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Abstract

Potentially dynamically-inconsistent individuals create particular problems for eco-

nomics, as their behaviour depends upon whether and how they attempt to resolve

their potential inconsistency. This paper reports on the results of a new experiment

designed to help us distinguish between the different types that may exist. We classify

people into four types: myopic, naive, resolute and sophisticated. We implement a

new and simple experimental design in which subjects are asked to take two sequen-

tial decisions (interspersed by a random move by Nature) concerning the allocation of

a given sum of money. The resulting data enables us to classify the subjects. We find

that the majority are resolute, a significant minority are sophisticated and rather few

are naive or myopic.
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1 Introduction

Dynamic consistency is a central assumption in economics, and is essential to many

of the key results and policy prescriptions in important fields, such as those of invest-

ment, saving and pensions. It implies that preferences do not change with the passage

of time: the preferences an individual has over choices in some period are not depen-

dent on the moment that the individual is asked to express these preferences. However,

there is ample evidence that people are not dynamically consistent. In the context of

discounting, it seems that many people do not discount exponentially; so that their

relative evaluation of consumption at two given points of time depend upon the time

at which the evaluation is being made. In the context of decision-making under risk,

it seems that many people do not have Expected Utility preferences; so that their risk

aversion about choices in some period vary depending upon the time at which their

risk evaluation is being made. As Wikipedia notes:

"In economics, dynamic inconsistency, or time inconsistency, describes a

situation where a decision-maker’s preferences change over time, such that

what is preferred at one point in time is inconsistent with what is preferred

at another point in time. It is often easiest to think about preferences over

time in this context by thinking of decision-makers as being made up of

many different "selves", with each self representing the decision-maker at a

different point in time. So, for example, there is my today self, my tomor-

row self, my next Tuesday self, my year from now self, etc. The inconsis-

tency will occur when somehow the preferences of some of the selves are

not aligned with each other."

While we are particularly concerned with decision making under risk, the issues are

also important in other contexts. Of crucial interest is in how such potentially dynam-

ically inconsistent people react to their potential inconsistency. Are they aware of it?

Do they ignore it? Do they take it into account in planning their future behaviour? Do

they somehow constrain themselves to act consistently?
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The literature (seminal references are Machina (1989) and McClennan (1990)) discusses

a number of possibilities. The key issue is that dynamically inconsistent preferences

change through time. We give an example in the context of consumption, though our

context is decision-making under risk. As we have already noted, the crucial problem

with dynamically inconsistent preferences is that they change through time, not in the

sense that preferences for period t0 > t consumption are different from preferences for

period t consumption, but rather in the sense that preferences for period t0 consump-

tion as viewed from period t are different from preferences for period t0 consumption

as viewed from period t+ s, for some t0 > t+ s > t. It is as if the individual is a differ-

ent individual in different periods. In a sense it is a type of schizophrenia, but one that

is familiar. The interesting issues from the point of view of economics are twofold: (1)

is the individual aware of this dynamic inconsistency?; (2) if so, what does he or she

do about it?

If the individual is not aware of the dynamic inconsistency, then presumably the in-

dividual works through time always choosing the best decision as viewed from the

present perspective. We call such a type naive. This is the first of four types of decision

maker we consider. If, however, the individual is aware of his or her dynamic inconsis-

tency, there are various things that he or she might do about it. The individual could

follow the example of Ulysses (about to be confronted by the sirens) by metaphorically

binding himself to the mast – by imposing his first period preferences. Such a person

has been described by McClennan (1990) and Machina (1989) as resolute. This is the

second of our types.

Economists usually, however, adopt a different story: they assume that potentially

dynamically inconsistent people realise that they will want to change their minds in

the future, and anticipate this behaviour ex ante. Such people backwardly induct. Indeed

this is the prevailing model used in economics. It is as if Ulysses decided to travel

home by a different route. This is our third type: it is referred to in the literature as

sophisticated.

In Hey and Lotito (2009) these three types were investigated. In this paper we add to

the menu a fourth type, one which naturally arises in the context of our experiment,
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and for which it appears that many real-world examples can be found. This type is one

who simply assumes that the decision in the present will be the last. We call this type

myopic.

The answers to the questions posed above are important not only for economic theory

but also for public policy. For example, if people are myopic, then the state might feel

obliged to take action to ensure adequate pensions for the population. It is to these

issues that this paper is addressed.

We adopt a particularly simple experimental design which enables us to shed light on

these issues, and to discriminate between the different types. It is simpler and more

informative than a design that was used in Hey and Lotito (2009). We describe the new

design in the next section. We then define the various types of economic agent and

discuss how they should behave in this experiment. We then describe our econometric

analyses and then present our results. A final section concludes.

2 The experimental design and some theory

The design was inspired by one pioneered by Loomes (1991) and subsequently ex-

tended by Choi et al. (2007). This design was developed for a different decision prob-

lem in a different context. In the Loomes’ design subjects were simply asked to allocate

a sum of money between two risky alternatives. Choi et al. extended the design by en-

dowing subjects with tokens and having different exchange rates between tokens and

money for the different alternatives. We do not use that feature but extend the Loomes

design in a different direction by having a dynamic allocation problem. In our design,

subjects are presented with a set of N decision problems, all with the same two-stage

structure. In each problem, subjects are given a sum of money, m, to allocate between

two probabilistic options 1 and 2, with known and stated probabilities. Suppose the

allocations are x to 1 and m� x to 2. Then Nature chooses one of the options at ran-

dom. If Nature chooses 1 the subject is then asked to allocate x (the amount allocated

to 1 at the first stage) between two further probabilistic options, 1A and 1B, again with

known and stated probabilities; call the allocations y and x � y. Similarly, if Nature
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chooses 2 the subject is then asked to allocate m� x (the amount allocated to 2 at the

first stage) between two further probabilistic options, 2A and 2B, again with known

and stated probabilities; call the allocations z and m� x� z. Then Nature chooses one

of these new options at random.

If Nature chooses 1 at the first stage and 1A at the second, then the subject earns y

for that particular problem; similarly if Nature chooses 1 at the first and 1B at the

second, then the subject earns x � y; if Nature chooses 2 at the first and 2A at the

second, then the subject earns z; and finally if Nature chooses 2 at the first and 2B at

the second, then the subject earns m� x � z. At the end of the experiment one of the

decision problems is chosen at random and the subject is paid his or her earnings on

that particular problem.

The design is simple and informative. To illustrate how the design discriminates be-

tween different types of potentially dynamically inconsistent people, let us assume that

the decision-maker has Rank Dependent Expected Utility (RDEU) preferences, with

utility function u(.) and weighting function w(.). As is well-known, if w(p) = p then

the model reduces to that of Expected Utility (EU) theory and the decision-maker is

not dynamically inconsistent. However suppose that w(.) is not linear. Then potential

dynamic inconsistencies arise.

Consider the problem as viewed from when the decision-maker must make the first

decision. Let us denote the probabilities of Nature choosing 1 and 2 at the first stage by

p and (1� p) respectively. Denote the probabilities of Nature choosing 1A and 1B by

p1 and (1� p1) respectively, and denote the probabilities of Nature choosing 2A and

2B by p2 and (1� p2) respectively. The decision maker has to allocate m between 1 (x)

and 2 (m � x) at the first stage and then allocate whichever of x or m � x is realised

between either 1A (y) and 1B (x� y) or between 2A and 2B (z) and 2 (m� x� z) at the

second stage. Thus, as viewed from the first stage, the decision-maker has to choose x,

y and z to maximise his or her Rank Dependent Expected Utility. The possible payoffs

are y, x � y, z and m � x � z and the corresponding probabilities are pp1, p(1� p1),
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(1� p)p2 and (1� p)(1� p2). For the readers’ ease, let us introduce the notation

q1 = pp1, q2 = p(1� p1), q3 = (1� p)p2, q4 = (1� p)(1� p2),

together with the following one

m1 = y, m2 = x� y, m3 = z, m4 = m� x� z.

Naturally we have q1 + q2 + q3 + q4 = 1 and m1 + m2 + m3 + m4 = m. The Rank

Dependent EU evaluation of this risky prospect depends upon the ordering of the mj

(j = 1, 2, 3, 4). Suppose we consider the following ranking1

m1 � m2 � m3 � m4 (1)

Then the objective function of the individual is to maximise the following expression

RDEU = u (m1) [1� w(q2 + q3 + q4)] + (2)

u (m2) [w(q2 + q3 + q4)� w(q3 + q4)] +

u (m3) [w(q3 + q4)� w(q4)] +

u (m4)w(q4)

The decision maker should choose m1, m2, m3 and m4 subject to m1+m2+m3+m4 = m

and to the ranking constraint (1) to maximise this expression. Denote by m�
1 , m�

2 , m�
3

and m�
4 the optimal values. The decision maker therefore allocates m�

1 +m�
2 to option 1

and the residual to option 2.

The potential dynamic inconsistency arises when the decision maker gets to the second

stage. Suppose that Nature chooses 1. The decision-maker has m�
1 +m�

2 to allocate to

1A and 1B at this second stage. If the decision-maker reconsiders the problem at this

stage, and considers how to allocate this sum between options 1A and 1B at this sec-

ond stage in order to maximise his or her Rank Dependent Expected Utility as viewed

1Here we illustrate only one case of a possible ranking. Of course, in our analysis we consider all
possible rankings.
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from that point, his or her problem is to choose m1 and m2 to maximise the following

expression subject to m1 +m2 = m�
1 +m�

2 :

u (m1) [1� w(1� p1)] + u (m2) [w(1� p1)] if m1 � m2 (3)

u (m1)w(p1) + u (m2) [1� w(p1)] if m2 � m1

Let us call m��
1 and m��

2 the optimal values. We note that they both depend on m�
1+ m�

2 .

But there is no reason why the m��
1 and m��

2 need to be equal to the m�
1 and m�

2 . This

is only guaranteed to be the case if w(.) is linear – that is, if the preferences are EU,

and hence the individual is not potentially dynamically consistent. We will provide an

explicit example of this in what follows.

Similarly if Nature had chosen option 2 at the first stage then the problem at the second

stage is to choose m3 and m4 to maximise the following expression subject to m3+m4 =

m�
3 +m�

4 :

u (m3) [1� w(1� p2)] + u (m4) [w(1� p2)] if m3 � m4 (4)

u (m3)w(p2) + u (m4) [1� w(p2)] if m4 � m3

Let us call m��
3 and m��

4 the optimal values. Again, there is no reason why these need

to be equal to the m�
3 and m�

4 . As before, this is only guaranteed to be the case if w(.)

is linear – that is, if the preferences are EU, and hence the individual is not potentially

dynamically consistent.

The issue now is what the individual does about this potential inconsistency. One

possibility is that the individual simply uses the optimal allocations derived at the first

stage. We call such an individual resolute. A second possibility is that the individual

implements, at the second stage, those allocations which appear optimal at this second

stage. We call this type of individual naive, because at the first stage, he or she did not

take into account the fact that he or she would choose differently at the second stage.

However, this latter behaviour might be considered irrational. Consider instead an

individual who anticipates that, when he or she arrives at the second stage, will re-

6



optimise at that point. In this case, the individual will solve the decision problem in

two steps. First, taking as given an allocation of money between option 1 and 2, say m1

and m2, he or she chooses m1, m2, m3 and m4 to maximize his or her second stage RDEU

function. Denote by m���
1 (m1), m���

2 (m1), m���
3 (m2) and m���

4 (m2) the optimal values,

where the notation makes clear the dependence on the given allocation (m1, m2). Given

these values, in the second step the decision maker chooses m1 and m2 subject to m1 +

m2 = m to maximize2

RDEU = u (m���
1 (m1)) [1� w(q2 + q3 + q4)] +

u (m���
2 (m1)) [w(q2 + q3 + q4)� w(q3 + q4)] +

u (m���
3 (m2)) [w(q3 + q4)� w(q4)] +

u (m���
4 (m2))w(q4)

Here we emphasise that the second-step decisions depend upon the values chosen in

the first step. Such a decision-maker is termed in the literature sophisticated.

The final type of individual we consider is one who ignores the second stage decision

and decides at the first assuming that the outcome at the first stage will in fact be

the actual payment. Such an individual chooses (m1 + m2) and (m3 + m4) subject to

(m1 +m2) + (m3 +m4) = m to maximise the expression below:

u (m1 +m2) [1� w(1� p)] + u (m3 +m4) [w(1� p)] if m1 +m2 � m3 +m4

u (m1 +m2)w(p) + u (m3 +m4) [1� w(p)] if m3 +m4 � m1 +m2

Denote by (m1 +m2)
� and (m3 +m4)

� the optimal values. The decision maker there-

fore allocates (m1 +m2)
� to option 1 and the residual to option 2 at the first stage. At

the second stage, he or she then allocates the residual money either as in equation (3),

if Nature chooses 1 at the first stage and as in equation (4) if Nature chooses 2.

The essential point is that different types – resolute, naive, sophisticated and myopic –

do different things. This fact enables us to discriminate between the types and hence

2Here we are implicitly assuming the ranking as in (1).
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identify the type of each individual. This is the purpose of the experiment. Identi-

fying the type is important, as different types behave differently. Usually, economic

theory assumes sophisticated behaviour: this requires quite elaborate planning. We

test whether subjects actually do this, and if not, what they actually do.

3 The experimental implementation

The implementation was exactly as above. Subjects were given written instructions (in

the Non-Mathematical Appendix) and then they were presented with 27 problems, all

with the same structure, and all with the same amount of money (e40 in the experi-

ment though £40 in the screen shots) to be allocated, but with different probabilities in

the various problems. An example of the opening screen-shot of a problem is shown in

Figure 1. We used the words ‘Left’ and ‘Right’, rather than Options 1 and 2, because of

the physical layout of the problem on the screen. In the problem pictured in Figure 1,

the probability of Nature moving Left at the first stage is 60% and that of moving Right

40%. In this particular problem, if Nature chooses Left after the first decision, then the

probability of Nature moving Left (Right) after the second is 70% (30%); whereas if Na-

ture chooses Right after the first decision, then the probability of Nature moving Left

(Right) after the second is 60% (40%). We note that this, and the other screen-shots, is

in English, though the experiment itself was conducted in Italian, at CESARE, the Cen-

tro di Economia Sperimentale A Roma Est, at LUISS in Rome. This first screen gives

information about probabilities and the sum to allocate.

Then the subject is asked to allocate the £40 (e40 in the actual experiment) between

Left and Right at this first stage. Figure 2 illustrates. The allocation when the screen is

first displayed is decided at random by the computer. As will be seen, there is a slider

on the screen and the subject can use this to show his or her preferred allocation. The

subject then clicks on “Click to Continue” to see what Nature decides at this first stage

and to proceed to the second stage. (We should note that we forced the subjects to wait

45 seconds before the “Click to Continue” button appeared on the screen.)

The random move by Nature was played out in a visually appealing and convincing
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way. Suppose in this problem Nature chose Left and the preferred allocation of the

subject was that in Figure 2. Then the subject would have £25 (e25 in the experiment)

to allocate at the second stage. The second stage screen would then open as in Figure

3. Once again, the opening allocation of the £25 (e25 in the experiment) is decided

at random by the computer. Again the subject can use the slider to indicate his or

her preferred allocation, and click on the “Click to Continue” button (which appeared

after 15 seconds) to confirm his or her allocation. Once again the random move by

Nature and the subject’s payoff for that problem was displayed on the screen. This

procedure was repeated for all 27 problems, which appeared in a random order, with

Left and Right at both stages randomly ordered. At the end of all 27 problems, one of

the problems was chosen at random and the subject paid the outcome on that particular

problem.

Before we ran the experiment we carried out intensive simulations to ensure that we

had a number of problems that would enable us to discriminate between the various

types. The actual set of problems is listed in Table 1. As we have already noted, the

order of the problems and the left/right juxtaposition were determined at random.

We should perhaps comment briefly on the simulations that we carried out and the

resulting sets of problems that we used. Obviously in choosing the problem set, there

is a trade-off: in general the more problems we include, the greater the discrimina-

tory power of the experiment; however, with too many problems, there is the danger

that the subjects can become tired or bored and hence lose concentration. Also there is

the problem, given our incentive mechanism, that, as we increase the number of prob-

lems, the incentive for careful responses on the part of the subjects on each problem

decreases. We also wanted to keep the probabilities3 simple, and hence we decided to

have all probabilities multiples of 1/10. Finally we wanted to avoid too high or too

low probabilities, as the information we would gather from their choices on problems

with very high or very low probabilities would be small. We therefore decided to have

at each stage probabilities of 0.6, 0.7 and 0.8. We then constructed all possible combina-

tions for these three probabilities over the values p, p1 and p2. Hence the 27 problems.

3Note that we did not use the word ’probability’ in the experiment, preferring to use the more every-
day word ’chance’.
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At this stage we carried out simulations to see if these 27 problems would be suffi-

ciently discriminating. Obviously the discriminating power depends upon the actual

values of the parameters. We shall return to our simulations after we have discussed

our parameterisation in the next section.

4 Estimation and identification of types

Our analysis is by subject, as subjects are clearly different. Our procedure was the

following. For each subject, we assumed that they had Rank Dependent Expected

Utility preferences.4 We also assumed that they had a CRRA utility function, written

in this particular way:5

u(m) =

8><>:
m1� 1

r �1
1� 1

r
for r 6= 1

ln(m) for r = 1
(5)

We note the special case when the parameter r takes the value 1. In this case the utility

function becomes logarithmic.

The reason for this slightly non-standard (but equivalent to the usual) parameterisa-

tion is simply that it makes the mathematics more elegant and hence some key results

more transparent. For example, the solution to the optimal allocation of an amount

m between four options with probabilities p1, p2, p3 and p4 for an individual with EU

preferences and the above utility function is given by:

mi =
mpr

i

∑4
j=1 pr

j

for i = 1, 2, 3, 4 (6)

We once again note the importance of the special case when r = 1 (and thus when

the utility function is logarithmic). In this case optimal allocations are simply propor-

tional to the probabilities. This special case is identical to the simple heuristic (which

psychologists have noted in other contexts) by which subjects simply allocate money

4This is the most widely-accepted non-EU preference functional in the literature. It contains EU as a
special case.

5See Wakker (2008) for an excellent discussion of the properties of this utility function.
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proportional to the probabilities. Obviously this simple heuristic and optimising with

a logarithmic utility function are observationally indistinguishable in our context.

This parameterisation also helps makes clear why an EU individual is not dynamically

inconsistent. From equation (6) it follows that the optimal allocations as viewed from

the first stage are proportional to pr
1, pr

2, pr
3 and pr

4. Suppose the individual arrives at

the second stage, for concreteness after Nature has chosen option 1. If the individual

wishes to reconsider his or her choices at this stage, he or she will solve the following

problem

max
m01,m02

p1u(m0
1) + p2u(m0

2) s.t. m0
1 +m0

2 = m1 +m2,

where m1 and m2 are given by (6). Given (5), the solution to this problem is

m0
i =

pr
i (m1 +m2)

pr
1 + pr

2
=

mpr
i

∑4
j=1 pr

i

for i = 1, 2,

thus showing m0
i = mi for i = 1, 2 and similarly for i = 3, 4. Hence consistency is

guaranteed, though this is the case for all EU decision-makers, not just those with a

CRRA utility function.

The parameterisation that we have adopted implies similar notational simplifications

for the RDEU model. For example, the optimal allocations for a resolute RDEU indi-

vidual are given by

mi =
mvr

i

∑4
j=1 vr

j

for i = 1, 2, 3, 4 (7)

Here the vi are functions of the pi which depend on the form of the weighting function

w(.), whose actual value depend on the ranking considered. On this latter, see below.

The optimal solutions for all four types are given in Mathematical Appendix 1.

To specify fully the RDEU preferences we need also specify the weighting function. We

assume that this takes the Quiggin (1982) form:6

w(p) =
pg

(pg + (1� p)g)
1
g

(8)

6To be strictly correct, we should attribute this to Tversy and Kahneman (1992), who proposed this
variation on the original specification proposed by Quiggin, namely: w(p) = pg/[pg + (1� p)g].
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For RDEU individuals the optimal allocations depend upon the type. Table 2 gives an

example – a RDEU individual with r = 2.0 and g = 0.6. This person is moderately

risk-averse and has the S-shaped weighting function shown in Figure 4; this person

over-weights small decumulative probabilities and under-weights large ones. It will

be seen from Table 2 that the different types do indeed take different decisions.

In order to estimate the best-fitting values of r and g for each type of subject, and hence

identify the best-fitting type for each subject, we need to make some assumption about

the stochastic structure of the data. This is necessary because subjects’ behaviour is

noisy – there is a stochastic component to the data. Because the optimal decisions

(see Mathematical Appendix 1) imply given values for the ratio between the optimal

allocation and the amount to allocate, it is natural to make some assumption about the

empirical counterpart: the ratio between the actual amount allocated and the actual

amount to allocate. Obviously this is a proportion and therefore lies between 0 and 1.

The natural statistical distribution to assume is thus the Beta distribution. A random

variable R with such a distribution satisfies 0 � R � 1, and has two parameters –

which we denote generically by α and β. The mean is given by α
α+β and the variance

by αβ
(α+β)(α+β+1) . An interesting property is that, if we want

E(R) = R� and var(R) =
R�(1� R�)

s
(9)

to be satisfied for some value of s, then we should put α = R�(s � 1) and β = (1�

R�)(1� s). Here the parameter s is an indicator of the precision of the distribution of

R. From equation (9) it can be seen that the variance of R tends to zero as s tends to

infinity or as R� tends to either 0 or 1.

We assume that each empirical proportion (the proportion of m allocated to 1; the pro-

portion of x allocated to 1A if Nature chooses 1; and the proportion of (m� x) allocated

to 2A if Nature chooses 2) has such a Beta distribution. Moreover we assume that the

parameters of each of these three distributions are such that the means and variances

are given by equation (9) where R� is the corresponding optimal proportion. Note in

passing the usefulness of the property that the variance of R tends to zero as R� tends
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to either 0 or 1: this implies that if it is optimal to allocate all or nothing, then subjects

do not make a mistake. Details are given in Mathematical Appendix 2.

Let us now briefly return to our pre-experimental simulations, as the properties of

these simulations may qualify our results. As we have already noted, the power of

our experiment in discriminating between the various types depends upon the actual

parameters of the subjects. Clearly if the parameter g is close to 1, the discriminatory

power is bound to be low – since with such a parameter the subject is close to being EU

and hence there will be little differences between the behaviours of the various types.

Instead we report here the results of a simulation with a g value of 0.8 (a moderately

non-EU subject), an r value of 2.0 (a moderately risk-averse subject) and an s value of

75 (representing modest, and not untypical, precision). These are, in fact, the parame-

ter values for the best-fitting type of subject 65, whose results we discuss in the next

section and report in Table 4. We carried out 100 simulations of a subject with these

parameters; on each iteration estimating all 16 combinations � each of the 4 true types

combined with each of the 4 estimated types � and calculating for each of these 16

combinations the maximised log-likelihood. Ideally the highest log-likelihood would

always be when the estimated type is the same as the true type, which would imply

that the estimation would always identify the true type. This was not always the case

as we discuss below. However, it is true that the average maximised log-likelihood is al-

ways greater for the true type, as Table 3.1 shows. Indeed, the highest values are along

the diagonal. Table 3.2 reports the standard deviations of the log-likelihoods over the

100 iterations. With perfect discrimination these standard deviations would be small.

In fact, they are reasonably so. More importantly, Table 3.3 reports the numbers of

times (out of the 100 iterations) where an incorrect type has the highest maximised

log-likelihood. It will be seen that incorrect identification occurs essentially when the

true type is the myopic type. In this case, the ’best’ type is incorrectly identified as

naive 17% of the time, as resolute 12% of the time and as sophisticated just 1% of the

time. However, a true naive or resolute type is always correctly identified and a true

sophisticated type 97% of the time. These results should be keep in mind when inter-

preting the results that follow.
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There is one final point about the estimation that we should mention before we proceed

to the results. The above discussion has assumed that the decision variables are con-

tinuous. In the experiment, subjects were forced to choose integer values at all stages.

This implies that if the optimal decision is, for example, x�, and the decision variable

including error is x, then the value indicated by the subject is the nearest integer to

x. This has important consequences, in that when the subject chooses, for example to

allocate nothing then the decision variable (including the error) is not necessarily zero

but some number less than or equal to 0.5. The estimation program takes this into

account.

We proceed subject by subject as we believe that subjects are different and because we

want to see how many of each type there are. We fit the above model (RDEU with

CRRA utility function and Quiggin weighting function combined with a Beta distrib-

ution stochastic specification) to each subject individually, for each of the four types of

individuals. We used GAUSS’s maximum likelihood procedure to estimate the para-

meters.7 We thus get, for each subject and for each type estimates of the parameters

r, g and s. We also obtain a maximised log-likelihood for each type. This enables us to

identify, for each subject, the best-fitting type.

5 Results

There were 71 subjects in our experiment. The full estimates are available online8, but

it may be helpful to give an example here. This is subject number 65.

Type estimate of r estimate of g estimate of s log-likelihood

Myopic 1.600 1.000 26.364 -119.180

Naive 1.681 0.940 26.960 -118.426

Resolute 1.966 0.797 72.770 -91.675

Sophisticated 1.630 0.950 21.424 -123.947

7The program is at www-users.york.ac.uk/�jdh1/hey and panaccione/mnrs.est
8The full output from the estimation program can be found at www-users.york.ac.uk/�jdh1/hey

and panaccione/mnrs.out
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The log-likelihood is largest for the Resolute type. For this type the estimate of the

parameter s, which can be interpreted as the precision of the Beta distribution generat-

ing the stochastic component of behaviour, is large – suggesting that errors had a low

magnitude. The estimate of the g parameter for the Resolute is 0.797 � which can be

shown to be significantly different from 19. Table 4 shows how well the various models

fit the data.

We now concentrate on the overall results. These aggregate results are summarised in

Table 5. We begin our discussion of this table with the three left-hand columns, headed

“All subjects”. In the first of these three columns we simply allocate the subjects to

the four types on the basis of the highest maximised log-likelihood. On this basis, we

classify 39 (55%) as resolute, 16 (23%) as sophisticated, 9 (13%) as naive and 7 (10%)

as myopic. Hence it would appear that more than one-half are resolute, around a quar-

ter sophisticated, and just one-fifth naive or myopic. However, one might legitimately

want to ask whether the fit is significantly better for one of the types; that is, whether

the maximised log-likelihood is significantly higher for the best-fitting type. To this end,

we carried out Clarke tests10. The results are given in the second and third columns of

Table 5. It will be seen that if we require significance at 5% then 35 (49%) of the subjects

do not have any type with a log-likelihood significantly better than all the others; and

if we require significance at 1% then 49 (69%) cannot be classified. However, of those

classified at the 5% level, 61% are resolute, 17% are sophisticated, 17% myopic and 6%

are naïve; at the 1% level the corresponding figures are 77%, 14%, 9% and 0%. There is

increasing evidence of resolute behaviour amongst those classified.

9In order to constrain the parameters to be within the appropriate bounds, the GAUSS program
transformed the parameters before estimation. The raw estimated parameters and their standard errors
are given in the following table:

Parameter r g s
myopic raw estimates -1.129 -0.916 -2.710
standard errors of myopic raw estimates 0.226 0.369 0.222
naive raw estimates -1.033 -1.138 -2.685
standard errors of naive raw estimates 0.136 0.212 0.222
resolute raw estimates -0.727 -1.811 -1.524
standard errors of resolute raw estimates 0.064 0.089 0.255
sophisticated raw estimates -1.093 -1.099 -2.944
standard errors of sophisticated raw estimates 0.177 0.290 0.216

10See Clarke (2007). An alternative test is the Vuong test, though Clarke shows that his test is more
powerful.
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At this stage we should remember that people with EU preferences can not be dynam-

ically inconsistent. In a sense we have already carried out an indirect test of whether

subjects are EU or not in the above analysis: if an individual is EU then the four types

should fit the data approximately equally well, and thus one type should not fit sig-

nificantly better than the others. However, there is an obvious direct test: whether

the estimated parameter g of the weighting function is significantly different from 111.

Obviously this is a different test, and we cannot expect the direct and indirect tests

necessarily to agree. Nevertheless, we report in the final three columns of Table 5, an

analysis of the data restricted to those subjects for whom the g parameter was signif-

icantly different from 1 at the 5% level for the best-fitting type. There were 35 (49%)

of such subjects. Of these, the highest maximised log-likelihood was for the resolute

type for 24 (69%) of the subjects, for the sophisticated type for 7 (20%), for the naive

type for 2 (6%) and for the myopic type for 2 (6%). Finally, if we carry out Clarke

tests for these 35 subjects with g parameters significantly different from 1, we find that:

at 5%, 11 are unclassifiable and of the 24 that are classifiable, 18 (75%) are resolute,

4 (17%) sophisticated, 2 (8%)myopic and 0 naïve; and that at 1%, 19 are unclassifiable

and of the 16 that are classifiable, 14 (87%) are resolute, 2 (13%) sophisticated, and

none is myopic or naïve. Once again there is increasing evidence of resolute behaviour

amongst those classified.

Before concluding we should express a note of caution. Our simulation results showed

that genuinely myopic subjects might be mis-classified as naive or resolute. As we

have very identified very few as naive but rather a lot as resolute, it may be the case

that some of those identified as resolute might in fact be myopic. However, our sim-

ulation results show that this happened rather rarely – just 12% of the time according

to our simulation results12. So there might be slightly fewer resolute and slightly more

myopic than our results show. But this does not really change the core conclusion:

there seem to be a lot of resolute people out there.

11Recall that if g = 1 then the RDEU model reduces to EU.
12Though the precise figure does depend upon the parameter values.
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6 Conclusions

This paper has been concerned with dynamic inconsistency. The issue is important in

any economic analysis of behaviour through time. In a sense, this includes all types

of economic behaviour, and includes particularly important examples such as saving,

investment and pension decisions. Typically economists employ backward induction

as their modelling of dynamic behaviour. Alternative methods include the strategy

method, wherein the decision-maker is conceived as of considering all possible strate-

gies and choosing the best one. Backward induction can be considered computation-

ally simpler, as the dimensionality of the strategy method can be formidable, and per-

haps beyond most decision-makers’ capability. Nevertheless the backward induction

method does implicitly assume that the decision-maker can project him or herself for-

ward to the final decision node and then backwardly induct from there. Again this is

computationally intense.

If the decision-maker is dynamically consistent, then these two methods lead to the

same solution. However, for dynamically inconsistent people, the two methods may

lead to different solutions. The root cause of this result is that dynamically inconsistent

people have different preferences at different points of time, and hence what appears

to be optimal depends upon the point from which one is viewing the problem. There

seems to be no right or wrong way to decide which is the best way to solve the problem

� simply because the preferences of a dynamically inconsistent person change through

time. It is exactly as if the individual is schizophrenic. Who is to say which are the true

preferences of the individual?

In the context of decision-making under risk, dynamic consistency is equivalent to hav-

ing Expected Utility preferences, while (potential) dynamic inconsistency is equivalent

to having non-EU preferences, for example Rank Dependent Expected Utility (RDEU)

preferences.

For potentially dynamically inconsistent individuals, since normative analysis seems

impossible, all we can do is carry out a descriptive analysis and see what such people

actually do. This is the objective of this paper. We classify subjects in our experiment
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into different types. These different types have different ways of reacting to their dy-

namic inconsistency. Following the literature, we considered three types: naive (who

simply ignore their inconsistency); resolute (who somehow impose their first period

preferences on their future selves); and sophisticated (who plan in the present taking

into account what they know they will do in the future). We also add a fourth type,

myopic, who act as if each period is the last. We note that sophisticated types back-

wardly induct.

We consider the simplest type of dynamic decision problem� one with just two stages.

In principle our method can be applied to more complex problems. We adopt an ex-

perimental method pioneered by Loomes (1991) in which subjects are asked to allocate

some quantity of money between two risky alternatives. We extend the method to a

dynamic decision problem in which the allocation is done in two stages, at each of

which there are two risky alternatives. The subject allocates money between two al-

ternatives. Then Nature moves and the subject then has to allocate the money that

Nature’s move implies between two further risky alternatives. Then Nature moves

again and the subject earns the money that Nature’s move implies. In our experiment,

subjects were asked to repeat this decision-problem on 27 different problems, all with

different probabilities for Nature’s moves.

The data enables us to see which type subjects are. For each subject we assume RDEU

preferences (which reduce to EU as a special case) with a CRRA utility function and

with a Quiggin weighting function. Two parameters are involved to describe the pref-

erences: the risk aversion parameter r of the CRRA utility function and the weighting

parameter g of the weighting function. If g is 1 then the individual has EU preferences

and thus is not dynamically inconsistent. In addition we need to estimate the precision

of the probability distribution describing the noisiness of their implementation of their

optimal strategy. We estimate each type separately and see which type fits best � that

is, which describes best the decisions of the subject.

If we start with all subjects, we see that the resolute type is the best for 55% of our 71

subjects, with 23% sophisticated, 13% myopic and 10% naive. If we restrict attention to

those subjects for whom the best-fitting model is significantly better than the others at
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the 5% (1%) level , using the Clarke test, we find that of the 36 (22) for which this is true,

61% (77%) are resolute, 17% (14%) are sophisticated, 17% (9%) are myopic and 6% (0%)

are naive. If we further confine ourselves to those 35 subjects who are significantly not

EU (that is, those for whom the g parameter is significantly different from 1 at the 5%

level), overall we observe 69% resolute, 20% sophisticated, 6% naive and 6% myopic.

So, the bottom line is that the majority of our dynamically inconsistent subjects are res-

olute, a significant minority are sophisticated; and rather few are naive or myopic. The

fact that we have very few naive or myopic is good news for economic theory and pol-

icy. We are, however, rather surprised by the preponderance of resolute types. It could

be argued that our experimental software is such that it encourages resolute behaviour,

but we see no reason why that is so. We did not ask subjects to state, at the first stage,

what amounts they wished to allocate to each of the four possible outcomes (1A, 1B,

2A and 2B), and indeed it was rather the opposite. Perhaps the statement of the prob-

abilities in the form of Figure 1 encouraged them to think about these final outcomes,

but note that the software did not tell them the probabilities of 1A, 1B, 2A and 2B. On

the contrary, the problem was very much stated in a sequential way. Indeed, it could

be argued that the software actually discouraged resolute play.

We would like to extend the experiment in two ways. The first is straightforward:

to run the experiment with a random sample from some population, since it might

be argued that student subjects are not representative of the population as a whole13.

Second, we would like to run the same experiment with more than two stages, and

perhaps with endowments of money every period. In this way, we would get closer to

a savings problem. The problem then is in calculating the optimal strategies for each

type of subject. Even with just two periods it is computationally difficult. However,

one needs to calculate the optimal strategies in order to distinguish between the types.

With just two stages, we think that we have been successful – and have a conclusion

that is rather surprising. If the majority of people are resolute, then state intervention

may be less necessary. That is, of course, if the first period preferences are the true

ones. But who knows?
13Though it might be argued that non-students are likely to be even more resolute.
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Figure 1: The opening screen of a problem
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Figure 2: The first-stage decision
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Figure 3: The second-stage decision
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Figure 4: The weighting function behind Table 2 (g = 0.6)
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Table 1: the problem set

Probability of Left at first stage: p

Probability of Left at second stage if Nature moves Left at first stage: p1

Probability of Left at second stage if Nature moves Right at first stage: p2

pn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

p .6 .7 .8 .6 .7 .8 .6 .7 .8 .6 .7 .8 .6 .7 .8 .6 .7 .8 .6 .7 .8 .6 .7 .8 .6 .7 .8

p1 .6 .6 .6 .7 .7 .7 .8 .8 .8 .6 .6 .6 .7 .7 .7 .8 .8 .8 .6 .6 .6 .7 .7 .7 .8 .8 .8

p2 .6 .6 .6 .6 .6 .6 .6 .6 .6 .7 .7 .7 .7 .7 .7 .7 .7 .7 .8 .8 .8 .8 .8 .8 .8 .8 .8
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Table 2: An example of choices of the different types

Parameters assumed: r = 2.0 and g = 0.6

Probabilities Myopic Naive Resolute Sophisticated

pn m p p1 p2 x y z x y z x y z x y z

1 40 .60 .60 .60 20.00 10.00 10.00 25.55 12.78 7.22 25.55 18.33 7.22 20.00 10.00 10.00

2 40 .70 .60 .60 22.09 11.04 8.96 27.25 13.63 6.37 27.25 20.88 6.37 22.09 11.04 8.96

3 40 .80 .60 .60 27.60 13.80 6.20 28.88 14.44 5.56 28.88 23.32 5.56 27.60 13.80 6.20

4 40 .60 .70 .60 20.00 11.04 10.00 27.25 15.05 6.37 27.25 20.88 6.37 21.10 11.65 9.45

5 40 .70 .70 .60 22.09 12.19 8.96 29.14 16.09 5.43 29.14 23.72 5.43 22.63 12.49 8.69

6 40 .80 .70 .60 27.60 15.24 6.20 30.95 17.09 4.52 30.95 26.43 4.52 28.01 15.46 6.00

7 40 .60 .80 .60 20.00 13.80 10.00 28.88 19.93 5.56 28.88 23.32 5.56 24.69 17.04 7.65

8 40 .70 .80 .60 22.09 15.24 8.96 30.95 21.36 4.52 30.95 26.43 4.52 24.69 17.04 7.65

9 40 .80 .80 .60 27.60 19.04 6.20 32.92 22.71 3.54 32.92 29.38 3.54 29.23 20.17 5.38

10 40 .60 .60 .70 20.00 10.00 11.04 25.55 12.78 7.98 25.55 18.33 7.22 18.90 9.45 11.65

11 40 .70 .60 .70 22.09 11.04 9.89 27.25 13.63 7.04 27.25 20.88 6.37 18.90 9.45 11.65

12 40 .80 .60 .70 27.60 13.80 6.85 28.88 14.44 6.14 28.88 23.32 5.56 27.78 13.89 6.75

13 40 .60 .70 .70 20.00 11.04 11.04 27.25 15.05 7.04 27.25 20.88 6.37 22.09 12.19 9.89

14 40 .70 .70 .70 22.09 12.19 9.89 29.14 16.09 5.99 29.14 23.72 5.43 22.86 12.62 9.46

15 40 .80 .70 .70 27.60 15.24 6.85 30.95 17.09 5.00 30.95 26.43 4.52 28.18 15.56 6.53

16 40 .60 .80 .70 20.00 13.80 11.04 28.88 19.93 6.14 28.88 23.32 5.56 23.64 16.31 9.03

17 40 .70 .80 .70 22.09 15.24 9.89 30.95 21.36 5.00 30.95 26.43 4.52 25.62 17.68 7.94

18 40 .80 .80 .70 27.60 19.04 6.85 32.92 22.71 3.91 32.92 29.38 3.54 29.39 20.28 5.86

19 40 .60 .60 .80 20.00 10.00 13.80 25.55 12.78 9.97 25.55 18.33 7.22 15.31 7.65 17.04

20 40 .70 .60 .80 22.09 11.04 12.36 27.25 13.63 8.80 27.25 20.88 6.37 18.49 9.25 14.84

21 40 .80 .60 .80 27.60 13.80 8.56 29.02 14.51 7.58 29.02 23.32 5.70 27.80 13.90 8.42

22 40 .60 .70 .80 20.00 11.04 13.80 27.25 15.05 8.80 27.25 20.88 6.37 16.36 9.03 16.31

23 40 .70 .70 .80 22.09 12.19 12.36 29.14 16.09 7.49 29.14 23.72 5.43 24.26 13.39 10.86

24 40 .80 .70 .80 27.60 15.24 8.56 30.95 17.09 6.24 30.95 26.43 4.52 28.20 15.57 8.14

25 40 .60 .80 .80 20.00 13.80 13.80 28.88 19.93 7.67 28.88 23.32 5.56 25.49 17.59 10.01

26 40 .70 .80 .80 22.09 15.24 12.36 30.95 21.36 6.24 30.95 26.43 4.52 27.60 19.04 8.56

27 40 .80 .80 .80 27.60 19.04 8.56 32.92 22.71 4.89 32.92 29.38 3.54 29.41 20.29 7.31
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Table 3: Some simulation results

In this table, the true parameters are r = 2.0, g = 0.8 and s = 75.

100 iterations were carried out.

Table 3.1: Average maximised log-likelihoods

Estimated type

True type Myopic Naive Resolute Sophisticated

Myopic -1176.652 -1207.239 -1206.721 -1399.328

Naive -1483.576 -1090.090 -1464.342 -1496.232

Resolute -1625.063 -1525.753 -1127.111 -1676.821

Sophisticated -1515.027 -1383.583 -1484.399 -1203.517

Table 3.2: Standard deviations of maximised log-likelihoods

Estimated type

True type Myopic Naive Resolute Sophisticated

Myopic 104.555 107.222 102.854 100.557

Naive 91.467 117.712 95.693 175.103

Resolute 56.518 65.952 101.624 53.142

Sophisticated 91.404 101.615 94.493 209.33

Table 3.3: Number of times that an incorrect type is identified

Estimated type

True type Myopic Naive Resolute Sophisticated

Myopic 0 17 12 1

Naive 0 0 0 0

Resolute 0 0 0 0

Sophisticated 0 3 0 0
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Table 4: Fitted and actual decisions for subject 65

Myopic Naive Resolute Sophisticated Actual14

pn x y z x y z x y z x y z x y z

1 26.27 17.25 9.02 26.49 17.29 8.81 27.01 20.51 6.50 26.16 17.01 9.00 27 * 7

2 31.80 20.88 5.38 31.74 20.71 5.39 30.97 24.18 4.52 31.55 20.52 5.49 32 27 *

3 36.07 23.69 2.58 35.98 23.48 2.62 35.37 26.70 2.32 35.82 23.30 2.72 36 * 2

4 26.27 20.88 9.02 27.25 21.54 8.32 29.52 24.27 5.24 27.00 21.24 8.45 25 21 *

5 31.80 25.28 5.38 32.17 25.42 5.11 32.08 28.12 3.96 31.95 25.13 5.23 36 31 *

6 36.07 28.68 2.58 36.21 28.62 2.47 35.77 31.09 2.11 36.04 28.34 2.58 35 32 *

7 26.27 23.69 9.02 28.72 25.79 7.36 31.40 27.59 4.78 28.29 25.30 7.62 27 24 *

8 31.80 28.68 5.38 33.06 29.69 4.53 34.23 31.35 2.88 32.76 29.30 4.71 34 32 *

9 36.07 32.53 2.58 36.54 32.81 2.26 36.27 34.29 1.87 36.35 32.51 2.37 38 35 *

10 26.27 17.25 10.92 26.42 17.24 10.73 27.61 20.46 7.14 21.89 14.24 14.24 28 23 *

11 31.80 20.88 6.52 31.38 20.48 6.81 30.82 24.07 5.92 31.21 20.30 6.91 32 * 5

12 36.07 23.69 3.12 35.78 23.35 3.33 35.27 26.62 3.08 35.63 23.17 3.44 36 31 *

13 26.27 20.88 10.92 26.95 21.30 10.31 28.70 24.18 6.79 26.69 20.99 10.46 28 23 *

14 31.80 25.28 6.52 32.11 25.37 6.24 32.53 28.06 4.47 31.62 24.87 6.59 33 28 *

15 36.07 28.68 3.12 36.03 28.47 3.14 35.68 31.01 2.82 35.86 28.20 3.26 35 30 *

16 26.27 23.69 10.92 27.96 25.10 9.52 30.36 27.31 6.59 27.39 24.50 9.91 32 30 *

17 31.80 28.68 6.52 32.86 29.50 5.65 33.90 31.31 3.52 32.55 29.11 5.86 33 * 5

18 36.07 32.53 3.12 36.37 32.66 2.87 36.45 34.23 2.22 36.18 32.36 3.00 35 31 *

19 26.27 17.25 12.38 25.82 16.85 12.73 28.04 20.00 9.07 23.16 15.06 15.06 28 * 10

20 31.80 20.88 7.39 30.72 20.05 8.33 30.87 23.52 7.35 23.16 15.06 15.06 32 * 6

21 36.07 23.69 3.54 35.41 23.10 4.12 34.82 26.29 4.28 35.27 22.94 4.23 35 25 *

22 26.27 20.88 12.38 26.32 20.79 12.29 28.42 23.74 8.86 21.28 16.74 16.74 28 24 *

23 31.80 25.28 7.39 31.95 25.25 7.23 32.99 27.64 5.35 31.65 24.89 7.46 33 * 5

24 36.07 28.68 3.54 35.67 28.19 3.89 35.27 30.65 3.91 35.52 27.93 4.01 37 33 *

25 26.27 23.69 12.38 27.02 24.26 11.66 29.01 26.70 8.67 26.74 23.92 11.86 30 28 *

26 31.80 28.68 7.39 32.41 29.10 6.82 33.83 31.01 4.67 32.10 28.71 7.06 30 * 7

27 36.07 32.53 3.54 36.25 32.56 3.36 36.61 33.96 2.66 35.87 32.08 3.70 35 32 *

14 An asterisk indicates a missing observation (because of Nature’s move).
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Table 5: A summary of the main results

All subjects Subjects for whom g parameter is

significantly different from 1 at 5%

for the best-fitting type

Type Number

of sub-

jects with

highest log-

likelihood

Number

of subjects

with signif-

icance on

Clarke Test

at 5%

Number

of subjects

with signif-

icance on

Clarke Test

at 1%

Overall Number

of subjects

with signif-

icance on

Clarke Test

at 5%

Number

of subjects

with signif-

icance on

Clarke Test

at 1%

Myopic 7 6 2 2 2 0

Naive 9 2 0 2 0 0

Resolute 39 22 17 24 18 14

Sophisticated 16 6 3 7 4 2

None of these 0 35 49 36 47 55

Total 71 71 71 71 71 71
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Non-Mathematical Appendix: The experimental instructions

(We omit the screen shots as they are the same as in the paper. References to figures

below are to the figures in the main text of this article.)

Preamble

Welcome to this experiment. It is an experiment on the economics of dynamic deci-

sion making under risk. The Ministry for Education, University and Research of Italy

(MIUR) has provided the funds to finance this research. Thank you for taking part.

Please read these instructions carefully. It is important that you do so, as your pay-

ment for taking part in this experiment will depend upon the decisions that you take.

The payment will be made, in cash, at the end of the experiment. The payment will

consist of whatever money you earn as a result of the decisions you make during the

experiment. You will be asked to sign a receipt for the payment, and to acknowledge

that you participated voluntarily in the experiment. The results of the experiment will

be used for the purpose of academic research and will be published in such a way that

your anonymity will be preserved.

The Experiment

In the experiment you will be presented with 27 dynamic decision problems, all of the

same form. Each problem has two stages. At the beginning of each of these problems

you will be given an allocation of £40. At the first stage you will be asked to allocate the

money between two options, which, because of the way that they are presented on the

computer screen, will be called Left and Right. When you have made the allocation, a

random device, which we call Nature, will determine whether you move Left or Right.

The chances of each will be told to you before you make your allocation. This is the

first stage of the problem. At the second stage, you will have a similar decision: to

allocate the money that is implied by your first stage decision again between Left and

Right. The chances of each will be told to you before you make your first allocation.
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Once again, when you have made the allocation, the random device which we call

Nature will determine whether you move Left or Right. The amount of money that

you allocated to the realised outcome will be your payoff for that particular decision

problem. At the end of all the decision problems, one will be chosen at random, and

your payoff for that particular problem will be your payment for the experiment.

An Example

Look at Figure 1 below. This a screen shot of a particular decision problem. Like in

every problem the amount of money with which you are initially allocated is £40. You

will see that in this problem there is a 60% chance that Nature will choose Left and a

40% chance that she will choose Right after your first decision. What happens at the

second decision node depends upon the move that Nature made at the first decision

node. In this example, if Nature moves Left after your first decision, then there is a 70%

chance that Nature will move Left and a 30% chance that she will move Right after your

second decision. If instead Nature moves Right after your first decision, then there is a

60% chance that Nature will move Left and a 40% chance that she will move Right after

your second decision. Note that these probabilities change from problem to problem.

Figure 1 here.

As in every problem you initially have £40 to allocate. When you click on "Click to

Continue" the computer shows a random allocation. In the picture the allocation of

the £40 is £25 to Left and £15 to Right. You must decide your preferred allocation by

moving the slider under the boxes.

Figure 2 here.

When you have decided on and shown your preferred allocation, you should click

on ’Click to Continue’. At this point the random move by Nature will be played out:

the computer generates a series of random numbers, the last of which determines the
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move by Nature, and the stated chances are respected. Suppose that the outcome of

this random process is that Nature chooses Left. Then, because £25 in this example has

been allocated to Left, this is the amount of money which you are asked to allocate at

the second stage. The Figure 3 below illustrates. It is restated here that there is a 70%

chance that Nature will move Left and a 30% chance that she will move Right after this

second decision (these are obviously the same chances that you were told when you

started this problem). Once again, when the screen opens the allocation is random and

you must decide and show your preferred allocation by moving the slider under the

boxes. In the figure the allocation of the £25 is £15 to Left and £10 to Right.

Figure 3 here.

When you have shown your preferred allocation, you should click on ’Click to con-

tinue’. Once again, the random move by Nature will be played out: the computer

generates a series of random numbers, the last of which determines the move by Na-

ture, and the stated chances are respected. Suppose that the outcome of this random

process is that Nature chooses Left. Then your payoff for that decision problem would

be £15. Your payment for the experiment will be a randomly chosen one of the payoffs

on all the decision problems.

Nature

Here we give some more detail about Nature and the random process that the com-

puter uses. Nature is our word for a random process. Nature operates completely

independently of your decisions. When, for example, there is a 60% chance of Na-

ture moving Left and a 40% chance of Nature moving Right, then what Nature does

depends only on these chances and not on your decision.

Nature is implemented by the computer in the following way: the computer has a

routine for generating a sequence of random numbers that are equally likely to be

anywhere between 0 and 1. The program generates a sequence of 10 of these and the

last of these determines Nature’s move: in this 60% /40% example, if the last number
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is less than 0.6 then Nature’s move is Left and if the last number is greater than 0.6,

then Nature’s move is Right. In general if there is a p% chance of Left and a (100-p)%

chance of Right, then Nature moves Left if the random number is less than p/100 and

moves Right if the random number is greater than (100-p)/100.

Implementation

If anything is unclear after reading the Instructions, you should ask for clarification

from one of the experimenters. Then you should turn to the computer. When you click

on ’Click to Start’ a PowerPoint presentation, which goes at a pre-determined speed,

will be shown. After that, or indeed at any stage of the experiment, you can ask clarifi-

cation from the experimenters. When you are ready you can start the experiment. You

will see that the software forces you to wait a certain amount of time before you can

confirm any decision. This is to ensure that you always state your preferred allocation.

But of course you should do anyhow, as your payment depends upon your decisions.

At the end of the experiment, you should call over one of the experimenters, and in

front of him or her, you will randomly determine the decision problem which will de-

termine your payoff. The experimenter will pay you in cash after you have completed

a brief questionnaire and signed a receipt for the payment. You will then be free to go.

We estimate that the whole experiment will last some 90 minutes.

Thank you for your participation.
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Mathematical Appendix 1: The optimal strategies for the various types

Preamble

Let us consider the following utility function

u(x) =

8><>:
x1� 1

r �1
1� 1

r
for r 6= 1

ln(x) for r = 1
,

which implies that marginal utility is given by

u0(x) = x�1/r.

Strict concavity requires 0 < r < ∞. The RDEU function is

U = v1u(x1) + v2u(x2) + v3u(x3) + v4u(x4),

where x1, x2, x3 and x4 are respectively the outcomes for options 1A, 1B, 2A, and 2B.

The weights attached to the different outcomes depend on actual probabilities adjusted

using the weighting function w with parameter g.

As it is known, these weights depend on the ranking of the outcomes. Therefore, it

is necessary to consider all possible 24 different rankings of the final outcomes xk for

k = 1, ..., 4. Each of these will identify a different objective function and a different

admissible range for the solution to the maximization problem.

To make this point clear, we consider a simple example. Assume that x1 > x2 > x3 >

x4. In this case, the weights are as follows

v1 = w(q1)

v2 = w(q1 + q2)� w(q1)

v3 = w(q1 + q2 + q3)� w(q1 + q2)

v4 = 1� w(q1 + q2 + q3),

where qi is the compound probability of outcome i. If the ranking contains an equality,
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e.g. x1 = x2 > x3 > x4, then � letting x1 = x2 = x21 � the weights are as follows

v21 = w(q1 + q2)

v3 = w(q1 + q2 + q3)� w(q1 + q2)

v4 = 1� w(q1 + q2 + q3).

Therefore for each possible ranking of the final outcomes, there is a different set of

weights, hence a different RDEU function.

Resolute

In this section we consider the choice problem for a resolute decision maker. Recall

that there are i = 1, ..., 24 possible rankings of the final outcomes that must be taken

into account. The maximization problem in this case should be written as follows

max
xk

U s.t.
4

∑
k=1

xk = m and fxkg4
k=1 respect ranking i.

Since each ranking defines an admissible range for the choice variables that can be

described by a system of inequalities, we should consider a different constrained max-

imization problem for each ranking as follows. Consider for example the following

ranking

x1 � x2 � x3 � x4. (1)

In this case, the maximization problem can be written as1

max
xk

v1u(x1) + v2u(x2) + v3u(x3) + v4u(x4) (2a)

s.t. x2 � x1 6 0 (2b)

x3 � x2 6 0 (2c)

x4 � x3 6 0 (2d)

x1 + x2 + x3 + x4 = m (2e)

1We neglect the non-negativity constraints, as they are not binding for the utility function.we con-
sider.
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Let γ be the multiplier for constraint (2e) and λ1 � 0, λ2 � 0 and λ3 � 0 be the

multipliers respectively for constraints (2b), (2c) and (2d). The first order conditions

for this problem are given by

v1u0(x1) + λ1 � γ = 0 (3a)

v2u0(x2)� λ1 + λ2 � γ = 0 (3b)

v3u0(x3)� λ2 + λ3 � γ = 0 (3c)

v4u0(x4)� λ3 � γ = 0 (3d)

λ1(x2 � x1) = 0 (3e)

λ2(x3 � x2) = 0 (3f)

λ3(x4 � x3) = 0 (3g)

x1 + x2 + x3 + x4 �m = 0 (3h)

Depending on which inequality constraint is binding at the solution, we have differ-

ent admissible cases which varies with the parameters. While this procedure allows

to completely characterize the solution set for each possible ranking and therefore to

identify the global optimum by finding the highest value for the indirect expected util-

ity, it cannot be easily coded in a program to run the necessary simulations.

Therefore, we choose to tackle the problem in a different way, to be explained in what

follows. For concreteness, assume the ranking is given by (1), as all the other rankings

can be treated in the same way. The first step is to realize that for each possible ranking

of the final outcomes there are four possible configurations that can arise: no equality

among outcomes, equality among two outcomes (with two sub-cases to be described

in what follows), equality among three outcomes and equality among all outcomes.

Let us refer to these cases as case 1, 2, 3, 4 and 5 respectively. In case 1, none of the

inequality constraints (2b)�(2d) is binding and therefore λj = 0 for j = 1, 2, 3. In case

2, only one inequality constraint is binding and therefore λj > 0 for some j and λi = 0

for i 6= j. In case 3 and 4, two inequality constraints are binding and therefore λi = 0

for some i = 1, 2, 3 and λj > 0 for j 6= i, the difference between the two sub-cases

being whether the binding constraints alternate or not. Finally in case 5, all constraints
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are binding and therefore the solution is xk = m/4 for k = 1, ..., 4.

In each of the remaining cases, the solution can be explicitly computed using (3a)�(3h).

If case 1 holds, the solution is

xk =

 
vr

k

∑4
l=1 vr

k

!
m. (4)

If case 2 holds (suppose again for concreteness that x1 = x2, the other cases being

symmetric), the solution is

x1 = x2 =

0B@
�

v1+v2
2

�r

2
�

v1+v2
2

�r
+ vr

3 + vr
4

1CAm, (5a)

xk =

0B@ vr
k

2
�

v1+v2
2

�r
+ vr

3 + vr
4

1CAm for k = 3, 4. (5b)

If case 3 holds (suppose again for concreteness that x1 = x2 = x3, the other case being

symmetric), the solution is

x1 = x2 = x3 =

0B@
�

v1+v2+v3
3

�r

3
�

v1+v2+v3
3

�r
+ vr

4

1CAm, (6a)

x4 =

0B@ vr
4

3
�

v1+v2+v3
3

�r
+ vr

4

1CAm. (6b)

Finally if case 4 holds, the solution is

x1 = x2 =

0B@
�

v1+v2
2

�r

2
�

v1+v2
2

�r
+ 2

�
v3+v4

2

�r

1CAm, (7a)

x3 = x4 =

0B@
�

v3+v4
2

�r

2
�

v1+v2
2

�r
+ 2

�
v3+v4

2

�r

1CAm. (7b)

The second step in the procedure requires to keep track of all possible configurations
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of cases 2, 3 and 4 that can arise. Depending on the various rankings considered, case

2 can arise in six possible configurations

x1 = x2 x1 = x3 x1 = x4

x2 = x3 x2 = x4 x3 = x4

On the other hand, case 3 can arise in four possible configurations

x1 = x2 = x3 x1 = x2 = x4

x1 = x3 = x4 x2 = x3 = x4

Finally, case 4 can arise in three possible configurations

x1 = x2 and x3 = x4

x1 = x3 and x2 = x4

x1 = x4 and x2 = x3

Therefore, for each ranking i we can compute the solution set fxkg4
k=1 for each possible

case and verify if it indeed satisfied the given ranking. If it does, it is considered an

admissible solution set, otherwise it is discarded. Finally, the third step of the proce-

dure consists in computing the utility level corresponding to each admissible solution

set and then picking as optimal choice the one that gives the highest value.

Sophisticated

In this section we consider the choice problem for a sophisticated decision maker. The

individual who acts in a sophisticated way solves the problem in two steps. First, given

an allocation m1 and m2 such that m1 + m2 = m, he or she solves the maximization

problem at the final decision nodes, that is those at the second stage.2 Denote the

solution by

(x�1 , x�2) = (x1(m1), x2(m1)) and (x�3 , x�4) = (x3(m2), x4(m2)),

as it depends on m1 and m2. In the second stage, he or she solves for the optimal value

of m1 and m2, taking into account the optimal choices in the final node.

2In this Appendix, we replace the notation m1 and m2 with m1 and m2 as no confusion should arise.
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Let wj denote the weight for outcome j. Given (m1, m2), the sophisticated individual

solves

max
x1,x2

w1u(x1) + w2u(x2) s.t. x2 � x1 6 0 and x1 + x2 = m1 (8)

max
x3,x4

w3u(x3) + w4u(x4) s.t. x4 � x3 6 0 and x3 + x4 = m2 (9)

Let (γ1, µ1) and (γ2, µ2) be the multipliers for the first and second constraint respec-

tively in problem (8) and (9), and consider the first order conditions for problem (8),

the others being analogous:

w1u0(x1) + γ1 � µ1 = 0

w2u0(x2)� γ1 � µ1 = 0

γ1(x2 � x1) = 0

x1 + x2 �m1 = 0

To compute the solution of the first stage problem, which in turn will be used in the

second stage problem, we have to consider all possible combinations of equality and

inequalities. Using the same classification as in the previous section, we to consider

the single configuration for both case 1 and case 5, six configurations for case 2, four

configurations for case 3 and finally three configurations for case 4.

Consider first case 1, so that x1 > x2 and x3 > x4. As in this case γ1 = 0, the solution

to problem (8) is

x�i = xi(m1) =
wr

i m1

wr
1 + wr

2
for i = 1, 2. (10)

By symmetry, the solution to problem (9) is

x�i = xi(m2) =
wr

i m2

wr
3 + wr

4
for i = 3, 4. (11)

10



In the second stage, given x�i for i = 1, 2, 3, 4, the sophisticated individual solves

max
m1,m2

v1u(x�1) + v2u(x�2) + v3u(x�3) + v4u(x�4) (12)

s.t. m1 +m2 = m, (13)

where the weights depend on the actual ranking. The first order conditions for this

problem are

v1u0(x�1)
dx1

dm1
+ v2u0(x�2)

dx2

dm1
� γ = 0 (14)

v3u0(x�3)
dx3

dm2
+ v4u0(x�4)

dx4

dm2
� γ = 0 (15)

m1 +m2 �m = 0, (16)

where γ is the multiplier for (13). From the previous stage, we know that for i = 1, 2

u0(x�i ) =
�

wr
i m1

wr
1 + wr

2

��1/r

and
dxi

dm1
=

wr
i

wr
1 + wr

2
,

and similarly for i = 3, 4. Therefore, from (14) we get

v1

�
wr

1m1

wr
1 + wr

2

��1/r � wr
1

wr
1 + wr

2

�
+ v2

�
wr

2m1

wr
1 + wr

2

��1/r � wr
2

wr
1 + wr

2

�
= γ,

hence

m1 =

"
v1

�
wr

1
wr

1 + wr
2

�1�1/r
+ v2

�
wr

2
wr

1 + wr
2

�1�1/r
#r

γ�r = Aγ�r

and

m2 =

"
v3

�
wr

3
wr

3 + wr
3

�1�1/r
+ v4

�
wr

4
wr

3 + wr
4

�1�1/r
# 1

r

γ�r = Bγ�r,

where

A =

"
v1

�
wr

1
wr

1 + wr
2

�1�1/r
+ v2

�
wr

2
wr

1 + wr
2

�1�1/r
#r

(17)

11



and

B =

"
v3

�
wr

3
wr

3 + wr
3

�1�1/r
+ v4

�
wr

4
wr

3 + wr
4

�1�1/r
#r

. (18)

Using (16), we get

γ�r =
m

A+ B
,

and therefore we conclude that

m�
1 =

�
A

A+ B

�
m and m�

2 =

�
B

A+ B

�
m.

By plugging these values into (10) and (11) we obtain the desired optimal choices of xk

for k = 1, 2, 3, 4.

Consider now case 2, that is the case of a single equality. Three relevant subcases will be

considered in what follows, namely x1 = x2 and x3 > x4 (case 21), x1 > x2 = x3 > x4

(case 22) and finally x1 > x2 and x3 = x4 (case 23). The other subcases can be treated

in a similar fashion.

In case 21, we have x�1 = x�2 =
m1
2 , while x�3 and x�4 are still given by equation (11). This

implies that m2 = Bγ�r , where B is given by equation (18), while using equation (14)

we get

m1 = 2
�

v1 + v2

2

�r
γ�r

Finally, using equation (16) we get

m�
1 =

�
C

C+ B

�
m and m�

2 =

�
B

C+ B

�
m,

where

C = 2
�

v1 + v2

2

�r

By symmetry, in case 23 we get x�3 = x�4 =
m2
2 and

m�
1 =

�
A

A+ D

�
m and m�

2 =

�
D

A+ D

�
m,
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where A is given by (17) and

D = 2
�

v3 + v4

2

�r
.

Finally, in case 22 we have

x�i = xi(m1) =
wr

i m1

wr
1 + wr

2
for i = 1, 2

x�i = xi(m2) =
wr

i m2

wr
3 + wr

4
for i = 3, 4.

Given that m1 +m2 = m, we get

m�
1 =

wr
3(w

r
1 + wr

2)m
wr

3(w
r
1 + wr

2) + wr
2(w

r
3 + wr

4)

m�
2 =

wr
2(w

r
3 + wr

4)m
wr

3(w
r
1 + wr

2) + wr
2(w

r
3 + wr

4)

and hence that

x�1 =
wr

1wr
3m

wr
3(w

r
1 + wr

2) + wr
2(w

r
3 + wr

4)
,

x�2 =
wr

2wr
3m

wr
3(w

r
1 + wr

2) + wr
2(w

r
3 + wr

4)
,

x�3 =
wr

2wr
3m

wr
3(w

r
1 + wr

2) + wr
2(w

r
3 + wr

4)
,

x�4 =
wr

2wr
4m

wr
3(w

r
1 + wr

2) + wr
2(w

r
3 + wr

4)
.

Consider now case 3, that is the case of a two equalities. Two relevant subcases will be

considered in what follows, namely x1 = x2 = x3 > x4 (case 31) and x1 > x2 = x3 = x4

(case 32), as the other subcases can be treated in a similar fashion.

In case 31, it is easy to see that

x�1 = x�2 = x�3 =
m�

1
2
=

wr
3m

3wr
3 + wr

4
and x�4 =

wr
4m

3wr
3 + wr

4
.
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By symmetry, in case 32 we have that

x�1 =
wr

1m
wr

1 + 3wr
2

and x�2 = x�3 = x�4 =
m�

2
2
=

wr
2m

wr
1 + 3wr

2

Consider finally case 4, and in particular the subcase: x1 = x2 > x3 = x4. In this case,

we have

x�1 = x�2 =
m1

2
and x�3 = x�4 =

m2

2
,

and, using equations (14)�(16), we easily get

m�
1 =

�
C

C+ D

�
m and m�

2 =

�
D

C+ D

�
m,

where C and D are defined above.

Naive

In this section we consider the choice problem for a naive decision maker. From the

discussion in the main text, it should be clear that a naive individual will behave like a

resolute decision maker in the first stage of the choice problem. However, at the second

stage, he or she will solve the same first-step problem that a sophisticated individual

solve. Therefore, while in the first stage the optimal choices are the same as those

derived for the case of a resolute individual, in the second stage the optimal choices

are solution to problems (8) and (9), where m1 and m2 are those implied by the first

stage decision.

It follows that for this case no new computations are needed, as all the relevant optimal

choices have been derived above.

Myopic

In this section we consider the choice problem for a myopic decision maker. While this

type of decision maker will solve in the second stage a problem analogous to (8) and

(9), in the first stage he or she will solve the decision problem actually ignoring the
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second stage.

Let x̂ = x1 + x2 and x̃ = x1 + x2. Assuming x̂ � x̃, the myopic decision maker will

solve

max
x̂,x̃

v1u(x̂) + v2u(x̃) s.t. x̃+ x̂ = m and x̃� x̂ 6 0,

where the weight now only involve the probabilities of the first node, namely p and

(1� p) depending on the ranking. As the above problem has the same structure as

problems (8) and (9), the optimal choices can be computed following an analogous

procedure.
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Mathematical Appendix 2: The stochastic specification

Preamble

This document discusses the stochastic specifications employed in the estimation. Through-

out we assume Beta distributions. We begin with a discussion of the general properties

of that distribution.

We use x�, y� and z� to denote the optimal values of the decision variables (under

some decision rule) and x, y and z the actual values. We also use m to denote the initial

amount of money to be allocated.

Properties of Beta distribution

Suppose that x has a Beta distribution with parameters α and β. The parameters must

be positive. The distribution has the following properties:

0 � x � 1 (1)

The pdf (probability density function) f (.) is given by

f (x) =
Γ(α+ β)

Γ(α)Γ(β)
xα�1(1� x)β�1 (2)

The function Γ(.) is what is known as the GAMMA function. It is defined by

Γ(z) =
Z ∞

0
tz�1e�tdt (3)

The cdf (cumulative distribution function) we denote by F(.) - is the integral of f (.)

from minus infinity to x.

The mean of x is given by

Ex =
α

α+ β
(4)

The variance of x is given by

var(x) =
αβ

(α+ β)2(α+ β+ 1)
(5)
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We note that if we want the mean and variance to be such that they are equal to y and

y(1� y)/s for some y, then the following must hold

α = y(s� 1) (6)

β = (1� y)(s� 1) (7)

Note that here the parameter s is the inverse of the variance (divided by y(1� y)). We

note that the variance depends upon y - approaching 0 when y approaches 0 and 1.

Note that s must be greater than 1. These are very nice properties.

Stochastic Specification

(1) We make the following assumption about the distribution of x
m :

A1 x
m has a Beta distribution with parameters α and β given by

α =
x�

m
(s� 1) (8)

β =

�
1� x�

m

�
(s� 1) (9)

These restrictions on the parameters imply that the mean of x
m is equal to x�

m and that

the variance of x
m is x�

m (1 �
x�
m )/s. So the variance goes to zero at the extremes and

the parameter s characterises the precision of the distribution. Also x is bounded to lie

between 0 and m.

(2) We now make the following assumptions about the distributions of y
x and z

m�x :

A2.1 y
x has a Beta distribution with parameters α and β given by

α =
y�

x�
(s� 1) (10)

β =

�
1� y�

x�

�
(s� 1) (11)

These restrictions on the parameters imply that the mean of y
x is equal to y�

x�and that

the variance of y
x is y�

x� (1�
y�
x� )/s. And that y

x is bounded between 0 and 1; and hence
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that y is bounded between 0 and x.

A2.2 z
m�x has a Beta distribution with parameters α and β given by

α =
z�

m� x�
(s� 1) (12)

β =

�
1� z�

m� x�

�
(s� 1) (13)

These restrictions on the parameters imply that the mean of z
m�x is equal to z�

m�x�and

that the variance of z
m�x is z�

m�x� (1�
z�

m�x� )/s. And that z
m�x is bounded between 0 and

1 - and hence that z is bounded between 0 and m� x.

We note that the means of x/m, y/x and z/(m� x) always are between 0 and 1.

A Discretised Specification

We now note that the experimental software forces the subjects to choose integer values

for the decision variables. So we should estimate a discretised version. Take x for

example. This is between 0 and m. The value reported in the experiment is rounded to

the nearest integer. So we get:

� [0, 0.5] becomes 0

� [0.5, 1.5] becomes 1

� [1.5, 2.5] becomes 2

...

� [m� 1.5, m� 0.5] becomes m� 1

� [m� 0.5, m] becomes m.

In terms of proportions, this means that

� [0, 0.5/m] becomes 0

� [0.5/m, 1.5/m] becomes 1/m

18



� [1.5/m, 2.5/m] becomes 2/m

...

� [(m� 1.5)/m, (m� 0.5)/m] becomes (m� 1)/m

� [(m� 0.5)/m, 1] becomes 1.

We can write this in general as

� If x � 0.5/m then x = 0

� If (i� 0.5)/m < x � (i+ 0.5)/m then x = i (for i = 1, 2, ..., (m� 1))

� If (m� 0.5)/m < x then x = m

So the probabilities are as follows (where cd f denotes the cumulative distribution func-

tion):

� P(x = 0) = cd f [0.5/m]

� P(x = i) = cd f [(i+ 0.5)/m]� cd f [(i� 0.5)/m] for i = 1, 2, ..., (m� 1)

� P(x = m) = 1� cd f [(m� 0.5)/m]

By analogy, we have the following for y:

� P(y = 0) = cd f [0.5/x]

� P(y = i) = cd f [(i+ 0.5)/x]� cd f [(i� 0.5)/x] for i = 1, 2, ..., (x� 1)

� P(y = x) = 1� cd f [(x� 0.5)/x],

and for z:

� P(z = 0) = cd f [0.5/(m� x)]

� P(z = i) = cd f [(i+ 0.5)/(m� x)]� cd f [(i� 0.5)/(m� x)] for i = 1, 2, ..., (m�

x� 1)
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� P(z = m� x) = 1� cd f [((m� x)� 0.5)/(m� x)]

So the contributions to the likelihood are (where cd f beta(x, α, β)denotes the cumulative

density up to x under a Beta distribution with parameters α and β):

- for x:

ln
�

cd f beta
�

0.5
m

, α, β

��
if x = 0 (14)

ln
�

cd f beta
�

x+ 0.5
m

, α, β

��
� ln

�
cd f beta

�
x� 0.5

m
, α, β

��
if 0 < x < m

ln
�

1� cd f beta
�

m� 0.5
m

, α, β

��
if x = m

- for y (if observed):

ln
�

cd f beta
�

0.5
x

α, β

��
if y = 0 (15)

ln
�

cd f beta
�

y+ 0.5
x

, α, β

��
� ln

�
cd f beta

�
x� 0.5

m
, α, β

��
if 0 < y < x

ln
�

1� cd f beta
�

x� 0.5
x

, α, β

��
if y = x

Rather trivially if x = 0 then y has to be zero and there is no contribution to the likeli-

hood from y.

- for z (if observed):

ln
�

cd f beta
�

0.5
m� x

, α, β

��
if z = 0 (16)

ln
�

cd f beta
�

z+ 0.5
m� x

, α, β

��
� ln

�
cd f beta

�
z� 0.5
m� x

, α, β

��
if 0 < z < m� x

ln
�

1� cd f beta
�

z� 0.5
m� z

, α, β

��
if z = m� x

Rather trivially if x = m then z has to be zero and there is no contribution to the

likelihood from z.
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