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Abstract

This paper introduces a new class of M-estimators based on generalised em-
pirical likelihood (GEL) estimation with some auxiliary information available
in the sample. The resulting class of estimators is efficient in the sense that it
achieves the same asymptotic lower bound as that of the efficient generalised
method of moment (GMM) estimator with the same auxiliary information. The
paper also shows that in case of smooth estimating equations the proposed es-
timators enjoy a small second order bias property compared to both efficient
GMM and full GEL estimators. Analytical formulae to obtain bias corrected
estimators are also provided. Simulations show that with correctly specified
auxiliary information the proposed estimators and in particular those based on
empirical likelihood outperform standard M and efficient GMM estimators both
in terms of finite sample bias and efficiency. On the other hand with moder-
ately misspecified auxiliary information estimators based on the nonparametric

tilting method are typically charactersed by the best finite sample properties.
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1 Introduction

Since the seminal paper of Huber (1964) M-estimators, which are generalisations of
the usual maximum likelihood estimators, have played an important role in statistical
theory; see for example Van der Vaart (1998, Chapter 5). In this paper we introduce
a new class of M-estimators, which is motivated by the fact that in many situations
of practical interest we may have some auxiliary information about the otherwise un-
known distribution F' of the sample. For example we might know the probability that
the observed data belong to a certain part of the sample space, or that F' has given
known moments (joint or marginal), or that is symmetric around a certain constant.
This information is often available from auxiliary data such as national statistics or
the census. Alternatively the auxiliary information can be a direct by-product of a
given theoretical model. In these situations we might expect that incorporating such
information into the estimation process can reduce the bias and increase the efficiency
of the parameter estimates. For example Imbens and Lancaster (1994) and Hellerstein
and Imbens (1999) use auxiliary information within a generalised method of moments
(GMM) regression framework, whereas Handcock, Houvilainen and Rendall (2000)
combine sample and auxiliary information within generalised linear models. Imbens
and Lancaster (1994) report substantial efficiency gains in the parameter estimates
by incorporating marginal moments from Census data.

The main objective of this paper is to propose a simple two-step method to in-
corporate auxiliary information into an M-estimation process. The method is based
on the generalised empirical likelihood (GEL) estimator developed by Smith (1997)
(see also Newey and Smith (2004) and references therein). To be specific in the first
step GEL is used to obtain an estimator of F' that is consistent with the auxiliary
information available in the sample. This estimator is typically more efficient than
the empirical distribution function normally used in nonparametric settings and puts
unequal weight on each of the observations. In the second step the parameters of in-
terest are then estimated using the same estimating equations that would have been
used if the auxiliary information was not available, but with the contribution of each
observation multiplied by its corresponding weight. This weighted estimation proce-
dure defines a new class of M-estimators (WM-estimators henceforth) that typically
will be more efficient than usual M-estimators. Intuitively, the latter are based on an
estimator of F' - the empirical distribution function- that is not efficient in presence

of auxiliary information, whereas the former are based on an estimator - the GEL



distribution function- that by construction makes effective use of this information.

The two-step estimation method of this paper is a generalisation of that proposed
by Zhang (1995) and Hellerstein and Imbens (1999) - see also Owen (2001, Chapter
3.11). These authors use empirical likelihood to obtain the weights to be used in
the estimation. Empirical likelihood however is only one of the possible estimators
that can be used; one could in fact use Owen’s (1991) euclidean likelihood. Another
possibility is to use Efron’s (1981) nonparametric tilting, or the more general empirical
Cressie-Read statistic as defined by Baggerly (1998). These methods differ from each
other either in terms of computational complexity or in terms of enjoying desirable
statistical properties. For example, Brown and Chen (1998) used Euclidean likelihood
because of its computational simplicity, whereas Imbens, Spady and Johnson (1998)
used nonparametric tilting because of its robustness and numerical stability. They
also typically differ in terms of finite sample properties. On the other hand all of
these methods share a common structure of being members of the general class of
GEL. Thus GEL provides a general and convenient unifying method to obtain a large
class weighted estimators.

The two-step estimation method of this paper can be related to other methods
including GMM, full (or one-step) GEL (Parente and Smith, 2005), and parametric
likelihood estimation. All of these methods include the auxiliary information directly
into the estimation process and produce M-estimators that are asymptotically equiv-
alent to those obtained in this paper (i.e. they have the same asymptotic variance).
However the proposed two-step procedure seems to be preferrable to these alterna-
tives for two reasons: First it is computationally simpler because it involves two
separate optimisation problems, which are typically easier to solve numerically espe-
cially for highly nonlinear models. Second in the case of smooth estimating equations
the resulting WM-estimators enjoy a small second order bias property, that is the bi-
ases have less components than those based on both GMM and full GEL estimators,
which in fact tend to be more biased in finite samples - see the simulations presented
in Section 4 for some evidence. This interesting property is a direct consequence of
the different way the auxiliary information is incorporated into the estimation process
(i.e. directly in the case of GMM and GEL, indirectly in the case of the two-step
estimation), and of the fact that the auxiliary information does not contain nuisance
parameters. Indeed with nuisance parameters the property would typically not hold.
Perhaps more importantly the resulting WM-estimators would not be asymptotically

equivalent to those based on either GMM or full GEL estimation and would be typi-



cally inefficient.

In this paper we make several contributions: first we establish consistency and
asymptotic normality of the WM-estimators based on GEL estimation of auxiliary
information. We show that they are efficient in the sense that they have the same
asymptotic variance as that of the efficient GMM estimator with the same auxiliary
information. Second we show how GEL can be used to consistently estimate the
asymptotic variances of the WM-estimators. Third we consider the case where the
auxiliary information is misspecified (i.e. it is inaccurate), and investigate the asymp-
totic properties of the WM-estimators under local misspecification. Fourth we obtain
expressions for the second order biases of the WM-estimators and compare them with
those of GMM and GEL estimators. These expressions can be used to obtain analyt-
ical bias corrected versions of all of these estimators. Finally we illustrate the results
with two empirically relevant examples: an instrumental variable quantile regression
model and a binary dependent variable regression model. for these two models we use
simulations to assess and compare the finite sample performances of the WM, stan-
dard M and efficient GMM estimators with both correct and moderately misspecified
auxiliary information.

The results of this paper are quite general and can be used in practice to improve
the efficiency of a large number of M-estimators defined both by smooth and non-
smooth estimating equations, including the robust estimators of Huber (1973), the
regression quantiles of Koenker and Basset (1978) and the trimmed least squares of
Powell (1986) among others.

The rest of the paper is structured as follows: next section describes briefly GEL
estimation. Section 3 contains the main results, whereas Section 4 illustrates the
results of this paper with two examples, and reports the results of the simulations.
Section 5 contains some concluding remarks. An appendix contains all the proofs.

The following notation is used throughout the paper: “a.s.” stands for almost
surely, 5, 5, 2 denote convergence almost surely, in probability and in distribution,
respectively, and ||-|| denotes the Euclidean norm. Finally “7” denotes transpose,

while “” denotes derivative.

2 GEL estimation with auxiliary information

We begin this section with a simple example which motivates the two-step estimation

procedure proposed in this paper.



Example 1.(Hellerstein and Imbens, 1999) Let = denote a random variable with
unknown distribution F'; and suppose we want to estimate the population mean pu.
Without any auxiliary information about F' the sample mean T = > | z;/n is the
efficient estimator for p. Consider now estimation of p knowing that Pr(x > 0) = p.
While 7 is still consistent, it is no longer efficient. The efficient estimator for p is in
fact the weighted average T, = pT1+(1 — p) To where Ty = Y | @l {a; > 0} /> I {z; > 0}
and Top = Y. @l {x; <0} /> I{x; <0}. This estimator can also be written as
T, = " wix;/nwhere w; = (p/p) 7 (1 —p) /(1 =) =Y and p = S I {z; > 0} /n
and note that the asymptotic normalised variance of T, is E [V (z|I {z; > 0})] so that

n[V(z) =V (%) =V (z) = E[V (x|l {z; > 0})] = V[E (z[I {z; > 0})] >0

as n — oQ.

Example 1 clearly shows that incorporating weights obtained from available aux-
iliary information into an estimation process can increase its precision. It is precisely
this type of weighted estimation that we are going to focus on in this paper.

Let {z;};_, be a random sample from an unknown distribution F' with support
X C R. Suppose that there exists some auxiliary information about F' that can be

expressed as a “moment function”

/ g(2)dF (z) = Eg(z)] = 0, (1)

where ¢ (x) is an R?-valued vector of functionally independent measurable functions.
To describe how GEL estimation can be used in (1), let p(v) denote a function

of a scalar v that is concave on its domain, an open interval V' containing 0. Let
Vi ={A: Xg(z;) €V,i=1,..,n} and define the GEL class of functions

Gn (A) = Zp(xg (i) /n

where A is an R?-valued vector of unknown parameters. G, () includes as special
cases empirical likelihood (EL) with p(v) = log(l —v) and V = (—o0,1), (NT)
nonparametric tilting with p (v) = —exp (v), Euclidean likelihood (EU) with p (v) =
— (1+v)* /2 and the family of empirical Cressie-Read statistics (ECR) with p (v) =
— (14 0)"7% /(14 6) where § € R is a user-specified constant. In the rest of the
paper we impose the following normalisation on p (v): let p; (v) = d/p (v) /dv’ and

p; = p; (0) (j =1,2,...) ; we normalise so that p; = p, = —1.!

LAs long as p; # 0 and p, < 0 (which we will assume to be true) this normalisation can always
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Let \ := arg maxycy, G, (A); the estimated weights
@i = p1 (N9 @) /Yo (Vo) 2)
j=1

sum to one by construction, satisfy the sample moment condition > .  @;g (z;) =0
when the first order conditions for A hold (by the strong law of large numbers), and
are positive when \"g (x;) is uniformly small in i. Thus they can be interpreted as
implied probabilities which incorporate the auxiliary information as defined in (1).

Given w; the GEL distribution function estimator of F is defined as
Fy(z) =Y @l {z; < x}.
i=1
The following theorem summarises the basic asymptotic properties of X and ﬁw (x);
let Elg(z)g(x)]:=3%.

Theorem 1 Assume that E ||g(m)||’3 < o0 for some B > 2, ¥ is positive definite,
and p (v) is twice continuously differentiable in a neighbourhood of 0. Then X\ :=

arg maxyey, G (\) exists a.s. and
n2x 4 N (0,571 (3)

Moreover
w2 (Fy (@) = F(2)) 5 N (0, Ve, (). @)
where Vi, (v) = F (2) (1 = F(z)) = Eg (z:) [ {z; < 2}]" X7 Eg (2:) [ {z; < w}].
Equation (4) clearly shows that in presence of (1) the estimator F,, (z) based on
the implied probabilities (2) is more efficient than the empirical distribution function

F, (z) = Yoy I{x; <z} /n. It is precisely this efficiency property of F, (z) that will

be used in the rest of the paper to obtain more efficient M-estimators.

3 Main results

Let ¢ (z,0) : R x © — R* denote a known vector of functions up to 6y such that

W (0) := B (x,0) (5)

be imposed by replacing p (v) by (—py/p?) p[(p1/ps) v]. It is satisfied by EL, NT and ECR among
others.



and
U (0)=0atd =0

where 0y € int {0}, and © C R* is the parameter space. In a fully nonparametric

setting, an M-estimator 0 of o solves approximately

|9 (8)] < int 1w, O]l + 00 (1), (6)

where
/zp z,0) dF, ( Zw z:,0

is the sample analogue of (5). Note that in the most recent statistical literature an
estimator that solves (6) is also referred as Z estimator (see Van der Vaart (1998)).

Note also that if ¢ (x, ) is smooth (6) simplifies to the more familiar

0= arg min W, (0)] .

3.1 Correctly specified auxiliary information

Suppose that there exists auxiliary information about F' available in the moment form

given in (1). In order to include such information into the estimation process, let

/w z,0)dF, szw zi, 0

denote the weighted sample analogue of (5) where the implied probabilities w; are

as in (2). Then we define the class of WM-estimators 0, as
0,)| < i .
|9 (8) ] < inf 19 @)1 + 000 (1) (7)

The following theorem establishes the strong consistency of Ew,

Theorem 2 Suppose that (I) the parameter space © is a compact set, (II) for all
C> 0 info-appoc W )] 2 () > 0, (I11) suppee W (6) — ¥ (O)]] = 0. (1). Then,

under the assumptions of Theorem 1 /éw 3 6,.

The conditions of Theorem 2 are fairly standard in both the statistical and econo-
metric literature on nonlinear models estimation. Sufficient conditions for the uni-
form convergence (III) to hold are: (I), ¢ (x,0) continuous at each 6§ € © a.s., and
E supyeg |9 (2,0)]| < co. Note however that the (III) is often stronger than needed
for consistency of the estimator. The following theorem replaces uniformity with
monotonicity as in Huber (1964). Assume that ¢ (x,0): R x © — R and © C R.
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Theorem 3 Suppose that (1) the parameter space © is an open interval, (1) for all
¢ > 0 inflg_gy>¢ [¥ (0)] > €(¢) > 0, (III) there exists a neighbourhood Ny of 0y such
that Esupy, [¢ (z,0)] < oo, (IV) 4 (x,0) is continuous and monotone in 0. Then,

under the assumptions of Theorem 1 0, %5 fo.

The following theorem establishes the asymptotic normality for the GEL-based

WM-estimator 0, satisfying (7) without assuming smoothness of ¢ (x,6) .

Theorem 4 Suppose that n'/? (/H\w - 90> = 0, (1), and (I) there exists a finite non-
singular matriz I' such that limyg_gy|—o [|¥ (0) =T (6 — 0o)|| = o(]|0 — 6ol|), (1I) for
U, (0) = (0) = U (00)|| = o0, (n7'/?) (11I) (a)
W (z,0) is continuous at Oy a.s. (b) there exists a neighbourhood Ny of 6y such that
Esupy, [[¢ (z,0) g (z)|| < oo (IV) n'/?¥,, (z, b)) <, N (0,V (00)), (V) 0y € int{O}.
Then under the assumptions of Theorem 1

all positive 0, — 0 supjg_g,| s,

n1/2 (@w _ 90> AN (0, Xy (0o))
where

rg (o) =T {V (60) — E [ (2,600) g ()] E [¢ (2, 60) g ()]} (T) .

As with Theorem 2, the conditions of Theorem 4 are fairly standard. Suf-
ficient conditions for the n'/?-consistency condition to hold are that Ew satisfies
‘\Ilw <§w) H < infpee ||V, (0)]| + 0, (n71/?) together with the local differentiability
of W (0) (I), the local stochastic equicontinuity (IT) and a central limit theorem (IV).

The following theorem establishes the asymptotic normality for the WM-estimator

-~

6., using conditions similar to those used by Huber (1964, Lemma 4).

Theorem 5 Suppose that 0., satisfies (7), 0, 2 6y, and (1) ¥ (0) is differentiable
at 0 = 0 with V' (0y) # 0 (1) ¢ (x,0) is monotone in 6, (III) E [* (x,0)] and
E ¢ (z,0) g (z)] are continuous at 0 = 6y, (IV) there exists a neighbourhood Ny of 0y
such that Esupy, [¢° (z,0)] < 0o and Esupy, [|¢ (z,0)||lg (z)||] < co . Then, under
the assumptions of Theorem 1,

n'/? (/éw - 90) SN (0, U%I”g (6))
where

g (B0) = {EY* (,60) — E[¢ (,60) g (2) 1= E [¢ (x,60) g ()]} /¥’ (60)° . (8)



The following theorem establishes the asymptotic normality for the WM-estimator
0. assuming that 1 (x,6) is differentiable; let o' (z,00) = 0 (x,0) /90|g—p, -

Theorem 6 Suppose that 0., satisfies V., (@w> = infpeo ||V (0)]], 0, 2 0o, and (1)
Y (x,0) is continuously differentiable in a neighbourhood Ny of 0y, (II) E [¢' (x,0)] is
continuous and nonsingular at 6y, E [||¢ (z,600)]| |lg (x)||2] < 00, there exists a neigh-
bourhood Ny of 8 such that Esupy, [||¢' (z,0)]|| |lg ()]|] < oo (III) n*/?V,, (z,6,) <,
N (0,V (6p)), (IV) by € int {O} Then, under the assumptions of Theorem 1

n!2 (0= 05) 5 NV (0, g (00)
where

Syrg (B0) = [BY (2,60)] " {V (o) = E [¢ (,60) g ()] S E [t (2, 60) g ()]} %
(B (2,00)7] (9)

Theorems 4-6 show that in presence of auxiliary information (1) on F, the as-
ymptotic variances of the weighted estimators /H\w are always smaller than or equal to
the asymptotic variances of the corresponding WM-estimators (6), which are, respec-
tively, D=1V (6p) ()", E” (x,60) /W' (60)” and B (x,60)] " V (60) [EY' (,600)7] " .
The reduction in the asymptotic variance will depend on the relevance of the auxil-
iary information: the larger the correlation between 1 (x,0) and g (x) the greater the
gain in precision.

Remark 1 Calculations show that ¥r, (fy) corresponds to the asymptotic vari-

ance of the efficient GMM estimator is given by
-1
1(60)™ = {1, 0 [BA (2,06) b (2,00)7) " [T,0]"}
where h (z,0) = [t (2,0)", g (x)"]". Thus the estimators of this paper are efficient in
the class of GMM estimators defined as

Hm%m(%mﬂ‘<mf 4 0ns (1), (10)

~ 0ce

Wa2> " h(x,0) /n
=1

where W, is a (possibly random) positive semi-definite weighting matrix. Moreover

if we assume that 1 (z, 0) is differentiable, it is well-known (Chamberlain, 1987) that

1/2

I(6)" is the lower bound for any n'/? consistent regular estimator of 6, under

Elh(x,00)] = 0. Thus in this case the estimators of this paper are also efficient in



the sense that they achieve the (semiparametric) information lower bound for models
defined by F [h (z,6,)] = 0.
We now consider the problem of estimating Xy (6p). We propose to use the

following GEL-based estimator

irg (§w> = ffsl {A@ (/éw) - Z@z [¢ (%gw) 9 (%‘)T} i%lx (11)

=1

0o (i) o] (F2)

i=1

3

where Vg (@U) => " W <xi,/0\w> P (xi,b\w)T, So = Yo wig (x;) g (z;)", and T
is an estimator of I' whose form depends on the smoothness of ¢ (z, §). In the smooth
case I' contains ordinary derivatives which can be easily estimated (see Remark 2
below). In the nonsmooth case a general strategy to estimate I is to use numerical

derivatives, that is

(Fa) = S0 [e (e tuer) =, ()] o 0=,
=1

where b, — 0 at an appropriate rate as n — oo, and e; is [th unit vector. The

following theorem establishes the weak consistency of ir‘g (5111)

Theorem 7 Suppose that b, — 0, b2n — oo, there exists a neighbourhood Ny of 0
such that E supy, [[[¢ (ZL‘79)||2] < 00, and that the conditions of Theorems 1, 2, and
4 hold. Then

Sty () 2 Sy (60) .

Remark 2 A practical problem for the computation of (11) is the choice of the
size of b, used to form the numerical derivatives. This is in general a difficult problem,
similar in fact to the choice of bandwidth in nonparametric density estimation. In
specific cases it is possible to construct estimators that do not involve numerical
differentiation. For example if I is proportional to (or features) the (unknown) density
f (z,0) an alternative estimator for I" can often be based on kernel methods - see
Example 2 below. Another case is when v (z, 8) is differentiable a.s. with derivative
that is continuous in 6 a.s. and dominated by an integrable function. On the other
hand in the smooth case f@ = > Y (@w> w;, and it is easy to show that (11) is

strongly consistent -see Example 4 below.
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We finally consider one-step WM-estimators and show that they have the same
asymptotic distribution as that of the “fully iterated” WM-estimator @U of Theorem
5. Consider solving ¥, (@w) = 0 using the Newton’s algorithm starting with gw.
The full GEL-based WM-estimator is defined as

—1 n
A :/9\ [Zwm (xl, w)] Z@ﬂﬂ (%ﬁw)-
i=1

Theorem 8 Suppose that the conditions of Theorem 5 hold, and that n'/? </9\w — 90> =
O, (1) .Then,
nt2 (B, — 00) 5 N (0,3 (60))

where ¥y, (0o) is as in (9).

Remark 3 All of the results of this section can be generalised by introducing a se-
quence of nonsingular random matrices M, (x;, ) and considering || M,, (x;,0) ¥, (0)]l,
as for example in the classical method of minimum x?. As long as supyg ||M,, (z;,0)||
is bounded and converges to a nonsigular asymptotic matrix M () it is not difficult
to show that the resulting WM-estimator is consistent and asymptotically normal

with covariance

Yy (0o) = r- {M (00) V (00) M (600)" — E[M (60) % (z,00) g (x)"] X
STE[M (00) ¥ (x,00) g ()]} ()™

3.2 Misspecified auxiliary information

Thus far we assumed that the auxiliary information (1) is correctly specified (i.e. it
is accurate, or at least accurate with a negligible sampling error). There are however
empirically relevant situations in which this might not be necessarily the case. There-
fore it is of interest to investigate what are the consequences of using misspecified (i.e.
inaccurate) information on the estimation procedure of this paper. In this section we
consider two types of misspecification: a global and a local one. The former can be

parameterised as
Elg(@)] =5 40, (12)

An example of (12) is the situation where the auxiliary information is obtained from
a sample that is not compatible with the one used in the estimation, in the sense

that the two samples are drawn from a different population. Another example is

11



the situation where there is a measurement error in the auxiliary information. In
both cases the function g (z) needs not have zero expectation when the expectation
is taken over the sample population.

Remark 4 The proofs of Theorems 1 and 2 show that when (12) is true the

parameter estimator 5w is in general inconsistent and n'/?W¥,, <§w> diverges. This

follows because the almost sure limit of the estimator \ is not zero, implying that the
GEL weights (2) effectively introduce an almost sure non zero term which typically
affects the asymptotics of the WM-estimator.

We can test directly whether E [g (z)] = 0 using, for example, a GEL or a Wald

test statistic, that is

6. = 23 [p (Vo) - 0], (13)

W, = ng’ <ZQ(%)9(%)T/“) g

where g = >_"" | g (2;) /n. The asymptotic distributions of G,, and W, are x2. If the
p-values of (13) are reasonably high we should be fairly confident that the auxiliary
information available is accurate enough that possibly only a small error is intro-
duced into the M-estimation via the constraint y ., ;g (x;) = 0. On the other hand
if the p-values are relatively low then the auxiliary information might be moderately
misspecified. This situation is empirically relevant, because it is likely that typical
sources of auxiliary information such as the Census contain some form of mild mis-
specification (due for example to the presence of measurement error). In Section 4 we
use simulations to investigate the finite sample effects of using this type of misspecified
auxiliary information in the weighted estimation.

The second type of misspecification is a local one, that is

Elg(x)] = o/n'". (14)

This is a situation in between the assumption of knowledge of correctly specified aux-
iliary information and that of a globally misspecified information, because it captures
the case where the auxiliary information is misspecified for any finite n but the size

of the variation is O (n='/?) so that it vanishes asymptotically.

Theorem 9 Suppose that (14) holds. Then under the same assumptions of Theorem

12



n2N 4N (2—15, E_l) ,
n'’2 (B () = F () 5 N (8 Vi, (@),

where 0* = E g (x;) I {z; < x}|" 3716 and Vi, () is the asymptotic variance as de-
fined in (4) .

Theorem 10 Suppose that (14) holds. Then under the same assumptions of Theo-

S a.s.
rems 2 or 8 6, — 0.

Theorem 11 Suppose that (14) holds. Then under the same assumptions of Theo-
rems 4-6
w2 (0= 00) 5 N (A5 (66)  Vy (60)) (15)

where A5 (0p) = T71E [¢ (x,60) g (2)"] 2710 with V;, (6y) = X, (0y) in the case of
Theorem 4, A (00) = E [ (x,00) g (2)7] 5716/ [¥' (,00)]° with V, (60) = 024, (60)
in the case of Theorem 5, and As (00) = [EY' (z,00)] " E[¢ (2,00) g (z)7] S8 with
Vy (00) = Xyy (0o) in the case of Theorem 6.

Remark 5 Calculations show that the asymptotic distribution of the efficient
GMM estimator (and hence that of the full GEL estimator) under the local mis-
specification (14) is (15). Thus the WM estimators of this paper are asymptotically
equivalent to both GMM and GEL estimators under local misspecification.

The following figure shows the effect of local misspecification in terms of finite
sample bias of a simple weighted least squares estimator for the regression parame-
ters of y; = Ojx; + &; where 6y = [0,0.5]", z; = [1,2y,]", and [z1;,;]" ~ N (0,1).
The auxiliary information is parameterised as E (y) = §/n'/? where § = 30, and is
estimated by empirical likelihood. Note that values closer to the origin correspond

to bigger sample sizes.

Figure 1 approximately here

3.3 Higher order comparisons

The previous two sections showed that under both correct and locally misspecified
auxiliary information WM, GMM and (hence) (full) GEL estimators are asymptot-
ically equivalent. In this section we assume that ¢ (z,0) is smooth and investigate

the higher order asymptotic properties of the WM-estimators.
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The following theorem gives a third order stochastic expansion for WM-estimators

under regularity conditions similar to those used for example by Newey and Smith

(2004); let OF (-) = Ok (1) /7 ....00%.

Theorem 12 Suppose that §w satisfies the conditions of Theorem 6, and that (I)
W (x,0) is four times continuously differentiable in a neighbourhood Ny of 0y, (II) there
exists a neighbourhood Ny of 0y such that fork = 1,...,4 (a) E supgey, [H(‘?kw (x, H)H]

%0, (b) Esupgen, [[|0%0 (@.0)|| lg @)I*]. (¢) B [[|051 (. 00)| g (@)]I"] < o0 (@)
E|lg(2)||* < oo, (III) p(v) is four times continuously differentiable in a neighbour-
hood of 0. Then

A

n'2 (0 = 00) = Qi + Qe+ Qs + 0, (n™%). (16)

where )y 4N (O,Ed/g (90)), Sy (00) is as in (9), Q2 and Q3 are, respectively, an
O, (n™?) quadratic and O, (n™") cubic polynomial in v (x,6,) and g (x) whose ezact

expressions are given in (32) and (33) in the Appendiz.

The following corollary gives an explicit expression for the second order bias of
nl/? (@w — 90). Let tr () denote the trace operator, 8 denote the jth (j = 1,..., k)

component of , and let g* (z) = ¥7/2¢ (z) denote the standardised auxiliary infor-

mation.

Corollary 13 Under the assumptions of Theorem 12 the second order bias for
nl/? (Q\w — 90) 18 given by

Bias [nlﬂ (@w - 90)} = [Bu, + (1+ p3/2) Bu,] /0", (17)
where
Buy = 1B (W (@,00)) " {B [0/ (@.00) (1 (,00)) " v (2,00)] -

E

k
> o' (x,00) /00
j=1

(B (0 (2,60)] "V (60) [E (& (2,60)] " /2} _

[E (¢/ (CL’, 00))]71 E [1// (ZE, 90) (E W (:Ea 00)])71 E (w (ZE, ‘90) gZ (x)T) gE (ZE)] )

By, = [E (¢ (2,00)] " {E [¢ (x,60) tr (¢7 () g° (2)7)] —
[E (¢ (2,600) g™ (2)")] E [¢” (z) tr (¢” (z) g (2)7)] } .
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Corollary 13 shows that the bias of the WM-estimators depends on the expected
first and second derivative of the estimators, as well as on the (higher order) correla-
tion between the estimating equations (and their derivatives) and the auxiliary infor-
mation. Corollary 13 also shows that among all of the WM-estimators those based
on empirical likelihood (or any other estimator with p; = —2) are the least biased in
the sense that their bias is given only by B, as opposed to By, + (1 + p3/2) B
Interestingly the same result holds if the higher order correlation between the esti-
mating equation and the auxiliary information and the third moment of the latter are
simultaneously zero. Note also that the small bias property of empirical likelihood
based WM estimators mirrors that obtained by Newey and Smith (2004) in the case
of full GEL estimation of overidentified moment conditions models.

Let

Bias [ 1/2 (0 —90)} - [éwl + (14 ps/2) §w2] /nV?, (18)

where

denote an estimator of (17). The following corollary shows its strong consistency.
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Corollary 14 Under the same assumptions of Theorem 12
Bias [nl/z (4/9\w — 90)} 22 Bias [nl/Q (510 — 00)} .

Remark 6 Given the asymptotic equivalence between the GEL based WM-
estimators of this paper and those based on either the efficient GMM or the full
GEL methods for the augmented moment condition h (z,0) = [¢ (z,0)", ¢ (2)7] it
seems interesting to make a higher order comparison between them. Using the results
of Newey and Smith (2004) some calculations show that the second-order bias of the

efficient GMM estimator §G MM 1S

'~

Bias [0 (Darns — 00) | = (Buy + Bu + By + B, + Biy + By,) /n/? - (19)

where B,,,, By, are as in (17) and

Ba, = — [E.(&/ (2, 60))] " B {4 (2,00) 0 (2.60)" [V (8) — E (& (2, 60)) B (' (z.60))] " %
B (W (2,00)) 6% ()} — B {0 (2,00) 6% (@) [V (B0) — B (&' (2,00)) B (& (,60))] " x
E (W (2,60) 9" (@)},

Biy = (@ (2,60)] " [V (6) = B (@' (2,60)) E (¢ (2,60))"] " [E (¢ (w,00))] " x
E{W! (2,00) [V (60) = E (& (2,60)) E (&' (2,00))] " B (& (2,00)) % (2) } .,

whereas the bias for the full GEL estimator /éG gL 18

'~

Bias [nl/Q <0GEL - 90)] = (Bu, + Bu, + Bu, + BL,) /n'/2. (20)

A simple comparison between (17) with (19) (20) clearly shows that both the efficient
GMM and the full GEL estimators have an additional bias terms Bj, and Bjs, which
arise from the computation of y ., Oh <xi, 5) /06 /n and of the optimal weight matrix

[Z?:l h (xl-, 5) h (xi, @) / n] _1. Thus for the type of auxiliary information considered
in this paper WM estimators compare favourably with respect to both efficient GMM
and full GEL estimators in terms of second order bias.

Remark 7 Expansion (16) can be used to compute the higher order variance
(and/or the mean squared error) of the original and bias corrected version WM-
estimators. The resulting expression is extremely complicated and unfortunately

does not give any clear indication in terms of which estimator is characterised by
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the smallest variance (albeit the Monte Carlo evidence presented in the next section
seems to favour those based on empirical likelihood when the auxiliary information
is correctly specified). On the other hand Newey and Smith (2004) show that among
the class of the bias corrected full GEL estimators the empirical likelihood one enjoys
the same third order efficiency property as that of the maximum likelihood estimator.
They use an indirect argument in which they first show that the empirical likelihood
estimator effectively coincides with a multinomial maximum likelihood estimator re-
stricted to satisfy the moment condition, and then use the arguments of Pfanzagl and
Wefelmeier (1978) to infer the third order efficiency of the bias corrected empirical
likelihood estimator. However the same indirect argument cannot be applied to the
weighted estimation procedure proposed in this paper because it is based on a two-
step estimator that uses a restricted multinomial estimator that cannot be embedded

in Newey and Smith’s (2004) general argument.

4 Monte Carlo evidence

In this section we illustrate the theory developed in the paper with three examples:
estimation of the slope parameters in an instrumental variable quantile regression
model, robust estimation of location, and M-estimation of a binary dependent variable
regression model.. The finite sample performance of the usual M-estimator (6), effi-
cient GMM estimator (i.e. as defined in (10) with W, =>"" | h (zz,g) h (zi,5>T /n
and 6 is a n'/2-consistent preliminary estimator of fy) and the WM-estimators (7)
for all of the examples is assessed by simulations. In addition the simulations are
also used to assess the robustness of the WM and efficient GMM estimators to using
moderately misspecified auxiliary information, which is identified by a p-value of an
empirical likelihood ratio test used to assessed its correctness between approximately
0.10 and 0.25%.

In the simulations we generate 5000 independent Monte Carlo random samples of
sizes n = 50 and 100 from a N (0, 1) (standard normal distribution) population, a  (4)
(t distribution with four degrees of freedom), x? (4) — 4 (centred chi-squared distrib-
ution with four degrees of freedom), and (x? (4) — 4) /v/8 (standardised chi-squared

2With p-values less than 0.10 one would typically reject the hypothesis of correctly specified aux-
iliary information. With p-values higher than around 0.25 preliminary simulations results suggested
that the finite sample behaviour of both WM and efficient GMM estimators is very similar to the

case of correctly specified auxiliary information.
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distribution with four degrees of freedom). All the computations were carried out
in R. For each sample we evaluate biases (B), variances (V') and relative efficiencies
(E)? of the usual M, GMM and the three WM-estimators that are most used in prac-
tice, namely Euclidean likelihood (EU) , nonparametric tilting (NT) and empirical
likelihood (EL). The three corresponding implied probabilities (2) to be used in (7)
are given, respectively, by

B = 1-7S )/ [n(1-7T 7)) (21)
@M = exp <)\Tg (%)) /Zexp </\Tg (a:z)) ,

i=1

B = 1/ [n(1=Vg ()],

where g := 2?:1 g () /0, S =" g (i) g ()" /n, A= argmax [— 37 exp (g ()]
in @M and X\ := argmaxy ;. log (1 — \"g (x;)) in WL

Remark 8. In general to compute \ one can apply the multivariate Newton’s
algorithm to > " | p(A"g (z;)); this amounts to Newton’s method for solving the
nonlinear system of ¢ first-order conditions > | p; (A\"g (2;)) g (z;) = 0 with starting
point in the iterative process set to \yg = 07. For such choice of starting point, the
convergence of the algorithm is typically quadratic. Note also that the case of EU
there is no need to use any numerical optimisation method to find the maximiser h\
since the latter can be obtained in closed form and is given by N = i_lg.

Example 2 Let = = [y, 2], 27]" and let ¢, (y|22) := inf {y : F (y|z2) > p} = 2700
denote the pth (0 < p < 1) quantile of y conditional on z; assumed to have the
same dimension of z;. The instrumental variables quantile regression estimator Ep
for 0, solves > 1 (zi,§p> /n = 0, where ¢ (z;,0,) = zysign, {y; — 27,0, }, and
sign,{-} = pI{- <0} — (1 —=p)I{->0}. Let e =y — 270, and z = [27,2]]"; the
following proposition establishes the asymptotic distribution of the weighted instru-
mental variables quantile regression estimator @m solving > " | W (aci,/@\p> =0.
Proposition 15 Suppose that (1) holds, and (I) F. (0|z) = p, (II) © compact, (1II)
E|z|® < oo, E||zn12}| < oo, (IV) F.(-|2) is differentiable at 0 with F' (0|z) =
f-(0]z) > 0, (V) E[f.(0]z) z121] is nonsingular, (VI) there exists a neighbourhood
No of 0y such that Esupy, ||¢ (z,0) g (2)|| < oo, (VII) 0, € int {©}. Then

n'/? (@m - 9;)0) 4 N (0, Yig (00))

3The relative efficiency of two asymptotically normal estimators say /9\(1 and @b is defined as

E=V (@b) 1A% (@a) .
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where
Seo (60) = T {p (1 = p) B (222]) — E[signy {€} 29 (2)7] S~ E [sign, {€} 229 (2)" ]} T,

[ = —E[f.(0|2) z125]. Moreover suppose that (VIII) b, — 0, b2n — oo , (III’)
E|z|* < oo ,(IX) there exists a constant such that f-(-|z) < f. for all z. Then
igg (gpw) L Sy (0,0), where

i(g (/épw> = fl_gl {p (1—p) [Z @Z%Z;] - [Z Wsigny {€i} zaig ()" | (22)
i=1 =1

21%1 [Z w;signy {€i} z2:9 (xz)T] } fgl,
i—1

~

Do =S @ {[Ei] < 2bn} 21525, /bn, S is as in (11), and Z; = y; — 27,0p.

In the simulations we consider median regression estimation of 6y = [1,0.5]" in
y = 270y + € where z; = [z}, 2z12]” 2§} = z11 + € and z1; (j = 1,2) and ¢ are N (0,1).
The instruments are specified as zo = [221, 222" and zy; (j = 1,2) are N (0,1). The
auxiliary information consists of the knowledge of two quantiles for the instrument
291, that is F[g (z)] = [I (221 < ¢) — p]” = 0 with p = [0.1,0.4]". For the correctly
specified case g (z)” the values of the quantiles are ¢** = [—1.28,—0.25]". For the
two moderately misspecified cases g; (x)™* and g ()™ we use the same random
seed 123 and specify for n = 50 ¢i** = [—0.70,—0.06]" and ¢5** = [—0.55, —0.04]"
which yield average p-values (based on 5000 replications) of the EL ratio test for the
hypothesis F [g (x)”] = 0 of 0.200 and 0.114, respectively. For n = 100 we specify
¢ = [—0.90, —0.10]" and ¢5** = [—0.76,—0.11]" which yield average p-values (based
on 5000 replications) of the EL ratio test for the hypothesis E [g (x)™°] = 0 of 0.207
and 0.117, respectively. Tables 1a and 1b report also the point estimates of (22) with
bandwidth b, chosen by the “Hall-Sheather” rule (Hall and Sheather, 1988).

Tables 1a,b approximately here
Example 3. Huber’s (1964) location estimator 6 for 6 solves Yo (:lcZ - 5) /n =
0 where ¢ (-) = - for |-| < k and ¢ (-) = ksign () for finite k, or is simply the sample
mean for £ = co. The following proposition establishes the asymptotic distribution

of the weighted location estimator 5,1} solving Y1, w1 <:1cz,/9\> = 0.
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Proposition 16 Suppose that (1) holds, and (1) z is symmetrically distributed around
0o, (II) © is an open interval, (III) E |z|> < oo, (IV) E|xz|||g (z)|| < co. Then

w2 (0= 00) 5 N (0,03, (60))

where

o2, (6) = { /9 e_j PdF (z) + ¥ < /_ (;k + /9 O;) dF (z) — o—;gz—lo—w} / [ /9 e_j F (1:)] B

0 (3] Oo— ~ ) a.s
and 044 = [ (,Oojkkx +k <f90+k — [ k)] g (z)dF (z). Moreover Jgg (0w> = 0g, (0o)

n —2 n
5, (0u) =[S @it { {Z il {
=1 1=1
K (Z @il {wi <0y — b} + > @il {2 2 8+ k}) - a;gialawg} ,
i=1 =1

where

2 —Ew’ < k:}+ (23)

; —/H\w‘ < k}

Oypg = g@:@g(%)[{ T —511,’ < k} +k§@ig(1’i)[{xi 2§w+k} —

k;{&,g(x,)l{xz §9w—k:}.

and Sg is as in (11).

In the simulations we consider estimating the location # when the pth population
quantile ¢ is known, so that F [g(x)] = E (I {z < ¢q}) — p = 0. Table 2 reports the
finite sample properties of § and 0,, for p = [0.25,0.40, 0.60, 0.75] for the case k = 1.5,

~

including the point estimates <V) of the variance o7, (fy) obtained using (23).

Table 2 approximately here

Example 4 Let x = [y, 27]" for a binary variable y € {0,1} and F (-) denote
the cumulative density function with f(-) and f’(-) to denote its density and first
derivative. For example for F'(-) = ®(-) that is the cumulative distribution of a
standard normal we have the standard probit model. An M-estimator (optimally
weighted Z estimator) 6 for 6 solves Yor (ml,/@\> /n = 0, where 9 (z;,0) =
(yi — F (2]0)) f (270) z;/ F (270) F (—270), where, with a slight abuse of notation,
F(—=270) = 1 — F (2]0) The following proposition establishes the asymptotic dis-
tribution of the weighted M-estimator gw solving > " | W (xi,gw) = 0.
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Proposition 17 Suppose that (1) holds and (I) © compact, E supgep || f (270) /F (270) x
F(—=270)|| < 0o, (II) E||z||> < oo, (III) E(227) is nonsingular, (IV) there exists a
neighbourhood Ny of 0y such that Esupy, || (x,0) g (x)| < oo, (V) Oy € int {O}.
Then

w2 (8, 60) - N 0,k (60))

where

Lk (00) = [E (@' (,00))] " {E (@' (2,60)) = E[(y = F (z760)) A (700) /F (=2"60) 29 ()]
STE((y = F (700)) A (z700) | F (=2700) 219 ()"} [E (¢ (,00))]

E W (2,00) = E A (2700) A(—270) 227] and A (-) = f () /F (-). Moreover Sp, (Ew) @
Yy (6o), where

iFg (/9\w> = 12 <xi,§w); {1@ (l‘i,b\w)@ — [Z W; (yz - F (zf@w)) A (ZZ§w> /F (_ZZT@M>
2ig ()] 23! [i @i (5= F (2702) ) A (5700 ) /F (=270 29 (xi)T] T} ; (xiﬁw)@l(%)

and ;D (xi,5w> =D on WA (zf@w) A (—z{@w) 22l

In the simulations we consider estimating 6y = [1,0.5]" with z = [1, 2], and 2z
is N (0,1). The auxiliary information consists of the knowledge of the conditional
mean of y given z > 0, that is E[g(z)] = [E(ylz >0) — pu,, E(ylz <0)—pu_]" =
0. For the correctly specified case g () the approximate values of [u‘f, u‘f]T are
[0.91,0.71]" for N (0,1) errors (i.e. standard probit), [0.87,0.70]" for t(4) errors,
[0.62,0.49]" for centred x? (4) errors, and [0.97,0.68]" for standardised x?(4) errors.
For the two moderately misspecified cases g1 ()™ and g5 () we use use the same
random seed 123 and specify for n = 50 [0.74,0.62]" and [0.71,0.59]" for the N (0, 1)
case, [0.71,0.60]" and [0.67,0.57]" for the t (4) case, [0.45,0.35]" and [0.41,0.33]" for
the centred x? (4) case, and finally [80,60]" and [77,56]" for the standardised x? (4)
case. With these values the average p-values (based on 5000 replications) of the EL
ratio test for the hypothesis F [g (2)®] = 0 are, respectively, 0.195 and 0.111, 0.216
and 0.114, 0.197 and 0.115 and finally 0.216 and 0.112. For n = 100 we specify
[, ums]" = [0.78,0.67]" and [0.76,0.65]" for the N (0,1) case, [0.75,0.64]" and
[0.73,0.61]" for the ¢ (4) case, [0.50,0.40]" and [0.47,0.39]" for the centred x? (4) case,
and finally [0.83,0.65]" and [0.81,0.62] for the standardised x? (4) case. With these
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values the average p-values (based on 5000 replications) of the EL ratio test for the
hypothesis E [g (z)"°] = 0 are, respectively, 0.211 and 0.119, 0.221 and 0.111, 0.204
and 0.123 and finally 0.219 and 0.112.

We also consider the bias corrected M and WM estimators, that is n'/? (@U — Bias (5w>)

o~

where Bias (Hw) is a consistent estimator (see (18)) of

Bias [nW (@U - 90)] = {E [\ (w0) A (—v0) 22"} H{E [~ (y — F (00))* A (vo) x (25)
A(=wo) 227/ F (vo) F' (—vo) + (y — F (o)) f' (v0) 227/ F (o) F (=w0o)] X

{E X (vo) A(—v0) 2271} [f (v0) (y — F (v0)) 2] /F (vo) F (—vo) } /n/* +

E{?’Z [ 00) A (=v0)  (00)  (v0) 22 M}{E[ (10) A (=) 227]} " /201 -
{E X (v0) AM(—v0) 22"} {E [~ (y = F (10))* A (v0) A (—vo) 227/ F (vo) F (—vo) +
(y — F (v0)) f' (v0) 227 /F (v0) F (—vo)] {E [A (v0) A (—vo) 227]} " x

E ((y—F (2700)) A(2700) /F (=2700) 29™ (2)7) g7 (x) } /n'/* +

(=
{E X (o) A(=vo) 2271} {E [ (v0) (y = F (v0)) 2tr (g (x) 47 ()7)] —
E[(y — F (2760)) A (2760) /F (=2760) 297 (x)7] E [¢7 () tr (¢ (2) ¢ (x)7)] } /n"%,

where vy = 276, 2V is the jth component of z, and
g% (2) = [(ul (= > 0) = i) / [ (1= )] (0T (2 < 0) = i) / g (1= 1)1

The GMM bias corrected estimator is n'/? (@G v — Bias (6’\@ M M)) where Bias </9\G M M)

is a consistent estimator of

Bias [nl/Q <§GMM — €0>] = Bias [ 2 (9, — 90)} —{E[\ —vg) 227]} " x

E{(y = F (10))* A (v0) A (—v0) 227 /F (v9) F (=v0) [E (A (v ) ( ) Z") %

(1—)\(7}0) (=v0) 227)] " E [A(v0) A (—w0) 227) g7 (2) } /n"/? =

E{[f (vo) (y = F (v)) 29” (2)"] /F (vo) F (~v )[ (A (v0) A (—vo) 227) X

(I—A(Uo) (—v0) 227)] " E[A (v0) A (—wo) 227 g7 () } /n'/? + {E [A (vo) A ( 0) 22}
0) 22 )

{E A (v0) A (=v0) 227} [E (A (v0) A (=v0) 227) (I = A (w0) A (—vo) 2
{E[A(vo) AM(—vo) 22"} H{E [— (y = F (v0))* A (v )/\(—Uo)/ZZT/F(Uo)F( 0) +

(y = F (v0)) ' (v0) 227 /F (v0) F (—v0)] [E (A (v0) A (—v0) 227) (I = A (vo) A (—wg) 227)] "
E (X (vo) A(—vo) 227) g7 () } /nt/2.
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Tables 3a,b and 4a,b report, respectively, the finite sample properties of /9\, Ew, 5(; MM
and their bias corrected versions 64, 6 6%, ,,, as well as the point estimates (?) of
the variance X, (6y) obtained using (24) with correct and moderately misspecified

auxiliary information.

Tables 3 a,b 4 a,b approximately here

We first discuss the results of Tablesla- 4b in the case of correctly specified auxil-
iary information. First all of the three WM-estimators have finite sample biases that
are smaller than those of the original M and GMM estimators. The bias reduction
seems to be a little more substantial in the case of symmetric distributions. Second,
as clearly expected from Theorems 4-6, all of the three WM estimators have finite
sample variances that are uniformly smaller than those of usual M-estimators, and are
typically smaller than those of GMM estimators. The efficiency gain (i.e. the mag-
nitude of the variance reduction) of the proposed estimators depends on the type of
estimation considered, on the relevance of the auxiliary information and on the shape
of the distribution of the observations. Third the variance estimators (22) — (24)
work remarkably well with symmetric distributions and both EL and NT weights.
Fourth the bias correction is very effective and removes almost completely the finite
sample bias for symmetric distributions and drastically reduces that for skewed dis-
tributions. The variances of the bias corrected estimators are also reduced. Fifth
among the three WM estimators considered, those based on EL weights have an edge
over those based on NT and EU weights in terms of efficiency. They also seem to
have an edge in terms of finite sample bias. This result is interesting because not
only confirms the small bias property of EL based WM-estimators for the case of
smooth estimating equations (see Section 3.3), but also because it suggests that this
property seems to be holding also for nonsmooth estimating equations. Finally these
results hold for both sample sizes, suggesting that the asymptotic approximations are
reliable for relatively small sample sizes. The only difference is that the biases and
variances are slightly larger for n = 50.

We now discuss the results of Tables 1a-4b in the case of moderately misspecified
auxiliary information. For the g; (x)™ cases, that is for cases where the degree of
misspecification is relatively low, the results are qualitatively very similar to those

obtained with correctly specified auxiliary information, and indicate that although

4The bias corrected version 6 of the M-estimator 8 is 8¢ = 0 — Bias (5) where Bias (@) is a
consistent estimator of the first four lines of (25).
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the misspecification has some negative finite sample effects on both GMM and WM
estimators, the WM estimators are still clearly superior to both M and GMM estima-
tors in terms of finite sample bias and efficiency. However WM estimators based on
EL weights seem to be affected by the misspecification comparatively more than those
based on either EU or NT. The “sensitivity” to misspecification of EL is confirmed
and emphasised in the second (stronger) case of misspecification (that is for go (2)™*).
In this case, as expected from the discussion in Remark 4, all of the WM estimators
are characterised by bigger finite sample biases, but among them those based on NT
weights seems to be less sensitive to the increase in the level of misspecification. The
robustness of NT is also reflected in the variances, which are now typically smaller
than those based on EL weights. Finally under misspecification the bias corrections
are not as effective as in the case of correctly specified auxiliary information, but they
are still useful to reduce the bias of the WM-estimators. As for the case of correctly
specified information these results are robust to the sample size; in the case of n = 50
EL seems to be a little more sensitive to misspecification.

In sum the results of the simulations can be summarised as follows: if the auxiliary
information is correctly specified (or the p-vales of a test statistic used to assess its
correctness are above 0.20-0.25) WM-estimators (with or without bias correction)
based on EL weights are characterised by the best finite sample performances both
in terms of bias and efficiency. On the other hand if there are some doubts about
the “correctness” of the auxiliary information (as suggested, for example, by p-values
between 0.10-0.25), then WM estimators with NT weights have the best finite sample

performance.

5 Conclusions

In this paper we have introduced a new class of weighted M-estimators where the
weights are obtained from GEL estimation of some auxiliary information about the
otherwise unknown distribution of the data. These estimators are efficient in the sense
of having a smaller variance than that of standard M-estimators, and also in the sense
of having the same asymptotic variance as that of efficient GMM estimators with the
same auxiliary information. Compared to the latter however, the estimators of this
paper are much simpler to compute. Furthermore in the case of smooth estimating
equations the proposed estimators are characterised by a small second order bias

property compared to efficient GMM estimators.
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The finite sample behaviour of the weighted M-estimators based on the three
most used GEL members (empirical likelihood, Euclidean likelihood and nonpara-
metric tilting) has been investigated by means of simulations. The results of the
latter suggest that when the auxiliary information is correctly specified the proposed
estimators are typically less biased and can be notably more precise than those based
on standard M and efficient GMM estimation, with those based on empirical like-
lihood being the least biased and more precise. On the other hand when there are
some doubts about the accuracy of the auxiliary information weighted M-estimators

based on nonparametric tilting seem to be preferrable.
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Appendix

We use the following abbreviations and conventions: let ¢ (x;) = g;, M,, = max; ||g:|,

¥ (z;,0) =, (0),lim = lim,,_,c and > | = >"; also CLT, CMT, LIL and (U)S(W)LLN
stand for central limit theorem, continuous mapping theorem, law of iterated loga-
rithm and (uniform) strong (weak) law of large numbers, respectively.

Proof of Theorem 1. By the first Borel-Cantelli lemma M,, = o, (nl/ 5) SO
that on A,, := {)\ A< n‘fj}, A g; = 045 (1) and therefore A,, C V,, a.s. Since
G, (\) is strictly concave on A, it follows that there exists (a.s.) a unique A :=
arg maxyea, Gn (A). A Taylor expansion about 0 gives

600026 (3) = 2 [ 000 2] < [ - i

where AMl, 7=>_gi/n and o5 > 0 is the smallest eigenvalue of ¥. Subtract-

ing G, (0) — o ||X 2,
Oys. <n’1/2 (log log n)1/2>. Since HXH = 045, (n77), \ € int {A,} a.s. hence the first

dividing by HX and finally using LIL one gets HXH < gl =
order condition for an interior maximum JG,, <X> J/OX = 0 is satisfied a.s. Clearly

X €V, so by concavity of G, (\) and convexity of V,, it follows that G, (X) =

supycy, G (A) which implies the existence of a unique N = argmaxiey, Gy (N).
Next by Taylor expansion p, (/\Tgi> = —1+ p, (\Tg;) \"g; where ||\, <

T
XTgi + 04.5. (1). Similarly
1/2:,01 (Xng) =—1/n ( + Zp2 19i) 91 /n> = —1/n(1+ Oy (n"'loglogn)),

by LIL and thus

A||- since

(1) max; |py (ALg;) + 1| = 04.5. (1) uniformly in i so p, <)\Tgi> =—-1-

max
%

. —1/n (1 + )\ng)

= O, (n_l log log n) ) (26)

By construction szgl =0a.s,s0by (26) 0 =g+ Zgz "A/n + Oqs. (n~loglogn).
By SLLN 3" g:g7 /n %3 ¥ and hence by CMT n/2\ = —X13" ¢, /n!/240,., (n='/?1oglogn).
Applying CLT and CMT to the latter gives (3). Again by (26)

ni/? (ﬁw (2) — F @)) = pl/? (ﬁn (2) — F (x)) 23 Tz <@} Ngi/n +
Og.s ( —3/2og logn) = n!/? (ﬁ (x) — F(x)) —n'?E [XTgiI {z; < x}} + 045 (1),
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from which (4) follows by CLT, and CMT. m
Proof of Theorem 2. Note that by (26)

[0 (D) < W (O)]] (1 + 045 (1))

uniformly in ©. By this, the definition of the estimator and standard arguments
o (0e)]] = e (8.) = v (2)] + [ (5] <
sup ([, (6) = @ (O] + 00.s (1) | W (B | + 00 (1) <
=)
0.5 (1) + 045 (1) ¥ (0o)[| = 0.5 (1)

By (II) it then follows that B, € |0 — 6o]| < ¢ a.s. and since ( is arbitrary 0“5 0,.
m

Proof of Theorem 3. Let U, (0+te) = > w;e), (0 £¢) for some ¢ > 0.
By (26) and SLLN we have that ¥, (§+¢) “> ¥ (f+¢). Then monotonicity of
¥, (#) implies monotonicity of W (f) and since 6, is the unique root of W (6y £ ¢),
U (0y—e) <0<V (fy+e) for e sufficiently small. It then follows that

U, (0g—e) <0<V, (0g+¢) as.

whence there exists a /Q\w such that ¥, <§w) “ 0 and b\w 23 6, by the continuity of
U, (0). m
Proof of Theorem 4. Let dG,, (z) := dF), (z) — dF (z). Note that

W, (6) =T (0= 00) + 016 = Boll + ¥, (6) (1+ 37 gi) + 04, (1) =
Ho (6)+ 010~ 60l) + [ (5(6) = (60)) dG (2) +
NS (0) = (00)) gi/n + 0. (1)

where

Hy (6) =T (6 = 60) + ¥y (60) (1+ V75
Let n'/2 (8 — 6y) = O, (1); then

[0 (W, (0) — Hu () ]| < 0, (1) + (27)
N [ / (61 (6) — 1 (60)) dC, <x>] H '
‘ nl/2\ HZ 90 gz/nH = A, + A,.
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By (II) A; = 0, (1) while by (III) (a) and the consistency of § there exists a §,, — 0
such that supjg_g,1<s, [|(¥; (0) —¥; (6o)) g:l| = 0, (1). Then by (III) (b) and dom-
inated convergence Esupg_g,<s, (¥ (0) — 1 (60)) gill — 0 so that by triangle and
Markov inequalities

IS [0 @)~ v @) g/ < 3= sup 16, (6) i 00)) il /m = 0, (1),

16—60[|<d7

and Ay = O,(1)0,(1) = 0,(1). Thus n'/?¥,, () is asymptotically equivalent to
n'2H, (). Let § := argminy || H,, (6)| and note that

n*2H, (5) H +0,(1),

which implies that Hn1/2f‘ (5—5) H < ||T| Hn1/2 (5—5) H = Co, (1) and hence
Hnl/ 2 (5 — 5) H = 0, (1). Thus the distribution of § is asymptotically equivalent to

|28, (@) = |

that of #. Since 0, is n'/?-consistent by assumption, the conclusion follows by CLT
and CMT. m

Proof of Theorem 5. Assume that ¢ () is nonincreasing in 0, let y,, = 0y +
yogy/n'/*where y € R, and U, (y,) denote the corresponding weighted estimating
equation. Then by (26), (3) and SLLN

o () = D0 () (14 379:) [+ 00 (1)
= > [ ) = EW () 157 0] /14 00 (1) =D 2in/1+ 005 (1)

As in Huber (1964) it suffices to show that lim Pr{¥,, (y,) < 0} =limPr{}_ z;,/n <0} =
F (y) for every y, where F'(-) is the standard normal distribution. Let Z;, :=
(2in — Ez1n) /o (21,) where 02 (21,,) = Var (z1,) and note that lim n'/2E [21,, /0 (21,)] =
—y (Huber, 1964, p. 78). Therefore lim Pr {3 z;,/n < 0} =limPr {n~2 3" Z;, < y}.
Since the Lindeberg condition lim [ 22dF (z) = 0 holds for

n>nl/2e “n

Zn = |0 (yn) + E 10 ()| gl 1= ]

it follows by a CLT for triangular arrays that imPr {n='2Y" Z;,, <y} =F(y). =

Proof of Theorem 6. By (26) and mean value expansion

0= @it (Bu) = D0 (00) /n+ D0 (0) (B = 00) /n+ X" D 0, (60) gi/n +
X307 i (8 60) fn+ O, (0" (loglog ) (28)
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where ||0* — 0| < H@w - 90) from which

B =00 =[S0 07) /ot 3wt (0) Xgufn]

(D20 (60) /n+ 3 0, (00) X gi/n + Ous (n™" (loglogm)) )
Since 6* %3 6, using (3), USLLN, LIL and CMT one gets
n!2XT> ", (00) gi/n+ E [ (6) g7) (1),
3w gl < 3] suw [ 32 w5 0) 9m — B ) o +
S| 120 0)gll = Ous. (072 (toglogn)*)
S wt0) /n— E1 00)]] = 00 (1)

The conclusion follows by CLT and CMT. =
Proof of Theorem 7. By consistency of gw and WLLN ig Ly,

|2 ds (80) s ()~ v < sup |32 (s @), (0 /m— B 1w 0) 0 (017

0e Ny

)'{'Op (1)

so that Vs 2 V. Note that by the stochastic equicontinuity (I) and (26) forl =1, ..., k

|9a, (0w + buer) = Wa (00) = (¥ (B + buer) = @ (80) )| = 0 (n7720).

whereas by the local differentiability (II) and triangle inequality

H\If (@w + bnel> [bn — TezH < HF (5111 - 90) (”_1/2551) )

so that again by triangle inequality (f@) 2 (), 1=1,...,k. Finally by the consis-
!
tency of 6,,, ULLN and the triangle inequality

IS0 (v (8.) - 0 00) a7 + 3 s (o) 7 — E 1 () o7
< S (0 (B0) — 6 1.00)) ]| 1400 (1) <
ST sup 16 (6) =, (60) 7 /4 0y (1) = 0y (1)

10—00]|<dn

so that the conclusion follows by CMT. =
Proof of Theorem 8. Recall that the one-step weighted M-estimator for 6y is

b, [Sawt (3.)] S aw (3,). (29)
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By (26) and a mean value expansion it can be shown that (29) can be written as
4
nl/2 (ew - 90) — 024 Y| Ay, where

e IO AR g,+oas(1)} /n,

= =X [ (0) 0010 (o= 0)]
Ay = —xz[wi(w) ¥ (00) = v, 0) (8 — 60)] /.
Ay = Z[¢ (9)(1+>\gz+oas( ﬂ/n

Let Fyy = E [ (60) 0 (00)"] — ¢ (6) ") S E [1(60) ¢7)"; by CLT, CMT and LLN
it follows that nl/2A4y,, % N (0, Fyy), n'/2Ag, = E [ (0p)] n'/? ( - 90> + 045 (1),

2 A < ||| (0. 1)+ 12 w0 60) gl |72 (B~ 80) ) [) =
On. (7% (10 10g 1) "2) (00, (1) + O, (1)) = 0, (1),

and ||Ay, — BV’ (00)|] = 045 (1), whence the results follows by CMT.

Proof of Theorem 9. The arguments of the proof of Theorem 1 apply viz.
a. viz. to ¢® := g; — 6/n'/2, so that it is easy to see that 0 = §° + S gig7\/n +
Og.s. (nil (log log n) ) Thus the first conclusion follows by CLT and CMT. As for

the second conclusion note that
ni/? (ﬁw (2) — F (x)) = pl/? (ﬁn (2) — F (:1:)) — 23 Iz, <@} Vgl jn +
Ogs. (n’3/2 (loglog n)1/2> S (ﬁn () — F (x)) —n'?E [XTgZ-I {z; < az}] + 045 (1),

and the result follows again by CLT and CMT. =
Proof of Theorem 10. Let ¢’ := g; — §/n'/2. Note that max; |\ ¢°| = 0., (1)
so that the proofs of Theorem 2 and 3 are still valid, hence the conclusion. m
Proof of Theorem 11. Note that

n2H, (0) = Tn'/2 (6 — 0,) + nV/?T,, (0,) (1 + ngf)
so that by CLT and CMT

n'2 (0= 00) 5 N (T B[4 (2,00) g (2)7] 276, Try)
where Y, is as defined in Theorem 4. Furthermore similarly to (27)

|33 s @ = s o ] < [ 3] [0 o @) = e i

(1+l18]l /n'?) = o, (1) :

1/2”): 1/2/\
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Thus the first conclusion follows as in the proof of Theorem 4. The second conclusion

follows as in Theorem 5 using

> zin/n+ E ) (00) g1 716 + 0, (1)

The third and last conclusion follows using an expansion analogous to that in (28),

namely

OZZ@ﬂﬁi(/éw) >0 00) /nt Y (0%) (B —00) /n+ XD 0 (00) gl /n +
IRTAC ( —90> /14 Oqs (n7" (loglogn)) =

S 00 fa+ Y07 (B = 00) fo+ [ (Lsi/n) 8| S0 w0+
N Z Vi (0%) g; <5w - 00) /n+ O, (n_l (loglog n)1/2> ,

and the rest of the proof is identical to that of Theorem 6. m m

Proof of Theorem 12. We use tensor notation and indicate arrays by their
elements as for example in McCullagh (1987). Thus, for any index say j, a; is a vector,
aji is a matrix, etc. We also follow the summation convention, that is for any two
repeated indices, their sum is understood. For 1 < a,b,c,... <gand 1 < a,f,... <k
let

Ao =N " (gighgi .. — ) fn, ™ = E[gigbgi ]
Beever = (0" (00) /007 ..00° — k) /i,
goer—ox = B [0Fy2 (0p) /00°1...00%]
(raor.agabe..  _ Z[(ak¢( 0) /06% .. eak)ggg?m_,yaal....akabc...] /n,
et [(0by (8) /00°.00%) gigh..]

that is A®ve- B and C@e1-orbe- represent O, (n~*/?) random arrays of, re-
spectively. higher order moments of the standardised auxiliary information, higher
order derivatives of the estimating functions, and of covariances between higher order
derivatives of the estimating functions and the higher order arrays of moments of the
standardised auxiliary information.

First we obtain a third-order stochastic expansion for A that solves 0 = > wigs.
Recall that w; = p, (X‘@f) />y (X“gf) thus using a third order Taylor expansion

of the numerator and of the denominator and some algebra we obtain
~ ~ N2 ~ 3
0=>" [1 +A\°g7 — p (Abgﬁ’> /2 = ps (Abgﬁ’> /3!] gi/n+ 0, (n7?),
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which can then be inverted to give

Xa — _A* AabAb + pgaabcAbAc/Q o AabAbcAc o pSAabCAbAC/Q + ngéabCAbACdAd o
p4OéadeAbAcAd/3! . pgaabcacefAbAeAf/2 + Op (n—2) ) (30)

Next using (30) we obtain that w; has the following stochastic expansion

@i —1— nga —f-g?AabAb + p3g;zaabcAbAc/2 o g?AabAbcAc o pggquabcAbAc/2 +
p3g;zaabcAbAchd . ,04OéQdeg,?AbAcAd/3! . pgg?aabcacefAbAeAf/z .

pagi gt AT A2 4 pagi gl A (AP AC + pya@ACAY)2) — paglgl A AP ACAT 2 —
pgg;zgi)AacabdeAcAdAe/z o pgg?gibOéGCdOébefAcAdAeAf/8 +

Pugigigi A" AP AT [31 4+ O, (n 7). (31)

Finally we obtain a third order stochastic expansion for 6 that solves 0 = > wihd (5) .
By a third order Taylor expansion about 6,

0=Y"a [w? + W (0) /96 (5 - 90)6 + % (0y) /007907 (5 - 90>B (5 - 90)W 2+

oz 00 (oo’ (9-0,)" (3-00)" (=) /1] + 0, (7).
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where for notational simplicity ¥{ (fy) = ¥;". By (30) and (31) we get

0= 77004 + Z¢?gf (—Ab+AbCAC+p3adeAcAd/2 o AbcAchd _ p3AdeACAd/2—|—

s AbchcAd/2 + p abchcAdeAe . p4abcdeAcAdAe/3! o ngszdO[defAcAeAf/z) /TL .

p32¢agfgf (AbdAd + p3abd€AdAe/2)] [—AC + (AceAe _'_p3acefAeAf/2)] /Tl-'-
~ B ~ B

P2 > URglgt AP ACAY/ (3in) + B (9 - 90) +Y B (9 . 90> g7 (—A" 4+ A% AP

p3aabcAbAc/2 o AabAbcAc o p3AabOédeACAd/2 4 p3OéabCAbACdAd—

paaeacde A AT A )2 — p4aadeAbAcAd/3!) /n+ ps Z Bf‘ﬁ (5 — 00) g gl A" A’/ (2n) +

3o (5 _ 90)5 +Y g (5 _ 90)5 g (— A"+ A AP 4 prae AP AC)2—
—APA*AT — p AT TAAY )2 4 paa™ AP AAT — pRaiat AP ATAC 2 —
paa™ AP A AL 31) [~ py > 5 (9~ 90> Gq (—A“ +ASA® 4 pga®AcA2)
(— A"+ AMAT 4 puaeATA2) [ (20) + p, Y B (5 - 90> gigbgc ACAP A/ (3In) +
B9 (5 - 90)5 (5— (90)7 /2 + o (5 - 9())5 (5 - 90>7 /2 -
3 pes (5 . 90)8 (5 _ 90)7 gaA%/ (2n) + §oP (5 - 00)5 (@ _ 90)7 X
(- 90)5 /3140, (n72),
where ¢ = 32, ¢4 /n and similarly for B°%. Inverting this expansion we get
(@ - 90)“ = Bt + Bugy™ A+ Qs+ Qs+ O, (n?) |
where (3,5 is the matrix inverse of 3%’

QQ — Baﬁ [CBaAa . ,yBaAabAb o ,03’}/Ba05abcAbAc/2 + p3,yBabAaAb/2+ (32)
BB s¢)° — BIB 7y A — 1B )P AT 4108 P A A —
5576 (57565(¢5¢C - 267566<¢87CGAG + B*ysﬁ&(,yea/ygbAaAb) /2i| )
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and

Qs = Bog [_Bm@w (CaaAa %0 4T AY | poyBagabe gb Ac o pﬂ(sabAaAb/Z) H(33)
BPBs (=B B 08 + BB, A + 753 g A — 55503 4040 AY)

BB 557 (BoyfBesth™ " 12+ BB AR A2 = B, Bty A7) +

_(Pa (AabAb _ pzaabcAbAc/Q) 4 P gab (AbcAc X pgabchcAd/2> _

payP ( A AP AC /2 4 obe AP AL Ad 5, qabeqede ge Ad Ae /2) _

pyPiaed Ab Ac Ad 31 Cﬁva676 (_wéAa 4 ,y(sbAaAb) B

757%76 (_wéAabAb X ,_)/ébAacAbAc> _ p3,y,8*ya676aabc (_w(SAbAc I ,yédAbAcAd) /2~
B (=f,.0° + 8,9 AY) (=B 0" + Bs, )" A®) /2 —

BP0 (=Bt Byt A%) (— B3t + By AY) (—Boet + By A°) /31]

Proof of Corollary 13. The result follows by direct calculations in (32) using

using

E (Aab...Aalbl...) — aab...albl.../n7 E (Aab...Aalbl...Aagbg...) — aab---alby.-azbz---/n?’

E (Aab‘..Aalbl...Aagbz‘..Aagbg..‘) — a(lb...albl...agbg...agbg..‘/nfi _|_ [3] (n _ 1) aab...albl...aagbg...a3b3.../n2

where [3] = @b qazbeagba.. | qabeazba.. qorbiags. 4 qaboasha.qaibiazbe and
simple algebra. m

Proof of Corollary 14. The result follows by ULLN and CMT as in the proof
of Theorem 7. =

Proof of Proposition 15. We verify the conditions of Theorems 2 and 4. Note
that (I)-(III) and E'supy ce [|22isigm, {€i}]| < (14 p) £ |22 < oo imply by Theorem
2 that gpw “% 0,0. Note also that by the results of Andrews (1994)

Z 22i81gnp {8 — 21; (0p — Op0) /1 — E'[p — F (21, (0, — 0p0) |2)]}

is stochastically equicontinuous; furthermore by CLT
> zasigny (i} /'’ 4 N (0,p (1 p) E (225))

so that by the differentiability condition (IV) it can be shown that n'/2 <5pw — 0p0> =
O, (1). Then (V)-(VII) imply the rest of the conditions of Theorem 4 hence the

35



conclusion. To prove the consistency of igg note that

S BT {E] < b2} 2125,/b0 — E[£. (012) 255) | <
S < b0/2) = T{lai] < bu/2}) 21625,/ (nb)
S (el < bu/2} = B £ (012) 2125))|

+

+ Op (1) = Aln + Agn.

By WLLN it is easy to see that > {|e;] < b,/2}/ (nb,) 2 E[f. (\2) 2125] where
|A] < b, = 0(1) and hence by dominated convergence E [f. (A|2) z125] — E [f- (0]z) z121];
thus Ay, = 0, (1) by triangle inequality. To show that A;,, = o, (1) note that

Av < |32 U {lei+ el < buf2h+ 1 {les = eal < bu/2}) 21055/ (nb)

where ¢, = || 21| /Q\W — Op0]|- Let
Avrn = HZI{\@ +en] < bu/2} 21025,/ (nby)]],
and B, = { 5pw — Oyl < hcn} for a constant A > 0 so that Pr(B¢) — 0 because

n'/? (ﬁpw - 60) = O, (1). Then for any n > 0 using Markov inequality, III’ and IX
Pr (Alln > 77) S Pr (Alln N Bn > 7]) + Pr (BC) =

(lzill+1)hen+en
ey [ f. (l2s) dXz1.25,/ (pmb,)

(lzill+1)hen+en

<

(Hzi”‘f'l)hcn""cn _
ey FdAzizg/ ()

(Izill+1)hen+en

= (h/n) E[([l2]] + 1) [[2122]]] = 0

for h — 0. By similar arguments

Aoy = HZI {lei = cnl < bn/2} 21:25;/ (nby)

=0, (1)

implying that A;, = o, (1).

Proof of Proposition 16. We verify the conditions of Theorems 3 and 4. Note
that ¢ (0) = [(x; — 0) A k] V (—k) is monotonic and (I) implies that 6, is unique; thus
by Theorem 3 6, 5 6. Also by the results of Andrews (1994)

D @i = O ARV (=k) /n = E[(x; — 0) ARV (=F)]
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is stochastically equicontinuous; furthermore by CLT Y [(z; — o) A k]V(—k) /n'/2 <,
N (0, V% (6p)) where Vi (6p) = feiojkk 22dF (z)+k? (1 + F (0g — k) — F (6 + k)). Clearly
the differentiability condition I is satisfied hence n'/? (510 — 00) =0, (1). Also

Esup |[(z; —O) Ak V (=K) < (64 E|z|)* VE < o0,
€Ny

and similarly for Esupgcp, [|([(zi —0) AE]V (=k))g(2)]| < oo . Thus the condi-
tions of Theorem 4 are met hence the conclusion. The strong consistency of 3§g
follows by noting that by strong consistency of §w and the continuity of F' imply
> wil {xl <0, — k} %2 F (0 — k). A similar argument applies to the other terms
thus the conclusion follows by CMT. m

Proof of Proposition 17. We verify the conditions of Theorems 2 and 6. Let
W (z,0) = ¢ (270) /F (270) F (=270),

Ey(z,0)] = E{W (2,0) [F (2700) — F (270)] 2}

which is clearly 0 at 6. Also note that as long as Pr{z7 (0 —0y) # 0} > 0 the
monotonicity of F' (-) implies that 6y is unique. Thus by compactness of © and conti-
nuity of E [ (z,0)] the identification condition infjjg_gy s || £ [¢ (2,0)]]] > 0 is satis-
fied, hence 6, %3 6. Also E (¢ (2,00)"] = E[A(2760) A (—270) 227] exists and nonsin-
gular by A () bounded away from zero on any open interval and F (z27) nonsingular,

and E'supy, [[¢' (2, 0)[l g (2)Il] = Esupx, [[(A (v) y + Ao (=v) (1 = y)) z27[[ |g (2)[]] <
2C (1+E I12]1% 119 (z)]]) < oo by A, (-) uniformly bounded. Finally by CLT

Z W (2, 600) [yi — F (276)] 2 /n/? 4N (0, E X\ (2700) A (—270) 227]) .

Thus all the conditions of Theorem 6 are met hence the result. Finally the strong
consistency of the variance estimator follows by noting that by consistency of 6,

ULLN and the triangle inequality
HZ A (z[§w> A (—2[511,) zizl — E A (2700) A (—2700) 227
S sup H </\ <z;§w) A (—zﬁw) ~ A (276) A (—zgeo)) %zl

”9_90”§5n

<

/n+ o045 (1) +

HZ A(2700) A (—2700) 227 /n — E [\ (2700) A (—2700) 227] H — 0us (1),

where d,, — 0 such that ||§ — 6y]] < 6, a.s. A similar argument can be used to show
the strong consistency of the other terms appearing in the estimator so the conclusion
follows by CMT. [
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6 Figures and tables

Table 1a Finite sample bias B, variances V/, V and efficiency E of 5, HEMM 4nd 55;“ in

instrumental variable median regression model for n = 50 and

b 0, 0 gg [ 9n By, | O By | Buy O
N (0,1) errors
g(x)”
B -.052 .006 .031 .004 -.022 .004 .028 .006 -.027 .006
V 235 .166 218 .157 196 .151 211 .158 .200 .153
v 233 .168 .217 .160 199 152 .209 .158 203 .150
E 1.00 1.00 1.08 1.06 1.19 1.10 1.11 1.05 1.17 1.08
g1 (2)™
B -.052 .006 .034 .010 -.031 .013 .035 .014 -.033 .011
%4 235 .166 .226 .166 223 .159 .226 .158 .221 .156
V 233 .168 224 169 224 162 228 155 224 158
E 1.00 1.00 1.04 1.00 1.05 1.04 1.04 1.05 1.06 1.06
g ()™
B -.052 .006 .038 .020 -.039 .018 .041 .017 -.037 .016
1% 235 .166 232 .170 230 .165 233 .164 1228 .159
v 233 .168 235 .172 230 .168 235 .168 231 .161
E 1.00 1.00 1.01 .976 1.02 1.01 1.01 1.01 1.03 1.04
t(4) errors
g (x)”
B -.042 .006 .023 .007 -.020 .005 .023 .006 -.021 .005
%4 242203 229 178 .220 .167 227 173 .220 .168
XA/ 246 .206 .228 .180 222 165 225 183 222 170
FE 1.00 1.00 1.06 1.14 1.10 1.21 1.06.1.17 1.10 1.21
g1 (x)ms
B -.042 .006 .033 .012 -.034 .012 .036 .013 -.033 .010
% 242 203 234 189 236 .190 238 .181 .231 .184
v .246  .206 235 .193 239 193 .240 .193 233 188
E 1.00 1.00 1.03 1.07 1.02 1.07 1.01 1.12 1.05 1.10
92 (2)™
B -.042 .006 .039 .028 -.038 .020 038 .021 -.036 .018
%4 242 .203 239 .199 241 198 240 .190 237 193
XA/ 246 .206 .247 205 246 .202 245 .203 238 196
FE 1.00 1.00 1.01 1.0238 1.00 1.02 1.00 1.06 1.02 1.05

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®®,
g(:):)?qS (§=1,2) indicate, respectively, correctly and moderately misspecified auxiliary information.

For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.



Table 1la. Continued

X% (4) — 4 errors

g (x)”
B -.081 -.032 -.067 -.029 -.061 -.028 -.063 -.027 -.064 -.029
V 419 188 390 .169 385 .158 389 164 385 .161
1% 428 197 398 17T 389 163 393 167 394 164
E 1.00 1.00 1.07 1.11 1.08 1.19 1.07 1.15 1.08 1.17

g1 ()™
B -.081 -.032 -.077 -.036 -.072 -.037 -.073 -.033 -.073 -.035
V 419 188 398 180 394 169 398 173 394 168
1% 428 197 405 184 406 175 402 177 401 174
E 1.00 1.00 1.05 1.04 1.06 1.11 1.05 1.09 1.06 1.12

g2 (2)™
B -.081 -.032 -.083 -.041 -.084 -.042 -.079 -.038 078 -.040
\%4 419 188 415 185 411 181 408 .178 408 175
v 428 197 421 .193 416 184 418 184 414 179
E 1.00 1.00 1.01 1.01 1.02 1.04 1.02 1.05 1.03 1.05

M errors

V8

g (x)”
B -.057 -.023 -.049 -.019 -.041 -.018 -.044 -.021 -.043 -.018
V 275 160 249 150 238 .143 243 151 241 144
v 280 .168 252 157 241 147 246 .155 257 145
E 1.00 1.00 1.10 1.07 1.15 1.12 1.13 1. 06 1.14 1.11

g1 (2)"™
B -.057 -.023 -.062 -.022 -.049 -.021 -.053 -.024 -.047 -.019
%4 275 .160 261 .154 256 .150 .251 .155 251  .145
Y 280 .168 265 .159 259  .156 .260 .158 254 .152
E 1.00 1.00 1.05 1.04 1.07 1.07 1.09 1.03 1.09 1.10

g2 ()™
B -.057 -.023 -.069 -.028 -.054 -.024 -.058-.027 -.052 -.020
V 275 160 .268.  .156 264 158 266 157 261 .152
1% 280 168 271 165 268 .162 271 164 264 156
E 1.00 1.00 1.03 1.01 1.04 1.01 1.03 1.02 1.05 1.05

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®®,
g(:lc)}nS (7=1,2) indicate, respectively, correctiygnd moderately misspecified auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.



in instrumental variable median regression model for n = 100 and

Table 1b. Finite sample bias B, variances V/, V and efficiency E of 5, MM and /H\gEL

R R R S
N (0,1) errors
g(x)”
B | -.037.005 .021 .006 -.015 .003 .020 .004 -.018 .004
1% 194 .136 175 .126 152 122 168 .128 159 .122
1% 193 .135 174 .129 154 124 166 .127 161 .123
E 1.00 1.00 1.10 1.07 1.28 1.11 1.15 1.06 1.22 1.11
g1 ()™
B | -.037 .005 .023 .008 -.021 .007 .023 .009 -.021 .006
1% 194 .136 179 128 164 127 172 131 166 .126
1% 193 .135 176 .127 166 .124 174 .129 167 .126
E 1.00 1.00 1.08 1.06 1.18 1.08 1.13 1.04 1.17 1.07
g ()™
B | -.037.005 .026 .010 -.032 .009 027 .011 -.024 .008
1% 194 .136 183 .132 183 .133 180 .136 178 132
1% 193 .135 185 .134 187 130 185 .132 181 .130
E 1.00 1.00 1.06 1.03 1.06 1.02 1.08 1 1.09 1.05
t(4) errors
g(x)”
B | -.034 .005 .019.006 -.016 .004 .018 .005 -.017.004
V| .182 .153 170 .132 162 .130 167 .134 162 .132
V| 181 .152 168 .134 164 .128 156 .133 162 .130
E | 1.00 1.00 1.071.16 1.12 1.17 1.091.14 | 1.121.16
g1 ()™
B | -.034 .005 .025 .008 -.028 .009 .027 .010 -.025 .006
VvV | .182 .153 174 141 170 137 177 .139 170 .132
V | .181 .152 177 .143 172139 175 .142 175 .134
E | 1.00 1.00 1.051.08 1.07 1.12 1.03 1.10 1.071.16
ge ()™
B | -.034 .005 .033 .011 -.031 .012 032 .012 | -.029 .010
V| .182 .153 177 141 178 141 180 .142 175 .135
V| 181 .152 179 .143 180 .144 183 .145 177 138
E | 1.001.00 1.031.08 4 1.021.08 1.011.07 | 1.041.13

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®*,

g(z)7*® (7=1,2) indicate, respectively, correctly and moderately misspecified auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.




Table 1b. Continued

b 0 [0, By B O | By By | Ouy Dy
X% (4) — 4 errors
g (x)”
B -.061 -.024 -.050 -.022 -.046 -.021 -.047 -.020 -.048 -.022
V 291 131 .269 115 263 .108 271 113 268 .110
1% 304 145 .265 .120 .260 .110 270 .116 265 112
E 1.00 1.00 1.08 1.14 1.11 1.21 1.08 1.16 1.08 1.19
g ()™
B -.061 -.024 -.056 .026 -.052 -.027 -.053 -.025 -.053 -.024
V 291 131 271 122 282 118 284 .120 2280 117
1% 304 145 283 138 279 132 281 131 277 130
E 1.00 1.00 1.07 1.07 1.03 1.11 1.02 1.09 1.04 1.12
g2 ()™
B -.061 -.024 -.060 -.029 -.058 -.029 -.056 -.028 -.055 -.027
V 291 131 287 125 290 128 290 .126 286 .123
1% 304 145 301 .140 290 124 292 129 288 .133
E 1.00 1.00 1.01 1.05 1.00 1.02 1.00 1.04 1.02 1.06
XMW rrors
V8
g (x)”
B -.045 -.018 -.043 -.015 -.032 -.014 -.034 -.016 -.032 -.013
V 204 118 182 110 174 104 A74 .109 176 106
1% 206 .120 185 111 178 .099 182 104 180 .102
E 1.00 1.00 1.12 1.07 1.17 1.13 1.17 1.08 1.16 1. 11
g1 (2)™
B -.045 -.018 -.046 -.017 -.037 -.016 -.040 -.018 -.036 -.014
V 204 118 191 115 186 112 186 114 184 110
v 206 .120 193 116 189 115 191 116 188 115
E 1.00 1.00 1.07 1.03 1.10 1.05 1.10 1.03 1.10 1.07
g2 ()™
B -.045 -.018 -.049 -.020 -.043 -.019 -.042 -.020 -.041 -.015
V 204 118 195 118 191 116 192 116 A87 114
1% 206 .120 197 121 195 122 195 121 192 121
E 1.00 1.00 1.04 1.00 1.07 1.01 1.06 1.02 1.09 1.03

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®®,
g(ac)}nS (7=1,2) indicate, respectively, correctly and moderately misspecified auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 2. Finite sample bias B, variances V/, V and efficiency F of

0, foMM , and 5SEL in robust location estimation with

D [ YGMM HEL QEU HgT
N (0,1)
B .002 .002 .001 .002 .001
95 14 015 011 .008 0104 .0083
V .016 .012 .008 .0103 .0846
E 1.00 1.36 1.83 1.480 1.855
B -.0073 -.0033 .0013 -.0248 .0014
0 XA/ .0150 .0100 .0061 .0092 .0062
1% 0144 .0104 .0059 0112 .0060
E 1.00 1.500 2.459 1.630 2.419
B .0041 .0039 -.0022 .0038 -.0021
0 14 0171 .0078 .0046 .0080 .0059
vV 0182 .0825 .0059 .0102 .0050
E 1.00 2.192 3.717 2.137 3.423
B .0047 .0040 -.0040 .0038 -.0042
. ‘f .0187 .0107 .0075 .0103 .0082
1% .0192 .0102 .0078 .0101 .0089
E 1.00 1.747 2.493 1.815 2.280
t(4)
B -.0063 -.0059 .0031 -.0060 .0031
o5 14 .0220 .0149 0119 0153 0112
1% .0229 .0153 .0120 .0138 0114
E 1.00 1.476 1.848 1.437 1.964
B -.0012 -.0011 -.0013 -.0011 .0013
10 ‘f .0236 .0132 .0079 0143 .0087
1% 0227 .0139 .0075 .0129 .0081
E 1.00 1.787 2.987 1.642 2.712

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT" Nonparametric tilting
An underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 2. Continued

D ) 9GMM pEL pEU pNT
£ (4)
B -0028 | -.0025 0020 | -.0031 | -.0029
wlV 0244 0090 0085 0101 0090
v 0239 0119 .0090 0103 0095
E 1.00 2.711 2.870 2.415 2.711
B ~0060 | -.0063 -0058 | -.0052 | -.0051
|V 0259 0154 0133 0163 0131
% 0269 0169 0116 0147 0127
E 1.00 1.681 1.947 1.589 1.977
X°(4) —4
B 2414 | -2512 | -.2025 -2261 | -.2325
|V 2587 2001 1885 2088 1844
v 2232 2002 2033 1927 1995
E 1.00 1.292 1.372 1.2930 | T.402
B -.2271 -2243 | -2073 | -2152 | -2131
w0l v 2323 1623 1196 1734 1205
(% 2168 1598 1123 1655 1099
E 1.00 1.431 1.939 1.341 1.925
B -.2162 -2100 | -.1996 -.209 -.1956
wl Y 2420 1420 1100 1571 1006
% 233 1533 0941 1553 0904
E 1.00 1.704 2.437 1. 540 2.657
B -.2105 -2054 | -2289 | -2107 | -.2128
|V 2599 1599 1093 1609 1150
(% 2407 1407 0965 1779 1043
E 1.00 1.625 2377 1.615 2.260

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting
An underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 2. Continued

p 0 o g gEU oNT
X>(4)—4
V8
B -.2196 -.2009 -.1823 -.1967 -.1836
95 XA/ .0310 .0260 .0245 0271 0248
V .0334 .0240 .0284 .0297 0243
E 1.00 1.192 1.265 1.148 1.25
B -.1816 -.1861 -.1554 -.1571 -.1622
10 X/{ .0278 0227 .0148 .0222 0156
V .0238 .0207 .0135 .0216 0124
E 1.00 1.227 1.883 1.255 1.786
B -.1751 -.1743 -. 1576 -.1692 -.1525
60 XA/ .0292 .0205 .0144 .0210 0131
V .0302 .0193 .0119 0184 .0112
E 1.00 1.424 2.027 1.390 2.229
B -.1915 -. 1828 -.2060 -.1791 -.1745
o5 Y .0317 .0219 .0132 .0204 0141
V .2407 .1407 .0965 1779 1043
E 1.00 1.447 2.401 1.553 2.248

GM M Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, N7 Nonparametric tilting
An underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 3a. Finite sample bias B, variances V, V and efficiency F of /9\, MM and /HEE L

in binary dependent variable regression model for n = 50 and

b 0, [0V 99V | By Bay | O Oa | Bu Ba
N (0,1)
g (x)”
B .057 .041 .052 .038 .049 .033 054 .036 .050 .035
Vv .086 .090 .070 .068 063 .062 .069 .065 .064 .061
% .088 .092 073 .070 065 .064 073 .068 066 .067
E 1.00 1.00 1.22 1.32 1.36 1.47 1.25 1.38 1.34 1.47
g1 (2)™
B .057 .041 058 .042 .056 .038 058 .039 -053 .039
V .086 .090 079 .074 076 .078 071 .077 071 .074
% .088 .092 083 .078 .081 .082 077 .081 075 .077
E 1.00 1.00 1.09 1.27 1.13 1.15 1.211.17 1.211.21
g2 (2)™
B .057 .041 .063 .047 063 .044 066 .044 060 .043
Vv .086 .090 .084 .079 .081 .078 .080 .081 .078 .078
% .088 .092 .087 .082 .084 .082 .083 .088 .082 .083
E 1.00 1.00 1.02 1.14 1.06 1.15 1.07 1.11 1.10 1.15
t(4)
g ()"
B -.141 -.108 -.136 -.091 -.120 -.071 -.126 -.076 -.123 -.072
V .055 .104 046 .084 042 .081 .043 .085 .042 080
1% .061 .106 .048 .089 018 .028 021 .030 020 .029
E 1.00 1.00 1.19 1.24 1.31 1.28 1.28 1.22 1.31 1.30
g1 (2)™
B -.141 -.108 -.142 -.095 -.138-.085 -.151 -.082 -.135 -.082
Vv .055 .104 051 .091 048 .088 048 .090 .046 .087
% .061 .106 056 .097 052 .092 053 .093 049  .091
E 1.00 1.00 1.08 1.14 1.14 1.18 1.14 1.15 1.19 1.19
g2 ()™
B -.141 -.108 -.148 -.101 -.145 -.093 -.152 -.093 -.141 -.088
V 055 .104 055 .096 054 .093 053 .094 .051 .091
1% 061 .106 060 .101 056 .096 .056 .097 059 .096
E 1.00 1.00 1.00 1.08 ,.| 1.07 1.11 1.04 1.10 1.08 1.14

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®*,
g(z)7*® (j=1,2) indicate, respectively, correctly and moderately misspecified auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.



Table 3a. Continued

DR Sl B B
X*(4) —4
g ()”
B -.895 -.305 -.825 -.270 -.785 -.236 -.807 -.262 -.797 -.248
V 222251 182 .206 161 187 176 .195 165 190
1% 235 .264 196 212 A74 193 189 .203 77196
E 1.00 1.00 1.221.22 1.38 1.34 1.26 1.29 1.34 1.32
g1 ()™
B -.895 -.305 -.850 -.288 -.832 -.266 -.829 -.274 -.821 -.264
V 222 251 201 215 186 201 193 .204 184 194
1% 235 .264 214 221 118 140 129 139 119 135
E 1.00 1.00 1.10 1.17 1.19 1.25 1.15 1.23 1.21 1.29
g2 ()™
B -.895 -.305 -.878 -.298 -.856 -.296 -.845 -.288 -.832 -.285
V 222251 220 .240 210 .237 217 235 192 215
1% 235 .264 153 161 143 153 148 160 139 152
E 1.00 1.00 1.01 1.04 1.06 1.06 1.02 1.07 1.14 1.17
xX*(4)—4
V38
g (x)”
B .b31 .318 509 .289 497 278 505 298 491 291
% .042 .053 .030 .038 .028 .032 .030 .039 .028 .031
1% .045 .057 .034 .042 030 .034 035 .041 031 .034
E 1.00 1.00 1.40 1.39 1.50 1.65 1.40 1.35 1.50 1.71
g1 (2)™
B 531 .318 513 .302 502 .298 507 .300 498 .296
V .042 .053 .034 .038 .034 .037 033 .040 033 .035
1% .045 .057 .039 .042 038 .041 038 .042 .035 .038
E 1.00 1.00 1.23 1.39 1.23 1.43 1.271.32 1.27 1.51
g2 ()™
B 531 .318 518 .306 510 .309 012 .306 007 .303
Vv .042 .053 .037 .040 037 .041 036 .039 .035 .037
1% .045 .057 .041 .044 042 .045 039 .043 039 .042
E 1.00 1.00 1.131.32 1.13 1.29 1.16 1.23 1.20 1.26

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®®,
g(ac)}nS (7=1,2) indicate, respectively, correctly and moderately misspecified auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 3b. Finite sample bias B, variances V/, V and efficiency E of 5, MM and EijL

in binary dependent variable regression model for n = 100 and

R N S
N (0,1)
g (x)”
B .030 .021 .027 .020 025 .017 .028 .019 .024 .019
1% .028 .031 024 .023 020 .021 023 .024 .021 .022
1% .026 .030 023 .023 019 .021 023 .022 .022 .023
E 1.00 1.00 1.20 1.31 1.39 1.44 1.22 1.29 1.32 1.40
91 (2)™
B .030 .021 .030 .022 029 .020 031 .023 .028 .021
1% 028 .031 027 .025 .024 .025 .026 .027 .024 .024
1% .026 .030 025 .025 .023 .025 026 .024 .025 .026
E 1.00 1.00 1.04 1.24 1.17 1.24 1.08 1.15 1.171.29
g2 (2)™
B .030 .021 032 .024 .032 .022 034 .023 .031 .023
1% .028 .031 029 .027 028 .027 .028 .029 .027 .026
1% .026 .030 027 .027 027 .027 027 .027 028 .026
E 1.00 1.00 0.96 1.15 1.00 1.15 1.00 1.07 1.04 1.19
t(4)
g(x)”
B | -.125-.089 =112 -.077 -.098 -.075 -.109 -.078 -.106 -.075
1% 046 .056 036 .042 .033 .036 .035 .040 .033  .038
1% 045 .058 037 .044 035 .040 037 .042 036 .040
E 1.00 1.00 1.28 1.33 1.39 1.55 1.31 1.40 1.39 1.47
91 (2)™
B | -.125-.089 -.118 -.083 -.115 -.082 -.116 -.083 -.111  -.080
1% 046 .056 040 .046 039 .043 038 .043 036 .041
1% 045 .058 043 .049 041 .045 041 .045 039  .043
E 1.00 1.00 1.151.22 1.18 1.30 1.21 1.30 1.27 1.36
g2 (v)"™
B | -.125-.089 -.124 -.089 -.123 -.090 -.126 -.085 -121 -.085
1% 046 .056 044 .050 045 .048 042 .046 | .042  .047
1% 045 .058 047 .052 .048 .051 020 .031 019  .030
E 1.00 1.00 1.04 1.12 1.02 1.17 1.09 1.22 1.09 1.19

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®*,
g(z)7** (=1,2) indicate, respectively, correctlyrand moderately misspecified auxiliary information.

For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.




Table 3b. Continued

b 0, o gg | By By, | B, By | Oh B
X°(4)—4
g (x)”
B -.851 -.277 -.823 -.241 -.815 -.229 -.820 -.232 -.827 -.227
%4 196 .229 142 151 121 .136 132 .140 126 .140
‘/} 187 .203 156 174 138 .150 .143 .156 138 .106
FE 1.00 1.00 1.38 1.51 1.61 1.68 1.48 1.63 1.55 1.63
91 (x)™
B -.851 -.277 -.837 -.258 -.839 -.244 -.835 -.243 -.835 -.238
% 196 .229 156 .176 139 .159 144 158 135 154
v 187 .203 172191 153 185 159 171 A48 172
E 1.00 1.00 1.25 1.30 1.41 1.44 1.36 1.44 1.45 1.48
g2 ()™
B -.851 -.277 -.848 -.269 -.847 -.257 -.844 -.252 -.840 -.248
%4 196 .229 185 .199 171,189 167 183 167 178
‘/} 187 .203 198 212 188 .201 184 196 179 192
FE 1.00 1.00 1.051.15 1.141.21 1.17 1.25 1.17 1.28
xX>(4)—4
V8
g (x)”
B 377 .241 .369 .212 .363 .208 366 .215 366 .208
%4 .037 .040 .028 .032 .024 .025 .026 .027 .024 .027
V .039 .043 .031 .036 027 .027 .028 .029 028 .029
FE 1.00 1.00 1.321.25 1.54 1.60 1.42 1.48 1.54 1.48
g1 (2)"™
B B77 .241 372 .229 367 .221 379 .222 366  .217
%4 .037 .040 .032 .035 .029 .031 .028 .032 .028 .030
v .039 .043 .035 .038 .034 .035 .032 .035 .030 .033
E 1.00 1.00 1.151.14 1.27 1.29 1.321.25 1.32 1.33
g2 ()™
B 377 .241 376 .235 378 .225 383 .230 373 .221
V .037 .040 .037 .039 .035 .035 .032 .035 .032 .034
V .039 .043 .040 .041 .039 .040 .037 .038 035 .037
FE 1.00 1.00 1.00 1.02 1.051.14 1.15 1.14 1.15 1.17

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®®,
g(:lc)}nS (7=1,2) indicate, respectively, correctlf@nd moderately misspecified auxiliary information.

For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.




Table 4a. Finite sample bias B, variances V, V and efficiency E of the bias corrected l/9\c,

9CMM and gf,;GEL in binary dependent variable regression model for n = 50 and
I S S i
N (0,1)
g (x)”
B .004 .010 .005 .012 .004 .007 .006 .009 .005 .010
Vv .038 .050 .030 .030 .028 .026 033 .032 .030 .029
1% .040 .053 032 .034 029 .030 034 .034 .031 .031
E 1.00 1.00 1.27 1.67 1.35 1.92 1.15 1. 56 1.271.72
g1 (x)™
B .004 .010 .012 .022 .014 .021 .014 .024 .010 .020
1% .038 .050 034 .032 .031 .033 .032 .034 .031 .034
1% .040 .053 036 .038 .034 .037 .036 .035 .036 .038
E 1.00 1.00 1.12 1.56 1.22 1.51 1.19 1.47 1.22 1.47
g2 (2)™
B .004 .010 .018 .013 019 .012 .019 .014 .016 .012
Vv 038 .050 .040 .038 037 .035 038 .038 .035 .037
1% 040 .053 .043 .042 .040 .039 .041 .039 038 .023
E 1.00 1.00 095 1.31 1.03 143 1.00 1.31 1.08 1.35
t(4)
g (x)”
B -.019 -.010 -.024 -.006 -.017 -.006 -.025 -.013 -.021 -.012
Vv .031  .040 022 .035 .020 .031 020 .034 022 .033
1% .036 .046 .030 .037 027 .033 029 .036 027 .036
E 1.00 1.00 1.41 1.14 1.55 1.29 1.55 1.18 141 1.21
g1 (2)™
B -.019 -.010 -.026 -.011 -.023 -.010 -.026 -.012 -.021 -.010
1% .031  .040 024 .038 026 .034 025 .037 022 .035
1% .036 .046 .029 .039 .030 .037 028 .041 026 .038
E 1.00 1.00 1.29 1.21 1.19 1.08 1.24 1.08 140 1.14
g2 (2)™
B -.019 -.010 -.030 -.015 -.027 -.014 -.031 -.015 -.025 -.013
Vv .031  .040 027 .041 .029 .039 030 .041 024 .036
1% .036 .046 .031 .044 032 .042 033 .043 027 .039
E 1.00 1.00 1.15 1.05 1.07 1.02 1.03 1.00 1.29 1.11

GM M Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(x)“®,
g(m);”S (§=1,2) indicate, respectively, correcg|g) and moderately misspecified auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.



Table 4a. Continued

D S L Ll vl
X*(4) —4
g (x)”
B -.136 -.088 -.113 -.076 -.096 -.070 -.114 -.073 -.103 -.073
V 750 .207 109 133 091 .121 099 129 096 .125
v 185 212 119 141 102 132 106 .136 103 .134
E 1.00 1.00 1.60 1.55 1.92 1.71 1.77 1.60 1.82 1.66
g1 ()™
B -.136 -.088 -.138 -.082 -.130 -.083 -.136 -.79 -.126 -.078
V A75 0 .207 130 .161 125 148 118 .140 118 137
1% A85 212 140 .169 136 .155 131 .153 129 150
E 1.00 1.00 1.34 1.28 1.40 1.40 1.48 1.49 1.481.51
g2 (2)™
B -.136 -.088 -.142 -.087 -.146 -.90 -.140 -.86 -.135 -.085
V A75 0 .207 158 185 157 190 154 179 149 174
1% A85 212 179 194 165 .200 164 .190 158 188
E 1.00 1.00 1.10 1.12 1.11 1.08 1.14 1.16 1.17 1.31
xX*(4)—4
V8
g (x)”
B A13 0 .057 101 .050 096 _.045 .099 .048 .099 .049
V 042 .064 036 .046 029 .038 032 .042 .031 .040
1% .045 .070 041 .056 038 .042 036 .044 .035 .046
E 1.00 1.00 1.17 1.39 1.45 1.68 1.31 1.52 1.35 1.60
g1 (2)"™
B 113 .057 106 .055 105 .055 107 .052 105 .053
V 042 .064 .040 .052 034 .047 035 .048 034 .044
1% .045 .070 .045 .056 .038 .050 .039 .051 038 .047
E 1.00 1.00 1.051.23 1.23 1.36 1.20 1.33 1.231.45
g2 ()™
B 113 .057 A11 0 .058 113 .059 110 .057 109 .057
% 042 .064 .044 .056 .039 .053 .037 .055 .037 _.051
1% .045 .070 048 .062 042 .058 043 .059 043 .057
E 1.00 1.00 0.951.14 1.40 1.20 1.13 1.16 1.13 1.25

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®®,
g(ac)}nS (7=1,2) indicate, respectively, correctly and moderately misspecified auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Table 4b. Finite sample bias B, variances V, V and efficiency E of bias corrected

in binary dependent variable regression model for n = 100 and

g, 8, o e an a5 e 0 |0 O
N (0,1)
g (2)”
B .003 .008 .004 .010 .003 .006 .005 .008 .004 .008
1% .020 .026 .018 .017 .015 .015 .020 .018 .016 .017
v .023 .028 .020 .019 .018 .017 .021 .020 .020 .019
E 1.00 1.00 1.11 1.52 1.33 1.73 1.00 1. 44 1.18 1.53
g1 (2)™
B .003 .008 .008 .015 .007 .010 .010 .012 .007 .009
1% .020 .026 .019 .021 019 .018 .018.020 .017 .019
1% .023 .028 .021 .023 .020 .021 .022.023 .020 .022
E 1.00 1.00 1.05 1.53 1.05 1.44 1.111.37 1.181.37
g2 ()™
B .003 .008 .012 .009 .012 .008 .013 .009 .011 .009
1% .020 .026 024 .022 021 .024 .022.022 .019 .021
1% .023 .028 027 .025 024 .023 027 .024 026 .023
E 1.00 1.00 833 1.18 952 1.08 0.91 1.18 1.05 1.24
t(4)
g(@)”
B | -.016 -.013 -.010 -.009 -.008 -.007 -.011 -.008 -.010 -.008
1% .023 .027 015 .021 013 .020 015 .022 015 .022
1% .025 .029 018 .024 016 .024 018 .025 017 .023
E 1.00 1.00 1.53 1.28 1.76 1.35 1.53 1.23 1.53 1.23
g1 ()™
B | -.016-.013 -.015 -.012 -.012 -.010 -.013 -.016 -.012 -.011
1% 023 .027 018 .024 019 .025 .017 .025 017 .024
1% .025 .029 .020.025 018 .026 020 .028 016 .023
E 1.00 1.00 1.27 1.12 1.21 1.08 1.35 1.08 1.35 1.12
g2 (2)™
B | -.016-.013 -.018 -.016 -.017 -.014 -.015 -.017 -.016 -.014
1% .023 .027 021 .025 022 .027 022 .028 .021 .026
1% .025 .029 024 .028 .026 .031 025 .030 023 .029
E 1.00 1.00 1.09 T.08., 1.04 1.00 1.04 .964 1.09 1.03

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®®,
g(:p);-"s (4=1,2) indicate, respectively, correctly and moderately misspecified auxiliary information.

For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.



Table 3. Continued

b 8y 107 a8 O | O Oa | O O
X2 (4) —4
g(@)”
B -.102 -.065 -.095 -.058 -.087 -.050 -.090 -.053 -.088 -.054
V 121 143 .075 .085 063 .075 070 .078 .068 .079
1% 136 172 .092 .098 .081 .088 086 .091 .082 .087
E 1.00 1.00 1.61 1.68 1.921.90 1.73 1.83 1.78 1.81
g1 (2)™
B -.102 -.065 -.101 -.063 -.095 -.056 -.098 -.058 -.093 -.057
V 121 .143 105 125 104 116 101 118 101 114
1% 136 172 125 133 A120 129 113 .130 114125
E 1.00 1.00 1.10 1.14 1.16 1.23 1.20 1.21 1.20 1.25
g2 (2)™
B -.102 -.065 -.112 -.075 -.103 -.060 -.104 -.064 -.102 -.062
V 121 .143 1250 132 118 129 121 132 A11 0 .126
1% 136 .172 139 17T 132 146 142 151 132 148
E 1.00 1.00 968 1.08 1.02 1.11 1.00 1.08 1.09 1.13
X°(4)—4
V8
g(x)”
B 092 .047 .084 .043 083 .042 .084 .044 .083 .044
V .024 .030 017 .021 016 .018 .017 .020 .017 .018
1% .029 .034 .020 .024 021 .022 022 .024 .020 .023
E 1.00 1.00 1.41 1.43 1.50 1.66 1.41 1.50 1.50 1.66
g1 (2)™
B .092 .047 .089 .048 087 .050 086 .049 086 .046
V .024 .030 .021 .021 .018 .021 .020 .023 .019 .020
1% .029 .034 .025 .026 .026 .027 026 .027 .025 .026
E 1.00 1.00 1.14 1.50 1.33 1.43 1.20 1. 30 1.26 1.50
g2 (2)™
B 092 .047 .094 .053 .095 .052 .092 .079 .091 .048
V .024 .030 .023 .026 022 .025 .025 .029 .021 .022
1% .029 .034 .027 .030 .029 .029 .030 .031 .028 .027
E 1.00 1.00 1.04 1.15 1.09 1.20 960 1.03 1.14 1.36

GMM Efficient GMM, EL Empirical likelihood, EU Euclidean likelihood, NT Nonparametric tilting. g(z)®®,

g(:lc)}nS (7=1,2) indicate, respectively, correctlyoand moderately misspecified auxiliary information.
For each entry an underline (overline) indicates smallest (largest) value in the corresponding row.
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Figure 1: Finite sample bias of /9\2 as an increasing function of the value of local

misspecification.
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