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Abstract. We take a general model of externalities matching the Cooper &
John framework with identical agents. If each agent�s payo¤ depends on a parameter
interpreted as the favourableness of the environment, we explore how the number
of Nash equilibria varies with this parameter, especially in the cases in which the
reaction curves are either concave or convex. In many examples the environmental
conditions are themselves endogenous because either market or regulatory forces
interact with agents�Nash equilibrium actions. This gives the idea of a simultaneous
equilibrium in the environment and players� symmetric actions. We analyse how
this generalised equilibrium behaves as a function of some additional parameters
conditioning the environmental response to players actions. We show that generally
there is a fold bifurcation in these equilibria.

We illustrate the principles with two examples from industrial economics (cost
spillovers between �rms and demand spillovers under imperfect competition).

Keywords: cost spillovers, Nash and Market equilibrium, coordination failure
JEL Nos: C62, C72, D43, D62

1. Introduction

There is a huge literature on models in which the setting naturally involves strategic

complementarity and non-cooperative behaviour. This originates with the synthesising

paradigm of Cooper & John (1988) and has applications in both macroeconomic (King

and Wolman, 2004) and microeconomic (Echenique and Sabarwal, 2003) areas. There are

various key results in this area: typically there will be multiple non-cooperative equilibria,

in most applications some of these are more socially desirable than others. It follows that

the system envisaged can get stuck at an undesirable noncooperative equilibrium. In

Cooper and John and the subsequent applications often the environment is de�ned by

some exogenous parameter �-for any given value of � there are likely to be these multiple

conditional equilibria (conditional on a �xed value of �). Usually � is interpreted as

re�ecting the favourableness of the environment to each player. So higher values of �

induce all the players to choose higher levels of actions, given what the other players

choose, and then, with strategic complementarity, multiplier e¤ects will arise, with the

aggregate response exceeding each individual response (Cooper & John,(1988)).

1
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However there are unanswered questions. How does the con�guration of conditional

noncooperative equilibria vary with �, for example do the number of non-cooperative

equilibria systematically vary with � and how can we characterise the di¤erent equilib-

ria that arise beyond saying that they di¤er in their social desirability? Also is � really

exogenous or are there forces which will interact with the noncooperative behaviour of

players to induce changes in �? If so then we would have an unconditional joint (�;action)

equilibrium. In many applications this is the case, eg in market situations � may be

the price and players actions are demands or supplies in which case the requirements of

market equilibrium naturally induce an interdependence between players actions and �:

Alternatively � may be a regulatory parameter set in response to players actions. The

questions are important: �rst if there are multiple equilibria we cannot predict the be-

haviour of the system in terms of either its long run position or its response to parameter

changes. Secondly the appropriate policy control measures can vary with the equilibrium

that we are trying to attain. But if there is another layer of adjustment through � then

endogenous variation in � could eliminate the indeterminacy eg if the only unconditional

equilibrium values of � generate a unique non-cooperative conditional equilibrium in ac-

tions. If this happens then multiplicity of equilibria with strategic complementarity is not

fundamental-embedding the conditional equilibria in a more general equilibrium model

eliminates the indeterminacy.

Cooper & John focus on symmetric Nash equilibria in actions for a given �; ie with

mutual best responses all players choose the same action x given �. Vives (2005) also uses

this approach. Given our assumptions (which mirror but add to Cooper & John) all Nash

equilibria will also be symmetric and will be characterised by a common action x.

We impose some additional structure on players best response functions (in particular

taking them to be concave or convex in the average action of rivals) which allows us to

characterise the number and nature of noncooperative equilibria for a given �: However

variations in � can lead to qualitative shifts in the equilibrium con�gurations, we there-

fore examine these shifts. Three aspects of the externality matter: whether it reduces or
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increases a player�s action (a bene�cial or detrimental externality); whether it increases

or reduces the marginal return to a player�s action (complementary or substitutable ex-

ternalities) and �nally whether the curvature of the reaction function is positive (convex

reaction curve) or negative (concave reaction curve). These correspond to the signs of

di¤erent order derivatives of the players�payo¤ functions. The qualitative shifts occur

because the Nash equilibrium correspondence (giving the equilibrium non-cooperative ac-

tion x as a function of �) is multivalued for intermediate �, due to the multiplicity of

Nash equilibria. For example, with three Nash equilibria existing for a certain range of

intermediate �, agents can end up at any of the three.

Next we introduce a broader idea of equilibrium in which � and the actions of the

players are simultaneously and endogenously determined. We call this an unconditional

� � x equilibrium. In this broader equilibrium not only are players in Nash equilibrium

given � but also the Nash equilibrium action x and � are linked through an additional

general function � = �(x). For example � could re�ect external market or regulatory

conditions and the value of � adjusts with the action x of the agents. We analyse the

nature of � � x equilibria for di¤erent types of positive spillovers and di¤erent forms of

�(x). In fact, for the sake of transparency, we take �(x) = A � Bx (but the principles

are general). We focus on how the equilibrium manifold f�; xg = H(A;B) varies with

the intercept and slope of �(x). As �(x) varies we encounter critical equilibria- marginal

changes in the function �(x) can lead to qualitative changes in the equilibrium con�gu-

rations, e.g. changing the �nite number of � � x equilibria between one, two and three

depending on the nature of the spillovers. This is important, it means that we can explain

sudden occasional structural shifts in individual actions as a response to just marginal

environmental changes. On the other hand it also means that the additional equilibrating

mechanism through � will not generally help in improving determinacy of the system. So

the multiplicity of equilibrium which arises with strategic complementarity is fundamental

in the sytems we study.

We use the Cooper & John framework to illustrate the principles: I identical agents
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with an action externality between them, increasing and concave (in own action) payo¤

functions, multiplier e¤ects arising from a common factor � and add to it a downward

sloping �(x) function. In the �nal section we analyse some examples: �rst a case of

price taking �rms with a cost externality (here � is identi�ed with the real output price).

Second a case of imperfectly competitive �rms with product di¤erentiation where the

spillover comes through the demand for a �rm�s output. An interesting feature of this

example is that the reaction function will not necessarily be monotonic so that in this

case asymmetric Nash equilibria may also arise.

2. Conditional Nash Equilibria in games with strategic
complementarities.

Cooper and John,(1988), have a �xed number I of agents, with payo¤ functions given by

V (xi; ki; �) i = 1; ::; I

where xi � 0 denotes the action of each individual player, i = 1; ::; I. ki is an aggregate

index denoting the average action of all the other players

ki = �j 6=ixj=(I � 1) i = 1; ::; I

and � is a parameter common to all players�payo¤ functions. The functions V (�) exhibit

the following properties:

A1 (i) Vx (x; k; �) > 0, (ii) Vxx (x; k; �) < 0, (iii) Vxk (x; k; �) > 0, (iv) Vx� (x; k; �) > 0

Assumptions (i) and (ii) simply mean that the functions V (�) are increasing and

concave in the agent�s own choice; assumption (iii) implies that the marginal payo¤ of

any individual i increases with ki. In this context, the behavior of each agent will depend

on how he/she expects every other agent will act on average. Assumption (iv) implies

that larger values of � tend to increase each individual agent�s action given the actions of

others.
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Since payo¤ functions are identical, the reaction functions are identical as well for all

agents and are de�ned by1 :

x� (ki; �) = argmax
xi
fV (xi; ki; �) jxi � 0g i = 1; ::; I

Given the assumptions on the V (�) functions, the game exhibits strategic complementari-

ties. The reaction curves (RCs henceforth) of the players are positively sloped, with slope

(at interior best responses) given by

@x� (ki; �)

@ki
= �Vxk

Vxx
> 0

and since Vx� > 0, the RCs shift in a direction of increasing xi as � increases given ki:

@x� (ki; �)

@�
= �Vx�

Vxx
> 0

Given these assumptions on the payo¤ functions the Nash equilibria must be sym-

metric (see Appendix A1). Cooper and John,(1988), prove that the presence of strategic

complementarity is necessary for multiple symmetric equilibria to arise (see Figure 1). If

the RCs always had nonpositive slope there could be at most one Nash equilibrium.

1The best response xi of i is

xi solving Vx (xi; ki; �) = 0 if Vx (0; ki; �) � 0
xi = 0 if Vx (0; ki; �) < 0
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Figure 1: Multiple NE with strategic
complementarities

Figure 1 shows some alternative possible reaction functions with strategic comple-

mentarity and di¤erent equilibrium patterns. It follows that to characterise the Nash

equilibria here we need to impose more structure on the payo¤ functions.

Also Figure 1 is drawn for a given value of parameter �. Since Vx� > 0, changes in �

will cause the reaction functions to shift in a direction of increasing xi as � rises with ki

constant. Thus as � changes, the number of equilibria may change. In the extreme there

will be no Nash equilibria if � is such that the reaction function is always on one side of

the 450 line.

We add some fairly weak assumptions

A2 V (0; ki; �) = 0; V (xi; ki; �) > 0 for xi > 0; ki � 0

@V (0; 0; �)

@xi
is �nite for any �nite �

i.e., without the presence of the other agents, agent i has a �nite positive marginal

payo¤ when his/her action is zero.
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The curvature of the reaction curve is2

@2x�

@k2i
=
2VxxVxkVxkx � V 2xxVxkk � V 2xkVxxx

V 3xx
(1)

This is of ambiguous sign. We call the reaction function concave if @2x�=@k2i < 0 every-

where and similarly convex if @2x�=@k2i > 0 everywhere.

What are the possible NE at �xed values of the parameter �?

To de�ne the switch between activity and inactivity, it is useful to de�ne an interme-

diate �� such that

�� solves Vx (0; 0; �
�) = 0

and the reaction curve for � = �� goes through the origin. At �� if the other agents are

choosing xj = 0 for j 6= i then agent i wishes to choose xi = 0. We assume that �� exists

and is �nite. For � < �� (the environment is less favourable), agent i will still stay inactive

if the others are inactive (there is a value of k strictly positive at which Vx
�
0; k; �

�
= 0

so that i would be inactive at any k � k). However, for more favourable environments

(� > ��), the intercept of the reaction curve is positive and individual i takes a positive

action even if all others have zero action.

2.1. Characterising NE With Concave Reaction Functions. Here the reaction

curve for agent i is concave to the 450 line and shifts with � as shown in Figure 2.

2

@

@ki

@x�i
@ki

= �
Vxkx

�
@x�i =@ki

�
+ Vxkk

Vxx
+ Vxk

Vxxx
�
@x�i =@ki

�
+ Vxxk

V 2xx

=
VxxVxkVxkx � V 2xxVxkk � V 2xkVxxx + VxkVxxkVxx

V 3xx

=
2VxxVxkVxkx � V 2xxVxkk � V 2xkVxxx

V 3xx
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Figure 2: Concave reaction functions

To see the nature of NE in this case we make an additional assumption on the payo¤

functions:

A3 for any � � �� there is a point (x; k) with k > x such that x = x�(k; �).

This condition implies that there must exist a point on the reaction curve below the

450 line for any � � ��. We can then characterise the NE with concave reaction functions.

1. First suppose that @x�(0; ��)=@ki > 1; this means that near the origin the reaction

function must be on the upper side of the 450 line at � = ��.

(i) When � = �� there are two NE at ��, one with xi = ki = 0 and the other with

positive actions, as in Figure 3.
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45 E

S
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kQ i

Figure 3: NE at �xed values of �,
@x� (0; ��) =@ki > 1

(ii) When @x�(0; ��)=@ki > 1, we can de�ne �
+ and x+i as the solution to

@x�

@ki
= 1) Vxk

�
xi; ki; �

+
�
= �Vxx

�
xi; ki; �

+
�

Vx
�
xi; ki; �

+
�
= 0 i = 1; ::; I

This de�nes a point on the 450 line at which there is a reaction curve corresponding

to a parameter �+ just tangent to the 450 line. Parameter �+ must always exist (see

Appendix A2).

Then when � = �+ there is a Nash equilibrium on the 450 line with the reaction

function of �rm i just tangential to the 450 line. There is also another Nash equi-

librium at xi = ki = 0. This is because i0s best response is zero for any ki below

the horizontal intercept &i, as illustrated in Figure 3.

(iii) When �+ < � < �� we have three NE, one at 0 and the other two with positive

agents�choices, as shown in Figure 3 for � = �2.

(iv) If � < �+ there is a unique Nash equilibrium at 0, as in Figure 3 when � = �3.

(v) if � > �� there is a unique Nash equilibrium with positive choices, (as in Figure 3

for � = �1), since we have assumed that the RC must cross the 450 line.
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2. If @x�(0; ��)=@ki � 1, then the reaction curve is always below the 450 line. In this

scenario, there is a unique Nash equilibrium at �� with choices equal to 0, as Figure

4 illustrates.

k i

45 E

x i
D

xDÝk i,SÞ

Figure 4: � = ��, @x� (0; ��) =@ki � 1

As � increases above �� the reaction curve shifts vertically upwards, since, by assump-

tion, as parameter � increases, the RCs can never cross. Hence the intermediate parameter

�+ does not exist if @x�(0; ��)=@ki < 1, but if @x�(0; �
�)=@ki = 1 then �

+ = ��.

When � > �� there is a unique Nash equilibrium with positive choices similar to

Figure 3 for the case of � = �1. On the other hand, when � < �
� there is a unique Nash

equilibrium at the origin similar to Figure 3 for the case of � = �3.

Thus, with concave reaction functions, depending on � the number of Nash equilibria

are:

@x�(0;��)
@ki

> 1 @x�(0;��)
@ki

� 1
� > �� 1; xi > 0 � > �� 1; xi > 0
� = �� 2; xi > 0; xi = 0 � = �� 1; xi = 0

�� > � > �+ 3; x1i ; x
2
i > 0; x

3
i = 0 � < �� 1; xi = 0

� = �+ 2; x1i > 0; x
2
i = 0

�+ > � 1; xi = 0

Table 1: Number of NE with Concave RCs, �� > �+
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2.2. Characterising NE with Convex Reaction Functions. If (1) is positive at

all x; k, then the reaction curve for �rm i is convex to the 450 line and shifts with � as

shown in Figure 5.

k i

45 E

x i
D

S increases

S decreases

xDÝk i,SÞ

Figure 5: Convex reaction functions

Again there are two cases depending on whether the slope of the reaction curve at the

origin (at ��) is greater or less than unity. In either case we assume that eventually for

high k there is a point on the reaction curve above the 450 line.

A4 For any � there is a k < x such that x = x�(k; �)

45 E

S

xD

k

Figure 6: NE at �xed values of �,
@x� (0; ��) =@ki < 1
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1. If the slope of the reaction curve at the origin is less than unity (@x� (0; ��) =@k < 1)

the reaction curve initially lies below the 450 line. Then at �� there are two Nash

equilibria, one with zero choices and the other with positive choices on the 450

line. In this case parameter �+ always exists (from an argument similar to that in

Appendix A2) and �� < �+. At �xed values of parameter �, the patterns of possible

NE (as shown in Figure 6) are:

(i) if � > �+ there is no Nash equilibrium

(ii) if � = �+ there is a unique Nash equilibrium with positive choices

(iii) if �� < � < �+ there are two NE with positive choices

(iv) if � < �� there are two NE, one with positive choices and the other at 0

2. If the slope of the reaction curve at the origin is greater than or equal to unity at

�� (@x� (0; ��) =@k � 1) then at �� the reaction curve is everywhere above the 450

line and at �� the unique Nash equilibrium has choices 0. At � > �� there is no

Nash equilibrium, all agents would have an incentive to continually expand their

own choice. At � < �� the whole reaction curve must shift downwards so there is a

ki > 0 at which the best response by i is to choose xi = 0; i drops out of the market

whenever ki � ki. Then there are two NE one with choices 0 and the other with

positive choices.

@x�(0;��)
@ki

< 1 @x�(0;��)
@ki

� 1
� > �+ no equilibrium � > �� no equilibrium
� = �+ 1; xi > 0 � = �� 1; xi = 0

�+ > � > �� 2; x1i ; x
2
i > 0 � < �� 2; x1i > 0; x

2
i = 0

� = �� 2; x1i > 0; x
2
i = 0

�� > � 2; x1i > 0; x
2
i = 0

Table 2: Number of NE with Convex RCs, �+ > ��
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2.3. The Conditional Nash Equilibrium Correspondence. The Nash equilib-

rium correspondence (NEC henceforth) shows how the Nash equilibrium action varies

with �: Figure 3 gives the Nash equilibria for varying � in the concave reaction curve

case, when @x�(0; ��)=@k > 1: Here starting from a high value �� we continuously reduce

parameter � and the RC shifts downwards to the south east. The two positive Nash equi-

librium choices get closer together converging to a single value at �+. After that further

reductions in � result in the unique Nash equilibrium choices being at the origin. This

yields the generic NEC shown in Figures 7� 8. In Figure 7 below �+ and above �� this is

single valued, but between these values, it is a correspondence with three possible choices

at each �.

SSDS+

x = xDÝx,SÞx

Fig. 7: NEC, @x�(0; ��)=@k > 1,
concave RCs

SD

x = xDÝx,SÞ

x

S

Fig. 8: NEC, @x�(0; ��)=@k � 1,
concave RCs

Figure 8 takes the case in which the reaction functions are concave and have a slope

smaller than unity at the origin.

It is important to realise that the type of NEC shown here is global and generic

depending only on the technological assumptions A1-A3 that we have made: that is

in general no action will be undertaken for a range of low values of parameter �, then

there are multiple possible aggregate choices for a given �, with a low positive action level

decreasing with � and a high positive action level increasing with the same parameter.
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SD S+S0

x = xDÝx,SÞ

x

S

Fig. 9: NEC, @x�(0; ��)=@k < 1,
convex RCs

SDS0

x = xDÝx,SÞ

x

S

Fig. 10: NEC, @x�(0; ��)=@k � 1,
convex RCs

A similar construction for convex RCs gives the NEC for the case of convex reaction

functions. In Figure 6 we have shown how the Nash equilibrium choices vary with �

when @x�(0; ��)=@k < 1: Starting from �+ and continuously reducing �, the RCs shift

downwards to the south east, thus yielding the generic form of the NEC as illustrated

in Figure 9. When instead @x�(0; ��)=@k � 1, continuous reductions in � yield the NEC

illustrated in Figure 10.

3. Endogenising parameter � : Unconditional � � x equilibrium

In many applications there is also an equilibrating process on � so that x; � are simultane-

ously determined. This requirement is de�ned by some function � = �(x) eg � may be a

regulatory parameter which adjusts the favourableness of the environment in response to

the actions x. For instance x re�ects the behaviour of the private sector and � is a control

parameter set by a public sector agency. Another example would have �rms choosing

quantity x while the market auctioneer sets the price �. We assume that

A5 � (0) > 0;� (x) � 0 for all x; �0
(x) < 0;�(x) = 0 for some high x: x�(k; 0) = 0 for

any k.

Apart from normalisations on �, the substance of this assumption is that � decreases

with x and becomes zero at some �nite x. Similar analysis follows if � is increasing in x.
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Now a symmetric � � x equilibrium requires x; � to solve both

x = x� (x; �)

� = �(x)

3.1. Characterising the Number of � � x Equilibria and their Regularity.

From Figures 7 � 10 it is clear that � � x equilibrium is not generally unique but we

can apply the idea of regular and critical equilibria which is associated with study of the

equilibrium manifold (Balasko,(1992), Echenique and Sabarwal, (2003)). The NEC has

particular generic and global properties. It is well de�ned but non-monotonic. With con-

cave RCs the NEC generally has an S-shape but what we might call a rotated V-shape in

the convex case. These patterns are generic under our technological assumptions. Exactly

what shape the segments of the S-shape or rotated V-shape have depend on the precise

functional form of the payo¤ functions, there may be local wiggles within segments. The

��x equilibrium combines the NEC with the function �(x). The basic shape of the NEC

allows us to �nd lower bounds to the number of � � x equilibria and their regularity.

To get simple clear con�gurations we take �(x) to be a stylised linear function

�(x) = A�Bx A;B > 0

Concave Reaction Curves. Various positions of a linear function are shown, as-

suming �(x) = 0 at a �nite x. The result is that for relatively inelastic �(x) there can

be either multiple � � x equilibria (if A is relatively small) or a unique equilibrium with

� above �� (for relatively high values of A). When the RCs are concave but have a slope

at the origin below unity it is somewhat simpler: from inspection of Figure 8 any linear

function �(x) will cut the NEC at most once, either at a positive or zero level of action.
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SSDS+

B1ÝxÞ
B2ÝxÞ B3ÝxÞ

x

x = xDÝx,SÞ

Figure 11: � � x equilibria, concave RCs

A/B

1/BK0

J0

1

1

1

1

2
2

3

K1ÝJÞ

K2ÝJÞ

Figure 12: Concave RCs, @x
�(0;��)
@ki

> 1

We can use the �(x) linearisations to see how the number of � � x equilibria varies

with the parameters of �(x). In fact Appendix A3 shows that we can �nd a complete

characterisation of the equilibrium set in the (A=B; 1=B) space as shown in Figure 12.

There are critical values of the vertical intercept A=B = �0 and the slope 1=B = �0

de�ned by the tangent of NEC at ��, which divide the space of all �(x) functions into

regions with a given number of equilibria. The numbers in Figure 12 refer to the number

of equilibria within a region. For example for any � above �0 there is a line segment

between � and �� and also a tangent to the NEC passing through �. These two lines

de�ne slopes �1 (�) ; �2 (�) between which there are three equilibria. If the slope is equal

to either �1 (�) or �2 (�) we lose the third equilibrium. For slopes outside this range

or intercepts below �0 there is a single equilibrium. For a given intercept above �0 the

nature of the equilibrium set suddenly changes discontinuously as the slope increases from

a single equilibrium to two equilibria (at �2 (�)), then to three equilibria (between �2 (�)

and �1 (�)), to two equilibria again (at �1 (�)) and �nally to a unique equilibrium (above

�1 (�)); the system is structurally unstable and exhibits a fold bifurcation, see Figs 15-16

below (Strogatz,(1994)).

With concave reaction functions but a slope less than unity at the origin the irregularity

of equilibrium does not arise: since x = x� (x; �) is always nondecreasing and �(x) strictly
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decreasing, there is always at most one equilibrium.

Convex Reaction Curves. If the reaction functions are convex Figure A2 of Ap-

pendix A4 shows that the tangent at � = 0 with its slope �0 and intercept �0 divide the

space of �(x) functions into areas with di¤erent equilibrium con�gurations. At �0; �0

there is a unique equilibrium at � = 0 and �0. For intercepts � of �(x) above �0 the

tangent to NEC � (�) de�nes another unique equilibrium. For slopes of �(x) that are

greater than � (�) there are two equilibria while for slopes less than � (�) there are no

equilibria. For intercepts of �(x) below �0 for any slope there is a unique equilibrium

which may involve x > 0 or inactivity. Figure 13 shows the � � x equilibrium and Figure

14 shows how the number of equilibria varies with the parameters of �(x).

SSD S+

B1ÝxÞB2ÝxÞB3ÝxÞ

B4ÝxÞ

B5ÝxÞ

x

Figure 13: Convex RCs, @x
�(0;��)
@ki

< 1

A/B

1/BK0

J0

KÝJÞ

1

11

1
2

0 00

2

Figure 14: ��x equilibrium, Convex RCs

Again the nature of the equilibrium set shifts discontinuously with the slope and

intercept of �(x). For example take a �xed slope above �0 and gradually increase the

intercept from an initial value below �0. First there is a unique equilibrium with inactivity

which moves continuously to a unique equilibrium with positive activity. But when the

intercept moves past �0 there are suddenly two equilibria. This pattern of two equilibria

increases until the curve � (�) is reached at which point there is only a single equilibrium.

With further increases in the intercept we lose even this equilibrium.
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The Signi�cance of these Results. When there are multiple equilibria, compar-

ative statics are generally ambiguous unless a movement from any equilibrium in the

original set gives directions of change which are identical for all equilibria in the new

equilibrium set. For example in the original position suppose E1; E2; E3 are all � � x

equilibria; in the new situation E
0

1; E
0

2; E
0

3 are equilibria. Comparative statics are unam-

biguous (strong) only if a movement from any of E1; E2; E3 to any of E
0

1; E
0

2; E
0

3 gives the

same directions of change. If � is treated as parametric as in Figures 2-6 with convex or

concave reaction curves, the comparative statics are ambiguous (movement starting from

a high level equilibrium is not in the same direction as movement starting from a low

level equilibrium). Comparative statics with respect to �(x) functions are also ambigu-

ous when the reaction curves are convex or concave. For example in Figure 11 within the

region with three equilibria, falls in B lead to a fall in x (possibly discontinuously) so

long as we start from a high action equilibrium, whether the move is to a high or a low

action equilibrium, but the e¤ect on � is ambiguous. Starting instead from a low action

equilibrium, the fall in B leads to a rise in x and fall in �, whether the movement is to

a high or low action new equilibrium. Hence the nature of the comparative static e¤ects

depends on the starting point. Once B reaches the point at which one of the equilibria

is at �+ the two positive action equilibria merge together and vanish for further falls in

B. Analogous arguments apply with convex reaction curves in the case of Figure 13.

Our model violates the su¢ cient condition for strong comparative statics in Echenique

and Sabarwal (2003). As in their model comparative statics are problematic at critical

equilibria: for some directions of change, even locally equilibria cease to exist.

Figures 11-14 have been drawn with a single curvature to NEC. If the curvature of

NEC changes over its length there may be further equilibria.

4. Examples

We apply the preceding arguments to two cases of industrial equilibrium.
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4.1. Cost Externalities in Perfect Competition. There are I identical price-

taking �rms with a cost externality between them, decreasing returns to scale and down-

ward sloping market demand. Homogeneous output x is produced and sold in a perfectly

competitive market. Total cost of each �rm i is a¤ected by the average output level of

other �rms in the market, ki. Each �rm has cost function C(xi; ki): The cost function

satis�es

A6 Cx > 0; Cxx > 0; Ck < 0; Cxk < 0; C(0; k) = 0; C > 0 if x > 0; k � 0; Cx(k; k) �nite

for any k

i.e., marginal cost is positive and increasing but �nite on the 45� line. Total and

marginal cost fall with increases in the average output of other �rms. There are no

�xed costs.

Individual pro�t is

�i = Pxi � C(xi; ki)

where P is the output price (in terms of our general notation we can identify P with �;

and � with V ). The best responses solve the �rst order condition for pro�t maximisation

P = Cx(xi; ki) if P � Cx(0; ki) > 0

xi = 0 if P � Cx(0; ki) � 0

Hence the optimal output of the individual �rm solves

x�(ki; P ) = argmax
xi
f�(xi; ki; P )jxi � 0g i = 1; ::; I

The slope of the reaction curve is

@x�

@ki
= �Cxk

Cxx
> 0 (2)

when the externalities are bene�cial and there are strategic complementarities. Similarly

@x�

@P
=

1

Cxx
> 0
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and the reaction curve shifts in a direction of increasing xi as P rises with ki constant.

The curvature of the reaction curve depends on third order derivatives of the cost

function

@2xi
@k2i

=
2CxxCxxkCxk � C2xxCxkk � C2xkCxxx

C3xx
(3)

If negative this gives us concave RCs, if positive convex RCs.

The equivalent of �� is an intermediate price P � de�ned by

P � = Cx(0; 0)

At P � if other �rms are producing zero output then �rm i wishes to produce zero. We

know that P � is �nite.

Concave Reaction Functions. If (3) is negative at all x, k, then the reaction curve

for �rm i is concave to the 450 line and shifts with P as shown in Figure 2.

At P � i will wish to produce less than ki if P � < Cx(ki; ki): Hence for high ki the

reaction curve will fall below the 45 degree line if

lim
ki!1

Cx(ki; ki) > P
� = Cx(0; 0)

ie eventually increasing marginal cost o¤sets the cost reduction due to the externality. In

e¤ect for su¢ ciently high k at P � the reaction curve is below the 450 line. It is also then

below the 450 line at P < P �. For su¢ ciently high average outputs of other �rms, i�s

best response is a lower level of output than this (which implies that the reaction curve

eventually passes below the 450 line for all prices). This replaces assumption A3.

The pattern of NE then follows those of Table 1. With concave reaction functions,

there will tend to be multiple NE, but a unique Nash equilibrium if the slope of the

reaction curve at the origin is below unity.

The Number of NE with Convex Reaction Functions. If (3) is positive at all

x; k, then the reaction curve for �rm i is convex to the 450 line (this is similar to the



Conditional and Unconditional Multiple Equilibria with Strategic Complementarities21

framework of Orjasniemi et al., (2008), who have oligopolistic rather than price taking

output market). Here for a su¢ ciently high real output price the reaction curve is wholly

above the 450 line for any k

P > Cx(k; k) for any k for su¢ ciently high P

Then at su¢ ciently high real output prices the reaction curve must lie wholly above the

450 line.

Applying the standard analysis with convex RCs, there may be no Nash equilibrium

at all or either one or two equilibria depending on the level of P and the slope of the RC

at the origin. This gives us a pattern of NE as in Table 2.

Market/Strategic Equilibrium. The price itself, P , is generally endogenous being

determined jointly with k from the interaction between the market demand curve and the

aggregate supply curve. Taking the market demand curve as linear

D = A�BP A;B > 0 (4)

gives a number of equilibria which vary with the slope and position of the demand curve

and the convexity/concavity of the RCs. With concave RCs, the exact number and type

of equilibria shift discontinuously as the demand curve changes slope or intercept, exactly

as in Figure 12.

With convex RCs this is also true except that now the largest number of possible

equilibria is two as the slope and intercept of demand varies as in Figure 14.

An Explicit Example. Suppose the cost function is

C(x; k) = [abx(k +A1)
�b +Aa2 ]

1=a �Aa2 i = 1; ::; I; 0 < a < 1; b > 0

The reaction curves are

xi =
(ki +A1)

b

ab

24 P (ki +A1)b
b

! a
1�a

�Aa2

35 if P
(ki +A1)

b

b
> 1 (5)

xi = 0 if P
(ki +A1)

b

b
� 1 (6)
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The reaction curve is upward sloping and its second order derivative is

@2xi
@k2i

=
(ki +A1)

b�2

a (1� a)2

24(a+ b� 1) P (ki +A1)b
b

! a
1�a

+ (a� 1)2 (1� b)Aa2

35
which can be either positive or negative depending on the strength of the externality

e¤ects. For b = 1, @2xi=@k2i > 0 and the reaction function is convex.

We use the output reaction functions as de�ned by (5) and the demand curve as de�ned

by (4), to show that, the exact number and type of market-strategic equilibria,(ME), shift

discontinuously as the demand curve changes slope or intercept (see Figures 15 and 16

which are constructed for the technological parameters in Tables 3,4). In Figure 15 there is

one critical equilibrium for values of A;B which gives x equal to 2:3 (near this equilibrium

the slope of the equilibrium manifold in Figure 15 becomes unbounded). There is another

apparent critical equilibrium when x = 0 which corresponds to losing the origin as a

ME equilibrium. Figure 16 looks similar but here there is the generic critical point when

the equilibrium x is 0:23. However there is another apparent critical point when the

equilibrium x is about 1:7 which arises due to a local wiggle in the NEC.

k

B
A9078144

156

2

4

6

Figure 15: ME with concave RC�s

B
A18 10 2 8

k
4

2

Figure 16: ME, convex RC�s
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Concave(1) Concave(2)
@RC(P�;0)

@k > 1 @RC(P�;0)
@k < 1

P � 0:61 0:44
P+ 0:51 �
x1; P 1 0:00; 0:58, @RC(P;k)@k > 1 5:33; 0:50, @RC(P;k)@k < 1

x2; P 2 0:29; 0:57, @RC(P;k)@k > 1

x3; P 3 3:81; 0:52, @RC(P;k)@k < 1
(1) a = 0:2, b = 0:3, A1 = 0:5, A2 = 1:9, B = 151, A = 87
(2) a = 0:2, b = 0:3, A1 = 1:5, A2 = 1:9, B = 151, A = 87
Table 3- Alternative market equilibria - Concave reaction curves

Convex(3) Convex(4)
@RC(P�;0)

@k < 1 @RC(P�;0)
@k > 1

P � 0:10 0:77
P+ 0:72 �
x1; P 1 0:12; 0:64; @RC(P;k)@k < 1 0:00; 0:65, @RC(P;k)@k > 1

x2; P 2 0:52; 0:58, @RC(P;k)@k > 1 0:44; 0:59, @RC(P;k)@k > 1

x3; P 3 4:42; 0:04, @RC(P;k)@k > 1 3:65; 0:15, @RC(P;k)@k > 1
(3) a = 0:5, b = 1:5, A1 = 0:5, A2 = :0005; B = 14:5, A = 9:5
(4) a = 0:5, b = 1:5, A1 = 1:5, A2 = :9; B = 14:5, A = 9:5
Table 4- Alternative market equilibria - Convex reaction curves

Note that in the convex reaction curve case in Table 4 we �nd an additional P � x

equilibrium due to the nonlinearity of the NEC correspondence.

4.2. Imperfect Competition with Demand Externalities. Another application

is to a downstream duopoly with product di¤erentiation in which the inverse demand

function for each �rm depends on the output level of its rival. Firm i has inverse demand

function

pi = P (xi; xj)

We allow the rival�s output to have two di¤erent e¤ects on the market inverse demand:

on the one hand the higher xj the greater the willingness to pay for xi due to complemen-

tarities between the goods. On the other hand the higher the total outputs (xi; xj) the

more saturated is the market and the lower the willingness to pay for additional units.

In general the marginal market saturation e¤ect may be di¤erent for the two goods-an

increase in xi may generate a larger or smaller fall in pi than an increase in xj : There is
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only one factor of production, labour, and each unit of labour is supplied at a price 1=�.

Output is produced according to a linear production function where one unit of labour is

required to produce one unit of output. Hence the payo¤ function for �rm i is

V (xi; xj) = P (xi; xj)xi � (1=�)xi

We assume that Vxx < 0 (marginal net revenue is falling).

The best output response of i is de�ned by

xi solves Vx(xi; xj ; �) = 0 if Vx(0; xj ; �) > 0

xi = 0 if Vx(0; xj ; �) � 0

which we can write in our usual way as

xi = x
�(xj ; �)

The slope @x�(xj ; �)=@xj is of ambiguous sign depending on the sign of Vxk at any point

and Vx� > 0. Similarly there may be convex or concave RCs.

Note that the reaction function is identical for both the �rms. But even so there

may be asymmetric NE as well as symmetric ones-essentially because we no longer have

monotonic RCs. It is easiest to see this in the context of a speci�c example

pi = A+ �(A1 + xj)
� � xi � bxj

where �; �;A;A1; b > 0: The best response for �rm i is

xi = (1=2)A+ (1=2)�(A1 + xj)
� � (1=2)bxj � (1=2�) (7)

so long as V1(0; xj ; �) = A + �(A1 + xj)� � bxj � 1=� > 0 but xi = 0 if V1(0; xj ; �) � 0:

The slope of the reaction curve for interior best responses is set by

@x�=@xj = (1=2)��(A1 + xj)
��1 � (1=2)b

The concavity or convexity of the reaction curve is given by the sign of

@2x�=@x2j = (1=2)�(�� 1)�(A1 + xj)��2
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so that the reaction curve is concave if � < 1, convex if � > 1:

To see some speci�c examples set A = 1, b = 7:45, A1 = 0:5, � = 3:5, � = 2:75: There

are four NE, two symmetric and two asymmetric exactly as in Figure 17. The loci ab and

cd show the high and low output symmetric equilibria respectively as functions of �: For

values of � below � there are also two asymmetric equilibria lying on the two loci ge and

fe.

S

x2

x1

a

b

c

d

e

f

g

S

Figure 17: NEC, A = 1, b = 7:45,
A1 = 0:5, � = 3:5, � = 2:75

This example has a high value of b so that the market saturation e¤ect of the rival�s

output is much higher than the own output e¤ect. Typically with b < 1 there will not be

any asymmetric equilibria, but two symmetric equilibria. In this case, the equivalent of

�� is an intermediate wage de�ned by

�� = 1= (A+ �A�1 )

which ensures that the reaction curve passes through the origin. The equivalent of �+

and x+ are

�+ = �

"
(b+ 2) (1� �)

�
b+ 2

��

� 1
��1

+ �A1 (b+ 2) + �A

#�1

x+ =

�
b+ 2

��

� 1
��1

�A1
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At �� if the other �rm is producing zero output then �rm i wishes to use no labour and

the level of output then corresponds to 0 = x�(0; ��). For �xed input prices, we can use

the output reaction functions as de�ned by (7), to show that, for speci�c values of the

parameters, it is possible to derive all the Nash equilibrium con�gurations analysed in the

previous sections. For instance, with @x� (0; �) =@xj = (1=2)��A1��1 � (1=2)b > 1 (< 1)

and � < 1 (� > 1), changes in � yield all the Nash equilibrium con�gurations for the

concave (convex) case when � is exogenous. If b > 2, then the reaction functions will no

longer be monotonic, and changes in � can generate asymmetric Nash equilibria. In this

context, we can identify a critical � and x, � and x, such that only symmetric equilibria

exist for � = �. The critical � � x pair solves

@x�
�
x; �
�

@xj
= �1

x�
�
x; �
�
= x

and is given by

� =

"
�

�
b� 2
��

� �
��1

+ (b+ 2)

 
A1 �

�
b� 2
��

� 1
��1
!
+A

#�1

x =

�
b� 2
��

� 1
��1

�A1

Then for 0 < � < �, there are two symmetric NE and two asymmetric NE, as in Figure

17. Further reductions of � lead to lower outputs in the low symmetric NE but to higher

outputs in the high symmetric NE; in the asymmetric equilibria, any decrease in � leads

the high output �rm to produce more and the low output �rm to decrease its production

levels. Eventually for su¢ ciently low �s, the low output �rm is driven out of the market,

as illustrated in Figure 17.

Suppose now that b � 1, so that changes in � only generate symmetric NE and the

NEC is exactly as in Figures 7�8 when � < 1 or as in Figures 9�10, when � > 1. Suppose

also that � is determined endogenously, according to the following linear function, which

positively relates 1=� to the total level of output:

1=� = B +B1 (x1 + x2) B;B1 > 0
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Then with concave RCs, the exact number and type of equilibria shift discontinuously as

the wage function changes slope or intercept, similarly to Figure 12. With convex RCs

this is also true except that now the largest number of possible equilibria is two as the

slope and intercept of the wage curve vary, similarly to Figure 14.

5. Conclusions

In the strategic complementarity paradigm with identical players, the common outcome

is that there may be multiple non-cooperative symmetric equilibria which can often be

Pareto ranked-the system can get stuck at a low level equilibrium in which all players are

uniformly badly o¤ as compared with their outcomes in an alternative equilibrium. It

has been used to explain many features of social situations: Keynesian type phenomena,

undesirable monetary/in�ation equilibria, social security/e¤ort structures.

With identical increasing reaction functions the equilibria are all symmetric. In this

paper we add some structure to the payo¤ functions which allows us to determine their

number. The crucial idea that we add is that of concavity or convexity of reaction func-

tions. With reaction curves satisfying one of these assumptions we can tie down the

number of symmetric equilibria and they range from 0 � 3: We add an exogenous para-

meter � to the reaction curves to delineate the number of non-cooperative equilibria as a

function of �: The Nash equilibria are conditional on �: Here � has the interpretation of

setting the favourableness of the environment, both payo¤s and best responses increase

with �: For some values of � the equilibrium is unique but for other values there are several

alternative non-cooperative equilibria. This allows us to characterise the � equilibrium

correspondence, showing the set of conditional non-cooperative equilibrium best choices

for each value �:

It also allows us to embed the strategic complementarity equilibrium model in a

broader equilibrium approach in which there are some additional equilibrating forces on

� which leads to the idea of an unconditional � � x equilibrium. In this, x is a non-

cooperative equilibrium given a particular value � of �; but � itself is an equilibrium value

of � given x: For simple characterisations of the additional equilibrating forces on � (a
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� � x equilibrium essentially adds a new equilibrium relation � = �(x)), we can then

determine which of the non-cooperative equilibria can appear as ��x equilibria and espe-

cially under what circumstances the system can remain at a low level Nash equilibrium.

Unfortunately this approach does not generally eliminate multiplicity of equilibria despite

the endogeneity of �: It suggests that a more direct hands on approach to equilibrium

selection of � is required to eliminate the indeterminacy eg Stackleberg leadership in the

choice of �.

We also add some exogenous parameters to the function �(x) and show that as these

vary the set of � � x equilibria can discretely shift. Basically these shifts in �(x) can

generate a fold bifurcation in the � � x equilibrium set.

To motivate the abstract discussion, we analyse some examples. We take an industry

with a large number of price-taking �rms who enjoy technological spillovers in costs-

marginal and total costs of any �rm for a given output level are lower, the higher is the

average output level of all other �rms. Each �rm chooses its output taking the real output

price P and the average output of other �rms as parametric. If P is �xed we have the

standard strategic complementarity paradigm. Here P plays the role of the parameter

�: At industry level P may be determined by the interaction of market demand and the

aggregate output of �rms. Market equilibrium determines both P and the output of each

�rm x in a P�x equilibrium. The function �(x) derives from the market demand function

and the output supply correspondence of �rms. We show that the number and nature of

P � x equilibria vary with the slope and intercept of the market demand curve, and that

variations in these demand parameters can yield a fold bifurcation in the P �x equilibria.

A second example highlights the lack of robustness of the usual strategic complemen-

tarity results to non-monotonicity of the reaction curve. This is a duopoly with product

di¤erentiation and identical constant marginal costs where the inverse demand curve fac-

ing one �rm is not monotonic in the output of the second �rm. On the one hand there is

a product di¤erentiation/complementarity e¤ect which increases the demand for one �rm

as the output of the second rises. On the other hand there is a market saturation e¤ect
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which reduces the demand for one �rm when the output of the other rises. This can gen-

erate non-monotonic reaction curves, and, as a result, multiple symmetric or asymmetric

Nash equilibria. Taking the common marginal cost as the parameter 1=�; we explore how

the equilibrium output levels vary with �:

The strategic complementarity paradigm has been a rich stimulus generating new

reasons why equilibria may fail to be attractive normatively. It has been applied in both

static and dynamic contexts. The present paper adds some general structure to allow

more precise characterisation of the possible outcomes and also embeds the approach in a

model in which additional di¤erent equilibrating forces are at work, eg. prices in markets,

to test whether the common welfare consequences of the paradigm hold up.

A. Appendix

A.1. Symmetric Nash equilibria.

Proposition 1. Any Nash equilibrium of the game must be a symmetric Nash equilib-

rium. At a symmetric Nash equilibrium x� (xi; �) = xi, so any Nash equilibrium is on the

450 line.

Proof. This follows from the detailed assumptions on V (�). With identical payo¤

functions, the reaction functions will be identical and given by:

xi = x
�(�j 6=ixj=(I � 1); �)

Any inequality between agents�actions (for instance x1 > x2 > x3:::) means it is possible

to identify a highest action, say xi = maxk xk, and a lowest action, xj = mink xk, for any

k = 1:::I and i 6= j. But since we are assuming Vxk (x; k; �) > 0 (the RCs have a positive

slope), this would also imply

ki < kj

and hence

xi = x
�(ki; �) < x

�(kj ; �) = xj

which is a contradiction. So any Nash equilibrium is on the 450 line3 .
3Note that we cannot have a Nash equilibrium in which one agent chooses xi = 0 and all the other
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A.2. With Concave RCs �+ Exists. Since at �� the RC has slope greater than

unity at the origin but also crosses the 450 line, there must be a point on the RC above

the 450 line at which it has slope unity. From this point, consider the locus of points at

which the slope of successive RCs is unity as � falls. This locus cannot pass through the

origin or cut the vertical axis at xi > 0: if it did, it would have to meet or cross the RC

for ��, which means that two RCs for di¤erent prices must cross, contradicting the fact

that @x�=@� > 0. Hence the locus must cross the 450 line which de�nes �+. The identical

argument holds for convex RCs.

A.3. Generic number of equilibria with Concave Reaction Functions. To

explore the regularity of these equilibrium patterns for the concave case in which the

slope of the RCs exceeds unity at the origin, Figure A1 displays the basic setting.

In Figure A1 the tangent at �� de�nes �0; �0. For intercepts above �0 there are three

equilibria when the slope is in between �1 (�) and �2 (�). For slopes below �2 (�) there is a

single equilibrium with positive activity but for slopes below �1 (�) the single equilibrium

has inactivity.

SSDS+

x

J0 K0

J

K1ÝJÞ

K2ÝJÞ

Figure A1: Concave RCs,
@x� (0; ��) =@ki > 1

agents choose xj > 0, with i 6= j. Since payo¤ functions are increasing in the average action of all the
other players, then the agents choosing xj > 0, with i 6= j, would face a lower k than the agents choosing
xi = 0 and so should choose xj = 0 as well.
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A.4. Generic number of equilibria with Convex Reaction Functions. In Fig-

ure A2, �0; �0 are de�ned by the intercept and slope of the tangent to the NEC at � = 0,

here there is a unique equilibrium. If the intercept of the �(x) functions is higher than

this there is a tangent to the NEC de�ned by the slope � (�). This also de�nes a �(x)

function giving a unique equilibrium. For �(x) intercepts above �0 and slopes below

�0 there is no equilibrium while for slopes above �0 there are always two equilibria. If

the �(x) intercept is exactly �0 but the slope is steeper than �0 there are two equilib-

ria. If the slope is �atter than �0 and the intercept is �0 there is a unique equilibrium.

For intercepts below �0 for any slope the equilibrium is always unique but may involve

inactivity.

SSD S+

x

KÝJÞ

K0

J0

Figure A2: Convex RCs,
@x� (0; ��) =@ki < 1
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