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Abstract

This paper introduces a new class of M-estimators based on generalised em-

pirical likelihood (GEL) estimation with some auxiliary information available

in the sample. The resulting class of estimators is e¢ cient in the sense that it

achieves the same asymptotic lower bound as that of the e¢ cient generalised

method of moment (GMM) estimator with the same auxiliary information. The

paper also shows that in case of smooth estimating equations the proposed es-

timators enjoy a small second order bias property compared to both e¢ cient

GMM and full GEL estimators. Analytical formulae to obtain bias corrected

estimators are also provided. Simulations show that with correctly speci�ed

auxiliary information the proposed estimators and in particular those based on

empirical likelihood outperform standard M and e¢ cient GMM estimators both

in terms of �nite sample bias and e¢ ciency. On the other hand with moder-

ately misspeci�ed auxiliary information estimators based on the nonparametric

tilting method are typically charactersed by the best �nite sample properties.
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1 Introduction

Since the seminal paper of Huber (1964) M-estimators, which are generalisations of

the usual maximum likelihood estimators, have played an important role in statistical

theory; see for example Van der Vaart (1998, Chapter 5). In this paper we introduce

a new class of M-estimators, which is motivated by the fact that in many situations

of practical interest we may have some auxiliary information about the otherwise un-

known distribution F of the sample. For example we might know the probability that

the observed data belong to a certain part of the sample space, or that F has given

known moments (joint or marginal), or that is symmetric around a certain constant.

This information is often available from auxiliary data such as national statistics or

the census. Alternatively the auxiliary information can be a direct by-product of a

given theoretical model. In these situations we might expect that incorporating such

information into the estimation process can reduce the bias and increase the e¢ ciency

of the parameter estimates. For example Imbens and Lancaster (1994) and Hellerstein

and Imbens (1999) use auxiliary information within a generalised method of moments

(GMM) regression framework, whereas Handcock, Houvilainen and Rendall (2000)

combine sample and auxiliary information within generalised linear models. Imbens

and Lancaster (1994) report substantial e¢ ciency gains in the parameter estimates

by incorporating marginal moments from Census data.

The main objective of this paper is to propose a simple two-step method to in-

corporate auxiliary information into an M-estimation process. The method is based

on the generalised empirical likelihood (GEL) estimator developed by Smith (1997)

(see also Newey and Smith (2004) and references therein). To be speci�c in the �rst

step GEL is used to obtain an estimator of F that is consistent with the auxiliary

information available in the sample. This estimator is typically more e¢ cient than

the empirical distribution function normally used in nonparametric settings and puts

unequal weight on each of the observations. In the second step the parameters of in-

terest are then estimated using the same estimating equations that would have been

used if the auxiliary information was not available, but with the contribution of each

observation multiplied by its corresponding weight. This weighted estimation proce-

dure de�nes a new class of M-estimators (WM-estimators henceforth) that typically

will be more e¢ cient than usual M-estimators. Intuitively, the latter are based on an

estimator of F - the empirical distribution function- that is not e¢ cient in presence

of auxiliary information, whereas the former are based on an estimator - the GEL
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distribution function- that by construction makes e¤ective use of this information.

The two-step estimation method of this paper is a generalisation of that proposed

by Zhang (1995) and Hellerstein and Imbens (1999) - see also Owen (2001, Chapter

3.11). These authors use empirical likelihood to obtain the weights to be used in

the estimation. Empirical likelihood however is only one of the possible estimators

that can be used; one could in fact use Owen�s (1991) euclidean likelihood. Another

possibility is to use Efron�s (1981) nonparametric tilting, or the more general empirical

Cressie-Read statistic as de�ned by Baggerly (1998). These methods di¤er from each

other either in terms of computational complexity or in terms of enjoying desirable

statistical properties. For example, Brown and Chen (1998) used Euclidean likelihood

because of its computational simplicity, whereas Imbens, Spady and Johnson (1998)

used nonparametric tilting because of its robustness and numerical stability. They

also typically di¤er in terms of �nite sample properties. On the other hand all of

these methods share a common structure of being members of the general class of

GEL. Thus GEL provides a general and convenient unifying method to obtain a large

class weighted estimators.

The two-step estimation method of this paper can be related to other methods

including GMM, full (or one-step) GEL (Parente and Smith, 2005), and parametric

likelihood estimation. All of these methods include the auxiliary information directly

into the estimation process and produce M-estimators that are asymptotically equiv-

alent to those obtained in this paper (i.e. they have the same asymptotic variance).

However the proposed two-step procedure seems to be preferrable to these alterna-

tives for two reasons: First it is computationally simpler because it involves two

separate optimisation problems, which are typically easier to solve numerically espe-

cially for highly nonlinear models. Second in the case of smooth estimating equations

the resulting WM-estimators enjoy a small second order bias property, that is the bi-

ases have less components than those based on both GMM and full GEL estimators,

which in fact tend to be more biased in �nite samples - see the simulations presented

in Section 4 for some evidence. This interesting property is a direct consequence of

the di¤erent way the auxiliary information is incorporated into the estimation process

(i.e. directly in the case of GMM and GEL, indirectly in the case of the two-step

estimation), and of the fact that the auxiliary information does not contain nuisance

parameters. Indeed with nuisance parameters the property would typically not hold.

Perhaps more importantly the resulting WM-estimators would not be asymptotically

equivalent to those based on either GMM or full GEL estimation and would be typi-
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cally ine¢ cient.

In this paper we make several contributions: �rst we establish consistency and

asymptotic normality of the WM-estimators based on GEL estimation of auxiliary

information. We show that they are e¢ cient in the sense that they have the same

asymptotic variance as that of the e¢ cient GMM estimator with the same auxiliary

information. Second we show how GEL can be used to consistently estimate the

asymptotic variances of the WM-estimators. Third we consider the case where the

auxiliary information is misspeci�ed (i.e. it is inaccurate), and investigate the asymp-

totic properties of the WM-estimators under local misspeci�cation. Fourth we obtain

expressions for the second order biases of the WM-estimators and compare them with

those of GMM and GEL estimators. These expressions can be used to obtain analyt-

ical bias corrected versions of all of these estimators. Finally we illustrate the results

with two empirically relevant examples: an instrumental variable quantile regression

model and a binary dependent variable regression model. for these two models we use

simulations to assess and compare the �nite sample performances of the WM, stan-

dard M and e¢ cient GMM estimators with both correct and moderately misspeci�ed

auxiliary information.

The results of this paper are quite general and can be used in practice to improve

the e¢ ciency of a large number of M-estimators de�ned both by smooth and non-

smooth estimating equations, including the robust estimators of Huber (1973), the

regression quantiles of Koenker and Basset (1978) and the trimmed least squares of

Powell (1986) among others.

The rest of the paper is structured as follows: next section describes brie�y GEL

estimation. Section 3 contains the main results, whereas Section 4 illustrates the

results of this paper with two examples, and reports the results of the simulations.

Section 5 contains some concluding remarks. An appendix contains all the proofs.

The following notation is used throughout the paper: �a:s:� stands for almost

surely, a:s:!, p!, d! denote convergence almost surely, in probability and in distribution,

respectively, and k�k denotes the Euclidean norm. Finally ��� denotes transpose,
while �0�denotes derivative.

2 GEL estimation with auxiliary information

We begin this section with a simple example which motivates the two-step estimation

procedure proposed in this paper.
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Example 1.(Hellerstein and Imbens, 1999) Let x denote a random variable with

unknown distribution F , and suppose we want to estimate the population mean �.

Without any auxiliary information about F the sample mean x =
Pn

i=1 xi=n is the

e¢ cient estimator for �. Consider now estimation of � knowing that Pr (x > 0) = p.

While x is still consistent, it is no longer e¢ cient. The e¢ cient estimator for � is in

fact the weighted average xp = px1+(1� p)x0 where x1 =
Pn

i=1 xiI fxi > 0g =
P
I fxi > 0g

and x0 =
Pn

i=1 xiI fxi � 0g =
P
I fxi � 0g. This estimator can also be written as

xp =
Pn

i=1wixi=n wherewi = (p=p)
Ifxi>0g [(1� p) = (1� p)]Ifxi�0g and p =

P
I fxi > 0g =n

and note that the asymptotic normalised variance of xp is E [V (xjI fxi > 0g)] so that

n [V (x)� V (xp)] = V (x)� E [V (xjI fxi > 0g)] = V [E (xjI fxi > 0g)] > 0

as n!1.
Example 1 clearly shows that incorporating weights obtained from available aux-

iliary information into an estimation process can increase its precision. It is precisely

this type of weighted estimation that we are going to focus on in this paper.

Let fxigni=1 be a random sample from an unknown distribution F with support

X � <: Suppose that there exists some auxiliary information about F that can be

expressed as a �moment function�Z
g (x) dF (x) = E [g (x)] = 0; (1)

where g (x) is an <q-valued vector of functionally independent measurable functions.
To describe how GEL estimation can be used in (1), let � (v) denote a function

of a scalar v that is concave on its domain, an open interval V containing 0. Let

Vn := f� : ��g (xi) 2 V, i = 1; :::; ng and de�ne the GEL class of functions

Gn (�) =
nX
i=1

� (��g (xi)) =n

where � is an <q-valued vector of unknown parameters. Gn (�) includes as special
cases empirical likelihood (EL) with � (v) = log (1� v) and V = (�1; 1), (NT)

nonparametric tilting with � (v) = � exp (v), Euclidean likelihood (EU) with � (v) =
� (1 + v)2 =2 and the family of empirical Cressie-Read statistics (ECR) with � (v) =
� (1 + v)(1+�)=� = (1 + �) where � 2 < is a user-speci�ed constant. In the rest of the
paper we impose the following normalisation on � (v): let �j (v) = dj� (v) =dvj and

�j := �j (0) (j = 1; 2; :::) ; we normalise so that �1 = �2 = �1.1

1As long as �1 6= 0 and �2 < 0 (which we will assume to be true) this normalisation can always
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Let b� := argmax�2Vn Gn (�); the estimated weights

bwi = �1

�b��g (xi)� = nX
j=1

�1

�b��g (xj)� ; (2)

sum to one by construction, satisfy the sample moment condition
Pn

i=1 bwig (xi) = 0
when the �rst order conditions for b� hold (by the strong law of large numbers), and
are positive when b��g (xi) is uniformly small in i. Thus they can be interpreted as
implied probabilities which incorporate the auxiliary information as de�ned in (1).

Given bwi the GEL distribution function estimator of F is de�ned as
bFw (x) = nX

i=1

bwiI fxi � xg :

The following theorem summarises the basic asymptotic properties of b� and bFw (x);
let E [g (x) g (x)� ] := �:

Theorem 1 Assume that E kg (x)k� < 1 for some � > 2, � is positive de�nite,

and � (v) is twice continuously di¤erentiable in a neighbourhood of 0. Then b� :=
argmax�2Vn Gn (�) exists a:s: and

n1=2b� d! N
�
0;��1

�
: (3)

Moreover

n1=2
� bFw (x)� F (x)

�
d! N (0; VFw (x)) ; (4)

where VFw (x) = F (x) (1� F (x))� E [g (xi) I fxi � xg]� ��1E [g (xi) I fxi � xg] :

Equation (4) clearly shows that in presence of (1) the estimator bFw (x) based on
the implied probabilities (2) is more e¢ cient than the empirical distribution functionbFn (x) =Pn

i=1 I fxi � xg =n: It is precisely this e¢ ciency property of bFw (x) that will
be used in the rest of the paper to obtain more e¢ cient M-estimators.

3 Main results

Let  (x; �) : <d ��! <k denote a known vector of functions up to �0 such that

	(�) := E (x; �) (5)

be imposed by replacing � (v) by
�
��2=�21

�
� [(�1=�2) v] : It is satis�ed by EL, NT and ECR among

others.
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and

	(�) = 0 at � = �0

where �0 2 int f�g, and � � <k is the parameter space. In a fully nonparametric
setting, an M-estimator b� of �0 solves approximately


	n �b��


 � inf

�2�
k	n (�)k+ oa:s: (1) ; (6)

where

	n (�) :=

Z
 (x; �) d bFn (x) = nX

i=1

 (xi; �) =n

is the sample analogue of (5). Note that in the most recent statistical literature an

estimator that solves (6) is also referred as Z estimator (see Van der Vaart (1998)).

Note also that if  (x; �) is smooth (6) simpli�es to the more familiarb� := argmin
�2�

k	n (�)k :

3.1 Correctly speci�ed auxiliary information

Suppose that there exists auxiliary information about F available in the moment form

given in (1). In order to include such information into the estimation process, let

	w (�) :=

Z
 (x; �) d bFw (x) = nX

i=1

bwi (xi; �)
denote the weighted sample analogue of (5) where the implied probabilities bwi are
as in (2). Then we de�ne the class of WM-estimators b�w as


	w �b�w�


 � inf

�2�
k	w (�)k+ oa:s (1) : (7)

The following theorem establishes the strong consistency of b�w:
Theorem 2 Suppose that (I) the parameter space � is a compact set, (II) for all

� > 0 infk���0k>� k	(�)k � " (�) > 0, (III) sup�2� k	n (�)�	(�)k = oa:s: (1). Then,

under the assumptions of Theorem 1 b�w a:s:! �0:

The conditions of Theorem 2 are fairly standard in both the statistical and econo-

metric literature on nonlinear models estimation. Su¢ cient conditions for the uni-

form convergence (III) to hold are: (I),  (x; �) continuous at each � 2 � a:s:, and

E sup�2� k (x; �)k < 1. Note however that the (III) is often stronger than needed
for consistency of the estimator. The following theorem replaces uniformity with

monotonicity as in Huber (1964). Assume that  (x; �) : <��! < and � � <.
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Theorem 3 Suppose that (I) the parameter space � is an open interval, (II) for all
� > 0 inf j���0j>� j	(�)j � " (�) > 0, (III) there exists a neighbourhood N0 of �0 such

that E supN0 j (x; �)j < 1, (IV)  (x; �) is continuous and monotone in �. Then,
under the assumptions of Theorem 1 b�w a:s:! �0:

The following theorem establishes the asymptotic normality for the GEL-based

WM-estimator b�w satisfying (7) without assuming smoothness of  (x; �) :
Theorem 4 Suppose that n1=2

�b�w � �0

�
= Op (1), and (I) there exists a �nite non-

singular matrix � such that limk���0k!0 k	(�)� � (� � �0)k = o (k� � �0k), (II) for
all positive �n ! 0 supk���0k��n k	n (�)�	(�)�	n (�0)k = op

�
n�1=2

�
(III) (a)

 (x; �) is continuous at �0 a:s. (b) there exists a neighbourhood N0 of �0 such that

E supN0 k (x; �) g (x)k < 1 (IV) n1=2	n (x; �0)
d! N (0; V (�0)), (V) �0 2 int f�g.

Then under the assumptions of Theorem 1

n1=2
�b�w � �0

�
d! N (0;��g (�0)) ;

where

��g (�0) = �
�1 �V (�0)� E [ (x; �0) g (x)

� ] ��1E [ (x; �0) g (x)
� ]
�	
(�� )�1 :

As with Theorem 2, the conditions of Theorem 4 are fairly standard. Suf-

�cient conditions for the n1=2-consistency condition to hold are that b�w satis�es


	w �b�w�


 � inf�2� k	w (�)k + op
�
n�1=2

�
together with the local di¤erentiability

of 	(�) (I), the local stochastic equicontinuity (II) and a central limit theorem (IV).

The following theorem establishes the asymptotic normality for the WM-estimatorb�w using conditions similar to those used by Huber (1964, Lemma 4).
Theorem 5 Suppose that b�w satis�es (7), b�w p! �0, and (I) 	(�) is di¤erentiable

at � = �0 with 	0 (�0) 6= 0 (II)  (x; �) is monotone in �, (III) E
�
 2 (x; �)

�
and

E [ (x; �) g (x)] are continuous at � = �0, (IV) there exists a neighbourhood N0 of �0
such that E supN0

�
 2 (x; �)

�
<1 and E supN0 [j (x; �)j kg (x)k] <1 . Then, under

the assumptions of Theorem 1,

n1=2
�b�w � �0

�
d! N

�
0; �2	0g (�0)

�
;

where

�2	0g (�0) =
�
E 2 (x; �0)� E [ (x; �0) g (x)

� ] ��1E [ (x; �0) g (x)]
	
=	0 (�0)

2 : (8)
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The following theorem establishes the asymptotic normality for the WM-estimatorb�w assuming that  (x; �) is di¤erentiable; let  0 (x; �0) = @ (x; �) =@�j�=�0.

Theorem 6 Suppose that b�w satis�es 	w �b�w� = inf�2� k	w (�)k, b�w p! �0, and (I)

 (x; �) is continuously di¤erentiable in a neighbourhood N0 of �0, (II) E [ 
0 (x; �)] is

continuous and nonsingular at �0, E
�
k (x; �0)k kg (x)k2

�
<1, there exists a neigh-

bourhood N0 of �0 such that E supN0 [k 
0 (x; �)k kg (x)k] < 1 (III) n1=2	n (x; �0)

d!
N (0; V (�0)), (IV) �0 2 int f�g Then, under the assumptions of Theorem 1

n1=2
�b�w � �0

�
d! N

�
0;� 0g (�0)

�
;

where

� 0g (�0) = [E 
0 (x; �0)]

�1 �
V (�0)� E [ (x; �0) g (x)

� ] ��1E [ (x; �0) g (x)
� ]
�	�

[E 0 (x; �0)
� ]
�1 (9)

Theorems 4-6 show that in presence of auxiliary information (1) on F , the as-

ymptotic variances of the weighted estimators b�w are always smaller than or equal to
the asymptotic variances of the corresponding WM-estimators (6), which are, respec-

tively, ��1V (�0) (�� )
�1, E 2 (x; �0) =	0 (�0)

2 and [E 0 (x; �0)]
�1
V (�0) [E 

0 (x; �0)
� ]
�1
:

The reduction in the asymptotic variance will depend on the relevance of the auxil-

iary information: the larger the correlation between  (x; �) and g (x) the greater the

gain in precision.

Remark 1 Calculations show that ��g (�0) corresponds to the asymptotic vari-
ance of the e¢ cient GMM estimator is given by

I (�0)
�1 =

n
[�; 0] [Eh (x; �0)h (x; �0)

� ]
�1
[�; 0]�

o�1
;

where h (x; �) = [ (x; �)� ; g (x)� ]� . Thus the estimators of this paper are e¢ cient in

the class of GMM estimators de�ned as


W 1=2
n Hn

�b�GMM

�


 � inf
�2�






W 1=2
n

nX
i=1

h (xi; �) =n






+ oa:s (1) ; (10)

where Wn is a (possibly random) positive semi-de�nite weighting matrix. Moreover

if we assume that  (x; �) is di¤erentiable, it is well-known (Chamberlain, 1987) that

I (�0)
�1 is the lower bound for any n1=2 consistent regular estimator of �0 under

E [h (x; �0)] = 0. Thus in this case the estimators of this paper are also e¢ cient in
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the sense that they achieve the (semiparametric) information lower bound for models

de�ned by E [h (x; �0)] = 0:

We now consider the problem of estimating ��g (�0). We propose to use the

following GEL-based estimator

b��g �b�w� = b��1bw
(bV bw �b�w�� nX

i=1

bwi h �xi;b�w� g (xi)�i b��1bw � (11)

nX
i=1

bwi h �xi;b�w� g (xi)�i�)�b��w��1 ;
where bV bw �b�w� =Pn

i=1 bwi �xi;b�w� �xi;b�w�� , b� bw =Pn
i=1 bwig (xi) g (xi)� , and b� bw

is an estimator of � whose form depends on the smoothness of  (x; �). In the smooth

case � contains ordinary derivatives which can be easily estimated (see Remark 2

below). In the nonsmooth case a general strategy to estimate � is to use numerical

derivatives, that is�b� bw�
jl
=

nX
i=1

bwi h j �xi;b�w + bnel

�
�  j

�
xi;b�w�i =bn j; l = 1; :::; k

where bn ! 0 at an appropriate rate as n ! 1, and el is lth unit vector. The

following theorem establishes the weak consistency of b��g �b�w�.
Theorem 7 Suppose that bn ! 0, b2nn ! 1, there exists a neighbourhood N0 of �0
such that E supN0

�
k (x; �)k2

�
< 1, and that the conditions of Theorems 1, 2, and

4 hold. Then b��g �b�w� p! ��g (�0) :

Remark 2 A practical problem for the computation of (11) is the choice of the

size of bn used to form the numerical derivatives. This is in general a di¢ cult problem,

similar in fact to the choice of bandwidth in nonparametric density estimation. In

speci�c cases it is possible to construct estimators that do not involve numerical

di¤erentiation. For example if � is proportional to (or features) the (unknown) density

f (x; �) an alternative estimator for � can often be based on kernel methods - see

Example 2 below. Another case is when  (x; �) is di¤erentiable a:s: with derivative

that is continuous in � a:s: and dominated by an integrable function. On the other

hand in the smooth case b� bw = Pn
i=1  

0
i

�b�w� bwi, and it is easy to show that (11) is
strongly consistent -see Example 4 below.
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We �nally consider one-step WM-estimators and show that they have the same

asymptotic distribution as that of the �fully iterated�WM-estimator b�w of Theorem
5. Consider solving 	w

�b�w� = 0 using the Newton�s algorithm starting with b�w.
The full GEL-based WM-estimator is de�ned as

b�1w = b�w �
"

nX
i=1

bwi 0 �xi;b�w�#�1 nX
i=1

bwi �xi;b�w� :
Theorem 8 Suppose that the conditions of Theorem 5 hold, and that n1=2

�b�w � �0

�
=

Op (1) :Then,

n1=2
�b�1w � �0

�
d! N

�
0;� 0g (�0)

�
;

where � 0g (�0) is as in (9).

Remark 3 All of the results of this section can be generalised by introducing a se-
quence of nonsingular randommatricesMn (xi; �) and considering kMw (xi; �)	w (�)k,
as for example in the classical method of minimum �2. As long as sup�2� kMn (xi; �)k
is bounded and converges to a nonsigular asymptotic matrix M (�0) it is not di¢ cult

to show that the resulting WM-estimator is consistent and asymptotically normal

with covariance

��g (�0) = �
�1 fM (�0)V (�0)M (�0)

� � E [M (�0) (x; �0) g (x)
� ]�

��1E [M (�0) (x; �0) g (x)
� ]
�	
(�� )�1 :

3.2 Misspeci�ed auxiliary information

Thus far we assumed that the auxiliary information (1) is correctly speci�ed (i.e. it

is accurate, or at least accurate with a negligible sampling error). There are however

empirically relevant situations in which this might not be necessarily the case. There-

fore it is of interest to investigate what are the consequences of using misspeci�ed (i.e.

inaccurate) information on the estimation procedure of this paper. In this section we

consider two types of misspeci�cation: a global and a local one. The former can be

parameterised as

E [g (x)] = � 6= 0: (12)

An example of (12) is the situation where the auxiliary information is obtained from

a sample that is not compatible with the one used in the estimation, in the sense

that the two samples are drawn from a di¤erent population. Another example is
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the situation where there is a measurement error in the auxiliary information. In

both cases the function g (x) needs not have zero expectation when the expectation

is taken over the sample population.

Remark 4 The proofs of Theorems 1 and 2 show that when (12) is true the

parameter estimator b�w is in general inconsistent and n1=2	n �b�w� diverges. This
follows because the almost sure limit of the estimator b� is not zero, implying that the
GEL weights (2) e¤ectively introduce an almost sure non zero term which typically

a¤ects the asymptotics of the WM-estimator.

We can test directly whether E [g (x)] = 0 using, for example, a GEL or a Wald

test statistic, that is

Gn = 2

nX
i=1

h
�
�b��g (xi)�� � (0)

i
; (13)

Wn = ng�

 
nX
i=1

g (xi) g (xi)
� =n

!�1
g

where g =
Pn

i=1 g (xi) =n. The asymptotic distributions of Gn and Wn are �2p: If the

p-values of (13) are reasonably high we should be fairly con�dent that the auxiliary

information available is accurate enough that possibly only a small error is intro-

duced into the M-estimation via the constraint
Pn

i=1 bwig (xi) = 0. On the other hand
if the p-values are relatively low then the auxiliary information might be moderately

misspeci�ed. This situation is empirically relevant, because it is likely that typical

sources of auxiliary information such as the Census contain some form of mild mis-

speci�cation (due for example to the presence of measurement error). In Section 4 we

use simulations to investigate the �nite sample e¤ects of using this type of misspeci�ed

auxiliary information in the weighted estimation.

The second type of misspeci�cation is a local one, that is

E [g (x)] = �=n1=2: (14)

This is a situation in between the assumption of knowledge of correctly speci�ed aux-

iliary information and that of a globally misspeci�ed information, because it captures

the case where the auxiliary information is misspeci�ed for any �nite n but the size

of the variation is O
�
n�1=2

�
so that it vanishes asymptotically.

Theorem 9 Suppose that (14) holds. Then under the same assumptions of Theorem

12



1

n1=2b� d! N
�
��1�;��1

�
;

n1=2
� bFw (x)� F (x)

�
d! N (��; VFw (x)) ;

where �� = E [g (xi) I fxi � xg]� ��1� and VFw (x) is the asymptotic variance as de-
�ned in (4) :

Theorem 10 Suppose that (14) holds. Then under the same assumptions of Theo-
rems 2 or 3 b�w a:s:! �0.

Theorem 11 Suppose that (14) holds. Then under the same assumptions of Theo-
rems 4-6

n1=2
�b�w � �0

�
d! N (�� (�0) ; Vg (�0)) ; (15)

where �� (�0) = ��1E [ (x; �0) g (x)
� ] ��1� with Vg (�0) = ��g (�0) in the case of

Theorem 4, �� (�0) = E [ (x; �0) g (x)
� ] ��1�= [	0 (x; �0)]

2 with Vg (�0) = �2	0g (�0)

in the case of Theorem 5, and �� (�0) = [E 
0 (x; �0)]

�1
E [ (x; �0) g (x)

� ] ��1� with

Vg (�0) = � 0g (�0) in the case of Theorem 6.

Remark 5 Calculations show that the asymptotic distribution of the e¢ cient

GMM estimator (and hence that of the full GEL estimator) under the local mis-

speci�cation (14) is (15). Thus the WM estimators of this paper are asymptotically

equivalent to both GMM and GEL estimators under local misspeci�cation.

The following �gure shows the e¤ect of local misspeci�cation in terms of �nite

sample bias of a simple weighted least squares estimator for the regression parame-

ters of yi = ��0xi + "i where �0 = [0; 0:5]� , xi = [1; x1i]
� , and [x1i; "i]

� � N (0; I).

The auxiliary information is parameterised as E (y) = �=n1=2 where � = 30, and is

estimated by empirical likelihood. Note that values closer to the origin correspond

to bigger sample sizes.

Figure 1 approximately here

3.3 Higher order comparisons

The previous two sections showed that under both correct and locally misspeci�ed

auxiliary information WM, GMM and (hence) (full) GEL estimators are asymptot-

ically equivalent. In this section we assume that  (x; �) is smooth and investigate

the higher order asymptotic properties of the WM-estimators.

13



The following theorem gives a third order stochastic expansion for WM-estimators

under regularity conditions similar to those used for example by Newey and Smith

(2004); let @k (�) = @k (�) =�j1 ::::@�jk .

Theorem 12 Suppose that b�w satis�es the conditions of Theorem 6, and that (I)

 (x; �) is four times continuously di¤erentiable in a neighbourhood N0 of �0, (II) there

exists a neighbourhood N0 of �0 such that for k = 1; :::; 4 (a) E sup�2N0
�

@k (x; �)

� <

1, (b) E sup�2N0
h

@k (x; �)

 kg (x)kki, (c) E h

@k�1 (x; �0)

 kg (x)kki < 1 (d)

E kg (x)kk < 1, (III) � (v) is four times continuously di¤erentiable in a neighbour-
hood of 0. Then

n1=2
�b�w � �0

�
= Q1 +Q2 +Q3 +Op

�
n�3=2

�
; (16)

where Q1
d! N

�
0;� 0g (�0)

�
, � 0g (�0) is as in (9), Q2 and Q3 are, respectively, an

Op

�
n�1=2

�
quadratic and Op (n

�1) cubic polynomial in  (x; �0) and g (x) whose exact

expressions are given in (32) and (33) in the Appendix.

The following corollary gives an explicit expression for the second order bias of

n1=2
�b�w � �0

�
. Let tr (�) denote the trace operator, �(j) denote the jth (j = 1; :::; k)

component of �, and let g� (x) = ��1=2g (x) denote the standardised auxiliary infor-

mation.

Corollary 13 Under the assumptions of Theorem 12 the second order bias for

n1=2
�b�w � �0

�
is given by

Bias
h
n1=2

�b�w � �0

�i
= [Bw1 + (1 + �3=2)Bw2 ] =n

1=2; (17)

where

Bw1 = [E ( 
0 (x; �0))]

�1
n
E
h
 0 (x; �0) (E [ 

0 (x; �0)])
�1
 (x; �0)

i
�

E

"
kX
j=1

@ 0 (x; �0) =@�
(j)

#
[E ( 0 (x; �0))]

�1
V (�0) [E ( 

0 (x; �0))]
�1
=2

)
�

[E ( 0 (x; �0))]
�1
E
h
 0 (x; �0) (E [ 

0 (x; �0)])
�1
E
�
 (x; �0) g

� (x)�
�
g� (x)

i
;

Bw2 = [E ( 
0 (x; �0))]

�1 �
E
�
 (x; �0) tr

�
g� (x) g� (x)�

��
��

E
�
 (x; �0) g

� (x)�
��
E
�
g� (x) tr

�
g� (x) g� (x)�

��	
:

14



Corollary 13 shows that the bias of the WM-estimators depends on the expected

�rst and second derivative of the estimators, as well as on the (higher order) correla-

tion between the estimating equations (and their derivatives) and the auxiliary infor-

mation. Corollary 13 also shows that among all of the WM-estimators those based

on empirical likelihood (or any other estimator with �3 = �2) are the least biased in
the sense that their bias is given only by Bw1 as opposed to Bw1 + (1 + �3=2)Bw2 :

Interestingly the same result holds if the higher order correlation between the esti-

mating equation and the auxiliary information and the third moment of the latter are

simultaneously zero. Note also that the small bias property of empirical likelihood

based WM estimators mirrors that obtained by Newey and Smith (2004) in the case

of full GEL estimation of overidenti�ed moment conditions models.

Let dBias hn1=2 �b�w � �0

�i
=
h bBw1 + (1 + �3=2) bBw2

i
=n1=2; (18)

where

bBw1 =

"
nX
i=1

bwi 0 �xi;b�w�#�1
8<:

nX
i=1

bwi
24 0 �xi;b�w� nX

i=1

bwi 0 �x;b�w�!�1  �xi;b�w�
35�

nX
i=1

kX
j=1

bwi@ 0 �x;b�w� =@�(j) nX
i=1

bwi 0 �xi;b�w�!�1 nX
i=1

bwi �xi;b�w� �xi;b�w�� �
 

nX
i=1

bwi 0 �xi;b�w�!�1 =2
9=;�

"
nX
i=1

bwi 0 �x;b�w�#�1 �
nX
i=1

bwi
24 0 �x;b�w� nX

i=1

bw h 0 �x;b�w�i!�1 nX
i=1

bwi � �x;b�w� gb� (xi)�� gb� (xi)
35 ;

Bw2 =

"
nX
i=1

bwi 0 �x;b�w�#�1( nX
i=1

bwi h �xi;b�w� tr �gb� (xi) gb� (xi)��i�"
nX
i=1

bwi � �xi;b�w� gb� (xi)��# nX
i=1

bwi hg� (xi) tr �gb� (xi) gb� (xi)��i) ;
b� = nX

i=1

bwig (xi) g (xi)� ;
denote an estimator of (17). The following corollary shows its strong consistency.
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Corollary 14 Under the same assumptions of Theorem 12

dBias hn1=2 �b�w � �0

�i
a:s! Bias

h
n1=2

�b�w � �0

�i
:

Remark 6 Given the asymptotic equivalence between the GEL based WM-

estimators of this paper and those based on either the e¢ cient GMM or the full

GEL methods for the augmented moment condition h (x; �) =
�
 (x; �)� ; g� (x)�

��
it

seems interesting to make a higher order comparison between them. Using the results

of Newey and Smith (2004) some calculations show that the second-order bias of the

e¢ cient GMM estimator b�GMM is

Bias
h
n1=2

�b�GMM � �0

�i
=
�
Bw1 +Bw2 +Bh1 +B�

h1
+Bh2 +B�

h2

�
=n1=2 (19)

where Bw1, Bw2 are as in (17) and

Bh1 = � [E ( 0 (x; �0))]
�1
E
n
 (x; �0) (x; �0)

� [V (�0)� E ( 0 (x; �0))E ( 
0 (x; �0))]

�1�

E ( 0 (x; �0)) g
� (x)

	
� E

n
 (x; �0) g

� (x)� [V (�0)� E ( 0 (x; �0))E ( 
0 (x; �0))]

�1�

E ( 0 (x; �0)) g
� (x)

	
;

Bh2 = [E ( 
0 (x; �0))]

�1 �
V (�0)� E ( 0 (x; �0))E ( 

0 (x; �0))
���1

[E ( 0 (x; �0))]
�1 �

E
n
 0 (x; �0)

�
V (�0)� E ( 0 (x; �0))E ( 

0 (x; �0))
���1

E ( 0 (x; �0)) g
� (x)

o
;

whereas the bias for the full GEL estimator b�GEL is
Bias

h
n1=2

�b�GEL � �0

�i
=
�
Bw1 +Bw2 +Bh1 +B�

h1

�
=n1=2: (20)

A simple comparison between (17) with (19) (20) clearly shows that both the e¢ cient

GMM and the full GEL estimators have an additional bias terms Bh1 and Bh2, which

arise from the computation of
Pn

i=1 @h
�
xi;b�� =@�=n and of the optimal weight matrixhPn

i=1 h
�
xi;b��h�xi;b�� =ni�1. Thus for the type of auxiliary information considered

in this paper WM estimators compare favourably with respect to both e¢ cient GMM

and full GEL estimators in terms of second order bias.

Remark 7 Expansion (16) can be used to compute the higher order variance
(and/or the mean squared error) of the original and bias corrected version WM-

estimators. The resulting expression is extremely complicated and unfortunately

does not give any clear indication in terms of which estimator is characterised by
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the smallest variance (albeit the Monte Carlo evidence presented in the next section

seems to favour those based on empirical likelihood when the auxiliary information

is correctly speci�ed). On the other hand Newey and Smith (2004) show that among

the class of the bias corrected full GEL estimators the empirical likelihood one enjoys

the same third order e¢ ciency property as that of the maximum likelihood estimator.

They use an indirect argument in which they �rst show that the empirical likelihood

estimator e¤ectively coincides with a multinomial maximum likelihood estimator re-

stricted to satisfy the moment condition, and then use the arguments of Pfanzagl and

Wefelmeier (1978) to infer the third order e¢ ciency of the bias corrected empirical

likelihood estimator. However the same indirect argument cannot be applied to the

weighted estimation procedure proposed in this paper because it is based on a two-

step estimator that uses a restricted multinomial estimator that cannot be embedded

in Newey and Smith�s (2004) general argument.

4 Monte Carlo evidence

In this section we illustrate the theory developed in the paper with three examples:

estimation of the slope parameters in an instrumental variable quantile regression

model, robust estimation of location, andM-estimation of a binary dependent variable

regression model.. The �nite sample performance of the usual M-estimator (6), e¢ -

cient GMM estimator (i.e. as de�ned in (10) with Wn =
Pn

i=1 h
�
zi;e��h�zi;e��� =n

and e� is a n1=2-consistent preliminary estimator of �0) and the WM-estimators (7)
for all of the examples is assessed by simulations. In addition the simulations are

also used to assess the robustness of the WM and e¢ cient GMM estimators to using

moderately misspeci�ed auxiliary information, which is identi�ed by a p-value of an

empirical likelihood ratio test used to assessed its correctness between approximately

0.10 and 0.252.

In the simulations we generate 5000 independent Monte Carlo random samples of

sizes n = 50 and 100 from aN (0; 1) (standard normal distribution) population, a t (4)

(t distribution with four degrees of freedom), �2 (4)� 4 (centred chi-squared distrib-
ution with four degrees of freedom), and (�2 (4)� 4) =

p
8 (standardised chi-squared

2With p-values less than 0.10 one would typically reject the hypothesis of correctly speci�ed aux-

iliary information. With p-values higher than around 0.25 preliminary simulations results suggested

that the �nite sample behaviour of both WM and e¢ cient GMM estimators is very similar to the

case of correctly speci�ed auxiliary information.
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distribution with four degrees of freedom). All the computations were carried out

in R. For each sample we evaluate biases (B), variances (V ) and relative e¢ ciencies

(E)3 of the usual M, GMM and the three WM-estimators that are most used in prac-

tice, namely Euclidean likelihood (EU) , nonparametric tilting (NT) and empirical

likelihood (EL). The three corresponding implied probabilities (2) to be used in (7)

are given, respectively, by

bwEUi = 1� g��
�1
g (xi) =

h
n
�
1� g��

�1
g
�i
; (21)

bwNTi = exp
�b��g (xi)� = nX

i=1

exp
�b��g (xi)� ;

bwELi = 1=
h
n
�
1� b��g (xi)�i ;

where g :=
Pn

i=1 g (xi) =n, � :=
Pn

i=1 g (xi) g (xi)
� =n, b� := argmax [�Pn

i=1 exp (�
�g (xi))]

in bwNTi and b� := argmaxPn
i=1 log (1� ��g (xi)) in bwELi .

Remark 8. In general to compute b� one can apply the multivariate Newton�s
algorithm to

Pn
i=1 � (�

�g (xi)); this amounts to Newton�s method for solving the

nonlinear system of q �rst-order conditions
Pn

i=1 �1 (�
�g (xi)) g (xi) = 0 with starting

point in the iterative process set to �0 = 0� . For such choice of starting point, the

convergence of the algorithm is typically quadratic. Note also that the case of EU

there is no need to use any numerical optimisation method to �nd the maximiser b�
since the latter can be obtained in closed form and is given by b� = ��1g.
Example 2 Let x = [y; z�1 ; z

�
2 ]
� and let qp (yjz2) := inf fy : F (yjz2) � pg = z�1�p0

denote the pth (0 < p < 1) quantile of y conditional on z2 assumed to have the

same dimension of z1: The instrumental variables quantile regression estimator b�p
for �p solves

Pn
i=1  

�
xi;b�p� =n = 0, where  (xi; �p) := z2isignp fyi � z�1i�pg, and

signp f�g = pI f� � 0g � (1� p) I f� � 0g. Let " = y � z�1�p0 and z = [z�1 ; z
�
2 ]
� ; the

following proposition establishes the asymptotic distribution of the weighted instru-

mental variables quantile regression estimator b�pw solvingPn
i=1 bwi �xi;b�p� = 0:

Proposition 15 Suppose that (1) holds, and (I) F" (0jz) = p, (II) � compact, (III)

E kz2k2 < 1, E kz1z�2k < 1; (IV) F" (�jz) is di¤erentiable at 0 with F 0" (0jz) =
f" (0jz) > 0, (V) E [f" (0jz) z1z�2 ] is nonsingular, (VI) there exists a neighbourhood
N0 of �0 such that E supN0 k (x; �) g (x)k <1, (VII) �p0 2 int f�g. Then

n1=2
�b�pw � �p0

�
d! N (0;��g (�0)) ;

3The relative e¢ ciency of two asymptotically normal estimators say b�a and b�b is de�ned as
E = V

�b�b� =V �b�a� :
18



where

��g (�0) = �
�1 �p (1� p)E (z2z

�
2 )� E [signp f"g z2g (x)� ] ��1E [signp f"g z2g (x)� ]�

	
��1;

� = �E [f" (0jz) z1z�2 ]. Moreover suppose that (VIII) bn ! 0, b2nn ! 1 , (III�)

E kzk3 < 1 ,(IX) there exists a constant such that f" (�jz) � f " for all z. Thenb��g �b�pw� p! ��g (�p0), where

b��g �b�pw� = b��1bw
(
p (1� p)

"
nX
i=1

bwiz2iz�2i
#
�
"

nX
i=1

bwisignp fb"ig z2ig (xi)�#(22)
b��1bw

"
nX
i=1

bwisignp fb"ig z2ig (xi)�#�)b��1bw ;

b� bw =Pn
i=1 bwiI fjb"ij � 2bng z1iz�2i=bn, b� bw is as in (11), and b"i = yi � z�1i

b�pw:
In the simulations we consider median regression estimation of �0 = [1; 0:5]� in

y = z�1�0 + " where z1 = [z�11; z12]
� z�11 = z11 + " and z1j (j = 1; 2) and " are N (0; 1).

The instruments are speci�ed as z2 = [z21; z22]
� and z2j (j = 1; 2) are N (0; 1). The

auxiliary information consists of the knowledge of two quantiles for the instrument

z21, that is E [g (x)] = [I (z21 � q)� p]� = 0 with p = [0:1; 0:4]� . For the correctly

speci�ed case g (x)cs the values of the quantiles are qcs = [�1:28;�0:25]� . For the
two moderately misspeci�ed cases g1 (x)

ms and g2 (x)
ms we use the same random

seed 123 and specify for n = 50 qms1 = [�0:70;�0:06]� and qms2 = [�0:55;�0:04]�

which yield average p-values (based on 5000 replications) of the EL ratio test for the

hypothesis E [g (x)cs] = 0 of 0.200 and 0.114, respectively. For n = 100 we specify

qms1 = [�0:90;�0:10]� and qms2 = [�0:76;�0:11]� which yield average p-values (based
on 5000 replications) of the EL ratio test for the hypothesis E [g (x)ms] = 0 of 0.207

and 0.117, respectively. Tables 1a and 1b report also the point estimates of (22) with

bandwidth bn chosen by the �Hall-Sheather�rule (Hall and Sheather, 1988).

Tables 1a,b approximately here

Example 3. Huber�s (1964) location estimator b� for �0 solvesPn
i=1  

�
xi � b�� =n =

0 where  (�) = � for j�j � k and  (�) = ksign (�) for �nite k, or is simply the sample
mean for k = 1. The following proposition establishes the asymptotic distribution
of the weighted location estimator b�w solvingPn

i=1 bwi �xi;b�� = 0:
19



Proposition 16 Suppose that (1) holds, and (I) x is symmetrically distributed around
�0, (II) � is an open interval, (III) E jxj2 <1, (IV) E jxj kg (x)k <1. Then

n1=2
�b�w � �0

�
d! N

�
0; �2�g (�0)

�
;

where

�2�g (�0) =

�Z �0+k

�0�k
x2dF (x) + k2

�Z �0�k

�1
+

Z 1

�0+k

�
dF (x)� �� g�

�1� g

�
=

�Z �0+k

�0�k
F (x)

�2
;

and � g =
hR �0+k

�0�k x+ k
�R1

�0+k
�
R �0�k
�1

�i
g (x) dF (x) : Moreover b�2�g �b�w� a:s! �2�g (�0)

where

b�2�g �b�w� =
"

nX
i=1

bwiI n���xi � b�w��� � k
o#�2( nX

i=1

bwix2i I n���xi � b�w��� � k
o
+ (23)

k2

 
nX
i=1

bwiI nxi � b�w � k
o
+

nX
i=1

bwiI nxi � b�w + k
o!

� b�� gb��1bw b� g
)
;

b� g = nX
i=1

bwixig (xi) I n���xi � b�w��� � k
o
+ k

nX
i=1

bwig (xi) I nxi � b�w + k
o
�

k
nX
i=1

bwig (xi) I nxi � b�w � k
o
:

and b� bw is as in (11) :
In the simulations we consider estimating the location � when the pth population

quantile q is known, so that E [g (x)] = E (I fx � qg) � p = 0. Table 2 reports the

�nite sample properties of b� and b�w for p = [0:25; 0:40; 0:60; 0:75] for the case k = 1:5,
including the point estimates

�bV � of the variance �2�g (�0) obtained using (23) :
Table 2 approximately here

Example 4 Let x = [y; z� ]� for a binary variable y 2 f0; 1g and F (�) denote
the cumulative density function with f (�) and f 0 (�) to denote its density and �rst
derivative. For example for F (�) = � (�) that is the cumulative distribution of a
standard normal we have the standard probit model. An M-estimator (optimally

weighted Z estimator) b� for �0 solves Pn
i=1  

�
xi;b�� =n = 0, where  (xi; �) :=

(yi � F (z�i �)) f (z
�
i �) zi=F (z

�
i �)F (�z�i �), where, with a slight abuse of notation,

F (�z�i �) = 1 � F (z�i �) The following proposition establishes the asymptotic dis-

tribution of the weighted M-estimator b�w solvingPn
i=1 bwi �xi;b�w� = 0:
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Proposition 17 Suppose that (1) holds and (I) � compact, E sup�2F kf (z��) =F (z��)�
F (�z��)k < 1, (II) E kzk2 < 1, (III) E (zz� ) is nonsingular, (IV) there exists a
neighbourhood N0 of �0 such that E supN0 k (x; �) g (x)k < 1, (V) �p0 2 int f�g.
Then

n1=2
�b�w � �0

�
d! N (0;�Fg (�0)) ;

where

�Fg (�0) = [E ( 
0 (x; �0))]

�1 fE ( 0 (x; �0))� E [(y � F (z��0))� (z
��0) =F (�z��0) zg (x)� ]

��1E [(y � F (z��0))� (z
��0) =F (�z��0) zig (x)� ]�

	
[E ( 0 (x; �0))]

�1
;

E ( 0 (x; �0)) = E [� (z��0)� (�z��0) zz� ] and � (�) = f (�) =F (�). Moreover b�Fg �b�w� a:s:!
�Fg (�0), where

b�Fg �b�w� = b �xi;b�w��1bw
(b �xi;b�w� bw �

"
nX
i=1

bwi �yi � F
�
z�i
b�w����z�i b�w� =F ��z�i b�w�

zig (xi)
� ] b��1bw

"
nX
i=1

bwi �yi � F
�
z�i
b�w����z�i b�w� =F ��z�i b�w� zig (xi)�

#�) b �xi;b�w��1bw ;(24)

and b �xi;b�w� bw =Pn
i=1 bwi��z�i b�w����z�i b�w� ziz�i :

In the simulations we consider estimating �0 = [1; 0:5]
� with z = [1; z1]

� , and z1
is N (0; 1). The auxiliary information consists of the knowledge of the conditional

mean of y given z � 0, that is E [g (x)] =
�
E (yjz � 0)� �+; E (yjz < 0)� ��

��
=

0. For the correctly speci�ed case g (x)cs the approximate values of
�
�cs+ ; �

cs
�
��
are

[0:91; 0:71]� for N (0; 1) errors (i.e. standard probit), [0:87; 0:70]� for t (4) errors,

[0:62; 0:49]� for centred �2 (4) errors, and [0:97; 0:68]� for standardised �2 (4) errors.

For the two moderately misspeci�ed cases g1 (x)
ms and g2 (x) we use use the same

random seed 123 and specify for n = 50 [0:74; 0:62]� and [0:71; 0:59]� for the N (0; 1)

case, [0:71; 0:60]� and [0:67; 0:57]� for the t (4) case, [0:45; 0:35]� and [0:41; 0:33]� for

the centred �2 (4) case, and �nally [80; 60]� and [77; 56]� for the standardised �2 (4)

case. With these values the average p-values (based on 5000 replications) of the EL

ratio test for the hypothesis E [g (x)cs] = 0 are, respectively, 0.195 and 0.111, 0.216

and 0.114, 0.197 and 0.115 and �nally 0.216 and 0.112. For n = 100 we specify�
�ms+1 ; �

ms
�1
��
= [0:78; 0:67]� and [0:76; 0:65]� for the N (0; 1) case, [0:75; 0:64]� and

[0:73; 0:61]� for the t (4) case, [0:50; 0:40]� and [0:47; 0:39]� for the centred �2 (4) case,

and �nally [0:83; 0:65]� and [0:81; 0:62]� for the standardised �2 (4) case. With these
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values the average p-values (based on 5000 replications) of the EL ratio test for the

hypothesis E [g (x)ms] = 0 are, respectively, 0.211 and 0.119, 0.221 and 0.111, 0.204

and 0.123 and �nally 0.219 and 0.112.

We also consider the bias correctedM andWM estimators, that is n1=2
�b�w � dBias�b�w��

where dBias�b�w� is a consistent estimator (see (18)) of
Bias

h
n1=2

�b�w � �0

�i
= fE [� (v0)� (�v0) zz� ]g�1

�
E
�
� (y � F (v0))

2 � (v0)� (25)
� (�v0) zz�=F (v0)F (�v0) + (y � F (v0)) f

0 (v0) zz
�=F (v0)F (�v0)]�

fE [� (v0)� (�v0) zz� ]g�1 [f (v0) (y � F (v0)) z] =F (v0)F (�v0)
	
=n1=2 +

E

(
3

kX
j=1

�
� (v0)� (�v0) f (v0) f 0 (v0) zz�z(j)

�)
fE [� (v0)� (�v0) zz� ]g�1 =2n1=2 �

fE [� (v0)� (�v0) zz� ]g�1
�
E
�
� (y � F (v0))

2 � (v0)� (�v0) zz�=F (v0)F (�v0)+
(y � F (v0)) f

0 (v0) zz
�=F (v0)F (�v0)] fE [� (v0)� (�v0) zz� ]g�1 �

E
�
(y � F (z��0))� (z

��0) =F (�z��0) zg� (x)�
�
g� (x)

	
=n1=2 +

fE [� (v0)� (�v0) zz� ]g�1
�
E
�
f (v0) (y � F (v0)) ztr

�
g� (x) g� (x)�

��
�

E
�
(y � F (z��0))� (z

��0) =F (�z��0) zg� (x)�
�
E
�
g� (x) tr

�
g� (x) g� (x)�

��	
=n1=2;

where v0 = z��0, z(j) is the jth component of z, and

g� (x) =
h�
yI (z > 0)� �+0

�
=
�
�+0
�
1� �+0

��1=2
;
�
yI (z � 0)� ��0

�
=
�
��0
�
1� ��0

��1=2i�
:

The GMMbias corrected estimator is n1=2
�b�GMM � dBias�b�GMM

��
where dBias�b�GMM

�
is a consistent estimator of

Bias
h
n1=2

�b�GMM � �0

�i
= Bias

h
n1=2

�b�w � �0

�i
� fE [� (v0)� (�v0) zz� ]g�1 �

E
�
(y � F (v0))

2 � (v0)� (�v0) zz�=F (v0)F (�v0) [E (� (v0)� (�v0) zz� )�
(I � � (v0)� (�v0) zz� )]�1E [� (v0)� (�v0) zz� ] g� (x)

	
=n1=2 �

E
��
f (v0) (y � F (v0)) zg

� (x)�
�
=F (v0)F (�v0) [E (� (v0)� (�v0) zz� )�

(I � � (v0)� (�v0) zz� )]�1E [� (v0)� (�v0) zz� ] g� (x)
	
=n1=2 + fE [� (v0)� (�v0) zz� ]g�1

fE [� (v0)� (�v0) zz� ]g�1 [E (� (v0)� (�v0) zz� ) (I � � (v0)� (�v0) zz� )]�1 �
fE [� (v0)� (�v0) zz� ]g�1

�
E
�
� (y � F (v0))

2 � (v0)� (�v0) =zz�=F (v0)F (�v0)+
(y � F (v0)) f

0 (v0) zz
�=F (v0)F (�v0)] [E (� (v0)� (�v0) zz� ) (I � � (v0)� (�v0) zz� )]�1 �

E (� (v0)� (�v0) zz� ) g� (x)
	
=n1=2:
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Tables 3a,b and 4a,b report, respectively, the �nite sample properties of b�, b�w, b�GMM

and their bias corrected versions b�c4, b�cw, b�cGMM as well as the point estimates
�bV � of

the variance �Fg (�0) obtained using (24) with correct and moderately misspeci�ed

auxiliary information.

Tables 3 a,b 4 a,b approximately here

We �rst discuss the results of Tables1a- 4b in the case of correctly speci�ed auxil-

iary information. First all of the three WM-estimators have �nite sample biases that

are smaller than those of the original M and GMM estimators. The bias reduction

seems to be a little more substantial in the case of symmetric distributions. Second,

as clearly expected from Theorems 4-6, all of the three WM estimators have �nite

sample variances that are uniformly smaller than those of usual M-estimators, and are

typically smaller than those of GMM estimators. The e¢ ciency gain (i.e. the mag-

nitude of the variance reduction) of the proposed estimators depends on the type of

estimation considered, on the relevance of the auxiliary information and on the shape

of the distribution of the observations. Third the variance estimators (22) � (24)
work remarkably well with symmetric distributions and both EL and NT weights.

Fourth the bias correction is very e¤ective and removes almost completely the �nite

sample bias for symmetric distributions and drastically reduces that for skewed dis-

tributions. The variances of the bias corrected estimators are also reduced. Fifth

among the three WM estimators considered, those based on EL weights have an edge

over those based on NT and EU weights in terms of e¢ ciency. They also seem to

have an edge in terms of �nite sample bias. This result is interesting because not

only con�rms the small bias property of EL based WM-estimators for the case of

smooth estimating equations (see Section 3.3), but also because it suggests that this

property seems to be holding also for nonsmooth estimating equations. Finally these

results hold for both sample sizes, suggesting that the asymptotic approximations are

reliable for relatively small sample sizes. The only di¤erence is that the biases and

variances are slightly larger for n = 50.

We now discuss the results of Tables 1a-4b in the case of moderately misspeci�ed

auxiliary information. For the g1 (x)
ms cases, that is for cases where the degree of

misspeci�cation is relatively low, the results are qualitatively very similar to those

obtained with correctly speci�ed auxiliary information, and indicate that although

4The bias corrected version b�c of the M-estimator b� is b�c = b� � dBias�b�� where dBias�b�� is a
consistent estimator of the �rst four lines of (25).
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the misspeci�cation has some negative �nite sample e¤ects on both GMM and WM

estimators, the WM estimators are still clearly superior to both M and GMM estima-

tors in terms of �nite sample bias and e¢ ciency. However WM estimators based on

EL weights seem to be a¤ected by the misspeci�cation comparatively more than those

based on either EU or NT. The �sensitivity�to misspeci�cation of EL is con�rmed

and emphasised in the second (stronger) case of misspeci�cation (that is for g2 (x)
ms).

In this case, as expected from the discussion in Remark 4, all of the WM estimators

are characterised by bigger �nite sample biases, but among them those based on NT

weights seems to be less sensitive to the increase in the level of misspeci�cation. The

robustness of NT is also re�ected in the variances, which are now typically smaller

than those based on EL weights. Finally under misspeci�cation the bias corrections

are not as e¤ective as in the case of correctly speci�ed auxiliary information, but they

are still useful to reduce the bias of the WM-estimators. As for the case of correctly

speci�ed information these results are robust to the sample size; in the case of n = 50

EL seems to be a little more sensitive to misspeci�cation.

In sum the results of the simulations can be summarised as follows: if the auxiliary

information is correctly speci�ed (or the p-vales of a test statistic used to assess its

correctness are above 0.20-0.25) WM-estimators (with or without bias correction)

based on EL weights are characterised by the best �nite sample performances both

in terms of bias and e¢ ciency. On the other hand if there are some doubts about

the �correctness�of the auxiliary information (as suggested, for example, by p-values

between 0.10-0.25), then WM estimators with NT weights have the best �nite sample

performance.

5 Conclusions

In this paper we have introduced a new class of weighted M-estimators where the

weights are obtained from GEL estimation of some auxiliary information about the

otherwise unknown distribution of the data. These estimators are e¢ cient in the sense

of having a smaller variance than that of standard M-estimators, and also in the sense

of having the same asymptotic variance as that of e¢ cient GMM estimators with the

same auxiliary information. Compared to the latter however, the estimators of this

paper are much simpler to compute. Furthermore in the case of smooth estimating

equations the proposed estimators are characterised by a small second order bias

property compared to e¢ cient GMM estimators.
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The �nite sample behaviour of the weighted M-estimators based on the three

most used GEL members (empirical likelihood, Euclidean likelihood and nonpara-

metric tilting) has been investigated by means of simulations. The results of the

latter suggest that when the auxiliary information is correctly speci�ed the proposed

estimators are typically less biased and can be notably more precise than those based

on standard M and e¢ cient GMM estimation, with those based on empirical like-

lihood being the least biased and more precise. On the other hand when there are

some doubts about the accuracy of the auxiliary information weighted M-estimators

based on nonparametric tilting seem to be preferrable.
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Appendix

We use the following abbreviations and conventions: let g (xi) = gi, Mn = maxi kgik,
 (xi; �) =  i (�), lim = limn!1 and

Pn
i=1 =

P
; also CLT, CMT, LIL and (U)S(W)LLN

stand for central limit theorem, continuous mapping theorem, law of iterated loga-

rithm and (uniform) strong (weak) law of large numbers, respectively.

Proof of Theorem 1. By the �rst Borel-Cantelli lemma Mn = oa:s:
�
n1=�

�
so

that on �n :=
�
� : k�k � n��

	
, ��gi = oa:s: (1) and therefore �n � Vn a:s: Since

Gn (�) is strictly concave on �n it follows that there exists (a:s:) a unique e� :=
argmax�2�n Gn (�). A Taylor expansion about 0 gives

Gn (0) � Gn
�e�� =Xh

�e��gi + �2 (�
�
�gi)

e��gig�i e�=2i =n � �


e�


 kgk � �s




e�


2
where k��k �




e�


, g =P gi=n and �s > 0 is the smallest eigenvalue of �. Subtract-

ing Gn (0) � �s




e�


2 ; dividing by 


e�


 and �nally using LIL one gets 


e�


 � kgk =
Oa:s:

�
n�1=2 (log log n)1=2

�
. Since




e�


 = oa:s:
�
n��

�
, e� 2 int f�ng a:s: hence the �rst

order condition for an interior maximum @Gn

�e�� =@� = 0 is satis�ed a:s: Clearlye� 2 Vn so by concavity of Gn (�) and convexity of Vn it follows that Gn

�e�� =
sup�2Vn Gn (�) which implies the existence of a unique b� := argmax�2Vn Gn (�).

Next by Taylor expansion �1
�b��gi� = �1 + �2 (�

�
�gi)

b��gi where k��k � 


b�


. Since���b��Mn

��� = oa:s: (1) maxi j�2 (���gi) + 1j = oa:s: (1) uniformly in i so �1
�b��gi� = �1 �b��gi + oa:s: (1). Similarly

1=
X

�1

�b��gi� = �1=n�1 +X �2 (�
�
�gi) g

�
i =n
� b� = �1=n �1 +Oa:s:

�
n�1 log log n

��
;

by LIL and thus

max
i

��� bwi � 1=n�1 + b��gi���� = Oa:s:

�
n�1 log log n

�
: (26)

By construction
P bwigi = 0 a:s, so by (26) 0 = g +

P
gig

�
i
b�=n+Oa:s: (n

�1 log log n).

By SLLN
P
gig

�
i =n

a:s! � and hence by CMT n1=2b� = ���1P gi=n
1=2+Oa:s:

�
n�1=2 log log n

�
.

Applying CLT and CMT to the latter gives (3). Again by (26)

n1=2
� bFw (x)� F (x)

�
= n1=2

� bFn (x)� F (x)
�
� n1=2

X
I fxi � xg b��gi=n+

Oa:s:

�
n�3=2 log log n

�
= n1=2

� bFn (x)� F (x)
�
� n1=2E

hb��giI fxi � xg
i
+ oa:s: (1) ;
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from which (4) follows by CLT, and CMT.

Proof of Theorem 2. Note that by (26)

k	w (�)k � k	n (�)k (1 + oa:s (1))

uniformly in �. By this, the de�nition of the estimator and standard arguments


	�b�w�


 � 


	�b�w��	w �b�w�


+ 


	w �b�w�


 �
sup
�2�

k	n (�)�	(�)k+ oa:s (1)



	n �b�w�


+ oa:s (1) �

oa:s (1) + oa:s (1) k	(�0)k = oa:s (1) :

By (II) it then follows that b�w 2 k� � �0k < � a:s: and since � is arbitrary b�w a:s:! �0:

Proof of Theorem 3. Let 	w (� � ") =
P bwi i (� � ") for some " > 0:

By (26) and SLLN we have that 	w (� � ")
a:s:! 	(� � "). Then monotonicity of

 i (�) implies monotonicity of 	(�) and since �0 is the unique root of 	(�0 � "),

	(�0 � ") < 0 < 	(�0 + ") for " su¢ ciently small. It then follows that

	w (�0 � ") < 0 < 	w (�0 + ") a:s:

whence there exists a b�w such that 	w �b�w� a:s:
= 0 and b�w a:s! �0 by the continuity of

	w (�) :

Proof of Theorem 4. Let d bGn (x) := d bFn (x)� dF (x). Note that

	w (�) = � (� � �0) + o k� � �0k+	n (�)
�
1 + b��gi�+ oa:s: (1) =

Hw (�) + o (k� � �0k) +
Z
( (�)�  (�0)) d bGn (x) +b��X [ (�)�  (�0)] gi=n+ oa:s: (1) ;

where

Hw (�) = � (� � �0) + 	n (�0)
�
1 + b��gi� :

Let n1=2
�
� � �0

�
= Op (1); then

n1=2 �	w ����Hw

�
�
��

 � op (1) + (27)

sup
k���0k��n





n1=2 �Z ( i (�)�  i (�0)) d bGn (x)

�



+


n1=2b�





X�
 i
�
�
�
�  i (�0)

�
gi=n




 = A1 + A2:
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By (II) A1 = op (1) while by (III) (a) and the consistency of � there exists a �n ! 0

such that supk���0k��n k( i (�)�  i (�0)) gik = op (1). Then by (III) (b) and dom-

inated convergence E supk���0k��n k( (�)�  (�0)) gik ! 0 so that by triangle and

Markov inequalities


X�
 i
�
�
�
�  i (�0)

�
gi=n




 �X sup
k���0k��n

k( i (�)�  i (�0)) gik =n = op (1) ;

and A2 = Op (1) op (1) = op (1) : Thus n1=2	w
�
�
�
is asymptotically equivalent to

n1=2Hw

�
�
�
. Let e� := argmin� kHw (�)k and note that

n1=2Hw

�
�
�

 = 


n1=2Hw

�e��


+ op (1) ;

which implies that



n1=2��� � e��


 � k�k




n1=2 �� � e��


 = Cop (1) and hence


n1=2 �� � e��


 = op (1). Thus the distribution of � is asymptotically equivalent to

that of e�. Since b�w is n1=2-consistent by assumption, the conclusion follows by CLT
and CMT.

Proof of Theorem 5. Assume that  (�) is nonincreasing in �, let yn = �0 +

y�	0g=n
1=2where y 2 <, and 	w (yn) denote the corresponding weighted estimating

equation. Then by (26), (3) and SLLN

	w (yn) =
X

 i (yn)
�
1 + b��gi� =n+ oa:s: (1)

=
X�

 i (yn)� E [ (yn) g
� ] ��1gi

�
=n+ oa:s: (1) =

X
zin=n+ oa:s: (1) :

As in Huber (1964) it su¢ ces to show that limPr f	w (yn) � 0g = limPr f
P
zin=n � 0g =

F (y) for every y, where F (�) is the standard normal distribution. Let Zin :=

(zin � Ez1n) =� (z1n) where �2 (z1n) = V ar (z1n) and note that limn1=2E [z1n=� (z1n)] =

�y (Huber, 1964, p. 78). Therefore limPr f
P
zin=n � 0g = limPr

�
n�1=2

P
Zin � y

	
.

Since the Lindeberg condition lim
R
zn>n1=2"

z2ndF (z) = 0 holds for

zn :=
�� i (yn) + E j (yn)j kgk



��1

 kgk�� ;
it follows by a CLT for triangular arrays that limPr

�
n�1=2

P
Zin � y

	
= F (y) :

Proof of Theorem 6. By (26) and mean value expansion

0 =
X bwi i �b�w� =X i (�0) =n+

X
 0i (�

�)
�b�w � �0

�
=n+ b��X i (�0) gi=n+b��X 0i (�

�) gi

�b�w � �0

�
=n+Oa:s:

�
n�1 (log log n)

�
; (28)

29



where k�� � �0k �



b�w � �0




 from which

b�w � �0 =
hX

 0i (�
�) =n+

X
 0i (�

�) b��gi=ni�1�X
 i (�0) =n+

X
 i (�0) b��gi=n+Oa:s:

�
n�1 (log log n)

��
:

Since �� a:s! �0, using (3), USLLN, LIL and CMT one gets


n1=2b��X i (�0) gi=n+ E [ (�0) g
� ] ��1g




 = oa:s (1) ;


b��X 0i (�
�) gi=n




 � 


b�


 sup
�2N0




X 0i (�) gi=n� E 0 (�) g



+


b�


 kE 0 (�) gk = Oa:s:

�
n�1=2 (log log n)1=2

�
;


X 0i (�

�) =n� E [ 0 (�0)]



 = oa:s (1) :

The conclusion follows by CLT and CMT.

Proof of Theorem 7. By consistency of b�w and WLLN b� bw p! �,


X bwi i �b�w� i �b�w�� � V



 � sup

�2N0




X ( i (�) i (�)
� =n� E [ (�) (�)� ])




+op (1)
so that bV bw p! V . Note that by the stochastic equicontinuity (I) and (26) for l = 1; :::; k


	 bwi

�b�w + bnel

�
�	 bwi

�b�w�� �	�b�w + bnel

�
�	

�b�w��


 = op
�
n�1=2b�1n

�
;

whereas by the local di¤erentiability (II) and triangle inequality


	�b�w + bnel

�
=bn � �el




 � 


��b�w � �0

�
=bn




+ op
�
n�1=2b�1n

�
;

so that again by triangle inequality
�b� bw�

l

p! (�)l l = 1; :::; k. Finally by the consis-

tency of b�w, ULLN and the triangle inequality


X bwi � i �b�w��  i (�0)
�
g�i +

X bwi i (�0) g�i � E [ i (�0) g
�
i ]





�
X


� i �b�w��  (xi; �0)

�
g�i




 =n+ op (1) �X
sup

k���0k��n
k( i (�)�  i (�0)) g

�
i k =n+ op (1) = op (1)

so that the conclusion follows by CMT.

Proof of Theorem 8. Recall that the one-step weighted M-estimator for �0 is

b�1w = b�w � hX bwi 0i �b�w�i�1X bwi i �b�w� : (29)
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By (26) and a mean value expansion it can be shown that (29) can be written as

n1=2
�b�1w � �0

�
= n1=2A�14n

P3
j=1Ajn, where

A1n = �
Xh

 i (�0) +  i (�0) b��gi + oa:s: (1)
i
=n;

A2n = �
Xh

 i

�b�w��  i (�0)�  0i
�
�
� �b�w � �0

�i
=n;

A3n = �b��Xh
 i

�b�w��  i (�0)�  0i
�
�
� �b�w � �0

�i
gi=n;

A4n =
Xh

 0i
�
�
� �
1 + b��gi + oa:s: (1)

�i
=n:

Let F g = E [ (�0) (�0)
� ]�E [ (�0) g� ] ��1E [ (�0) g� ]� ; by CLT, CMT and LLN

it follows that n1=2A1n
d! N (0; F g), n1=2A2n = E [ 0 (�0)]n

1=2
�b�w � �0

�
+ oa:s (1),

n1=2A3n

 � 


b�


�oa:s: (1) + kE [ (�0) g]k


n1=2 ��b�w � �0

��


� =
Oa:s:

�
n�1=2 (log log n)1=2

�
(oa:s: (1) +Op (1)) = op (1) ;

and kA4n � E 0 (�0)k = oa:s (1) ; whence the results follows by CMT.

Proof of Theorem 9. The arguments of the proof of Theorem 1 apply viz.

a. viz. to g�i := gi � �=n1=2, so that it is easy to see that 0 = g� +
P
gig

�
i
b�=n +

Oa:s:

�
n�1 (log log n)1=2

�
. Thus the �rst conclusion follows by CLT and CMT. As for

the second conclusion note that

n1=2
� bFw (x)� F (x)

�
= n1=2

� bFn (x)� F (x)
�
� n1=2

X
I fxi � xg b��g�i =n+

Oa:s:

�
n�3=2 (log log n)1=2

�
= n1=2

� bFn (x)� F (x)
�
� n1=2E

hb��giI fxi � xg
i
+ oa:s: (1) ;

and the result follows again by CLT and CMT.

Proof of Theorem 10. Let g�i := gi � �=n1=2. Note that maxi
���b��g�i ��� = oa:s: (1)

so that the proofs of Theorem 2 and 3 are still valid, hence the conclusion.

Proof of Theorem 11. Note that

n1=2Hw (�) = �n
1=2 (� � �0) + n1=2	n (�0)

�
1 + b��g�i�

so that by CLT and CMT

n1=2
�b� � �0

�
d! N

�
��1E [ (x; �0) g (x)

� ] ��1�;��g
�

where ��g is as de�ned in Theorem 4. Furthermore similarly to (27)


n1=2b�





X�
 i
�
�
�
�  i (�0)

�
g�i =n




 � 


n1=2b�





X�
 i
�
�
�
�  i (�0)

�
gi=n




��
1 + k�k =n1=2

�
= op (1) :
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Thus the �rst conclusion follows as in the proof of Theorem 4. The second conclusion

follows as in Theorem 5 usingX
zin=n+ E [ (�0) g

� ] ��1� + op (1) :

The third and last conclusion follows using an expansion analogous to that in (28),

namely

0 =
X bwi i �b�w� =X i (�0) =n+

X
 0i (�

�)
�b�w � �0

�
=n+ b��X i (�0) g

�
i =n+b��X 0i (�

�) g�i

�b�w � �0

�
=n+Oa:s:

�
n�1 (log log n)

�
=X

 i (�0) =n+
X

 0i (�
�)
�b�w � �0

�
=n+

��X
gig

�
i =n
��1

g�
��X

 i (�0) gi=n+

b��X 0i (�
�) gi

�b�w � �0

�
=n+Oa:s:

�
n�1 (log log n)1=2

�
;

and the rest of the proof is identical to that of Theorem 6.

Proof of Theorem 12. We use tensor notation and indicate arrays by their

elements as for example in McCullagh (1987). Thus, for any index say j, aj is a vector,

ajk is a matrix, etc. We also follow the summation convention, that is for any two

repeated indices, their sum is understood. For 1 � a; b; c; ::: � q and 1 � �; �; ::: � k

let

Aabc::: =
X�

gai g
b
ig
c
i :::� �abc:::

�
=n; �abc::: = E

�
gai g

b
ig
c
i :
�
;

B��1:::�k =
X�

@k �i (�0) =@�
�1 :::@��k � ���1::::�k

�
=n;

���1::::�k = E
�
@k �i (�0) =@�

�1 :::@��k
�
;

C��1:::�kabc::: =
X��

@k �i (�0) =@�
�1 :::@��k

�
gai g

b
i :::� 
��1::::�kabc:::

�
=n;


��1::::�kabc::: = E
��
@k �i (�0) =@�

�1 :::@��k
�
gai g

b
i :::
�
;

that is Aabc:::, B��1:::�k and C��1:::�kabc::: represent Op

�
n�1=2

�
random arrays of, re-

spectively. higher order moments of the standardised auxiliary information, higher

order derivatives of the estimating functions, and of covariances between higher order

derivatives of the estimating functions and the higher order arrays of moments of the

standardised auxiliary information.

First we obtain a third-order stochastic expansion for b�a that solves 0 =P bwigai .
Recall that bwi = �1

�b�agai � =P �1

�b�agai � thus using a third order Taylor expansion
of the numerator and of the denominator and some algebra we obtain

0 =
X�

1 + b�bgbi � �3

�b�bgbi�2 =2� �3

�b�bgbi�3 =3!� gai =n+Op

�
n�2
�
;
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which can then be inverted to give

b�a = �Aa + AabAb + �3�
abcAbAc=2� AabAbcAc � �3A

abcAbAc=2 + �3�
abcAbAcdAd �

�4�
abcdAbAcAd=3!� �23�

abc�cefAbAeAf=2 +Op

�
n�2
�
: (30)

Next using (30) we obtain that bwi has the following stochastic expansion
bwi = 1� gaiA

a + gaiA
abAb + �3g

a
i �

abcAbAc=2� gaiA
abAbcAc � �3g

a
iA

abcAbAc=2 +

�3g
a
i �

abcAbAcdAd � �4�
abcdgaiA

bAcAd=3!� �23g
a
i �

abc�cefAbAeAf=2�
�3g

a
i g

b
iA

aAb=2 + �3g
a
i g

b
iA

a
�
AbcAc + �3�

bcdAcAd=2
�
� �3g

a
i g

b
iA

acAbdAcAd=2�
�23g

a
i g

b
iA

ac�bdeAcAdAe=2� �33g
a
i g

b
i�

acd�befAcAdAeAf=8 +

�4g
a
i g

b
ig
c
iA

aAbAc=3! +Op

�
n�2
�
: (31)

Finally we obtain a third order stochastic expansion for b� that solves 0 =P bwi �i �b��.
By a third order Taylor expansion about �0

0 =
X bwi � �i + @ �i (�0) =@�

�
�b� � �0

��
+ @2 �i (�0) =@�

�@�

�b� � �0

�� �b� � �0

�

=2+

@3 �i (�0) =@�
�@�
@��

�b� � �0

�� �b� � �0

�
 �b� � �0

��
=3!

�
+Op

�
n�2
�
;
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where for notational simplicity  �i (�0) =  �i . By (30) and (31) we get

0 =  � +
X

 �i g
b
i

�
�Ab + AbcAc + �3�

bcdAcAd=2� AbcAcdAd � �3A
bcdAcAd=2+

�3A
bcdAcAd=2 + �3�

bcdAcAdeAe � �4�
bcdeAcAdAe=3!� �23�

bcd�defAcAeAf=2
�
=n�

�3
X

 �i g
b
ig
c
i

�
�Ab +

�
AbdAd + �3�

bdeAdAe=2
�� �
�Ac +

�
AceAe + �3�

cefAeAf=2
��
=n+

�4
X

 �i g
b
ig
c
iA

bAcAd= (3!n) +B��
�b� � �0

��
+
X

B��
i

�b� � �0

��
gai
�
�Aa + AabAb+

�3�
abcAbAc=2� AabAbcAc � �3A

ab�bcdAcAd=2 + �3�
abcAbAcdAd�

�23�
abc�cdeAbAdAe=2� �4�

abcdAbAcAd=3!
�
=n+ �3

X
B��
i

�b� � �0

��
gai g

b
iA

aAb= (2n) +

���
�b� � �0

��
+
X

���
�b� � �0

��
gai
�
�Aa + AabAb + �3�

abcAbAc=2�

�AabAbcAc � �3A
ab�bcdAcAd=2 + �3�

abcAbAcdAd � �23�
abc�cdeAbAdAe=2�

�4�
abcdAbAcAd=3!

�
=n� �3

X
���

�b� � �0

��
gai g

b
i

�
�Aa + AacAc + �3�

acdAcAd=2
�

�
�Ab + AbdAd + �3�

bdeAdAe=2
�
= (2n) + �4

X
���

�b� � �0

��
gai g

b
ig
c
iA

aAbAc= (3!n) +

B��

�b� � �0

�� �b� � �0

�

=2 + ���


�b� � �0

�� �b� � �0

�

=2�X

���

�b� � �0

�� �b� � �0

�

gaiA

a= (2n) + ���
�
�b� � �0

�� �b� � �0

�

��b� � �0

��
=3! +Op

�
n�2
�
;

where  � =
P

i  
�
i =n and similarly for B

��:::. Inverting this expansion we get�b� � �0

��
= ���� � + ���


�aAa +Q2 +Q3 +Op

�
n�2
�
;

where ��� is the matrix inverse of �
��,

Q2 = ���
�
C�aAa � 
�aAabAb � �3


�a�abcAbAc=2 + �3

�abAaAb=2+ (32)

B�
�
� 
� �B�
�
�


�aAa � 
�
a�
� 
�Aa + 
�
a�
�


�bAaAb �
��
�

�
�
"��� 

" � � 2�
"��� "
�aAa + �
"���

"a
�bAaAb

�
=2
�
;
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and

Q3 = ���
�
�B�
�
�

�
C�aAa + 
�aAabAb + �3


�a�abcAbAc=2� �3

�abAaAb=2

�
+(33)

B�
�
�
�
�B�"�"� 

� +B�"�"�

�aAa + 
�"a��" 

�Aa � 
�"a�"�

�bAaAb

�
+

B�
�
��
�"�
�
�"���# 

� �=2 + �"����

�a
�bAaAb=2� �"���# 

�
�aAa
�
+

�C�a
�
AabAb � �3�

abcAbAc=2
�
+ 
�aAab

�
AbcAc + �3�

bcdAcAd=2
�
�

�3

�a
�
AabcAbAc=2 + �abcAbAcdAd � �3�

abc�cdeAcAdAe=2
�
�

�4

�a�abcdAbAcAd=3! + C�
a�
�

�
� �Aa + 
�bAaAb

�
�


�
a�
�
�
� �AabAb + 
�bAacAbAc

�
� �3


�
a�
��
abc
�
� �AbAc + 
�dAbAcAd

�
=2�

B�
�
�
��
" " + �
"


"aAa
� �
���� � + ���


��A�
�
=2�

��
�"
�
��
� � + �
�


�aAa
� �
���� � + ���


�bAb
� �
��"� � + �"�


�cAc
�
=3!
�
:

Proof of Corollary 13. The result follows by direct calculations in (32) using

using

E
�
Aab:::Aa1b1:::

�
= �ab:::a1b1:::=n; E

�
Aab:::Aa1b1:::Aa2b2:::

�
= �ab:::a1b1:::a2b2:::=n2;

E
�
Aab:::Aa1b1:::Aa2b2:::Aa3b3:::

�
= �ab:::a1b1:::a2b2:::a3b3:::=n3 + [3] (n� 1)�ab:::a1b1:::�a2b2:::a3b3:::=n2

where [3] = �ab:::a1b1:::�a2b2:::a3b3::: + �ab:::a2b2:::�a1b1:::a3b3::: + �ab:::a3b3:::�a1b1:::a2b2:::, and

simple algebra:

Proof of Corollary 14. The result follows by ULLN and CMT as in the proof

of Theorem 7.

Proof of Proposition 15. We verify the conditions of Theorems 2 and 4. Note

that (I)-(III) and E sup�p2� kz2isignp f"igk � (1 + p)E kz2k <1 imply by Theorem

2 that b�pw a:s:! �p0. Note also that by the results of Andrews (1994)X
z2isignp f"i � z�1i (�p � �p0) =n� E [p� F" (z

�
1i (�p � �p0) jz)]g

is stochastically equicontinuous; furthermore by CLTX
z2isignp f"ig =n1=2

d! N (0; p (1� p)E (z2z
0
2))

so that by the di¤erentiability condition (IV) it can be shown that n1=2
�b�pw � �p0

�
=

Op (1) : Then (V)-(VII) imply the rest of the conditions of Theorem 4 hence the
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conclusion. To prove the consistency of b��g note that


X bwiI fjb"ij � bn=2g z1iz�2i=bn � E [f" (0jz) z1z�2 ]



 �


X (I fjb"ij � bn=2g � I fj"ij � bn=2g) z1iz�2i= (nbn)



+


X (I fj"ij � bn=2g � E [f" (0jz) z1z�2 ])




+ op (1) = A1n + A2n:

By WLLN it is easy to see that
P
I fj"ij � bn=2g = (nbn)

p! E [f" (�jz) z1z�2 ] where
j�j � bn = o (1) and hence by dominated convergenceE [f" (�jz) z1z�2 ]! E [f" (0jz) z1z�2 ];
thus A2n = op (1) by triangle inequality. To show that A1n = op (1) note that

A1n �



X (I fj"i + cnj � bn=2g+ I fj"i � cnj � bn=2g) z1iz�2i= (nbn)





where cn = kz1ik




b�pw � �p0




. Let
A11n =




X I fj"i + cnj � bn=2g z1iz�2i= (nbn)



 ;

and Bn =
n


b�pw � �p0




 � hcn

o
for a constant h > 0 so that Pr (Bc

n) ! 0 because

n1=2
�b�pw � �0

�
= Op (1). Then for any � > 0 using Markov inequality, III�and IX

Pr (A11n > �) � Pr (A11n \Bn > �) + Pr (Bc) =

E
X






Z (kzik+1)hcn+cn

�(kzik+1)hcn+cn
f" (�jzi) d�z1iz�2i= (�nbn)






 �
E
X






Z (kzik+1)hcn+cn

�(kzik+1)hcn+cn
fd�z1iz

�
2i= (�nbn)






 = (h=�)E [(kzk+ 1) kz1z2k]! 0

for h! 0. By similar arguments

A12n =



X I fj"i � cnj � bn=2g z1iz�2i= (nbn)




 = op (1)

implying that A1n = op (1).

Proof of Proposition 16. We verify the conditions of Theorems 3 and 4. Note

that  (�) = [(xi � �) ^ k]_ (�k) is monotonic and (I) implies that �0 is unique; thus
by Theorem 3 b�w a:s:! �0. Also by the results of Andrews (1994)X

[(xi � �) ^ k] _ (�k) =n� E [[(xi � �) ^ k] _ (�k)]
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is stochastically equicontinuous; furthermore by CLT
P
[(xi � �0) ^ k]_(�k) =n1=2

d!
N (0; Vk (�0)) where Vk (�0) =

R �0+k
�0�k x

2dF (x)+k2 (1 + F (�0 � k)� F (�0 + k)). Clearly

the di¤erentiability condition I is satis�ed hence n1=2
�b�w � �0

�
= Op (1) : Also

E sup
�2N0

j[(xi � �) ^ k] _ (�k)j2 � (� + E jxj)2 _ k2 <1;

and similarly for E sup�2N0 k([(xi � �) ^ k] _ (�k)) g (x)k < 1 : Thus the condi-

tions of Theorem 4 are met hence the conclusion. The strong consistency of b�2�g
follows by noting that by strong consistency of b�w and the continuity of F implyP bwiI nxi � b�w � k

o
a:s! F (�0 � k). A similar argument applies to the other terms

thus the conclusion follows by CMT.

Proof of Proposition 17. We verify the conditions of Theorems 2 and 6. Let

W (z; �) = � (z��) =F (z��)F (�z��),

E [ (x; �)] = E fW (z; �) [F (z��0)� F (z��)] zg

which is clearly 0 at �0. Also note that as long as Pr fz� (� � �0) 6= 0g > 0 the

monotonicity of F (�) implies that �0 is unique. Thus by compactness of � and conti-
nuity of E [ (z; �)] the identi�cation condition infk���0k>� kE [ (z; �)]k > 0 is satis-
�ed, hence b�w a:s! �0. AlsoE

�
 (z; �0)

0� = E [� (z��0)� (�z��0) zz� ] exists and nonsin-
gular by � (�) bounded away from zero on any open interval and E (zz� ) nonsingular,
andE supN0 [k 

0 (x; �)k kg (x)k] = E supN0 [k(�v (v) y + �v (�v) (1� y)) zz�k kg (x)k] <
2C
�
1 + E kzk2 kg (x)k

�
<1 by �v (�) uniformly bounded. Finally by CLTX

W (zi; �0) [yi � F (z�i �0)] zi=n
1=2 d! N (0; E [� (z��0)� (�z��0) zz� ]) :

Thus all the conditions of Theorem 6 are met hence the result. Finally the strong

consistency of the variance estimator follows by noting that by consistency of b�w,
ULLN and the triangle inequality


X�

�
z�i
b�w����z�i b�w� ziz�i � E [� (z��0)� (�z��0) zz� ]




 �X
sup

k���0k��n




���z�i b�w����z�i b�w�� � (z�i �0)� (�z�i �0)
�
ziz

�
i




 =n+ oa:s (1) +


X� (z�i �0)� (�z�i �0) ziz�i =n� E [� (z��0)� (�z��0) zz� ]



 = oa:s (1) ;

where �n ! 0 such that k� � �0k � �n a:s: A similar argument can be used to show

the strong consistency of the other terms appearing in the estimator so the conclusion

follows by CMT.
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6 Figures and tables

Table 1a Finite sample bias B, variances V , bV and e¢ ciency E of b�, b�GMM and b�GELw in

instrumental variable median regression model for n = 50 andb�1 b�2 b�GMM
1

b�GMM
2

b�EL1w b�EL2w b�EU1w b�EU2w b�NT1w b�NT2w
N (0; 1) errors

g (x)cs

B

VbV
E

-.052 .006

.235 .166

.233 .168

1.00 1.00

.031 .004

.218 .157

.217 .160

1. 08 1. 06

-.022 .004

.196 .151

.199 .152

1. 19 1. 10

.028 .006

.211 .158

.209 .158

1. 11 1. 05

-.027 .006

.200 .153

.203 .150

1. 17 1. 08

g1 (x)
ms

B

VbV
E

-.052 .006

.235 .166

.233 .168

1.00 1.00

.034 .010

.226 .166

.224 .169

1. 04 1.00

-.031 .013

.223 .159

.224 .162

1. 05 1. 04

.035 .014

.226 .158

.228 .155

1. 04 1. 05

-.033 .011

.221 .156

.224 .158

1. 06 1. 06

g2 (x)
ms

B

VbV
E

-.052 .006

.235 .166

.233 .168

1.00 1.00

.038 .020

.232 .170

.235 .172

1. 01 .976

-.039 .018

.230 .165

.230 .168

1. 02 1. 01

.041 .017

.233 .164

.235 .168

1. 01 1. 01

-.037 .016

.228 .159

.231 .161

1. 03 1. 04

t (4) errors

g (x)cs

B

VbV
E

-.042 .006

.242 .203

.246 .206

1.00 1.00

.023 .007

.229 .178

.228 .180

1. 06 1.14

-.020 .005

.220 .167

.222 .165

1. 10 1. 21

.023 .006

.227 .173

.225 .183

1. 06. 1.17

-.021 .005

.220 .168

.222 .170

1. 10 1. 21

g1 (x)
ms

B

VbV
E

-.042 .006

.242 .203

.246 .206

1.00 1.00

.033 .012

.234 .189

.235 .193

1. 03 1. 07

-.034 .012

.236 .190

.239 .193

1. 02 1. 07

.036 .013

.238 .181

.240 .193

1. 01 1. 12

-.033 .010

.231 .184

.233 .188

1. 05 1. 10

g2 (x)
ms

B

VbV
E

-.042 .006

.242 .203

.246 .206

1.00 1.00

.039 .028

.239 .199

.247 .205

1. 01 1. 02

-.038 .020

.241 .198

.246 .202

1.00 1.02

.038 .021

.240 .190

.245 .203

1.00 1. 06

-.036 .018

.237 .193

.238 .196

1. 02 1. 05
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 1a. Continuedb�1 b�2 b�GMM

1
b�GMM

2
b�EL1w b�EL2w b�EU1w b�EU2w b�NT1w b�NT2w

�2 (4)� 4 errors
g (x)cs

B

VbV
E

-.081 -.032

.419 .188

.428 .197

1.00 1.00

-.067 -.029

.390 .169

.398 .177

1. 07 1. 11

-.061 -.028

.385 .158

.389 .163

1. 08 1. 19

-.063 -.027

.389 .164

.393 .167

1. 07 1.15

-.064 -.029

.385 .161

.394 .164

1. 08 1. 17

g1 (x)
ms

B

VbV
E

-.081 -.032

.419 .188

.428 .197

1.00 1.00

-.077 -.036

.398 .180

.405 .184

1. 05 1. 04

-.072 -.037

.394 .169

.406 .175

1. 06 1. 11

-.073 -.033

.398 .173

.402 .177

1. 05 1. 09

-.073 -.035

.394 .168

.401 .174

1. 06 1. 12

g2 (x)
ms

B

VbV
E

-.081 -.032

.419 .188

.428 .197

1.00 1.00

-.083 -.041

.415 .185

.421 .193

1. 01 1. 01

-.084 -.042

.411 .181

.416 .184

1. 02 1. 04

-.079 -.038

.408 .178

.418 .184

1. 02 1. 05

-.078 -.040

.408 .175

.414 .179

1. 03 1. 05
�2(4)�4p

8
errors

g (x)cs

B

VbV
E

-.057 -.023

.275 .160

.280 .168

1.00 1.00

-.049 -.019

.249 .150

.252 .157

1. 10 1. 07

-.041 -.018

.238 .143

.241 .147

1. 15 1. 12

-.044 -.021

.243 .151

.246 .155

1. 13 1. 06

-.043 -.018

.241 .144

.257 .145

1. 14 1. 11

g1 (x)
ms

.

B

VbV
E

-.057 -.023

.275 .160

.280 .168

1.00 1.00

-.062 -.022

.261 .154

.265 .159

1. 05 1. 04

-.049 -.021

.256 .150

.259 .156

1. 07 1. 07

-.053 -.024

.251 .155

.260 .158

1. 09 1. 03

-.047 -.019

.251 .145

.254 .152

1. 09 1. 10

g2 (x)
ms

B

VbV
E

-.057 -.023

.275 .160

.280 .168

1.00 1.00

-.069 -.028

.268. .156

.271 .165

1. 03 1.01

-.054 -.024

.264 .158

.268 .162

1. 04 1.01

-.058 -.027

.266 .157

.271 .164

1. 03 1.02

-.052 -.020

.261 .152

.264 .156

1. 05 1. 05
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 1b. Finite sample bias B, variances V , bV and e¢ ciency E of b�, b�GMM and b�GELw

in instrumental variable median regression model for n = 100 andb�1 b�2 b�GMM
1

b�GMM
2

b�EL1w b�EL2w b�EU1w b�EU2w b�NT1w b�NT2w
N (0; 1) errors

g (x)cs

B

VbV
E

-.037 .005

.194 .136

.193 .135

1.00 1.00

.021 .006

.175 .126

.174 .129

1.10 1.07

-.015 .003

.152 .122

.154 .124

1.28 1.11

.020 .004

.168 .128

.166 .127

1.15 1.06

-.018 .004

.159 .122

.161 .123

1.22 1.11

g1 (x)
ms

B

VbV
E

-.037 .005

.194 .136

.193 .135

1.00 1.00

.023 .008

.179 .128

.176 .127

1. 08 1. 06

-.021 .007

.164 .127

.166 .124

1.18 1.08

.023 .009

.172 .131

.174 .129

1.13 1.04

-.021 .006

.166 .126

.167 .126

1. 17 1.07

g2 (x)
ms

B

VbV
E

-.037 .005

.194 .136

.193 .135

1.00 1.00

.026 .010

.183 .132

.185 .134

1. 06 1. 03

-.032 .009

.183 .133

.187 .130

1.06 1.02

.027 .011

.180 .136

.185 .132

1. 08 1

-.024 .008

.178 .132

.181 .130

1. 09 1. 05

t (4) errors

g (x)cs

B

VbV
E

-.034 .005

.182 .153

.181 .152

1.00 1.00

.019 .006

.170 .132

.168 .134

1. 07 1. 16

-.016 .004

.162 .130

.164 .128

1. 12 1. 17

.018 .005

.167 .134

.156 .133

1. 09 1. 14

-.017 .004

.162 .132

.162 .130

1. 12 1. 16

g1 (x)
ms

B

VbV
E

-.034 .005

.182 .153

.181 .152

1.00 1.00

.025 .008

.174 .141

.177 .143

1. 05 1. 08

-.028 .009

.170 .137

.172 .139

1. 07 1.12

.027 .010

.177 .139

.175 .142

1. 03 1. 10

-.025 .006

.170 .132

.175 .134

1. 07 1. 16

g2 (x)
ms

B

VbV
E

-.034 .005

.182 .153

.181 .152

1.00 1.00

.033 .011

.177 .141

.179 .143

1. 03 1. 08

-.031 .012

.178 .141

.180 .144

1. 02 1.08

.032 .012

.180 .142

.183 .145

1. 01 1. 07

-.029 .010

.175 .135

.177 .138

1. 04 1. 13
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 1b. Continuedb�1 b�2 b�GMM

1
b�GMM

2
b�EL1w b�EL2w b�EU1w b�EU2w b�NT1w b�NT2w

�2 (4)� 4 errors
g (x)cs

B

VbV
E

-.061 -.024

.291 .131

.304 .145

1.00 1.00

-.050 -.022

.269 .115

.265 .120

1. 08 1. 14

-.046 -.021

.263 .108

.260 .110

1. 11 1. 21

-.047 -.020

.271 .113

.270 .116

1. 08 1. 16

-.048 -.022

.268 .110

.265 .112

1. 08 1. 19

g1 (x)
ms

B

VbV
E

-.061 -.024

.291 .131

.304 .145

1.00 1.00

-.056 .026

.271 .122

.283 .138

1. 07 1. 07

-:052 -.027

.282 .118

.279 .132

1. 03 1. 11

-.053 -.025

.284 .120

.281 .131

1. 02 1. 09

-.053 -.024

.280 .117

.277 .130

1. 04 1. 12

g2 (x)
ms

B

VbV
E

-.061 -.024

.291 .131

.304 .145

1.00 1.00

-.060 -.029

.287 .125

.301 .140

1. 01 1. 05

-.058 -.029

.290 .128

.290 .124

1. 00 1. 02

-.056 -.028

.290 .126

.292 .129

1. 00 1. 04

-.055 -.027

.286 .123

.288 .133

1. 02 1. 06
�2(4)�4p

8
errors

g (x)cs

B

VbV
E

-.045 -.018

.204 .118

.206 .120

1.00 1.00

-.043 -.015

.182 .110

.185 .111

1. 12 1. 07

-.032 -.014

.174 .104

.178 .099

1. 17 1. 13

-.034 -.016

.174 .109

.182 .104

1. 17 1. 08

-.032 -.013

.176 .106

.180 .102

1. 16 1. 11

g1 (x)
ms

.

B

VbV
E

-.045 -.018

.204 .118

.206 .120

1.00 1.00

-.046 -.017

.191 .115

.193 .116

1. 07 1. 03

-.037 -.016

.186 .112

.189 .115

1. 10 1. 05

-.040 -.018

.186 .114

.191 .116

1. 10 1. 03

-.036 -.014

.184 .110

.188 .115

1. 10 1. 07

g2 (x)
ms

B

VbV
E

-.045 -.018

.204 .118

.206 .120

1.00 1.00

-.049 -.020

.195 .118

.197 .121

1. 04 1.00

-.043 -.019

.191 .116

.195 .122

1. 07 1. 01

-.042 -.020

.192 .116

.195 .121

1. 06 1. 02

-.041 -.015

.187 .114

.192 .121

1. 09 1. 03
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 2. Finite sample bias B, variances V , bV and e¢ ciency E ofb�, b�GMM , and b�GELw in robust location estimation with

p b� b�GMM b�ELw b�EUw b�NTw
N (0; 1)

:25

B

VbV
E

.002

.015

.016

1.00

.002

.011

.012

1. 36

.001

.008

.008

1.83

.002

.0104

.0103

1.480

.001

.0083

.0846

1.855

.40

B

VbV
E

-.0073

.0150

.0144

1.00

-.0033

.0100

.0104

1.500

.0013

.0061

.0059

2.459

-.0248

.0092

.0112

1.630

.0014

.0062

.0060

2.419

.60

B

VbV
E

.0041

.0171

.0182

1.00

.0039

.0078

.0825

2.192

-.0022

.0046

.0059

3. 717

.0038

.0080

.0102

2.137

-.0021

.0059

.0050

3. 423

.75

B

VbV
E

.0047

.0187

.0192

1.00

.0040

.0107

.0102

1. 747

-.0040

.0075

.0078

2.493

.0038

.0103

.0101

1.815

-.0042

.0082

.0089

2.280

t (4)

.25

B

VbV
E

-.0063

.0220

.0229

1.00

-.0059

.0149

.0153

1. 476

.0031

.0119

.0120

1.848

-.0060

.0153

.0138

1.437

.0031

.0112

.0114

1.964

.40

B

VbV
E

-.0012

.0236

.0227

1.00

-.0011

.0132

.0139

1. 787

-.0013

.0079

.0075

2.987

-.0011

.0143

.0129

1.642

.0013

.0087

.0081

2.712
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting
An underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 2. Continued
p b� b�GMM b�ELw b�EUw b�NTw

t (4)

.60

B

VbV
E

-.0028

.0244

.0239

1.00

-.0025

.0090

.0119

2.711

-.0020

.0085

.0090

2. 870

-.0031

.0101

.0103

2. 415

-.0029

.0090

.0095

2. 711

.75

B

VbV
E

-.0060

.0259

.0269

1.00

-.0063

.0154

.0169

1. 681

-.0058

.0133

.0116

1.947

-.0052

.0163

.0147

1.589

-.0051

.0131

.0127

1.977

�2 (4)� 4

.25

B

VbV
E

-.2414

.2587

.2232

1.00

-.2512

.2001

.2002

1. 292

-.2025

.1885

.2033

1.372

-.2261

.2088

.1927

1. 2930

-.2325

.1844

.1995

1.402

.40

B

VbV
E

-.2271

.2323

.2168

1.00

-.2243

.1623

.1598

1. 431

-.2073

.1196

.1123

1.939

-.2152

.1734

.1655

1.341

-.2131

.1205

.1099

1.925

.60

B

VbV
E

-.2162

.2420

.233

1.00

-.2100

.1420

.1533

1.704

-.1996

.1100

.0941

2. 437

-.209

.1571

.1553

1. 540

-:1956

.1006

.0904

2. 657

.75

B

VbV
E

-.2105

.2599

.2407

1.00

-:2054

.1599

.1407

1. 625

-.2289

.1093

.0965

2.377

-.2107

.1609

.1779

1.615

-.2128

.1150

.1043

2.260
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting
An underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 2. Continued

p b� b�GMM b�ELw b�EUw b�NTw
�2(4)�4p

8

.25

B

VbV
E

-.2196

.0310

.0334

1.00

-.2009

.0260

.0240

1. 192

-.1823

.0245

.0284

1.265

-.196 7

.0271

.0297

1.148

-.1836

.0248

.0243

1. 25

.40

B

VbV
E

-.1816

.0278

.0238

1.00

-.1861

.02 27

.0207

1. 227

-.1554

.0148

.0135

1. 883

-.1571

.0222

.0216

1. 255

-.1622

.0156

.0124

1. 786

.60

B

VbV
E

-.1751

.0292

.0302

1.00

-.1743

:0205

.0193

1. 424

-.1576

.0144

.0119

2. 027

-.1692

.0210

.0184

1. 390

-.1525

.0131

.0112

2.229

.75

B

VbV
E

-.1915

.0317

.2407

1.00

-.1828

.0219

.1407

1.447

-.2060

.0132

.0965

2.401

-.1791

.0204

.1779

1.553

-.1745

.0141

.1043

2.248
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting
An underline (overline) indicates smallest (largest) value in the corresponding row.

44



Table 3a. Finite sample bias B, variances V , bV and e¢ ciency E of b�, b�GMM and b�GELw

in binary dependent variable regression model for n = 50 andb�1 b�2 b�GMM
1

b�GMM
2

b�EL1w b�EL2w b�EU1w b�EU2w b�NT1w b�NT2w
N (0; 1)

g (x)cs

B

VbV
E

.057 .041

.086 .090

.088 .092

1.00 1.00

.052 .038

.070 .068

.073 .070

1. 22 1. 32

.049 .033

.063 .062

.065 .064

1. 36 1. 47

.054 .036

.069 .065

.073 .068

1. 25 1. 38

.050 .035

.064 .061

.066 .067

1. 34 1. 47

g1 (x)
ms

B

VbV
E

.057 .041

.086 .090

.088 .092

1.00 1.00

.058 .042

.079 .074

.083 .078

1. 09 1. 27

.056 .038

.076 .078

.081 .082

1. 13 1.15

.058 .039

.071 .077

.077 .081

1. 21 1. 17

.053 .039

.071 .074

.075 .077

1. 21 1. 21

g2 (x)
ms

B

VbV
E

.057 .041

.086 .090

.088 .092

1.00 1.00

.063 .047

.084 .079

.087 .082

1. 02 1.14

.063 .044

.081 .078

.084 .082

1. 06 1.15

.066 .044

.080 .081

.083 .088

1. 07 1. 11

.060 .043

.078 .078

.082 .083

1. 10 1.15

t (4)

g (x)cs

B

VbV
E

-.141 -.108

.055 .104

.061 .106

1.00 1.00

-.136 -.091

.046 .084

.048 .089

1. 19 1. 24

-.120 -.071

.042 .081

.018 .028

1. 31 1. 28

-.126 -.076

.043 .085

.021 .030

1. 28 1. 22

-.123 -.072

.042 .080

.020 .029

1. 31 1. 30

g1 (x)
ms

B

VbV
E

-.141 -.108

.055 .104

.061 .106

1.00 1.00

-.142 -.095

.051 .091

.056 .097

1. 08 1.14

-.138 -.085

.048 .088

.052 .092

1. 14 1.18

-.151 -.082

.048 .090

.053 .093

1. 14 1. 15

-.135 -.082

.046 .087

.049 .091

1. 19 1.19

g2 (x)
ms

B

VbV
E

-.141 -.108

.055 .104

.061 .106

1.00 1.00

-.148 -.101

.055 .096

.060 .101

1.00 1.08

-.145 -.093

.054 .093

.056 .096

1. 07 1.11

-.152 -.093

.053 .094

.056 .097

1. 04 1.10

-.141 -.088

.051 .091

.059 .096

1. 08 1.14
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 3a. Continuedb�1 b�2 b�GMM

1
b�GMM

2
b�EL1w b�EL2w b�EU1w b�EU2w b�NT1w b�NT2w
�2 (4)� 4
g (x)cs

B

VbV
E

-.895 -.305

.222 .251

.235 .264

1.00 1.00

-.825 -.270

.182 .206

.196 .212

1. 22 1. 22

-.785 -.236

.161 .187

.174 .193

1. 38 1. 34

-.807 -.262

.176 .195

.189 .203

1. 26 1. 29

-.797 -.248

.165 .190

.177 .196

1. 34 1.32

g1 (x)
ms

B

VbV
E

-.895 -.305

.222 .251

.235 .264

1.00 1.00

-.850 -.288

.201 .215

.214 .221

1. 10 1.17

-.832 -.266

.186 .201

.118 .140

1. 19 1.25

-.829 -.274

.193 .204

.129 .139

1. 15 1. 23

-.821 -.264

.184 .194

.119 .135

1. 21 1. 29

g2 (x)
ms

B

VbV
E

-.895 -.305

.222 .251

.235 .264

1.00 1.00

-.878 -.298

.220 .240

.153 .161

1. 01 1. 04

-.856 -.296

.210 .237

.143 .153

1. 06 1. 06

-.845 -.288

.217 .235

.148 .160

1. 02 1. 07

-.832 -.285

.192 .215

.139 .152

1. 14 1. 17
�2(4)�4p

8

g (x)cs

B

VbV
E

.531 .318

.042 .053

.045 .057

1.00 1.00

.509 .289

.030 .038

.034 .042

1. 40 1. 39

.497 .278

.028 .032

.030 .034

1. 50 1.65

.505 .298

.030 .039

.035 .041

1. 40 1. 35

.491 .291

.028 .031

.031 .034

1. 50 1. 71

g1 (x)
ms

B

VbV
E

.531 .318

.042 .053

.045 .057

1.00 1.00

.513 .302

.034 .038

.039 .042

1. 23 1. 39

.502 .298

.034 .037

.038 .041

1. 23 1.43

.507 .300

.033 .040

.038 .042

1. 27 1. 32

.498 .296

.033 .035

.035 .038

1. 27 1.51

g2 (x)
ms

B

VbV
E

.531 .318

.042 .053

.045 .057

1.00 1.00

.518 .306

.037 .040

.041 .044

1. 13 1. 32

.510 .309

.037 .041

.042 .045

1.13 1.29

.512 .306

.036 .039

.039 .043

1. 16 1. 23

.507 .303

.035 .037

.039 .042

1.20 1.26
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 3b. Finite sample bias B, variances V , bV and e¢ ciency E of b�, b�GMM and b�GELw

in binary dependent variable regression model for n = 100 andb�1 b�2 b�GMM
1

b�GMM
2

b�EL1w b�EL2w b�EU1w b�EU2w b�NT1w b�NT2w
N (0; 1)

g (x)cs

B

VbV
E

.030 .021

.028 .031

.026 .030

1.00 1.00

.027 .020

.024 .023

.023 .023

1. 20 1. 31

.025 .017

.020 .021

.019 .021

1.39 1.44

.028 .019

.023 .024

.023 .022

1.22 1.29

.024 .019

.021 .022

.022 .023

1.32 1.40

g1 (x)
ms

B

VbV
E

.030 .021

.028 .031

.026 .030

1.00 1.00

.030 .022

.027 .025

.025 .025

1. 04 1. 24

.029 .020

.024 .025

.023 .025

1. 17 1. 24

.031 .023

.026 .027

.026 .024

1. 08 1.15

.028 .021

.024 .024

.025 .026

1. 17 1. 29

g2 (x)
ms

B

VbV
E

.030 .021

.028 .031

.026 .030

1.00 1.00

.032 .024

.029 .027

.027 .027

0.96 1. 15

.032 .022

.028 .027

.027 .027

1.00 1.15

.034 .023

.028 .029

.027 .027

1.00 1. 07

.031 .023

.027 .026

.028 .026

1. 04 1. 19

t (4)

g (x)cs

B

VbV
E

-.125 -.089

.046 .056

.045 .058

1.00 1.00

-.112 -.077

.036 .042

.037 .044

1. 28 1. 33

-.098 -.075

.033 .036

.035 .040

1. 39 1. 55

-.109 -.078

.035 .040

.037 .042

1.31 1.40

-.106 -.075

.033 .038

.036 .040

1. 39 1. 47

g1 (x)
ms

B

VbV
E

-.125 -.089

.046 .056

.045 .058

1.00 1.00

-.118 -.083

.040 .046

.043 .049

1. 15 1. 22

-.115 -.082

.039 .043

.041 .045

1. 18 1. 30

-.116 -.083

.038 .043

.041 .045

1. 21 1. 30

-.111 -.080

.036 .041

.039 .043

1. 27 1. 36

g2 (x)
ms

B

VbV
E

-.125 -.089

.046 .056

.045 .058

1.00 1.00

-.124 -.089

.044 .050

.047 .052

1.04 1.12

-.123 -.090

.045 .048

.048 .051

1.02 1.17

-.126 -.085

.042 .046

.020 .031

1. 09 1. 22

-.121 -.085

.042 .047

.019 .030

1. 09 1. 19
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 3b. Continuedb�1 b�2 b�GMM
1

b�GMM
2

b�EL1w b�EL2w b�EU1w b�EU2w b�NT1w b�NT2w
�2 (4)� 4
g (x)cs

B

VbV
E

-.851 -.277

.196 .229

.187 .203

1.00 1.00

-.823 -.241

.142 .151

.156 .174

1. 38 1. 51

-.815 -.229

.121 .136

.138 .150

1.61 1.68

-.820 -.232

.132 .140

.143 .156

1.48 1.63

-.827 -.227

.126 .140

.138 .106

1.55 1.63

g1 (x)
ms

B

VbV
E

-.851 -.277

.196 .229

.187 .203

1.00 1.00

-.837 -.258

.156 .176

.172 .191

1. 25 1. 30

-.839 -.244

.139 .159

.153 .185

1. 41 1. 44

-.835 -.243

.144 .158

.159 .171

1. 36 1.44

-.835 -.238

.135 .154

.148 .172

1. 45 1. 48

g2 (x)
ms

B

VbV
E

-.851 -.277

.196 .229

.187 .203

1.00 1.00

-.848 -.269

.185 .199

.198 .212

1. 05 1. 15

-.847 -.257

.171 .189

.188 .201

1. 14 1. 21

-.844 -.252

.167 .183

.184 .196

1. 17 1. 25

-.840 -.248

.167 .178

.179 .192

1. 17 1. 28
�2(4)�4p

8

g (x)cs

B

VbV
E

.377 .241

.037 .040

.039 .043

1.00 1.00

.369 .212

.028 .032

.031 .036

1. 32 1. 25

.363 .208

.024 .025

.027 .027

1. 54 1. 60

.366 .215

.026 .027

.028 .029

1. 42 1. 48

.366 .208

.024 .027

.028 .029

1. 54 1. 48

g1 (x)
ms

B

VbV
E

.377 .241

.037 .040

.039 .043

1.00 1.00

.372 .229

.032 .035

.035 .038

1. 15 1. 14

.367 .221

.029 .031

.034 .035

1. 27 1. 29

.379 .222

.028 .032

.032 .035

1. 32 1. 25

.366 .217

.028 .030

.030 .033

1. 32 1. 33

g2 (x)
ms

B

VbV
E

.377 .241

.037 .040

.039 .043

1.00 1.00

.376 .235

.037 .039

.040 .041

1.00 1. 02

.378 .225

.035 .035

.039 .040

1. 05 1. 14

.383 .230

.032 .035

.037 .038

1. 15 1. 14

.373 .221

.032 .034

.035 .037

1. 15 1. 17
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 4a. Finite sample bias B, variances V , bV and e¢ ciency E of the bias corrected b�c,b�c;GMM and b�c;GELw in binary dependent variable regression model for n = 50 andb�c1 b�c2 b�c;GMM
1

b�c;GMM
2

b�c;EL1w
b�c;EL2w

b�c;EU1w
b�c;EU2w

b�c;NT1w
b�c;NT2w

N (0; 1)

g (x)cs

B

VbV
E

.004 .010

.038 .050

.040 .053

1.00 1.00

.005 .012

.030 .030

.032 .034

1. 27 1. 67

.004 .007

.028 .026

.029 .030

1. 35 1.92

.006 .009

.033 .032

.034 .034

1. 15 1. 56

.005 .010

.030 .029

.031 .031

1. 27 1. 72

g1 (x)
ms

B

VbV
E

.004 .010

.038 .050

.040 .053

1.00 1.00

.012 .022

.034 .032

.036 .038

1. 12 1.56

.014 .021

.031 .033

.034 .037

1. 22 1.51

.014 .024

.032 .034

.036 .035

1. 19 1. 47

.010 .020

.031 .034

.036 .038

1.22 1.47

g2 (x)
ms

B

VbV
E

.004 .010

.038 .050

.040 .053

1.00 1.00

.018 .013

.040 .038

.043 .042

0.95 1. 31

.019 .012

.037 .035

.040 .039

1. 03 1 43

.019 .014

.038 .038

.041 .039

1.00 1.31

.016 .012

.035 .037

.038 .023

1. 08 1. 35

t (4)

g (x)cs

B

VbV
E

-.019 -.010

.031 .040

.036 .046

1.00 1.00

-.024 -.006

.022 .035

.030 .037

1. 41 1. 14

-.017 -.006

.020 .031

.027 .033

1.55 1. 29

-.025 -.013

.020 .034

.029 .036

1. 55 1. 18

-.021 -.012

.022 .033

.027 .036

1 41 1.21

g1 (x)
ms

B

VbV
E

-.019 -.010

.031 .040

.036 .046

1.00 1.00

-.026 -.011

.024 .038

.029 .039

1. 29 1. 21

-.023 -.010

.026 .034

.030 .037

1.19 1. 08

-.026 -.012

.025 .037

.028 .041

1. 24 1. 08

-.021 -.010

.022 .035

.026 .038

1.40 1.14

g2 (x)
ms

B

VbV
E

-.019 -.010

.031 .040

.036 .046

1.00 1.00

-.030 -.015

.027 .041

.031 .044

1. 15 1. 05

-.027 -.014

.029 .039

.032 .042

1. 07 1.02

-.031 -.015

.030 .041

.033 .043

1. 03 1.00

-.025 -.013

.024 .036

.027 .039

1.29 1.11
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 4a. Continuedb�c1 b�c2 b�c;GMM
1

b�c;GMM
2

b�c;EL1w
b�c;EL2w

b�c;EU1w
b�c;EU2w

b�c;NT1w
b�c;NT2w

�2 (4)� 4
g (x)cs

B

VbV
E

-.136 -.088

.175 .207

.185 .212

1.00 1.00

-.113 -.076

.109 .133

.119 .141

1. 60 1. 55

-.096 -.070

.091 .121

.102 .132

1. 92 1. 71

-.114 -.073

.099 .129

.106 .136

1. 77 1.60

-.103 -.073

.096 .125

.103 .134

1. 82 1.66

g1 (x)
ms

B

VbV
E

-.136 -.088

.175 .207

.185 .212

1.00 1.00

-.138 -.082

.130 .161

.140 .169

1. 34 1. 28

-.130 -.083

.125 .148

.136 .155

1. 40 1. 40

-.136 -.79

.118 .140

.131 .153

1. 48 1. 49

-.126 -.078

.118 .137

.129 .150

1. 48 1. 51

g2 (x)
ms

B

VbV
E

-.136 -.088

.175 .207

.185 .212

1.00 1.00

-.142 -.087

.158 .185

.179 .194

1. 10 1.12

-.146 -.90

.157 .190

.165 .200

1.11 1. 08

-.140 -.86

.154 .179

.164 .190

1. 14 1. 16

-.135 -.085

.149 .174

.158 .188

1. 17 1. 31
�2(4)�4p

8

g (x)cs

B

VbV
E

.113 .057

.042 .064

.045 .070

1.00 1.00

.101 .050

.036 .046

.041 .056

1. 17 1.39

.096 .045

.029 .038

.038 .042

1. 45 1.68

.099 .048

.032 .042

.036 .044

1. 31 1. 52

.099 .049

.031 .040

.035 .046

1. 35 1.60

g1 (x)
ms

B

VbV
E

.113 .057

.042 .064

.045 .070

1.00 1.00

.106 .055

.040 .052

.045 .056

1. 05 1. 23

.105 .055

.034 .047

.038 .050

1. 23 1. 36

.107 .052

.035 .048

.039 .051

1. 20 1.33

.105 .053

.034 .044

.038 .047

1. 23 1. 45

g2 (x)
ms

B

VbV
E

.113 .057

.042 .064

.045 .070

1.00 1.00

.111 .058

.044 .056

.048 .062

0.95 1.14

.113 .059

.039 .053

.042 .058

1. 40 1.20

.110 .057

.037 .055

.043 .059

1. 13 1.16

.109 .057

.037 .051

.043 .057

1. 13 1. 25
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 4b. Finite sample bias B, variances V , bV and e¢ ciency E of bias correctedb�c, b�c;GMM and b�c;GELw in binary dependent variable regression model for n = 100 andb�c1 b�c2 b�c;GMM

1
b�c;GMM
2

b�c;EL1w
b�c;EL2w

b�c;EU1w
b�c;EU2w

b�c;NT1w
b�c;NT2w

N (0; 1)

g (x)cs

B

VbV
E

.003 .008

.020 .026

.023 .028

1.00 1.00

.004 .010

.018 .017

.020 .019

1. 11 1. 52

.003 .006

.015 .015

.018 .017

1. 33 1. 73

.005 .008

.020 .018

.021 .020

1.00 1. 44

.004 .008

.016 .017

.020 .019

1. 18 1. 53

g1 (x)
ms

B

VbV
E

.003 .008

.020 .026

.023 .028

1.00 1.00

.008 .015

.019 .021

.021 .023

1. 05 1. 53

.007 .010

.019 .018

.020 .021

1. 05 1. 44

.010 .012

.018.020

.022.023

1. 11 1. 37

.007 .009

.017 .019

.020 .022

1. 18 1. 37

g2 (x)
ms

B

VbV
E

.003 .008

.020 .026

.023 .028

1.00 1.00

.012 .009

.024 .022

.027 .025

.833 1.18

.012 .008

.021 .024

.024 .023

.952 1. 08

.013 .009

.022 .022

.027 .024

0.91 1. 18

.011 .009

.019 .021

.026 .023

1.05 1. 24

t (4)

g (x)cs

B

VbV
E

-.016 -.013

.023 .027

.025 .029

1.00 1.00

-.010 -.009

.015 .021

.018 .024

1. 53 1. 28

-.008 -.007

.013 .020

.016 .024

1. 76 1. 35

-.011 -.008

.015 .022

.018 .025

1.53 1.23

-.010 -.008

.015 .022

.017 .023

1.53 1. 23

g1 (x)
ms

B

VbV
E

-.016 -.013

.023 .027

.025 .029

1.00 1.00

-.015 -.012

.018 .024

.020 .025

1. 27 1.12

-.012 -.010

.019 .025

.018 .026

1. 21 1.08

-.013 -.016

.017 .025

.020 .028

1. 35 1.08

-.012 -.011

.017 .024

.016 .023

1. 35 1.12

g2 (x)
ms

B

VbV
E

-.016 -.013

.023 .027

.025 .029

1.00 1.00

-.018 -.016

.021 .025

.024 .028

1.09 1.08

-.017 -.014

.022 .027

.026 .031

1.04 1.00

-.015 -.017

.022 .028

.025 .030

1. 04 .964

-.016 -.014

.021 .026

.023 .029

1.09 1.03
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 3. Continuedb�c1 b�c2 b�c;GMM

1
b�c;GMM
2

b�c;EL1w
b�c;EL2w

b�c;EU1w
b�c;EU2w

b�c;NT1w
b�c;NT2w

�2 (4)� 4
g (x)cs

B

VbV
E

-.102 -.065

.121 .143

.136 .172

1.00 1.00

-.095 -.058

.075 .085

.092 .098

1. 61 1. 68

-.087 -.050

.063 .075

.081 .088

1. 92 1. 90

-.090 -.053

.070 .078

.086 .091

1. 73 1. 83

-.088 -.054

.068 .079

.082 .087

1. 78 1. 81

g1 (x)
ms

B

VbV
E

-.102 -.065

.121 .143

.136 .172

1.00 1.00

-.101 -.063

.105 .125

.125 .133

1. 10 1.14

-.095 -.056

.104 .116

.112 .129

1. 16 1. 23

-.098 -.058

.101 .118

.113 .130

1. 20 1. 21

-.093 -.057

.101 .114

.114 .125

1. 20 1. 25

g2 (x)
ms

B

VbV
E

-.102 -.065

.121 .143

.136 .172

1.00 1.00

-.112 -.075

.125 .132

.139 .177

.968 1. 08

-.103 -.060

.118 .129

.132 .146

1. 02 1. 11

-.104 -.064

.121 .132

.142 .151

1. 00 1. 08

-.102 -.062

.111 .126

.132 .148

1. 09 1. 13
�2(4)�4p

8

g (x)cs

B

VbV
E

.092 .047

.024 .030

.029 .034

1.00 1.00

.084 .043

.017 .021

.020 .024

1. 41 1. 43

.083 .042

.016 .018

.021 .022

1. 50 1. 66

.084 .044

.017 .020

.022 .024

1. 41 1. 50

.083 .044

.017 .018

.020 .023

1. 50 1. 66

g1 (x)
ms

B

VbV
E

.092 .047

.024 .030

.029 .034

1.00 1.00

.089 .048

.021 .021

.025 .026

1. 14 1. 50

.087 .050

.018 .021

.026 .027

1. 33 1. 43

.086 .049

.020 .023

.026 .027

1. 20 1. 30

.086 .046

.019 .020

.025 .026

1. 26 1. 50

g2 (x)
ms

B

VbV
E

.092 .047

.024 .030

.029 .034

1.00 1.00

.094 .053

.023 .026

.027 .030

1. 04 1.15

.095 .052

.022 .025

.029 .029

1. 09 1. 20

.092 .079

.025 .029

.030 .031

.960 1. 03

.091 .048

.021 .022

.028 .027

1. 14 1. 36
GMM E¢ cient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)cs,

g(x)msj (j=1;2) indicate, respectively, correctly and moderately misspeci�ed auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Figure 1: Finite sample bias of b�2 as an increasing function of the value of local
misspeci�cation.
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