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Abstract

The spokes model is a recent framework to study n-firms spatial

competition. In a spatial framework firms delivering their product can

price discriminate with respect to consumers’ location. Conditions for

the existence of a price-location equilibrium of the spokes model with

delivered product are established in both the case where there are

as many firms as spokes and in the case not all spokes are occupied.

The equilibrium outcome may be interpreted as one firm supplying a

"general purpose product" while others focusing on their "niche".
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1 Introduction

This paper analyzes endogenous location in the spokes model when firms are

allowed to price discriminate. It also establishes the existence and properties

of a price-location equilibrium in this context.

The spokes model is a theoretical framework to model non-localized spa-

tial competition between n firms. Firms and customers are located over

spokes of constant length which have a common centre. Consumers can buy

from whichever firm they like but if the firm is not located on their own

spoke, either the customer or the delivering firm has to travel through the

centre of the market. In this sense the spokes model can be seen as a natural

extension of Hotelling competition on a line, when there is a generic number

n of firms in the market. The spokes spatial configuration has been recently

introduced in the literature on product differentiation by Chen-Riordan[3].

Two are the main contributions of Chen-Riordan’s paper: the first is to prove

that in a limiting equilibrium as the number of spokes and firms tend to in-

finity the spokes model captures Chamberlin’s original idea of monopolistic

competition; the second is to highlight that strategic interaction in the spokes

model may imply price increasing competition. Although the features of the

spokes model may not perfectly match the ones of real world markets1, the

framework can be considered as an important theoretical alternative to the

circular city model model (Salop[17]) when the neighbouring effects of com-

petition are not particularly relevant. The new but growing literature2 on

the spokes model has focused on price and entry choices of firms exogenously

1One notable exception may be the concrete sector (Syverson[18]). Concrete is pro-

duced by firms at several locations in the territory and it is usually shipped to final users.

This market is often cited in discussions of spatial price discrimination (Phlips[16]) and of

the spokes model (Chen-Riordan[4]).
2The spokes model is used, between others, by Caminal-Claici[1] in the context of

loyalty rewarding schemes, by Caminal-Granero[2] to study the provision of quality by

multi-product firms, by Ganuza-Hauk[7] to address allocation of ideas in tournaments, by

Chen-Riordan[4] regarding vertical integration.
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located at the extreme of their own spoke.

Product delivery by firms is a very common assumption in the literature

on spatial pricing. The analysis of location-contingent pricing can be traced

back to Greenhut-Ohta[9] in the monopolistic case and Greenhut-Greenhut[8]

in an imperfectly competitive case. Perfect price discrimination is more likely

in a spatial setting than in most other market configurations, as firms can

easily get precise information on the address of the customers and deliver

them the products. As a consequence, there is an extensive literature on

optimal firms’ location and product delivery. Thisse-Vives[19] were the first

to point out that in a spatial context competitive price discrimination makes

all firms worse off. While a monopolist can extract all of consumers’ rent by

discriminating with respect to location, in a duopoly with perfect informa-

tion firms will match the opponent’s offer to a given customer located at a

generic point. Lederer-Hurter[14] establish the existence of a price-location

equilibrium in a duopolistic spatial framework. They prove under very gen-

eral assumptions that the profit maximizing location chosen by firms corres-

pond to the socially optimal one. MacLeod-Norman-Thisse[15] consider an

n-firms spatial model and prove the existence of a price-location equilibrium

with free-entry. Their assumptions on the spatial configuration is compatible

with a circular city model à la Salop. The conclusions are similar to the ones

of Lederer-Hurter[14], although free entry might determine a too large or a

too small number of varieties.

In this paper the topological structure of the spokes model is unmodi-

fied but a different game is considered. Firms are allowed to price discrim-

inate customers with respect to their location on the spokes by delivering

the product to the consumers’ address3. Endogenous location in an n firm

market with no neighbouring effects is tackled. The game analyzed allows

3The opposite assumption of consumers traveling to the firm’s outlet would leave the

results unaffected (Vogel[20]). However, assumptions on perfect information and on the

impossibility of arbitrage may be less convincing in that case.
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customers to choose whichever brand/firm they like of the n existing on

the market. This feature is in sharp contrast with the spokes model with

uniform pricing: in that case tractability requires a given customer to have

positive demand for at most two brands. The analysis of this game allows to

shed light on a number of the issues discussed above. This paper not only

extends Theorem 1 and Theorem 3 in Lederer-Hurter[14] in the context of

n firms one-dimensional competition but also establishes the conditions for

the existence of a price-location equilibrium when the number of spokes is

greater than the number of firms on the market. The properties of this new

equilibrium are characterized, highlighting the differences with respect to the

benchmark case. As expected, full competition at each location still drives

down prices: this is reflected in a sharp decrease in firms’ profits, as com-

pared to the uniform price case. The main result, however, is to prove that

when there exist parts of the markets not covered by firms, an asymmetric

outcome arises. One firm locates in the middle of the market, while the oth-

ers concentrate on serving their own spoke. This can be interpreted as one

firm supplying a sort of "general purpose" product while all others targeting

the market’s "niches". The multiplicity of equilibria is not occurring if one

of the firms has a cost advantage. In that case, the most efficient firm is

the natural candidate for supplying the general purpose product. The social

optimality of product delivery in the short run seems robust to the presence

of n firms on the market.

The rest of the paper is structured as follows. Section 2 briefly intro-

duces the spokes model and its main features when firms are allowed to

price discriminate. Section 3 describes the game analyzed and provides the

main results. The existence and properties of a price-location equilibrium are

presented both for the case in which there are as many firms and spokes and

for the case in which the number of spokes is greater than the one of firms.

Mixed strategies are also considered. Section 4 concludes. Unless otherwise

stated, the proofs of all propositions can be found in the Appendix.
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2 Price Discrimination in the Spokes Model

The market is described as a set of spokes with a common core. Each spoke

has a constant length which is normalized to ls = 1/2, s = 1...N . The

market is constituted of a fixed number of spokes N . Customers are distrib-

uted along each spoke according to a distribution function f(xs). Without

loss of generality it will be assumed throughout the paper that customers

are uniformly distributed over the market, so that at each point of a spoke

there is a density f(xs) = 2/N of customers; any non degenerate distribu-

tion function can be employed without affecting the results4. Each customer

has a valuation v of each unit of the good. She demands one unit of the

good from firm i if: v − pi > 0. If no firm can provide a positive utility the

customer stays out of the market: v − pi ≤ 0 ∀i = 1...n: this possibility is
ruled out and it is assumed that v is high enough for the market to be covered.

On the supply side, it is assumed that n ≤ N firms locate over the spokes.

Each spoke is occupied at most by one firm5: this feature implies that each

firm has its own spoke but, if the inequality holds strictly, not on all spokes

there is a firm. The good supplied is a priori homogeneous: the only source

of differentiation is given by the distance that separates the consumers from

the firm. Unlike Chen-Riordan [3], who introduced the spokes model, it is

not necessary to assume that each consumer has only one favourite brand

as an alternative to the one represented by his own spoke. Competition can

take place between all firms at the same time. The entry stage is overlooked:

assuming an exogenously given number of firms enter the market does not

4The intuition for the result is the following: in computing both firms’ profits and

social cost functions, each location has to be considered independently. This is due to

the assumption of product delivery, which allows firms to condition the price schedule to

consumers’ location. Local competition implies that the shape of the distribution function

affects the optimal location but does not affect the properties of it.
5This assumption is not strictly necessary: when n ≤ N it can be shown that no pair

of firms have incentive to locate on the same spoke.
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Figure 1: Spokes model with endogenous location with n = 3 and N = 5.

prevent to capture the main insights of the analysis. The focus of this paper is

on the location choice of firms. A generic firm i can locate on whatever point

of its spoke li which is denoted by yi. This feature implies that yi ∈ [0; 1/2]6.

As firms deliver their product to consumers, they are allowed to price

discriminate customers according to their location over the spokes. A generic

customer located on a spoke s is identified by x: consumers in x = 0 are

located at the extreme of the considered spoke while consumers at x = 1/2

are exactly at the center of the market. The location of each consumer,

however, is spoke dependent: a consumer is fully identified by xs although at

times it will be convenient to denote xf , f = 1...n, for consumers on spokes

occupied by firms and xe, e = 1...N − n for consumers located on empty

spokes.

The assumptions stated imply that competition between firms takes place

for each individual customers at any specific given location. Figure 1 illus-

trates the spokes model in case two firms are located in the interior of their

6Chen-Riordan[3] and most of the following literature assumed that firms were all

located at the origin of each spoke, i.e. yi = 0 ∀i = 1..n.
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spoke while one is at the extreme. The two remaining spokes are not occu-

pied by firms, but consumers are uniformly distributed all over the spokes.

The topology of the spokes model is not trivial: for this reason a discussion

of the definition of distance is in order. The distance between firm i, located

at yi and the customer located at xs is defined as d(yi, xs). The notion of

distance, then, is also spokes-dependent. In particular, if the firm and the

customer are both located on the i-th spoke, then distance can be written

as:

d(yi, xs) = |yi − xs| s = i

But if the firm is located on a different spoke with respect to customer x(l),

then distance is written as:

d(yi, xs) =

µ
1

2
− yi

¶
+

µ
1

2
− xs

¶
= 1− yi − xs ∀s 6= i

as the firms always have to travel towards the center of the market to deliver

the product to consumers located over different segments.

Consistent with most of the literature on spatial price discrimination, it is

assumed that serving a customer has a cost which is proportional to distance:

the unit transportation cost is identical for all firms and all customers and

is denoted by t. Each firm can produce the good through a technology

characterized by a unit and marginal cost of ci.

3 APrice-Location Equilibrium of the Spokes

Model

3.1 The Game

It is assumed that n ≤ N firms have entered the market, as the entry stage

is not explicitly modelled. The logical sequence of the game is as follows:

1. Nature has assigned to each of the n firm one and one only spoke,

between the N available.
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2. Location choice: each firm chooses its location yi ∈ [ 0, 1/2 ] on her
spoke;

3. Price choice: given the location yi, the firm chooses the price schedule

pi(xs).

The game is solved by backward induction to identify strategies which are

undominated and constitute a sub-game perfect equilibrium. The following

analysis closely parallels Lederer-Hurter[14], of which this game constitutes

a generalization.

3.2 The Price Equilibrium

Suppose for now that firms have announced their price schedule, given the

selected location yi over their own spoke: pi(xs|yi) ∀i = 1...n. Customers

at location xs choose to buy from the firm providing the good at the lowest

price7. Having definedX as the set of all possible locations over all N spokes,

the following partition ofX from the point of view of firm i can be introduced:

Di(pi, p−i) = {x ∈ X s.t. pi(x|yi) < min{p−i(x|y−i}}

DS(pi, p−i) = {x ∈ X s.t. pi(x|yi) = min{p−i(x|y−i}}

The sets Di and DS can be interpreted as the segments of demand faced

by the i = 1...n firms respectively and in which DS(pi, p−i) is the market

region shared by two or more firms. To complete the definition of the firms’

demand schedules a sharing rule is specified. This is needed to assign the

contended region of the marketDS to a specific firm. Consistent with most of

the existing literature, a cost-advantage (or efficient) sharing rule is adopted.

The implications and the role of this assumption are discussed in presenting

the results of the paper.

7When no ambiguity is possible, the notation x is used from now on instead of xs.
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Definition 1 A cost advantage sharing rule is a function r such that:

r(yi, pi, y−i, p−i, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if ci + td(yi, x) > min{c−i + td(y−i, x)}

ri if ci + td(yi, x) = min{c−i + td(y−i, x)}

1 if ci + td(yi, x) < min{c−i + td(y−i, x)}

ri ∈ ]0, 1[ represents the random share in case parity persists, provided

that
P

i ri = 1. On the basis of the specified sharing rule, the set DS can be

partitioned in the subsets DSi = {x ∈ DS|ri = 1}, for which clearly holds
the following:

S
∀i DSi = DS.

The profit function of firm i is then defined as:

Definition 2 Given that customers are uniformly distributed over the N

spokes and that there exist a sharing rule r, the profit function of firm i is:

πri (yi, pi, y−i, p−i, x) =
2

N

Z
Di

[pi(x|yi)− td(yi, x)− ci] dx

+
2

N

Z
DS

[pi(x|yi)− td(yi, x)− ci] r(yi, pi, y−i, p−i, x)dx

In order to characterize the equilibrium price schedule, it is useful to

identify the boundaries which the firm faces in setting the price at a given

location. The two following remarks allow to characterize these boundaries.

Remark 1 Given the set of locations y = (y1, ..., yi, ..., yn) chosen by firms
at the first stage, firm i can not make losses in serving customer x:

pi(x|y) ≥ ci + td(yi, x) ∀x ∈ X

If this was not the case, from Definition 2 is clear that the customer x

would contribute negatively to profits: this is not rational for the firm.
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Remark 2 Given the set of locations y = (y1, ..., yi, ..., yn) chosen by firms
at the first stage, firm i can not price the good delivered to customer x over

the reservation value:

pi(x|y) ≤ v ∀x ∈ X

A delivered price above the customers’ (known) reservation value would

not only imply that the market may not be fully covered but it is also

privately irrational, as it would drive down to zero the chances of firm i

to serve customer x.

The following proposition characterizes the unique pure strategy equilibrium

of the second subgame:

Proposition 1 Given the set of locations y = (y1, ..., yi, ..., yn), the unique
equilibrium of the price subgame is:

p∗i (x|y) = max {ci + td(yi, x),min{c−i + td(y−i, x)}} ∀i = 1...n (1)

The proposition establishes that the equilibrium price schedule is closely

linked to the cost structure. As a consequence of undercutting, the price at

a generic location x is either the firm’s cost of delivering the product or, if

the firms is the lowest cost provider, the cost of the firm that is the second

most efficient in delivering the good.

3.3 The Location Equilibrium

The equilibrium price schedule identified by (1) implies that the profit func-

tion for firm i can be written as:

πri (yi, pi, y−i, p−i, x) =
2

N

Z
Di

min{c−i + td(y−i, x)}− (ci + td(yi, x))dx

The Nash equilibrium of the location subgame is defined as:

y∗i = argmax
yi∈X

πri (yi, pi, y
∗
−i, p

∗
−i) ∀i = 1...n
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Before proceeding to the characterization of the location sub-game equilib-

rium, it is worth noticing that two possible cases can arise in the spokes

model. The first possibility is that firms occupy all of the existing spokes,

so that n = N : this is a n-firm generalization of the Hotelling[12]-Hoover[11]

case. The second possible market structure is constituted by only n firms

entering the market, made up by N spokes as n < N .

3.3.1 Location equilibrium in the n = N case

In this section the existence and properties of equilibrium are analyzed in

case the number of firms on the market equals the number of spokes. In

order to characterize the equilibrium and its properties it is useful to define

social cost as:

Definition 3 The social cost is the total cost afforded by firms to supply
the good to all customers on the market in a cooperative/cost minimizing

way. Given a vector of locations y = (y1, ..., yi, ...yn), then:

SC(y) =
2

N

Z
X

min
∀i
{ci + td(yi, x)}dx

It is important to notice that social cost is a continuous function of y over

the support X. An important relation between profits and social cost exists

and it is captured by the following expression:

πri (yi, pi, y−i, p−i, x) =
2

N

Z
Di

min{c−i + td(y−i, x)}− (ci + td(yi, x))dx =

=
2

N

∙Z
X

min{c−i + td(y−i, x)}dx−
Z
X

min
∀j
{cj + td(yj, x)}dx

¸
=

=
2

N

Z
X

min{c−i + td(y−i, x)}dx− SC(y) (2)

Although this is a case in which algebra is far more clear than words, an

intuitive explanation of (2) is as follows: the profits of a firm consist of two
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elements. The first is positive and it is made in the region where the firm

is the lowest cost provider, in other words on Di. If the firm is the lowest

cost provider on a region, she concurs to the definition of social cost in that

region. OnDi the profits obtained are the differential between firm’s delivery

cost and the second most efficient firm’s delivery cost, by (1). The other part

is constituted by the rest of the market X on which the firm is not the lowest

cost provider and, as such, does not contribute in computing the social cost

but it does not make any profit either. Profits, then, are defined as the

difference, on all the market X, between the lowest cost rival and the social

cost, which in region Di is just firm’s cost while out of Di is nothing but

the lowest cost rival. Relation (2) allows to establish the following important

results.

Proposition 2 A price-location equilibrium exists in the spokes model

with delivered products and n = N .

Once established the existence of equilibrium, Proposition 3 outlines the

properties of this case.

Proposition 3 The vector y = (y∗1, .., y
∗
i , .., y

∗
n) is an equilibrium of the

spokes model with delivered product when n = N if and only if:

SC(y∗i , y
∗
−i) ≤ SC(yi, y

∗
−i) ∀yi ∈ X ∀i = 1...n (3)

and equilibrium price policies (1) are used by all firms.

The results provided establish that a price-location equilibrium exists in

the spokes model when n = N . The most important feature is to show that

the location chosen in order to maximize firms profits is also minimizing the

sum of transportation costs, i.e. it is socially optimal. The result can be inter-

preted as follows: the competitive pressure between firms takes prices down

to cost; given that a cost-advantage sharing rule is adopted, then profits are

maximized at the location which is also minimizing the joint cost of serving
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the market. This result constitutes an extension of Lederer-Hurter[14], The-

orem 3, to the case of n firms. Propositions 2 and 3 imply that their findings

are robust in the spokes model: despite the gains from possible deviations

are multiplied by (n− 1) in this setting, these are yet not profitable and an
equilibrium exists. For completeness, it has to be stressed that this result is

at the same time a special case of Theorem 3 in Lederer-Hurter[14] as the

location space in the spokes model is one-dimensional: a corollary is that the

equilibrium location vector y is also globally cost minimizing and, given the

price schedule, it corresponds to the location profile chosen by a multi-plant

monopolist.

Finally, notice the following corollary of the general result obtained.

Remark 3 If all firms are symmetric, the competitive and socially optimal
location it is just at the half of each firms’ spoke, i.e. y∗ = ŷ = 1

4
.

As opposed to the next case (n < N), in this setting symmetry between

firms implies a symmetric outcome of the game.

3.3.2 Location equilibrium in the spokes model when n < N

In this section it is maintained that there is an exogenous number of firms n in

the market. This number, however, is smaller than the number of spokes N .

In such a setting the unique pure strategy equilibrium of the price sub-game is

still described in Proposition 1. The intuition is as follows. A cost advantage

sharing rule as in Definition 1 is adopted. For all occupied spokes, the lowest

cost firm prices at the delivered cost of the second most efficient competitor.

For non-occupied spokes, if there exist a firm with a cost advantage, she cap-

tures all the customers by pricing at the most efficient rival’s delivered cost; if

there is not a most efficient firm, all competitors price equally at the common

delivered cost. The equilibrium price schedules are then still described by (1).
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Turning to the location sub-game, the following strategy is used to prove

the existence of the equilibrium and to characterize it. First, it is ruled out

that the outcome of the game is symmetric: this is true in case all firms are a

priori identical too. Second, an asymmetric equilibrium outcome is proved to

exist and characterized. Finally, a mixed strategy equibrium of the location

game is analyzed.

Non Existence of Symmetric Outcomes The main difference between

this case and the previous one, in in which n = N , is the presence of empty

spokes. The consumers on empty parts of the market do not have an a priori

favourite firm and the remaining firms on the market start from even ground

when trying to attract them to purchase their product. This feature affects

the competitive forces in operation and has an impact on the outcome of the

game.

Suppose that all firms produce with the same technology (i.e. ci = c

∀i = 1..n) : in other words all firms are symmetric in every respect. In such
a situation, it is interesting to ask whether a symmetric equilibrium of the

game exists.

Suppose all firms are perfectly symmetric and so are their strategy choices,

the following non-existence result can then be established:

Proposition 4 Assume that all firms are symmetric and the equilibrium
price policies (1) are employed, then a symmetric pure strategy equi-
librium of the location subgame does not exist in the spokes model with
delivered product as n < N .

Proposition 4 establishes the non-existence of a pure-strategy equilibrium

in the location subgame spokes model with delivered product when n < N .

The intuition for this result is the following: suppose first that the centre,

where all the spokes join, is the symmetric equilibrium location of all firms.

In that case, firms obtain no profit and they have a strictly positive unilateral
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incentive to deviate to a location internal to their own spokes. However, as

the equilibrium location is a vector of points internal to the spokes, then it

can be shown that a firm faces a unilateral incentive to move towards the

centre to undercut all competitors and serve a larger share of the market.

This implies that no equilibrium configuration exists when all firms are sym-

metric.

EquilibriumOutcomes Consider then asymmetric equilibrium outcomes.

Before addressing the case of technologically symmetric firms, it is conveni-

ent to establish the existence and properties of the equilibrium in the more

general case. Then, conditions under which a pure strategy price-location

equilibrium with symmetric firms of the spokes model exists and n < N are

provided. It turns out that a small amount of asymmetry between firms is

enough to guarantee the existence of an equilibrium. The next proposition

also characterizes the equilibrium configuration.

Proposition 5 Assume the equilibrium price policies (1) are employed. If

ci < min∀j 6=i{cj}, then a pure strategy equilibrium of the location subgame

exists in the spokes model with delivered product as n < N . Moreover, the

equilibrium location configuration is:

y∗i =
1

2
y∗j =

1

6
+

ci − cj
3t

∀j 6= i

Proposition 5 implies that in order to have a pure strategy equilibrium

it is sufficient that there exist a lowest cost firm differing from all others,

which can still be symmetric. The intuition for this result goes as follows.

First, firms do not have an incentive to locate at the centre of the market,

otherwise all but the lowest cost firm would get zero profits. They can instead

get strictly positive profits by locating in the interior of their spoke. In

that case, it can be verified that the lowest cost firm has an incentive to
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increase her location as much as possible. This tendency finds a limit at the

centre, which is the location chosen by the most efficient firm. She targets

all segments of the market which do not have a favourite brand and captures

them all by locating at the middle. Incidentally, this implies also serving her

own consumers and some consumers located on rivals’ spokes. Other firms,

instead, maximize their profits by "specializing", i.e. serving only part of

their own spokes. It is also worth noting that the optimal location of a given

firm is independent of the number of firms, the number of spokes and the

costs of other less efficient firms. To conclude, a small amount of asymmetry

allows firms to coordinate and a competitive equilibrium to exist: this can be

interpreted as if the efficient firm is supplying a "general purpose" product

while other firms focus on "niches" of the market.

Once determined the existence of the equilibrium and characterized the

optimal locations in case firms are not perfectly symmetric, it is interesting

to see how these compare with the social optimal location configuration.

Proposition 6 Suppose ci < min∀j 6=i{cj} , then the vector of locations ŷ

minimizing the sum of the costs of delivery is given by:

ŷi =
1

2
ŷj =

1

6
+

ci − cj
3t

∀j 6= i

in the spokes model with delivery when n < N .

Social cost is minimized when the most efficient firm locates at the centre

of the market. The social cost decreases as she increases her location but the

centre where all spokes join provides her with a limit to that expansion. Cost

minimization, then, clearly, implies all other firms to choose a location in the

interior of their spokes. The last step is to provide the comparison of the

socially optimal location with the competitive equilibrium in the asymmetric

case. From Proposition 5 and 6 is clear that the optimal choice of both

types of firms (lowest marginal cost and not) coincide with the locations

that minimize social cost. The results of Lederer-Hurter[14] are robust to
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the existence of regions of the market where no firm locates, provided that

the firms can choose an asymmetric locations’ configuration. These results

are summarized in the following proposition, stated without proof as it is

straightforward:

Proposition 7 In the spokes model with delivery if n < N and ci <

min∀j 6=i{cj}, the degree of differentiation is socially optimal.

After the more general case with asymmetric marginal costs, it is really

straightforward to characterize the case in which all firms have access to the

same technology. Despite the symmetry of cost, the locational outcome is

asymmetric. The results are summarized in the following proposition:

Proposition 8 Suppose ci = c ∀i = 1...n and assume the equilibrium price

policies (1) are employed, then an asymmetric pure strategy equilibrium
of the location subgame exists in the spokes model with delivered product
as n < N . Moreover, in the spokes model with delivery when n < N , the

equilibrium location configuration is given by the vector ŷ:

ŷi =
1

2
ŷj =

1

6
∀j 6= i

The vector of locations ŷ coincides with the socially optimal locations’ vector.

The symmetric case is then simply a special case of the asymmetric one

and shares most properties with it: in particular, the (asymmetric) equilib-

rium outcome is socially optimal. However, a further observation is in order.

The existence of areas of the markets over which no firm has a cost advantage

implies that the equilibrium location configuration is asymmetric even if all

firms are perfectly identical. As mentioned above, this can be interpreted in

terms of one firm supplying a "general purpose" product while all other spe-

cialize on their segment of the market. In this case, however, it is not ex-ante

possible to predict which firm i will supply the generic product. There are

in fact n possible equilibrium configurations. This implies that a priori it is
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not possible to forecast which parts of the market will experience specializ-

ation and which others will not and, from the point of view of a regulator,

coordination-type of problems may arise.

An intuitive explanation of these results may be provided by MacLeod-

Norman-Thisse[15]. In standard spatial models in which consumers travel

to the outlet and buy the product, transportation costs can be thought as a

measure of disutility and location is a product characteristic. In presence of

product delivery, instead, the situation can be interpreted as firms trying to

personalize and adapt their products to the demand expressed by consumers.

The results presented can be seen as an explanation why some firms produ-

cing to order are specializing in a very specialized range of items while other

supply a wider product line. A possible example is provided by taylor-made

clothes or made to order shoes: traditional hand-crafting laboratories usually

specialize on a very limited range of products. Large multinational compan-

ies, favoured by the recent developments in internet-based shopping, allow

consumers to personalize their product by choosing between a wide number

of characteristics and items.

Figure 2 illustrates the location equilibrium in case n = 4 firms are on a

market composed of N = 5 spokes. In the same example, the equilibrium

price schedule of firms serving a specific spoke is the following:

pi
¡
xs,

1
6

¢
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.2 + 0.8
¡
1
2
− xs

¢
if 0 < xs ≤ 1

3
s = i

0.2 + 0.8
¡
xs − 1

6

¢
if 1

3
< xs ≤ 1

2
s = i

0.2 + 0.8
¡
5
6
− xs

¢
if xs ∈ X, xs /∈ Xi

while for the firm located at the centre is:

18



Figure 2: Equilibrium location configuration as n < N , with n = 4 symmetric

firms and N = 5 spokes.

pj
¡
xs,

1
2

¢
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.2 + 0.8
¡
5
6
− xs

¢
if 0 < xs ≤ 1

2
s = j

0.2 + 0.8
¡
xf − 1

6

¢
if xf ∈ X, xf /∈ Xj,

1
3
< xf <

1
2

0.2 + 0.8
¡
1
2
− xf

¢
if xf ∈ X, xf /∈ Xj, 0 ≤ xf ≤ 1

3

0.2 + 0.8
¡
5
6
− xe

¢
if 0 ≤ xe <

1
2

assuming c = 0.2 and t = 0.8.

3.3.3 Mixed Strategy Equilibria of the Location Game

The price-location game studied has n pure strategy equilibria and coordin-

ation failures may arise. In such a setting it is of interest to consider also

the mixed strategy equilibria of the game. Mixed strategy equilibria have

an intutive appeal: the probability distribution obtained can be interpreted

as a prediction on the location pattern in a market with a geographical or
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characteristics structure as the spokes model. The question is whether this

location pattern is socially optimal or not.

Before turning to the mixed strategies equilibrium, the socially optimal

location configuration has to be considered. Consider symmetric firms: the

social optimum is characterized then by the following Proposition:

Proposition 9 Suppose all firms are symmetric. The vector of locations ŷ
that minimizes the sum of the costs of delivery is given by:

ŷi =
n2 +N − n

4n2
∀i = 1..n

in the spokes model with delivery when n < N .

It can be noticed that as the number of empty spokes N − n increases,

the social cost minimizing location shifts towards the centre of the market.

In fact, when the all spokes are occupied and firms are all identical it is

easily checked that the social minimizing location corresponds to yi =
1
4

for all firms. However, when there are empty spokes the numerator in the

expression above increases and the optimal location is yi > 1
4
. In case the

number of empty spokes is particularly large (i.e. if N − n ≥ n2), then

minimum differentiation ŷ = 1
2
is the socially optimal choice.

Proposition 10 characterizes the mixed strategy equilibrium of the spokes

model as n < N in the simplest case: n = 2 and N = 3.

Proposition 10 The equilibrium price policies (1) are employed. If n = 2

and N = 3 and both firms choose absolutely continuous distribution functions

with a connected support, then the spokes model with delivered product has a

mixed strategy equilibrium in the location subgame where all firms select

f(yi) =
2

erf{
√
2
2
}

r
2

π
e−2y

2
i ∀yi ∈

∙
0,
1

2

¸
∀i = 1..n
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Figure 3: Joint Cumulative Distribution Function of the Mixed Strategy

Equilibrium.

Table 1. Properties of the MSNE
F (yi)

Mean 0.2299

Median 0.2208

Variance 0.0199

Std Dev 0.1411

where erf(.) denotes the error function. Figure 3 plots the joint cumu-

lative distribution function obtained. The characteristics of the distribution

function characterizing the mixed strategy equilibrium are reported in Table

1. It can be noticed that both the expected and the median location imply

a slightly larger degree of differentiation with respect to the case in which

the number of spokes is identical to the number of firms participating in the

market. More interestingly, however, the mean and the median locations can

be compared with the socially optimal location. The following result can be

stated8:
8This result is reported without proof as it follows directly from the expressions previ-

ously reported.

21



Proposition 11 In the spokes model with n = 2 and N = 3, the expected

location of the MSNE of the game (E(yi) = 0.2299) implies a sub-optimal

excess differentiation with respect to the social cost minimizing configuration

(ŷi = 0.3125).

The failure of firms to coordinate when competing for the empty spokes

implies two types of inefficiencies in their location choices. First, by definition

a mixed strategy equilibrium involves uncertainty on the location of the firms.

In the mixed strategy equilibrium outlined for the special case considered,

the volatility of the location choice, as measured by the standard deviation,

is 0.14. A further source of inefficiency is linked to the discrepancy between

social optimality and the expected value of location under the mixed strategy.

The example considered seems to suggest that firms are expected to choose

an amount of differentiation superior to what would be socially optimal.

The interpretation for this result is that fierce competition for the empty

spokes makes them less profitable in expectation; this is suggesting firms to

be conservative and focus relatively more on their own market turf.

This result may have an interesting empirical implication and help explain

the spread of firms around the center of a market. Given the strong assump-

tions adopted, this interpretation can not be overemphasized; however, the

conclusion may provide a key to understand a pattern often observed in

urban industrial development. Industrial firms usually tend to deliver their

products to final retailers or consumers. In urban agglomerates groups of

firms tend to cluster in districts closer to the periphery than the centre of

the market.

4 Concluding Remarks

This paper establishes the existence and the properties of the equilibria of

the spokes model when firms are in charge of delivering their product to
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customers and they can practice perfect price discrimination with respect to

consumers location.

The main results of the paper are the following: Lederer-Hurter[14] provide

an important existence result and the characterization of the equilibrium in

a spatial duopoly with delivery. This paper generalizes their analysis to the

spokes model. The robustness of their results is confirmed in a n firms spatial

context which is a direct generalization of the Hotelling linear market. Com-

petition drives prices down to delivered costs. Location choice corresponds

to the social optimum, no matter if firms locate on all spokes or not. In case

all spokes are occupied there is an obvious and intuitive relation between

profit maximization and social cost minimization. This is driving the op-

timality result on location. In case there are empty spokes, instead, it is

shown that the only possible equilibrium configuration involves asymmetric

locations. If firms are not totally symmetric, the result can be interpreted as

follows: firms optimally coordinate so that the most efficient provides a "gen-

eral purpose" product, that can be differentiated for targeting the regions of

the market which are not covered by rivals. All other firms concentrate on

their own "niche". However, if all firms are symmetric, a coordination prob-

lem arises: it is not possible a priori to know which firm will serve a wider

market by serving the generic product as n asymmetric equilibrium location

configurations exist. Finally, an atomless mixed strategy with connected

support is considered. The distribution function obtained as an equilibrium

can be interpreted as a possible equilibrium location pattern. In that case,

it is found that the average location displays a socially suboptimal excess of

differentiation.

These results provide a contribution to two different streams of literature.

First, the theory of horizontal product differentiation and, in particular, on

the recently introduced spokes model. It is shown that if firms deliver their

product a fully competitive equilibrium of the model exists. The result is

in sharp contrast with the standard version of the spokes model, in which
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firms charge a uniform price: in that setting, tractability requires consumers

to have preferences for only two varieties of the product and not for all.

Moreover, for the first time the location issue is addressed within the spokes

model.

Second, the results shed new light on optimal firm location under delivered

product. The existence of an equilibrium in the spokes model not only con-

stitutes a generalization of the results of Lederer-Hurter[14] to the case of n

firms. The case in which the number of firms is lower than the number of

spokes displays interesting features. The distinguishing characteristic of the

equilibrium when the number of firms is identical to the number of spokes

is that location choice coincides in case firms are profit maximizers and in

case they aim at social cost minimization. This important and desirable

result holds also in case empty spokes exist. The resulting equilibrium loca-

tion configuration, however, is now asymmetric: one firm supplies a "general

purpose" product targeting the empty spokes while all other focus on their

own "niches". The previous interpretation can be related to the literature

on general purpose products. In contrast with the existing literature9, the

spokes model with product delivery generates "endogenously" an equilibrium

configuration characterized by a general purpose product and niches.

Three extensions are worth exploring in the future. First, the results ob-

tained imply that only one firm produces the general product. An interesting

development would be to find conditions under which one or more firms opt

for a general purpose product while other focus on targeted ones.

A second extension of this research is to find conditions under which a

location equilibrium can be found in the spokes model with mill prcing. This

case is absolutely technically challenging. However, it would be interesting

to address the impact of non covered segments of the market on optimal

9The seminal paper on general purpose products is Von Ungern Sternberg[21]. Fur-

ther results have been provided then by Hendel-Neiva de Figuereido[10] and Doraszelski-

Draganska[6].
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location of firms also in that case.

Finally, the theory developed delivers important empirical predictions.

It is not difficult to find geographical markets in which firms deliver their

product. More challenging is to find markets whose characteristics are fully

captured by the spokes model. The model, however, can be adapted to test

the predictions on of the theory on optimal location.
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A Appendix

The Appendix contains the proofs of all the propositions stated in the text

apart from Proposition 7, 8 and 11.

A.1 Proof of Proposition 1

Remarks 1 and 2 have ruled out all possible prices not included in the fol-
lowing subset:

pi(x|y) ∈ [ ci + td(yi, x), v ]

For a given y, having assumed a cost advantage sharing rule r firm i can

match any offer of a rival firm j as long as she is the most efficient in serving

customer x.

To begin with, consider firm i. First the claim for which, in equilibrium,

the price p∗i (x|y) is identical for all firms i = 1...n. Having defined above:

DSi = {x ∈ DS|ri = 1} the subset of the market region DS in which firm i

has a cost advantage. Then, assuming ad absurdum that:

∀x ∈ DSi , pi(x|y)− pj(x|y) = � > 0, j 6= i

then firm i loses all the customers located in x. On the other hand, proceeding

again ad absurdum:

∀x ∈ DSi , pj(x|y)− pi(x|y) = � > 0, j 6= i

then firm i can raise its price and increase the profit margin on customers

located at x. Then, the only possibility left is that: pi(x|y) = pj(x|y). The
reasoning can be repeated for all j 6= i and for all i = 1...n.

Second, p∗i (x|y) = max {ci + td(yi, x),min{c−i + td(y−i, x)}}. Suppose in-
stead that, for x ∈ DSi, the following holds:

p∗i (x|y)−max {ci + td(yi, x),min{c−i + td(y−i, x)}} = � > 0
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In that case, the second most efficient firm, say j, can choose the price

pj(x|y) = p∗i − ξ and for sufficiently small ξ raise its profit, which contradicts

the definition of equilibrium. The reasoning can be repeated for all j 6= i, all

i = 1...n.

Analogous reasoning allows to establish the result for the subsets of X over

which ri = r and ri = 0. Q.E.D.

A.2 Proof of Proposition 2

As the strategy space Xi is non empty, convex and compact, then it is suffi-

cient to show that the profit function

πri (yi, pi, y−i, p−i, x) =
2

N

Z
Di

min{c−i + td(y−i, x)}− (ci + td(yi, x))dx

is continuous and quasi-concave in yi so that the classical existence results

by Debreu-Glicksberg-Fan10 can be applied. This is done in what follows:

• Continuity in (yi, y−i) The expression of profits in this case is:

πri (yi, pi, y−i, p−i, x) =
2

N

Z
Di

min
∀j 6=i

{cj + td(yj, x)}− (ci + td(yi, x))dx

This can be rearranged as follows:

πri (yi, pi, y−i, p−i, x) =
2

N

"
min
∀j 6=i

½
cj[x]Di + t

Z
Di

d(yj, x)dx

¾

−
µ
ci[x]Di

+ t

Z
Di

d(yi, x)dx

¶#
Given the definition of distance adopted in Section 2, the integrals can

be written as:Z
Di

d(yi, x)dx =

Z yi

0

d(yi, x)dx+

Z x∗

yi

d(yi, x)dx

10The result is reported in Dasgupta-Maskin[5], Proposition 1.
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Z
Di

d(yj, x)dx =

Z x∗

0

d(yj, x)dx

if x∗ < 1
2
and:Z

Di

d(yi, x)dx =

Z yi

0

d(yi, x)dx+

Z 1/2

yi

d(yi, x)dx+

Z 1/2

1−x∗
d(yi, x)dx

Z
Di

d(yj, x)dx =

Z 1/2

0

d(yj, x)dx+

Z 1/2

1−x∗
d(yj, x)dx

if x∗ > 1
2
in which

x∗ =
cj − ci
2t

+
1

2
(1− yj + yi)

is the indifferent consumers between firm i and j, the lowest cost firm

between the rivals. All the functions involved are continuous. All the

transformations required to compute the profit functions (integration,

multiplication, addition and subtraction) are preserving continuity.

The profit function is:

πri (yi, y−i) =
2

N

½Z x∗

0

min
∀j 6=i

{cj + t(1− x− yj)}dx

−
∙Z yi

0

ci + t(yi − x)dx+

Z x∗

yi

ci + t(x− yi)dx

¸¾
in case x∗ < 1/2 and:

πri (yi, y−i) =
2

N

½Z x∗

0

min
∀j 6=i

{cj + t(1− x− yj)}dx

−
∙Z yi

0

ci + t(yi − x)dx+

Z x∗

yi

ci + t(x− yi)dx

¸
+(N − 1)

"Z 1/2

1−x∗
min
∀j 6=i

{cj + t(1− x− yj}dx−
Z 1/2

1−x∗
ci + t(1− x− yi)dx

#)

in case x∗ > 1/2.

As all the functions involved in the computation of the profit function
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in the two different scenarios are continuous, then the only possible

discontinuity may take place when yi and yj are such that a shift takes

place from x∗ < 1/2 to x∗ > 1/2. Define:

yi : {yi ∈ [0, 1/2]|x∗(yi, yj) = 1/2}

and

y−i : {yj ∈ [0, 1/2]|x∗(yi, yj) = 1/2}

In order to verify wether this is the case, consider the following limits:

LDi = lim
yi→y−i

πi(yi, y−i) = lim
yi→y+i

πi(yi, y−i) = LUi =

cjt
2 − cit

2 − 4cjt+ 4cit+ 2t2 − 8c2j + 16cjci + 16cjyjt− 8c2i − 16ciyjt− 8y2j t2

4Nt2

As the limits are identical for all values of yj, then it can be concluded

that the profit function is continuous for all values of yi. A similar

reasoning can be applied to verify continuity with respect to y−i, which

in fact requires continuity only in yj, the location of the lowest cost

rival. Computing the following limits:

LD−i = limy−i→y−−i
πi(yi, y−i) =

cjt− cit+ 2t− 4cj + 4ci − 8y2i t
4Nt

LU−i = limy−i→y+−i
πi(yi, y−i) =

cjt− cit+ 2t− 4cj + 4ci − 8y2i t
4Nt

it is easy to verify they are identical. This allows to conclude the

profit function is also continuous in y−i. The reasoning can then be

repeated for the profit functions of all other n− 1 firms, obtaining an
identical result. This is implying that the profit function is continuous

with respect to both yi and yj for yi ∈ [0, 1/2] yj ∈ [0, 1/2] in all the
possible cases: x∗ < 1

2
, x∗ > 1

2
and x∗ = 1

2
and ∀j 6= i.

• Quasi-Concavity in yi

Using expression (2), the profits can be written as:
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πri (yi, pi, y−i, p−i, x) =
2

N

Z
Di

min{c−i + td(y−i, x)}− (ci + td(yi, x))dx =

2

N

∙Z
X

min{c−i + td(y−i, x)}dx−
Z
X

min
∀j
{cj + td(yj, x)}dx

¸
=

2

N

Z
X

min{c−i + td(y−i, x)}dx− SC(y)

All the term in expression but social cost are independent of yi. In order

to show that the profit function is quasi-concave in yi it is sufficient to

show that the social cost function is quasi-convex in yi. The social cost

as a function of yi can be written as follows:

SC(yi) = ci[x]Di + t

Z
Di

d(yi, x)dx

As all the functions are continuous, quasi-convexity can be checked by

computing the second derivative and verifying it has a positive sign.

Again three cases need to be considered. The second derivative of the

social cost function is:

∂2SC(yi)

∂y2i
=

⎧⎪⎨⎪⎩
5t
2N

if x∗ < 1/2
4t
N

if x∗ = 1/2
9t
2N

if x∗ > 1/2

which is clearly positive in all cases, then social cost is quasi-convex.

This proves the quasi-concavity of πi with respect to yi.

These results, in conjunction with Proposition 1, prove the claim: a price

location equilibrium of the spokes model exists as n = N . Q.E.D.

A.3 Proof of Proposition 3

If y = (y∗1, .., y
∗
i , .., y

∗
n) is a vector of equilibrium locations, then:

πri (y
∗
i , p

∗
i , y

∗
−i, p

∗
−i) ≥ πri (yi, p

∗
i , y

∗
−i, p

∗
−i) ∀yi ∈ X ∀i = 1...n
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which, by (2), can be written as:

2

N

Z
X

min{c−i+td(y−i, x)}dx−SC(y∗i , y∗−i) ≥
2

N

Z
X

min{c−i+td(y−i, x)}dx−SC(yi, y∗−i)

from which (3) follows immediately.

If instead y = (y∗1, .., y
∗
i , .., y

∗
n) satisfies (3) and the equilibrium price schedule

(1) is employed by firms, then by (2) and Proposition 1 y = (y∗1, .., y
∗
i , .., y

∗
n)

is a price-location equilibrium of the spokes model when n = N . Q.E.D.

A.4 Proof of Proposition 4

Suppose first that the vector of equilibrium locations is y∗ = (1
2
, ..., 1

2
), i.e.

the centre of the market. In this case all firms obtain zero profits, as no one

has cost advantage in delivering the product:

c+ td(x, y∗i ) = min{c+ td(x, y∗−i)} ∀ x ∈ X

which is implying that:

pi(x|y) = c+ td(x, y∗i ) ∀ x ∈ X

so that πri = 0 ∀i = 1..n. However, this implies that each firm has a private

unilateral incentive to deviate from y∗i =
1
2
and choose a location internal to

her own spoke yi ∈ [0, 12 [. If the deviation is δ > 0 towards the interior of the
spokes, then:

c+ td(x, y∗i − δ) < min
∀j 6=i

{c+ td(x, y∗j )} ∀ x ∈ Di

where Di, the market served by firm i, is now constituted by consumers on

her own spoke with a location such that i faces the lowest cost in delivering

to them, i.e. Di = {x ∈ Xi|x ∈ [0, 12 −
δ
2
]}. This implies that firm i makes a

positive mark-up on the market served and has a strictly positive profit:
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πri =

Z
Di

min
∀j 6=i

{c+ td(x, y∗j )}− [c+ td(x, y∗i − δ)]dx > 0

This proves that firms have a unilateral incentive to deviate, contradicting

the definition of a pure strategy Nash equilibrium. Then y∗ = (1
2
, ..., 1

2
) can

not be an equilibrium.

Suppose, then, the equilibrium vector y∗ is such that y∗i ∈ [0, 12 [ ∀i = 1..n.
The profits received by firms are:

πri (y
∗) =

1
2Z
0

min
∀j 6=i

{c+ td(x, y∗j )}− [c+ td(x, y∗i )]dx

If vector y∗ were to be the equilibrium, firms should not have an incentive to

deviate. However, suppose firm i moves in the direction of the centre of the

market by δ > 0. In that case the profits of firm i are:

πri (y
∗
i + δ, y∗−i) =

Z
Di

min
∀j 6=i

{c+ td(x, y∗j )}− [c+ td(x, y∗i + δ)]dx

which can be re-expressed as:

πri (y
∗
i + δ, y∗−i) =

1
2Z
0

min
∀j 6=i

{c+ td(x, y∗j )}− [c+ td(x, y∗i + δ)]dx+

+(N − n)

1
2Z
0

min
∀j 6=i

{c+ td(x, y∗j )}− [c+ td(x, y∗i + δ)]dx+

+(n− 1)

1
2Z

1
2
− δ
2

min
∀j 6=i

{c+ td(x, y∗j )}− [c+ td(x, y∗i + δ)]dx

It is possible then to compute the profit differential as:
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∆πri (y
∗, δ) = πri (y

∗
i + δ, y∗−i)− πri (y

∗)

which can be explicitly computed:

∆πri (y
∗, δ) = −

1
2Z
0

[c+ td(x, y∗i + δ)]− [c+ td(x, y∗i )]dx| {z }
+

+(N − n)

1
2Z
0

min
∀j 6=i

{c+ td(x, y∗j )}− [c+ td(x, y∗i + δ)]dx

| {z }
+

+(n− 1)

1
2Z

1
2
− δ
2

min
∀j 6=i

{c+ td(x, y∗j )}− [c+ td(x, y∗i + δ)]dx

| {z }
Substituting the correct expressions for the distance and after the appropriate

algebraic manipulations it is found:

∆πri (y
∗, δ) = πri (y

∗
i + δ, y∗−i)− πri (y

∗) =
1

4
tδ[8y∗i − 2 + 2(N − n) + δ(n− 1)]

As N − n > 0 and n − 1 ≥ 0 it follows that ∆πri (y
∗, δ) > 0 ∀y∗ ∈ [0, 1

2
[.

This implies for all possible symmetric equilibrium configuration firms have

an unilateral incentive to deviate. This contradicts the definition of pure

strategy Nash equilibrium. Q.E.D.

A.5 Proof of Proposition 5

Suppose first that the equilibrium configuration is yi = yj =
1
2
for all firms

j 6= i where i represents the lowest marginal cost firm. In that case, the

profits obtained by firms are:

πrj

µ
1

2

¶
= 0 ∀j 6= i
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πri

µ
1

2

¶
=

2

N

Z
X

min
∀i6=j

{cj + td(yj,x)}dx−
2

N

Z
X

[cj + d(yi, x)]dx =

=
2

N

Z
X

(min
∀i6=j

{cj}− ci)dx+
2t

N

Z
X

[d(yj,x)− d(yi, x)]dx =

= min
∀i6=j

{cj}− ci

i.e. all but the most efficient firm get zero profits. This implies that,

provided that the most efficient firm chooses yi = 1
2
, all other firm choose

a location belonging to the interior of their spoke. This implies the game

reduces to an Arrow-Enthoven problem. This can be written as:

max
yj

πrj(yj,yi) =
2

N

xijZ
0

[ci + td(yi , x)]− [cj + d(yj, x)]dx yi, yj ∈
∙
0,
1

2

¸

max
yi

πri (yi, yj) =
2

N

1
2Z
0

min
∀k 6=i

{ck + td(yk, x)}− [ci + td(yi , x)]dx+

+
2

N

X
k 6=i

1
2Z

xik

[ck + d(yk, x)]− [ci + td(yi , x)]dx+

+
2

N
(N − n)

1
2Z
0

min
∀k 6=i

{ck + td(yk, x)}− [ci + td(yi , x)]dx

where:

xik =
cj − ci
2t

+
1− yi + yj

2

represents the consumer on j-th spoke which is indifferent between firm j

and firm i. Were the maximization unconstrained, firm i had an incentive to

choose a location yi >
1
2
:

∂πri (yi, yj)

∂yi

¯̄̄̄
yi=

1
2
=

cj − ci
t

+
2N − (n+ 3)
2(n− 1) − yj > 0

36



implying, that under our assumptions on N > n, cj > ci and yj ∈ [0, 12 ], the
optimal choice for the most efficient firm must be y∗i =

1
2
. This implies that

the problem for firm j has an internal solution given by:

y∗j =
1

6
+
1

3t
(ci − cj) ∀j 6= i

Q.E.D.

A.6 Proof of Proposition 6

By Definition 3, social cost can be written as:

SC(y1...yn) =
2

N

Z
X

min
∀i
{c+ td(x, yi)}dx

which more explicitly is:

SC(yi, yj) =
2

N

X
k 6=i

xikZ
0

[ck + t|yk − x|]dx+ 2

N

1
2Z
0

[ci + t|yi − x|]dx+

+
2

N
(N − n)

1
2Z
0

[ci + t(1− yi − x)]dx+
2

N

X
k 6=i

1
2Z

xik

[ci + t(1− yi − x)]dx

The problem reduces to:

min
yi,yj

SC(yi, yj)

s.t. yi, yj ∈
∙
0,
1

2

¸
The unconstrained maximization would suggest that the most efficient firm

i should choose location yi >
1
2
. This can be shown by verifying that, under

the assumptions made on n < N , ci and cj:

∂SC(yi, yj)

∂yi

¯̄̄̄
yi=

1
2
= −t− n(cj + ci)

2N
+
3n+ 1

4N
t+

(ntyj + 4)

2N
< 0
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holding for all possible yj ∈ [0, 12 ]. If the constraint for the location of firm
i is binding, then the social cost minimization problem implies an internal

solution for all other n − 1 less efficient firms. In particular, solving the
problem:

min
yj

SC

µ
1

2
, yj

¶
∀j 6= i

leads to the following conclusion:

ŷi =
1

2
ŷj =

1

6
+
1

3t
(ci − cj) ∀j 6= i

Q.E.D.

A.7 Proof of Proposition 9

By Definition 3, social cost can be written as:

SC(y1...yn) =
2

N

"
nX

j=1

Z
Sj

min
∀j
{c+ td(x, yj)}dx+

N − n

n

Z
Sl

c+ td(x, yl)dx

#

which more explicitly is:

SC(y1...yn) =
2

N

⎡⎢⎣n
1
2Z
0

c+ t|yi − x|dx+ N − n

n

1
2Z
0

c+ t(1− yi − x)dx

⎤⎥⎦
from which is easily found that:

ŷi = argmin
yi
{SC(y1...yn)} =

n2 +N − n

4n2
∀i = 1..n

Q.E.D.
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A.8 Proof of Proposition 10

Suppose that the opponent firm j has chosen the strategy f(yj). At any

mixed strategy, firm i must have the same expected payoff defined by:

yiZ
α

πri (yi > yj)f(yj)dyj +

βZ
yi

πri (yi > yj)f(yj)dyj = C

where C is a given fixed constant and:

πri (yi > yj) =

1
2Z
0

[c+ td(x, yj)− c+ td(x, yi)dx] +

+

1
2Z
0

[c+ td(x, yj)− c+ td(x, yi)]dx+

+

1
2Z

x∗j

[c+ td(x, yj)− c+ td(x, yi)]dx

while:

πri (yi < yj) =

x∗ijZ
0

[c+ td(x, yj)− c+ td(x, yi)]dx

After computing the expressions for the profits in the two cases, the condition

on the expected payoff can be written as:

yiZ
α

t

2N
[−3y2i + y2j − 2yjyi + 6yi − 6yj + 2]f(yj)dyj+

+

βZ
yi

t

2N
[−3y2i + y2j − 2yiyj + 2yi − 2yj + 1]f(yj)dyj = C
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Differentiating with respect to yi yields:

(−4y2i + 2)f(yi) +
yiZ
α

(−6yj + 6− 2yj)f(yj)dyj+

−(1− 4y2i )f(yi)−
βZ

yi

(2− 6yi − 2yj)f(yj)dyj = 0

Observe that β can only be equal to 1
2
. Suppose β < 1

2
, this would imply that

firm i choose the centre of the market with probability zero: in that case the

opponent firm would have an incentive to locate exactly at the centre and

earn a strictly positive profits. This leads to:

f(yi)+6(1−yi)F (yi)−2F (yi)(1−yi)−1−(2−6yi)F (yi)+1+2(yi−1)F (yi) = 0

The mixed strategy satisfies the following first order differential equation:

f(yi) = −4yiF (yi)

whose solution is:
dF (yi)

dyi
= ke−2y

2
i

where the constant k is chosen in a way that:
1
2Z

α

dF (yi)

dyi
dyi = 1

and:
αZ
0

dF (yi)

dyi
dyi = 0

It can be shown that the only α compatible with such a requirement are

α = 0 and so the distribution function is:

f(yi) =
2

erf{
√
2
2
}

r
2

π
e−2y

2
i ∀yi ∈

∙
0,
1

2

¸
∀i = 1..n

Q.E.D.
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