 

cooperative game theory, but of course it is difficult to compare behavior with equilibria. 

Nevertheless, it is interesting to note that the voting powers associated with a given player role 

differ across the experiments. For example, in the VETO treatment the strong player earns more 

in the less structured procedure than in the Baron-Ferejohn procedure19. Similarly, the strong 

player in the ENLARGED treatment earns more in the less structured environment. A similar 

result, albeit in a different context, is observed in de Groot Ruiz et al. (2007). They compare a 

non-cooperative voting game with a more natural, but less structured, voting game and find that 

a median voter (the ‘strong player’ in their context) is able to secure a higher payoff in a less 

structured voting game. Together these results suggest that voting powers depend not only on 

voting weights and quotas, but also on specific features of the agenda. 

This point is reinforced by considering the implications of the Baron-Ferejohn model for 

the first two EU enlargements. Table 7 displays the voting weights and voting powers of the 

various countries, where the latter are based on the stationary expected equilibrium payoffs of 

the infinite-horizon Baron-Ferejohn model with no discounting and where all countries have 

equal recognition probabilities.20  

                                                 
19 This is despite the fact that the strong player gets almost the whole pie in the equilibrium of the Baron-Ferejohn 
procedure, while in the less structured environment the Shapley Value assigns 2/3rd of the pie to the strong player. 
20 For detailed derivations see Montero (2007b). 
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Table 7. Voting Weights and Voting Powers on the EU Council of Ministers 

 1958 voting weights 

(% voting power) 

1973 voting weights 

(% voting power) 

1981 voting weights 

(% voting power) 

W. Germany 4 (23.8) 10 (15.9) 10 (16) 

France 4 (23.8) 10 (15.9) 10 (16) 

Italy 4 (23.8) 10 (15.9) 10 (16) 

United Kingdom  10  (15.9) 10 (16) 

Belgium 2 (11.9) 5 (7.9) 5 (8) 

Netherlands 2 (11.9) 5 (7.9) 5 (8) 

Greece   5 (8) 

Denmark  3 (7.1) 3 (4) 

Ireland  3 (7.1) 3 (4) 

Luxembourg 1 (4.8) 2 (6.3) 2 (4) 

Quota 12 41 45 

 

In the first enlargement relative voting weights of existing members were constant 

(except for Luxembourg whose relative weight fell). In the second enlargement relative voting 

weights were held constant. This reflected a desire to maintain the balance of power among 

existing members. For example the European Commission communicated that in consideration 

of adjustments to the treaties necessitated by enlargement “the Community must also remain 

consistent and avoid any appreciable shift in the existing balance of power between Member 

States” (European Commision 1978, point 19). How did the enlargements affect the balance of 

power? As with cooperative power indices, the Baron-Ferejohn model predicts that 

Luxembourg’s power increased after the first enlargement. However the implications of the 

second enlargement are more sensitive to how power is measured. While power indices predict a 

further increase in Luxembourg’s power, the Baron-Ferejohn model predicts a different 
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manifestation of the ‘paradox of new members' – it was the six largest countries that benefitted.21 

Whether the cooperative power index or the noncooperative equilibrium prediction provides the 

better measure of theoretical power is open to question. Moreover, which (if any) country’s 

voting power, measured in terms of its realized share of whatever is being bargained over, really 

did increase as a result of the enlargement is difficult to determine empirically.  

For this reason we have used laboratory experiments to study the relationship between 

voting weights and power, and in particular to study the effects of enlargement on the balance of 

power. The advantage of the experimental approach is that it can systematically examine the 

effects of voting weights and voting rules, including features of the extensive form governing the 

way in which proposals are made and votes cast, in order to enhance our understanding of voting 

power. 

                                                 
21 Note that not only do some existing members get more voting power from an enlargement, but a proposal to 
enlarge would obtain enough votes to be passed.  
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Appendix: Instructions for VETO treatment 

Introduction  
 

This is an experiment about group decision-making. There are other people in this room who are 
also participating in this experiment. You must not talk to them or communicate with them in 
any way during the experiment. The experiment will take no more than 90 minutes, and at the 
end you will be paid in private and in cash. The amount of money you earn will depend on the 
decisions that you and the other participants make. 
 
In this experiment you will participate in ten periods. In each period you will be in a group with 
two other people, but you will not know which of the other people in this room are in your 
group. The people in your group will change from period to period, and in particular you will 
never be matched with the same set of two other people twice. The decisions made by you and 
the other people in your group will determine how many points you earn in that period. At the 
end of the experiment you will be paid according to your total point earnings from all ten 
periods. You will be paid 3p per point.   
 
Description of a period 
 
At the beginning of each period, you will be randomly allocated a subject identification number, 
either 1, 2, or 3. (Thus, your identification number may change from period to period.)  
 
Within each group of three people one person will control three votes, one person will control 
two votes, and one person will control two votes. The assignments of votes to subject 
identification numbers will vary from period to period.  
 
In each period you and the other people in your group have 120 points to divide. You and the 
other people in your group can make proposals about how these points are to be divided among 
the group members. You and the other people in your group then cast votes for or against 
proposals. The first proposal to receive five or more votes will be enforced. When a proposal 
is enforced the period ends and each person earns the number of points specified in that proposal.  
 
How you make and vote on proposals 
 
A period can consist of up to 20 rounds of making and voting on proposals.  
 
At the beginning of each period your computer screen will look like the one shown in Figure 1. 
You must propose the number of points that each person in your group will receive. For each 
person you can type in any whole number between 0 and 120, but the total number of points 
received by the group members must add up to 120. Note that the row where you propose how 
much you yourself will receive is in boldface.  
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When you have completed a proposal you click on the "submit" button to submit it. You will 
have ninety seconds to make a proposal. If you do not submit a proposal in ninety seconds the 
computer will submit a proposal for you, and this proposal will propose that all group members 
get zero. 
 
After all three group members have submitted proposals the computer will randomly choose one 
of them and the three group members will vote on this proposal. A sample screen is shown in 
Figure 2 (except that the entries marked XXX will be the numbers one of the group members 
entered in their proposal). Note that the row proposing how much you will receive is in boldface. 
You must then cast your votes either for or against the proposal by clicking accept or reject. If 
you accept, all the votes you control are cast in favour of the proposal, while if you reject, all the 
votes you control are cast against the proposal.  
 
You will have thirty seconds to cast your votes. If you do not cast your votes in thirty seconds 
the computer will vote for you, and will vote against the proposal. 
 
If the proposal receives five or more votes in favour it will be enforced. This means that the 
period will end and this proposal will determine the number of points you earn in that period. 
 
If the proposal receives less than five votes, the process will be repeated: once again all group 
members will make proposals, one of them will be randomly chosen, and all group members will 
get to vote on this proposal. This process will continue until a proposal is enforced, or until 20 
rounds of making and voting on proposals have passed. If no proposal has been enforced after 
the twentieth vote the period will end and all three group members will receive zero. 
 
Ending the session 
 
At the end of period ten your total points from all periods will be converted to cash at a rate of 3p 
per point and you will be paid this amount in private and in cash. The computer will keep track 
of your point earnings from period to period, but if you want to keep a record for yourself you 
can use the attached Record Sheet. 
 
If you have any questions raise your hand and a monitor will come to your desk to answer them. 
Now, please begin period 1. 
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FIGURE 1. SCREEN FOR MAKING PROPOSALS 
 
 

 
 

FIGURE 2: SCREEN FOR VOTING ON PROPOSALS 
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