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Abstract

This paper examines �leverage�and volatility feedback e¤ects at the �rm level
by considering both market e¤ects and �rm level e¤ects, using 242 individual �rm
stock data in the US market. We adopt a panel vector autoregressive framework
which allows us to control simultaneously for common business cycle e¤ects, un-
observed cross correlation e¤ects in return and volatility via industry e¤ects, and
heterogeneity across �rms. Our results suggest that volatility feedback e¤ects at
the �rm level are present due to both market e¤ects and �rm e¤ects, though the
market volatility feedback e¤ect is stronger than the corresponding �rm level e¤ect.
We also �nd that the leverage e¤ect at the �rm level is persistent, signi�cant and
negative, while the e¤ect of market return on �rm volatility is persistent, signi�cant
and positive. The presence of these e¤ects is further explored through the responses
of the model�s variables to market-wide return and volatility shocks.
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1 Introduction

Traditionally in �nance, stock return volatility is modelled as negatively correlated with

stock returns, with Black (1976) and Christie (1982) putting forth the explanation of the

leverage e¤ect hypothesis for such a relation: A drop in the value of the stock increases

�nancial leverage, which makes the stock riskier and increases its volatility.1 Another

explanation for the negative relation between returns and volatility is that it could simply

re�ect the existence of time-varying risk premiums (Schwert and Stambaugh, 1987). If

volatility is priced, an anticipated increase in volatility raises the required return on equity,

leading to an immediate stock price decline. This is often referred to as the volatility

feedback e¤ect. While both of these e¤ects could be at work, which of these e¤ects is the

main determinant of the stock return-volatility relation remains an open question.

The empirical results on the leverage e¤ect and the volatility feedback e¤ect are rather

mixed and inconlusive. Black (1976), Christie (1982) and Du¤ee (1995) �nd negative

leverage e¤ects. French, Schwert and Stambaugh (1987) and Campbell and Hentschel

(1992) �nd weak evidence of a positive e¤ect of the conditional volatility on the return,

while, Turner, Startz and Nelson (1989), Glosten, Jagannathan and Runkle (1993) and

Nelson (1991) �nd a negative volatility feedback e¤ect. Figlewski and Wang (2000) �nd

strong evidence of a leverage e¤ect, while Bekaert and Wu (2000) reject the pure leverage

model of Christie (1982) and �nd support for a volatility feedback e¤ect story.

This paper contributes to return-volatility analysis, by addressing a number of im-

portant issues that have either been largely underexplored or overlooked in the existing

literature.

Firstly, both volatility feedback and leverage e¤ects are examined at the �rm level,

while considering both market e¤ects - that is the e¤ects of market return (volatility) on

�rm volatility (return) - and corresponding �rm e¤ects. We de�ne the former as market

level volatility or leverage e¤ects and the latter as �rm level volatility or leverage e¤ects.

The majority of studies focus either on the leverage e¤ect or the volatility feedback e¤ect,

while the latter is typically explored at the market level.

Secondly, most existing studies based on �rm or industry data control for market

variables only. However, the literature has found evidence that stock prices of �rms in

the same industry exhibit a common movement that goes beyond the market e¤ect see

King (1966), Meyers (1973) and Livingston (1977) and more recently Hong, Torous and

Valkanov (2007). We explicitly control for industry return and industry volatility e¤ects.

Thirdly, we identify the contemporaneous e¤ects and lagged e¤ects separately, in

1Although it can be argued whether the �leverage e¤ect� is the correct terminology, following the

extant literature we remain with this term.
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order to investigate their dynamic behaviour. The volatility feedback story suggests

that, because volatility is priced, after the immediate price drop following an anticipated

increase in volatility, persistently high volatility is expected to lead to higher return,

unless the �rm goes bankrupt. On the other hand, leverage e¤ects are expected to die

out over time, given that returns are not as persistent as volatility. We will empirically

examine this conjecture.

Fourthly, we control for the e¤ect of business cycle variables on �rm return and volatil-

ity. Most existing studies ignore this e¤ect, even though the relationship between business

cycle variables and the stock market is well documented in the literature. Chen, Roll, and

Ross (1986), Keim and Stambaugh (1986), Campbell (1987), Fama and French (1989),

Fama (1990) among others document a signi�cant relationship between macroeconomic

variables and stock returns, while evidence of a similar relationship with stock return

volatility can be found in Schwert (1989) and more recently in Engel, Ghysels and Sohn,

(2006) and Fornari and Mele (2006). The main mechanisms linking returns volatility to

macroeconomic factors are in fact highlighted in the equilibrium models of Campbell and

Hentschel (1992), Bansal and Yaron (2004) and Tauchen (2005), that attempt to formally

explain the relation between return volatility and returns.

To address the above issues, we develop a panel vector autoregressive framework

that allows us to control simultaneously for common business cycle e¤ects, unobserved

cross correlation e¤ects in return and volatility, and heterogeneity across �rms.2 After

estimation of the individual �rm models, the system of the entire set of �rm returns and

volatilities and business cycle variables is obtained by linking the �rm speci�c models in a

consistent and cohesive manner. This enables us to study the impulse response functions

of our large system and to visualize the signi�cant leverage and volatility feedback e¤ects

that we uncover.

The rest of this paper is organized as follows. Section 2 lays out the econometric

model. Section 3 describes the data. Section 4 summarizes the estimation results. Section

5 further examines the dynamic interrelation between return and volatility as well as

business cycle variables by means of impulse response analysis and discusses the results.

Finally Section 6 contains some concluding remarks.

2Speci�cally, we extend the methodology of Whitelaw (1994), and Brandt and Kang (2004), Pesaran,

Schuermann and Weiner (2004) and Dees, Di Mauro, Pesaran, and Smith (2007).
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2 Firm Speci�c Models of Return and Volatility

De�ne rijt and ln�ijt as the monthly return and the log of volatility of the ith �rm in the

jth industrial sector3 at month t, respectively. Suppressing the subscript j for notational

conciseness, the return and volatility equations of �rm i are given by

rit = �ri +

pX
`=1

(�11i`ri;t�` + �12i` ln�i;t�`) +
SX
z=1

qX
`=0

�

11i;z`r

�
iz;t�` + 
12i;z` ln�

�
iz;t�`

�
+

qX
`=0


 0dr;i`dt�` + vrit; (1)

and

ln�it = ��i +

pX
`=1

(�21i`ri;t�` + �22i` ln�i;t�`) +
SX
z=1

qX
`=0

�

21i;z`r

�
iz;t�` + 
22iz` ln�

�
iz;t�`

�
+

qX
`=0


 0d�;i`dt�` + v�it; (2)

where r�izt (ln�
�
izt) is the z

th industrial sector return (volatility), which is a weighted

average of the �rm return (volatility) in industrial sector z(= 1; :::; S)4 excluding �rm i

itself, and dt is a n� 1 vector of business cycle variables.5

Some remarks are in order. Firstly, it should be noted that for each equation, the con-

temporaneous �rm level return and volatility do not enter as a right hand side variable,

to avoid the simultaneity problem. However, contemporaneous industry sector variables,

3An industrial sector is a group of industries to be speci�ed below.
4The �rm speci�c industrial sector return, without suppressing subscript j; is de�ned as r�ij;zt =PNz

r=1 wij;rzrrzt, with

wij;rz =

8>><>>:
0; when r = i and z = j

!rzPNz
v=1 !vz�!iz

; when r 6= i and z = j
!rzPNz
v=1 !vz

; when z 6= j
,

so that
PNz

r=1 wij;rz = 1 for z = 1; 2; :::; S, with !ij the value-weight (of the S&P500) for the i
th �rm of

the jth industrial sector, such that
PS

j=1

PNj

i=1 !ij = 1.
5Note that the return equations given in (1) allow to capture the temporary component of Fama

and French�s (1988) model in which stock prices are governed by a random walk and a stationary

autoregressive process, respectively, encompassing also the model of Lamoureux and Zhou (1996) for

�12ij` = 0 for all j and ` and in the absence of the industrial sectors and business cycle variables. The

volatility equations in (2) incorporate the standard stochastic volatility model, as well as that considered

by Wiggins (1987) and Andersen and Sørensen (1996) among others, for �21ij` = 0 for all j and ` and in

the absence of the industrial sectors and business cycle variables. The di¤erence in the latter equations

being that we consider realised volatility rather than a latent variable.
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(r�iz;t; ln�
�
iz;t); and contemporaneous busyness cycle variables, dt, are present as regres-

sors, as they are assumed to be weakly exogenous: that is, E
�
(r�iz;t; ln�

�
iz;t)v

0
is

�
= 0 and

E [dtv
0
is] = 0 for s � t and all i. This imposes the restriction that a single �rm does

not a¤ect the market, business cycle variables or industrial sectors contemporaneously.

Secondly, �market�return and volatility are not included separately in our model speci�-

cation, as they are perfectly multicollinear with the industrial sector variables. Therefore,

the sum of the coe¢ cients over the industrial sectors,
PS

z=1 
i;z`, can be thought of as

the �market�e¤ect. Finally, the error terms vrit and v�it are assumed to be contempora-

neously correlated and serially uncorrelated. More precisely, it is assumed that the errors

vit = (vrit; v�it)
0 follow

vit � iid
"
0;

 
�211i �12i

�21i �222i

!#
.

Equations (1) and (2) are estimated separately for each �rm using ordinary least squares

(OLS).6

2.1 Reparametarization

We next illustrate the reparametarization of models (1) and (2) in line with Brandt

and Kang (2004), so that the contemporaneous �rm level e¤ects can be identi�ed. For

notational simpli�cation, we suppress subscript j as before, abstract from busyness cycle

variables, assume one industry sector (S = 1), and set the lags p = q = 1.

Firstly, to see the connection to volatility in the mean models, the �rm return equa-

tions (1) and (2) are written as

rit = �ir + �11iri;t�1 + �12i ln�i;t�1 (3)

+
11ir
�
i;t + 
12i ln�

�
i;t + 
11i1r

�
i;t�1 + 
12i1 ln�

�
i;t�1 + virt;

ln�it = �i� + �21iri;t�1 + �22i ln�i;t�1 (4)

+
21ir
�
i;t + 
22i ln�

�
i;t + 
21i1r

�
i;t�1 + 
22i1 ln�

�
i;t�1 + vi�t:

Assume

virt = �i�vi�t +$irt (5)

6Including an intercept dummy for the October 1987 crash gave very similar results.
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where E(vi�t$irt) = 0. From (3)-(5), (3) can be rewritten as

rit = (�ir � �i��i�) + �i� ln�it (6)

+(�11i � �i��21i) ri;t�1 + (�12i � �i��22i) ln�i;t�1
+(
11i � �i�
21i) r�it + (
12i � �i�
22i) ln ��it
+(
11i1 � �i�
21i1) r�i;t�1 + (
12i1 � �i�
22i1) ln ��i;t�1 +$irt.

The estimator of �i� is obtained by regressing virt on vi�t. Clearly, �i� is the �rm level

contemporaneous volatility feedback e¤ect, and (�12i � �i��22i) is the lagged �rm level

volatility feedback e¤ects. Also (
12i � �i�
22i) and (
12i1 � �i�
22i1) are the contempo-
raneous and lagged market volatility e¤ects on the �rm return, respectively.

Similarly, for the volatility equation, assume

vi�t = �irvirt +$i�t (7)

where E(vi�t$irt) = 0, so that

ln�it = (�i� � �ir�ir) + �irrit (8)

+(�21i � �ir�11i) ri;t�1 + (�22i � �ir�12i) ln �i;t�1
+(
21i � �ir
11i) r�i;t + (
22i � �ir
12i) ln��i;t
+(
21i1 � �ir
11i1) r�i;t�1 + (
22i1 � �ir
12i1) ln��i;t�1 +$i�t.

Now �ir is the contemporaneous �rm level leverage e¤ect, and (�21i � �ir�11i) is the lagged
�rm level leverage e¤ects. Also (
21i � �ir
11i) and (
21i1 � �ir
11i1) are the contempora-
neous and lagged market return e¤ects on �rm volatility, respectively. Our investigation

of the volatility feedback e¤ects and leverage e¤ects in what follows will be based on these

reparametarised coe¢ cients.

2.2 Mean Group Estimator and Fraction of Rejections

To quantify the overall e¤ects of regressors across �rms, we will use two measures. The

�rst measure is the mean group estimator also used in Du¤ee (1995). Pesaran and

Smith (1995) show that under mild assumptions on the heterogeneity of the parameters

as given below, the pooled estimator under heterogeneity can be estimated consistently.

Suppressing the index j for industrial sectors as before, consider a parameter vector of the

�rm i, �i. Assume the random coe¢ cient speci�cation �i = �+�i, where$i � iid(0;
�)

so that E(�i) = �. Now de�ne the mean group estimator over all �rms as

�̂MG = N
�1

NX
i=1

�̂i, (9)
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where N is the total number of �rms. In the context of our model and estimation

methods speci�ed above, �̂MG is consistent for the centred value �, as N and T goes

to in�nity.7 The t-ratio of the mean group estimator is based on the non-parametric

variance covariance estimator de�ned as

�̂MG =
1

N(N � 1)

NX
i=1

�
�̂i � �̂MG

��
�̂i � �̂MG

�0
. (10)

The second measure is the fraction of rejections of the t-ratio of each equation across

�rms, at the 10% signi�cance level. Namely,

1

N

NX
i=1

I (jtv;ij > 1:645) ;

where tv;i is the t-ratio of the �̂v;i, which is the vth element of the coe¢ cient of �̂i, based

on the Newey-West heteroskedasticity and autocorrelation robust variance covariance

estimator, and I(A) is the indicator function which is unity ifA is true, and zero otherwise.

One might expect the fraction of rejections to be less than or equal to 10%, if a regressor

is actually not important in the model. We also report the cross average of the coe¢ cient

estimates which are signi�cant, namely,PN
i=1 �̂v;i � I (jtv;ij > 1:645)PN

i=1 I (jtv;ij > 1:645)
.

2.3 Long-Run Coe¢ cients

Returning to the basic models, (1) and (2), to compactly summarize the impact of the

right hand side variables on return and volatility, their long-run e¤ects will be reported.

The long-run e¤ects of these variables in the return equation and the volatility equations,

�ir and �i�, respectively, are de�ned in Table 1. Observe that �ijr and �ij� are not long-

run parameters, but the sum of the coe¢ cients of lagged variables. The standard errors

of �ir and �i� are obtained by the delta-method.

7See Hsiao and Pesaran (2007) for more details about mean group estimation in dynamic panel models.
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Table 1: De�nitions of the Long-Run E¤ects

Return Equation Volatility Equation

Long-Run E¤ects

on rit of

Components of Long-

Run Parameter �ir

Long-Run E¤ects

on ln�it of

Components of Long-

Run Parameter �i�

� �ir =
Pp

`=1 �11i` � �i� =
Pp

`=1 �22i`

�ir
�ir
1��ir �i�

�i�
1��i�

d
Pq

`=0 
idr`
1��ir d

Pq
`=0 
id�`
1��i�

Notes: �ir and �i� are the long-run e¤ects of the right hand side variables in the return and volatility

equation, respectively. The parameters of the second and third columns are de�ned by (1) and (2).

3 Data

Monthly returns and volatilities are constructed using dividend adjusted daily stock price

data from Datastream for N = 242 �rms of the S&P500, which survived over the period

January 1973 to April 2007.8 The return of the ith �rm belonging to the jth sector at

month t is de�ned as

rijt =
PijDt � PijDt�1

PijDt�1
, i = 1; 2; :::; Nj; j = 1; 2; :::; S; t = 1; 2; :::; T ,

where PijDt is the price at Dt, the �nal date of the month t. The volatility measure is

de�ned as

�2ijt =
DtX
d=2

�
Pijtd � Pijtd�1

Pijtd�1

�2
.

This amounts to 412 monthly data points. A theoretical motivation for using the sum of

high-frequency squared returns to compute measures of volatility at lower frequencies is

provided by Merton (1980). Examples of this practice using daily volatility to construct

estimates of monthly volatility include the work of French, Schwert and Stambaugh (1987)

and Schwert (1989,1990) among others.

The individual �rm weights, !ij, are �xed over time and are the average of monthly

value-weights for the S&P500 over the period January 2003 to December 2004.9

Table 2 illustrates the four industrial sectors in terms of the industrial groups. Based

on the Global Industry Classi�cation Standard (GICS, provided by Datastream, e¤ective

after April 28, 2006), the 242 �rms are classi�ed into nine industries. Given that there are

only 412 data points for each stock, including nine industries in models (1) and (2) would

8As documented in Du¤ee (1995), survivorship bias is likely using such data. Therefore, the results

we obtain should be interpreted as those conditioning upon long term survived �rms.
9S&P500 �rm speci�c weights are only available monthly post January 2003.
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give rise to an inadmissible numbers of parameters to be estimated. For instance, if we

have eight business cycle variables, as will be the case in what follows, and choosing the

lag orders p = q = 4 lags, the number of parameters to be estimated in a single equation

is 139, which is clearly too large. To avoid this, the nine GICS industries are further

classi�ed into four industrial sectors as reported in Table 2. The sector classi�cation

is based on the correlation matrices of the industry returns and volatilities and a visual

inspection of the monthly time plot of the stock price average over �rms for each industry

category.10

Table 2: De�nition of Four Industrial Sectors
Industrial

Sector (j or z)

Number of Firms

(weights) in Sector j or z
Industrya

Number of Firms (weights)

in Industry

1 26 (0.04) 1 Utilities 26 (0.04)

2 Energy 13 (0.08)

2 104 (0.42) 3 Materials 25 (0.04)

4 Industrials 35 (0.13)

5 Financials 31 (0.17)

6 Consumer Discretionary 45 (0.12)

3 87 (0.43) 7 Consumer Staples 26 (0.14)

8 Health Care 16 (0.18)

4 22 (0.11) 9 IT&Telecomb 22 (0.11)
Notes:

a. The category �industry�corresponds to the two digits in the Global Industry Classi�cation Standard (GICS).

b. The IT&Telecom industry is the Information Technology and Telecommunication Services in GICS merged.

The macroeconomic and �nancial market variables considered are those typically used

in studies that examine the relation of business cycle variables with the stock market such

as Chen, Roll, and Ross (1986), Keim and Stambaugh (1986), Campbell (1987), Fama

and French (1989), Fama (1990), Schwert (1989) and Glosten et al (1993) among others,

and include

dt =
�
�pt;�ipt;�p

oil
t ;�uet;�m2t;�DSt;�TSt;�TBt

�0
where � signi�es the change in the variables (or �rst di¤erences), pt = ln(CPIt) where

CPIt is the US Consumer Price Index at time t, ipt = ln(IPt) where IPt is US Industrial

Production; poilt = ln(POIL) where POIL is the price of West Texas Intermediate Crude

oil; uet = ln(UEt) where UEt is the number of unemployed in the US, m2t = ln(M2t)

whereM2t is the US money stock, the Default Spread (DSt), the Term Spread (TSt) and

the 3 month Treasury bill (TBt), at an annual rate. The default spread is calculated as the

di¤erence between the yield on BAA- and AAA-rated corporate bonds. The term spread

is calculated as the di¤erence between the yield on the US long-term government bond

10See Appendix for more details.
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(10 year) and the US 3 month Treasury bill rate. Monthly CPI, IP, UE, M2, DS, 3 month

TB are obtained from the Federal Reserve Economic Data (FRED) database. Monthly

POIL is obtained from the International Financial Statistics, IMF and the monthly US

long-term government bond (10 year) is obtained from the European Central Bank.11

We proceed with our model speci�cation which contains sixteen �common� factors,

consisting of eight industrial sector variables and eight business cycle variables. The

question that arises here is whether this number is su¢ cient to capture the unobserved

cross correlation e¤ects in return and volatility. To partially answer this question, the

number of factors in rijt and ln�ijt are estimated using the information criteria proposed

by Bai and Ng (2002), the results of which are reported in Table 3. The evidence suggests

the likely presence of �ve to eleven factors, which is well below sixteen. In what follows

we assess the e¤ectiveness of the industrial sector variables in capturing the unobserved

common factors and reducing the cross-section correlation of the variables, by examining

residual correlation matrices in Section 4.4.

Table 3: Estimated Number of Factors using Information Criteron proposed by Bai and

Ng (2002)

Information

Criterion
Return Log of Volatility

PC1 7 8

PC2 7 6

PC3 10 11

IC1 6 6

IC2 5 5

IC3 8 10

Notes: All six information criterion are proposed by Bai and Ng (2002). The maximum number of factors is set to 16.

4 Estimation Results

In this section we report the �rm speci�c estimation results.12 We begin by discussing the

volatility feedback e¤ect and leverage e¤ects in subsection 4.1, using the estimation results

of the reparametarised models (6) and (8). Next we consider the long-run industrial sector

e¤ects based on models (1) and (2). The estimation results of the long-run e¤ects of the

business cycle variables follow in subsection 4.2.

11We also considered the dividend yield and the price-earning ratio, however, we dropped these vari-

ables due to high correlation with r�ijt and ln�
�
ijt, to avoid multi-collinearity problems.

12We have chosen the lag-orders p = q = 4 in the models (1) and (2), based on joint consideration of

the multivariate Akaike Information Criterion (MAIC) and test results for error serial correlation. For

detailed test results, see Appendix A.1.
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4.1 The Volatility Feedback E¤ect and Leverage E¤ect

To shed light on the time dimension of the volatility e¤ects, Table 4 reports the mean

group estimators of the contemporaneous and lagged coe¢ cients on the volatilities of the

industrial sectors as well as the individual �rms. A noteworthy feature of these results is

the large negative contemporaneous market volatility e¤ect which is strongly signi�cant.

The contemporaneous �rm level volatility feedback e¤ect is also negative, though not

signi�cant. Turning our attention to the lagged e¤ects, the average e¤ects of lagged

�market�volatility and the lagged �rm level volatility e¤ects are predominantly positive.

The former are much larger and strongly signi�cant at the �rst two lags compared to

the latter, which are signi�cant at the second and fourth lags. These results suggest

that volatility feedback e¤ects at the �rm level are present due to both market e¤ects

and �rm e¤ects, and that the market volatility feedback e¤ect is stronger than the �rm

level volatility feedback e¤ect. This is an interesting �nding and also quite intuitive

if one considers that it is market risk which cannot be diversi�ed away, contrary to

idiosyncratic risk, and is therefore expected to have a greater bearing on stock returns.

At the same time, the lagged �rm level volatility results are consistent with the earlier

work by Merton (1987) who suggests that in an information-segmented market, �rms

with higher idiosyncratic volatility or �rm speci�c risk may require higher returns to

compensate for imperfect diversi�cation.

Table 4: Mean Group Estimates of the Contemporaneous and Lagged Market and Firm

Volatility E¤ects on Stock Returns

Return Equation

Coe¢ cients on Market Variables Coe¢ cients on Firm Variables

Mean Group

Estimates of Sum

over Four Sectors

(t-ratio)

Mean Group

Estimates

(t-ratio)

ln��it -0.212 (-9.764) ln�i;t -0.024 (1.264)

ln��i;t�1 0.133 (6.302) ln�i;t�1 0.005 (0.535)

ln��i;t�2 0.104 (4.581) ln�i;t�2 0.021 (1.996)

ln��i;t�3 -0.027 (-1.318) ln�i;t�3 -0.005 (-0.488)

ln��i;t�4 -0.076 (4.173) ln�i;t�4 0.036 (3.661)

Notes: Reported �gures are average of reparametarised coe¢ cients shown in (6) over �rms, The t-ratios

are reported in parenthesis, which are based on the variance estimator de�ned by (10). The estimates

which are signi�cant at the 10% level are in bold face.

10



Table 5: Mean Group Estimates of the Contemporaneous and Lagged Market and Firm

Return E¤ects on Stock Volatility

Volatility Equation

Coe¢ cients on Market Variables Coe¢ cients on Firm Variables

Mean Group

Estimates of Sum

over Four Sectors

(t-ratio)

Mean Group

Estimates

(t-ratio)

r�it 0.002 (0.693) ri;t -0.005 (-1.750)

r�i;t�1 0.026 (7.706) ri;t�1 -0.030 (-15.558)

r�i;t�2 0.013 (4.023) ri;t�2 -0.014 (-7.611)

r�i;t�3 0.008 (2.593) ri;t�3 -0.009 (-4.998)

r�i;t�4 -0.006 (-1.824) ri;t�4 0.001 (0.824)

Notes: Reported �gures are average of reparametarised coe¢ cients shown in (8) over �rms. The t-ratios

are reported in parenthesis, which are based on the variance estimator de�ned by (10). The estimates

which are signi�cant at the 10% level are in bold face.

We now turn to Table 5 to examine the leverage e¤ects. The contemporaneous �rm

return e¤ect on volatility is negative and signi�cant. It appears though that lagged �rm

return e¤ects on volatility are far more negative and signi�cant. The most signi�cant

e¤ect is observed for the one month lagged return with a t-ratio of -15.558. By lag

four the �rm return e¤ect coe¢ cient becomes non signi�cant. Thus, the leverage e¤ect

appears to last three to four months. This is consistent with the �nding of Figlewski and

Wang (2000). Interestingly the lagged �market�return e¤ect is predominantly positive

and signi�cant. This can be interpreted as follows. Recall that the �market�return of

the ith �rm, r�izt, is a weighted average of all �rms except itself. Thus, ceteris paribus, a

decrease (increase) in the market return will result in the return of �rm i being regarded

(viewed) as relatively large (small), and therefore the �rm�s leverage will be regarded as

relatively low (high), compared to other �rms, on average. Consequently, positive e¤ects

are expected.

So far we have focused on the �market�e¤ects. We now examine the e¤ects of each

industrial sector separately, rather than jointly. The estimation results of the e¤ects

of the four industrial sectors returns and volatilities are reported in Table 6. Initially

we consider the return equation results. Regarding industrial volatility e¤ects, we �nd

that all four industrial volatilities have signi�cant negative e¤ects on �rm returns, with

the exception of the fourth industrial sector, IT & Telecom. In addition, in the volatility

equation, the e¤ect of the �rst lag of all industrial sector returns is signi�cant and positive,

except for IT & Telecom, which is insigni�cant and negative. Overall, it appears that
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the IT & Telecom industrial sector behaves rather di¤erently compared to the rest of the

sectors, a phenomenon that could be related to the steep growth observed for these two

industries over the period under investigation. We would not be able to observe this, had

only a single market variable been included in the analysis.

Table 6: Mean Group Estimators of E¤ects of Four Industrial Sectors Returns and Voat-

ilities

Return Equation (t-ratio)

ln��i1t (sector 1) ln��i2t (sector 2) ln��i3t (sector 3) ln��i4t (sector 4)

lag0 -0.037 (-1.975) -0.136 (-4.375) -0.091 (-3.068) 0.051 (2.552)

lag1 0.071 (3.395) 0.067 (1.899) 0.017 (0.506) -0.022 (-0.956)

lag2 -0.041 (-2.040) 0.127 (3.628) 0.051 (1.500) -0.033 (-1.518)

lag3 0.034 (1.754) -0.099 (-2.896) -0.013 (-0.423) 0.051 (2.273)

lag4 -0.049 (-2.445) 0.041 (1.323) -0.129 (-4.212) 0.061 (2.824)

Volatility Equation (t-ratio)

r�i1t (sector 1) r�i2t (sector 2) r�i3t (sector 3) r�i4t (sector 4)

lag0 0.005 (1.884) -0.003 (-0.631) -0.004 (-1.069) 0.004 (2.073)

lag1 0.006 (1.882) 0.014 (3.178) 0.009 (2.294) -0.003 (-1.442)

lag2 0.007 (2.416) 0.001 (0.316) 0.003 (0.876) 0.001 (0.853)

lag3 0.007 (2.209) -0.003 (-0.774) 0.002 (0.568) 0.002 (1.233)

lag4 0.001 (0.309) -0.008 (-1.906) -0.002 (-0.493) 0.003 (1.725)

Notes: The return and volatility equations are de�ned by (6)) and (8), respectively. The t-ratios are

reported in parenthesis, which are based on the variance estimator de�ned by (10). The estimates which

are signi�cant at the 10% level are in bold face. The zth sector return (volatility), r�iz (ln�
�
iz), are

weighted averages of returns (volatilities) of the �rms belonging to zth industrial sector, de�ned in Table

2. The Sectors contain: Sector 1: Utility; Sector 2: Energy, Materials, Industrials and Financials; Sector

3: Consumer Discretionary, Consumer Staples and Health Care; Section 4: IT & Telecom.

4.2 Long-Run E¤ects of Business Cycle Variables

As our main focus is on the return-volatility relation, it is necessary to control for the

e¤ects of the business cycle variables. However, we also consider the estimation results

of these variables per se to be of interest, particularly in view of the revived interest

of the literature in the relationship between the stock market and economic activity

referred to in the introduction. Table 7 reports the mean group estimators of the long-

run business cycle variable e¤ects across �rms classi�ed as in Table 2. In the return

equation, the mean group estimate of the long-run intercept is signi�cantly negative.

The �rm-average of the sum of the coe¢ cients of the lagged dependent variables is -

0.175, which is highly signi�cant, and almost half of the �rms have signi�cant lagged
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e¤ects. Next, in the volatility equation, the �rm-average of the sum of the coe¢ cients of

the lagged dependent variables is 0.532, which is highly signi�cant, with almost all �rm

coe¢ cients being signi�cant.

Table 7: Mean Group Estimators Across of the 242 Firms based on the Firm Speci�c

Model Results

Return Equation Volatility Equation

�̂r;MG (t-ratio)

Mean among

Signi�cants

(fraction)

�̂�;MG (t-ratio)

Mean among

Signi�cants

(fraction)

�ir -0.016 (-3.890) -0.062 (0.149) �i� -0.017 (-3.832) -0.061 (0.219)

�ir -0.175 (-15.596) -0.285 (0.521) �i� 0.532 (65.351) 0.534 (0.996)

�p 0.700 (5.099) 2.205 (0.161) �p -0.196 (-0.895) 0.342 (0.314)

�ip -0.268 (-2.706) -0.955 (0.169) �ip 0.029 (0.298) -0.556 (0.103)

�ue -0.105 (-3.273) -0.512 (0.149) �ue 0.087 (2.248) 0.319 (0.149)

�poil -0.024 (-2.589) -0.038 (0.256) �poil 0.016 (2.363) 0.053 (0.186)

�m2 0.137 (1.181) 0.897 (0.202) �m2 0.024 (0.139) -0.149 (0.326)

�DS -1.169 (-2.081) -0.628 (0.140) �DS -0.997 (-1.547) -6.168 (0.165)

�TS 0.005 (0.021) -0.019 (0.223) �TS 0.257 (1.266) 0.971 (0.120)

�TB -0.435 (-2.008) -1.637 (0.202) �TB 0.030 (0.160) 0.301 (0.161)

Notes: The return and volatility equations are de�ned by (1) and (2), respectively. These equations are

estimated by ordinary least squares (OLS) for each �rm separately. The mean group estimates of the

long-run e¤ects, which are de�ned in Table 1, are computed and reported as �̂r;MG and �̂�;MG. The

t-ratios of �̂r;MG and �̂�;MG, reported in parenthesis, are based on the variance estimator de�ned by

(10). The estimates which are signi�cant at the 10% level are in bold face. The third and sixth columns

report the averages of long-run e¤ects across �rms for which the long-run coe¢ cient is signi�cant at

the 10% level (based on Newey-West heteroskedasticity and serial correlation robust variance-covariance

estimator with three month lag-window). The fractions of �rms for which the coe¢ cient is signi�cant

are shown in parenthesis.

4.2.1 Return Equation

Initially we concentrate on the return equation results, namely, the long-run e¤ect of the

macro and �nancial variables on �rm returns. As argued by Fama (1981) equity prices

re�ect main macroeconomic variables such as real economic growth, industrial production

and employment. In accordance, Table 7 shows the growth of industrial production to

have a signi�cant long-run e¤ect on return.While this e¤ect is negative, not what one

would typically expect, this �nding is similar to the results of Hassapis and Kalyvitis
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(2002) and Park (1997).13 For unemployment, our results indicate that an increase in

growth of this variable has a signi�cant negative e¤ect on stock returns on average. As

an indicator of the business cycle and as a measure of the economy�s growth potential, an

increase in unemployment would be demonstrative of a period of slow down, leading to

potential and eventual drops in the value of stocks. On average, in�ation has a signi�cant

positive e¤ect on stock returns, a result which is in line with the Fisher hypothesis that

states a positive relationship between stock returns and in�ation contrary to most past

empirical literature that shows stock returns are negatively correlated with in�ation; see

Nelson (1976), Fama and Schwert (1977), Schwert (1981) and Barnes et al. (1999). As

in Fama (1990) we �nd a negative relationship between stock returns and the default

spread. On the basis of the work by Fama and French (1989) and Fama (1990) the

literature concurs that default spread is a leading indicator of business cycle conditions.

Keim and Stambaugh (1986) demonstrate that the default spread together with the term

spread are pro-cyclical and capture future developments of the real side of the economy

and are consequently able to serve as proxies for macroeconomic shocks to expected cash

�ows.

The growth of the three month Treasury Bill has a signi�cant negative e¤ect on return,

on average. The impact of the short term interest rate on stock returns derives from the

well known valuation theory. From the point of view of valuation theory, the fundamental

value of a �rm�s stock is the expected present value of future dividends. Therefore, an

increase in future discount rates, should other things being equal, cause stock prices to

fall; see also Choi, Elyasiani and Kopecky (1992) and references therein.

We �nd a signi�cant negative e¤ect of changes in oil prices on stock returns. Increases

in oil price depress aggregate stock prices by lowering expected earnings. In fact, Chen

et al. (1986) suggest oil prices as a measure of economic risk in the U.S. stock market.

Our results corroborate the �ndings of Jones and Kaul (1996) and Sadorsky (1999) that

oil price hikes have a signi�cant and detrimental e¤ect, on average, on the stock market

of the US and other countries, with both current and lagged oil price variables a¤ecting

stock returns negatively.

On average there appears to be no signi�cant e¤ect of the money market on the stock

market supporting the view that if the stock market is e¢ cient, it would already have

incorporated all the current and anticipated changes in money supply. A non-signi�cant

e¤ect on stock returns is also found for the term spread variable.

13In the impulse response analysis that follows, a positive association between these two variables is

found, that is a decrease in stock returns is followed by downward movements in growth in industrial

production.
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4.2.2 Volatility Equation

We now turn to the volatility equation results, focusing on the long-run e¤ect of the

business cycle variables. Fornari and Mele (2006) report on the connection between

equity return volatility and macroeconomic conditions. In particular, they o¤er economic

explanations of why we should expect �nancial volatility to be related to future economic

developments including certain types of agents�preferences and beliefs, restricted stock-

market participation, and even behavioral biases in the human perception of risk. Such

a connection dates back to the work of Schwert (1989) who �nds evidence that stock

market volatility is related to the general health of the economy. One interpretation

of this evidence as he posits is caused by �nancial leverage. Leverage increases during

recessions, causing an increase in the volatility of leveraged stocks.

We �nd that an increase in the growth of unemployment has a signi�cant positive

e¤ect, on average, on stock market volatility. This result appears to be in line with

the �ndings in the study by Hamilton and Lin (1996) that arrives at the conclusion

that economic recessions are the single largest factors causing increased stock market

volatility, accounting for more than 60 % of the variance of stock returns. In fact, these

authors observe that a model for stock market volatility that lacks macroeconomic factors

is insu¢ cient and that macroeconomic factors are key determinants in explaining stock

market volatility and returns. Hamilton and Susmel (1994) also �nd that equity volatility

is more likely to become (remain) high during a recession, which link to the recent �ndings

of Fornari and Mele (2006) who observe that all recession episodes are associated with an

increase in volatility and that stock-market volatility anticipates positive turning points

in a remarkable manner.

An increase in the growth of oil prices whichs adds to the uncertainty in the economy,

also displays a signi�cant positive e¤ect, on average, on stock market volatility. There is

no signi�cant e¤ect of the rest of the business cycle variables on stock market volatility.

However, it is interesting to note that while in�ation on average has no signi�cant e¤ect

on volatility, the proportion of individual �rms that have signi�cant in�ation e¤ects on

volatility is quite high 31.4% with the average e¤ect among signi�cant �rms equal to

0.342. The same is true for money growth yielding 32.6% and -0.149, respectively. This

is in contrast to the growth of industrial production, the default spread, the term spread

and three month Treasury bill rate for which a much lower number, roughly half of

individual �rms, exhibit signi�cant e¤ects on volatility.
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4.3 Structural Stability

In this section we undertake individual equation stability tests of our �rm speci�c models

to examine the structural stability of the parameter coe¢ cients and error variances. We

consider the test for parameter constancy against non-stationary alternatives proposed

by Nyblom (1989) together with the heteroskedasticity-robust version of this test, as well

as Ploberger and Krämer�s (1992) maximal OLS cumulative sum statistic (PKsup) and

mean square variant (PKmsq). The PKsup test statistic is similar to the CUSUM test

suggested by Brown et al (1975), although the latter is based on recursive rather than

OLS residuals.14

Table 8 below presents the results of the alternative tests per variable at the 5%

signi�cance level.

Table 8: Number of Firm Equations of which the Null of Parameter Constancy is Rejected

Alternative test statistics Return Volatility

N 58(24.0) 15(6.2)

Robust-N 29(12.0) 22(9.1)

PKsup 5(2.1) 22(9.1)

PKmsq 1(0.4) 11(4.5)

Note: The reported numbers are the number of �rm return and volatility equations, of which the null

of parameter constancy is rejected. The fraction is reported in the parenthesis. N is the Nyblom (1989)

test for time-varying parameters and Robust-N denotes its heteroskedasticity robust version. The test

statistics PKsup and PKmsq are Ploberger and Krämer�s (1992) maximal OLS cumulative sum statistic

and mean square variant respectively, and are based on the cumulative sums of OLS residuals. All tests

are implemented at the 5% signi�cance level, based on bootstrap critical values.

For the Nyblom test the null hypothesis of parameter stability is rejected for 15.1%

of the return and volatility equations, and once possible changes in error variances are

allowed for, this number drops to 10.5%. Using the PK tests the null hypothesis of

parameter stability is rejected for 5.6% of the return and volatility equations for the

PKsup test, and 2.5% for the PKmsq statistic.

Overall the above test results show that the parameter coe¢ cients of the majority of

�rm equations appear to have been reasonably stable. This is evidence that our models

are rich enough to successfully capture the structural changes in the parameter coe¢ cients

14The critical values of the structural stability tests for the individual �rm equations, computed under

the null of parameter stability, were calculated using the sieve bootstrap samples obtained from the

system of the entire 242 �rm returns and volatilities including the business cycle variables, given by (11).

Detailed results of the structural breaks tests and of the bootstrap procedure are available upon request.
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over the time span of the data considered by inclusion of the industrial sector variables

and business cycle variables. In view of the robust Nyblom test results a fair portion of the

number of rejections noted appears to be attributed to changes in error variances, rather

than the parameter coe¢ cients. This is dealt with by considering heteroskedasticity

robust standard errors when reporting the estimation results.

4.4 Residual Correlation Matrix

We next consider the cross section correlation matrix of the residuals, which is expected

to measure how well the systematic risks are captured. Table 9 reports the average

correlation of residuals of the return equations within the nine industries, for both the

speci�cations of four and one sectors.15 In the case of the four sector speci�cation, given

in Tables 6& 7, the average of the within industry residual correlations is 0.07. There are

only two industries for which the average of the within industry correlation coe¢ cients

exceeds 0.10, while there are six such industries for the one sector model. In the case of

the one sector model, the average of the within industry residual correlation is 0.16, which

is more than double that of the four sector case. These results con�rm that the four sector

speci�cation captures systematic risks much better than the one sector speci�cation.16

15In order to check the robustness of the estimation results reported above, we considered alternative

speci�cations. The �rst speci�cation di¤ers from that described above only in that the estimation includes

solely �market�return and volatility, r�i and ln�
�
i , which are weighted averages of return and volatility

across �rms, that is the number of sectors is one instead of four. Another speci�cation adopted di¤ers

from that given above only in that the default spread, term spread and three month treasury bills are

all in levels, rather than in changes. The results were qualitatively similar to those presented earlier.

Detailed results are available upon request.
16In the volatility equation similar �ndings emerge as in the case of the return equations when com-

paring the four sector and one sector speci�cations. Full residual correlation matrices are available upon

request from the authors.
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Table 9: Average Correlation of Residuals of Return and Volatility Equations, within

and between Nine Industries

Industries Four Sectors One Sector

Utilities -0.02 0.38

Energy 0.23 0.28

Materials 0.11 0.13

Industrials 0.08 0.11

Financials 0.09 0.14

Consumer Discretionary 0.08 0.08

Consumer Staples 0.04 0.09

Health Care 0.04 0.07

IT&Telecom 0.02 0.14

Average 0.07 0.16

Notes: The �gures are average residual correlation coe¢ cient between the pairs of �rms in the same

industry. The �gures in bold face are more than or equal to 0.10 in absolute value.

5 Impulse Response Analysis

To further understand the dynamic behaviour of the interrelation between return and

volatility we consider generalised impulse response analysis advanced by Pesaran and Shin

(1998). To this end, we rewrite the bivariate �rm speci�c models consisting of equations

(1) and (2), as a large system comprising the entire disaggregated set of �rm returns,

volatilities and business cycle variables. Generalised impulse response analysis allows for

the interdependence of shocks and is invariant to the ordering of the �rms/industries and

variables in our model, given that no natural ordering of �rms and variables is apparent.

5.1 Solving for Firm Returns,Firm Volatilities and Business Cy-

cle Variables

Having estimated consistently the individual �rm models given by (1) and (2), we now

combine them in such a manner as to yield a large system of the entire set of �rm

returns, �rm volatilities and business cycle variables, preserving all complicated dynamic

interrelationships between and across �rms. This is achieved by using the fact that

the industrial sector variables, (r�izt; ln�
�
izt) ; are weighted averages of the �rm variables,

(rit; ln�it).

De�ning the collection of all �rm returns, �rm volatilities and busyness cycle variables

as yt = (x0t;d
0
t)
0, with dimension 2�242+8 = 452, where xt = f(r1t; ln�2t) ; :::; (rNt; ln�Nt)g0 ;
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following Pesaran, Schuermann and Weiner (2004) the models (1) and (2) can be com-

bined in such a way as to yield a vector autoregression of the form,17

yt = �+

max(p;q;g)X
`=1

�`yt�` +C�t (11)

where the coe¢ cients of (11) embody the cross-�rm interdependencies and are determined

by the parameters of the underlying �rm speci�c models. The error term consists of two

components, �t = (v
0
t;�

0
dt)

0, corresponding to the �rm variables, xt; and the busyness cycle

variables, dt, respectively. Apart from the assumption that vt and �dt are uncorrelated

due to the weak exogeneity assumption of the business cycle variables, there are no other

restrictions on the covariance matrix 
� = E(�t�
0
t). Hence, a natural estimator of 
� is


̂� =
PT

t=1 �t�
0
t=T: The VAR model given by (11) is stable in that all its roots lie inside

the unit circle.18

5.2 Impulse Response Functions

Let yt = �+
P1

`=0�`�t�` be the in�nite moving average representation of (11) where �t =

C�t and�` can be derived recursively as�` = �1�`�1+�2�`�2+:::+�max(p;q;g)�`�max(p;q;g);

` = 1; 2; :::with �0 = INk+n; �` = 0 for ` < 0. The generalised impulse response function

(GIRF) to a one standard deviation shock at time t over the horizon h = 0; 1; 2; ::: is

de�ned by

 (h) = E
�
yt+hj�gt =

p
g0
�g; It�1

�
� E (yt+hjIt�1) ,

where g is a (kN + n � 1) selection vector, whose corresponding element to be shocked
is one and zero otherwise, and It�1 is the inf ormation set up to time t � 1. Under the
assumption that �t has a multivariate normal distribution or the conditional expectations

can be assumed linear, the GIRF can be derived as

 (h) =
�hC
�gp
g0
�g

; h = 0; 1; 2; ::: (12)

Our model allows us to assess the time pro�le of the e¤ects of a variety of shocks, which

are determined by the selection vector, g.19 Given the focus of the paper, and considering

the importance of (unexpected) news e¤ects on the stock market, we are interested in

17A detailed derivation of (11) can be found in the Appendix A.2.
18This is supported by the eigenvalues of the model. The eigenvalues with the largest complex part

are 0:121� 0:767i, 0:018� 0:765i and �0:320� 0:758i, where i =
p
�1. The three largest eigenvalues (in

moduli) are 0.934, 0.930 and 0.923.
19For example, shock to the return/volatility of a particular �rm, shock to an industry return/volatility,

market-wide shocks to return, and shock to a macro/�nancial variable.
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market-wide shocks to return and volatility and their e¤ects on the individual industries

as classi�ed in Table 2. It is these shocks that we focus on in the discussion of the impulse

response functions that follows, while as a by product we also refer to the e¤ect of such

shocks on the business cycle variables.

5.3 Empirical Results of Impulse Response Functions

Figures 1-6 show the impulse response bootstrap mean estimates arising frommarket-wide

shocks to the return and volatility equations and their e¤ects on the individual industries

and business cycle variables in the system, together with the 90 per cent bootstrap error

bands. Note that market-wide shocks refer to a simultaneous value weighted shock across

all individual �rms/industries, while all e¤ects on business cycles variables, excluding

in�ation, are for the growth rates of the variables under consideration. All references

to volatility, including shocks and responses, are to the standard deviation of equity

volatility.

Figure 1 shows the e¤ect of a market-wide negative one standard error shock to

industrial returns on industrial returns themselves. Such a shock is equivalent to a 4.5%

average fall, on impact, in returns across industries. The largest drop corresponds to the

IT & Telecom services, 6.9%, and the lowest to the Utilities industry, 1.7%, re�ecting the

importance of the former in the S&P index. Returns stabilize reasonably quickly, after

exhibiting some jittery behaviour, roughly by the end of the �rst year.

Figure 2 shows the e¤ect of a market-wide negative one standard error shock to

industrial returns on industrial realized volatilities. The transmission of such a shock

to volatility across industries appears to be rather rapid and in most cases signi�cant.

The standard deviation of equity volatility of Utilities, Consumer Staples and Energy

displays a signi�cant increase of 0.35% , 0.34% and 0.36%, respectively, on impact for the

former two industries, and in the �rst month for the latter. The rest of the industries,

excludingMaterials for which no signi�cant e¤ect is observed, exhibit a signi�cant increase

in realized volatility both on impact and in the �rst month, by 0.37% on average for

Industrials, 0.40% for Financials, 0.33% for Consumer Discretionary, 0.39% for Health

Care and 0.40% for IT & Telecom services. In all cases the e¤ect of such a shock dies out

roughly by the end of the �rst year.

Figure 3 reports on the e¤ect of a market-wide negative one standard error shock

to industrial returns on the business cycle variables. In particular, in�ation exhibits a

signi�cant decline of 0.02% in the �rst month. For industrial production, the negative

market-wide return shock is accompanied by a minor, though insigni�cant, increase the

�rst month followed by a signi�cant decline of 0.08% on average over the subsequent three
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months, with the decline peeking in the third month at 0.12%. For the oil price there

appears to be a signi�cant increase in the second (0.18%) and fourth (0.2%) months.

Unemployment displays a signi�cant positive response at 0.68% in the �rst month and

0.38% in the seven month. A signi�cant positive increase is observed for the default

spread over the �rst three months, equal to 0.009% on average, while there is a signi�cant

decrease in the relative T-Bill over the �rst two months of 0.06% on average. There is no

signi�cant e¤ect on M2 or the Term Spread.

Turning to volatility, Figure 4 depicts the e¤ect of a market-wide positive unit one

standard error shock to industrial realized volatility and its e¤ect on industrial returns.

Such a shock displays a signi�cant decrease on impact, only, for all Industries, excluding

Energy, Financials and Health Care for which no signi�cant e¤ect is observed. For the

industries that exhibit signi�cant responses, these range from 0.67% for Utilities to 1.33%

for Materials.

Figure 5 shows the e¤ect of a market-wide positive unit one standard error shock

to industrial realized volatility on industrial realized volatility itself. Re�ecting the per-

sistence nature of volatility, for Industrials, Financials and IT & Telecom Services the

e¤ect of such a shock is signi�cant for a one year period. For the rest of the industries

it is signi�cant for just over half a year. A market-wide positive unit one standard error

shock to industrial realized volatility is equivalent to a 1.7% average fall, on impact, in

realized volatility across industries. The largest drop is noted for Health Care and Con-

sumer Staples followed by Industrials, Financials, IT&Telecom Services and Consumer

Discretionary. For those months over which signi�cant responses are observed, realized

volatility ranges from 0.53% to 0.91% on average across the di¤erent industries, the lowest

average value observed for Utilities and the highest for Health Care, Consumer Staples

and Consumer Discretionary.

Figure 6 shows the responses of an market-wide positive unit one standard error shock

to industrial realized volatility on the business cycle variables. In particular, in�ation

exhibits a signi�cant decrease of 0.03% on average over the �rst two months. A slight

increase in industrial production is observed in the �rst month, though insigni�cant,

followed by a signi�cant decrease of 0.06% on average in the two subsequent months.

The oil price exhibits a positive signi�cant increase of 0.38% in the second month. There

is a signi�cant positive e¤ect of 0.009% on average for the default spread over the �rst

three months. The term spread exhibits a signi�cant decrease of 0.03% in the �rst month.

M2 shows a signi�cant positive increase of 0.02% both in the fourth and sixth month. A

signi�cant negative e¤ect on unemployment of 0.6% is noted in the third month. There

is no signi�cant e¤ect on the relative T-Bill.
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On the whole, the above results indicate that after controlling for business cycle

e¤ects, unobserved cross sectional correlations in return and volatility, as well as hetero-

geneity across �rms, responses of �rm volatility to an adverse market-wide return shock

reveal signi�cant evidence of the leverage e¤ect for the majority of industries. These

�ndings are in line with the estimation results of the �rm speci�c volatility equations.

Responses of �rm equity returns to a rise in market-wide volatility further highlight the

presence of signi�cant volatility feedback e¤ects on impact, at the industry level. These

e¤ects however do not appear to signi�cantly persist thereafter, which was the case for

the individual �rm return equations in the estimation results reported earlier. As for

the business cycle variables, we �nd that the majority of the variables considered are

signi�cantly a¤ected by market-wide return and volatility shocks.

6 Concluding Remarks

This paper has examined �leverage�and volatility feedback e¤ects at the �rm level by

considering both market e¤ects and �rm level e¤ects, for 242 individual �rm stock data

in the US market. We adopt a panel vector autoregressive framework which allows us

to control simultaneously for common business cycle e¤ects, unobserved cross correlation

e¤ects in return and volatility via industry e¤ects, and heterogeneity across �rms.

Based on estimates of the individual �rm models, we �nd strong evidence of a large

negative contemporaneous market volatility e¤ect, though this is not the case for the

contemporaneous negative �rm level volatility feedback e¤ect which is not signi�cant.

Lagged volatility feedback e¤ects, on the other hand, appear signi�cant for both �market�

volatility and �rm level volatility and are predominantly positive. Our results therefore

suggest that volatility feedback e¤ects at the �rm level are present due to both market

e¤ects and �rm e¤ects, though the market volatility feedback e¤ect is stronger than the

�rm level volatility feedback e¤ect. These �ndings can be linked to the non-diversi�able

nature of market risk and the need of �rms with higher idiosyncratic volatility or �rm

speci�c risk to require higher returns to compensate for imperfect diversi�cation. We

also �nd that negative and signi�cant �rm leverage e¤ects are at work, which appear to

last three to four months. Interestingly signi�cant lagged �market�return e¤ects are also

detected and are predominantly positive. This would be expected based on a relativety

argument and given that the �market� return of the the individual �rm is a weighted

average of all �rms except itself.

The decomposition of the �market�e¤ects into industrial return and volatility e¤ects,

contrary to most existing studies that control for market variables only, highlights a rather
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distinct behaviour of the IT&Telecom industrial sector over the period under examination,

in comparison to the rest of the sectors. In addition, the correlation matrices of residuals

reveal that our four industrial sector model captures unobserved common factors much

better than the one market factor model.

Our approach enables us to combine the �rm speci�c equations to form a large sys-

tem of the entire disaggregated set of �rm returns and volatilities including the business

cycle variables, preserving all complicated dynamic interrelationships between and across

�rms. This in turn allows us to conduct impulse response analysis to obtain a better un-

derstanding of the dynamic behaviour of the interrelation between return and volatility.

Results indicate that after controlling for business cycle e¤ects, unobserved cross sectional

correlations in return and volatility, as well as heterogeneity across �rms, responses of

�rm volatility to an adverse market-wide return shock reveal signi�cant evidence of the

leverage e¤ect for the majority of industries. These �ndings are in line with the esti-

mation results of the �rm speci�c volatility equations. Responses of �rm equity returns

to a rise in market-wide volatility further highlight the presence of signi�cant volatility

feedback e¤ects on impact, at the industry level. These e¤ects however do not appear to

signi�cantly persist thereafter, which was the case for the individual �rm return equations

in the estimation results.

With regard to the business cycle variables, based on estimates of the �rm speci�c

models, we �nd most of these variables to have signi�cant e¤ects, on average, on stock

returns with the expected signs. In particular, we �nd in�ation to have a signi�cant

positive e¤ect on stock returns, a result which is in line with the Fisher hypothesis

though contrary to most past empirical literature that �nds stock returns to be negatively

correlated with in�ation. The growth rate of the number of unemployed and of oil prices

are the only variables to have a signi�cant e¤ect, on average, on �rm volatility. In terms

of the impulse response estimates, we �nd that the majority of the business cycle variables

considered are signi�cantly a¤ected by market-wide return and volatility shocks.

Our approach can clearly be extended to the analysis of stock market indices across

countries rather than focussing solely on S&P500 stocks, while it would also be of interest

to examine the forecasting ability of the proposed model. These avenues remain to be

explored in future research.
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Appendix

A.1 Choice of Lag-Orders p; q

The choice of the lag orders p and q in the models (1) and (2) is based on joint consideration of the

multivariate Akaike Information Criterion (MAIC) and test results for error serial correlation. The

fraction of �rms for which the lag orders (pij ; qij) are chosen based on the MAIC is given in Table 10 for

(maxp,maxq)=(12,4).

The highest fraction is given for q = 1, p = 3; while it gradually decreases as p increases. We

select p = 4, since for q = 1 and p up to 4 covers 60.3% of �rms. The fraction of rejections of the

error serial correlation test statistics over all �rms, for each return and volatility equation are shown

in Table 11. As expected, the return equation displays little evidence of residual serial correlation with

p = 4. Only around 5.0-7.4% of �rms reject the null of no serial correlation. The volatility equation

shows more evidence of residual serial correlation. When p = 4 and q = 1, the fraction of rejections of

no serial correlation is 29.3%, while only 9.5% when p = 4 and q = 4. Based on the above, we adopt

the VARX*(4; 4) speci�cation as the most preferable, which covers 65.7% of the speci�cations of �rms

chosen by MAIC, while gives the smallest number of �rms su¤ering from error serial correlation.20

Table 10: Fraction of Firms for which the lag-order p,q are Chosen by AIC

(p; q) q = 1 q = 2 q = 3 q = 4

p = 1 0.062 0.000 0.000 0.000

p = 2 0.157 0.017 0.000 0.000

p = 3 0.260 0.025 0.004 0.000

p = 4 0.124 0.008 0.000 0.000

p = 5 0.091 0.004 0.000 0.000

p = 6 0.087 0.004 0.000 0.000

p = 7 0.029 0.000 0.000 0.008

p = 8 0.029 0.000 0.000 0.000

p = 9 0.021 0.004 0.004 0.000

p = 10 0.025 0.000 0.004 0.000

p = 11 0.004 0.000 0.000 0.000

p = 12 0.017 0.012 0.000 0.000

Notes: The choice is based on the multivariate version of the Akaike Information Criteria (MAIC), for

the �rm speci�c return-volatility variables with (maxp,maxq)=(12,4).

20This speci�cation requires 89 parameters to be estimated in each equation with 408 observations.

The number of parameters and observations, and the frequency of the data speci�ed here (monthly) are

similar to in�uential VAR studies, such as Bernanke and Mihov (1998) and Hanson (2006).
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Table 11: Fraction of Firms for which the hypothesis of No Error Serial Correlation is

Rejected

VARX*(p,q) (4,1) (4,2) (4,3) (4,4)

Fractions of Rejections in rijt Equation

0.070 0.062 0.050 0.074

Fractions of Rejections in ln�ijt Equation

0.326 0.174 0.153 0.095

A.2 Derivation of Equation (11)

De�ning

xijt = (rijt; ln�ijt)
0, i = 1; 2; :::; Nj ; j = 1; 2; :::; S; t = 1; 2; :::; T

the models (1) and (2) are compactly expressed in a vector autoregressive VARX*(p; q) model of the

form

xijt = �ijx +

pX
`=1

�ij`xij;t�` +
SX
z=1

qX
`=0

�ijz`x
�
ijz;t�` +

qX
`=0

�ijd`dt�` + vijt. (A.2)

While the individual �rm speci�c models are estimated separately, they are combined in a consistent

manner along the lines of the global VAR modelling framework proposed by Pesaran, Schuermann and

Weiner (2004) and further developed by Dees, di Mauro, Pesaran and Smith (2007), to form a model

in terms of xt = (x011t;x
0
21t; :::;x

0
N11t

;x012t; :::;x
0
1St;x

0
2St; :::;x

0
NsSt

)0. The key to solving the model is to

note that the link between xt and the variables in the ith �rm speci�c model, which can be expressed in

terms of (x0ijt;x
�0
ij1t; :::;x

�0
ijSt)

0; is given by the identity

(x0ijt;x
�0
ij1t; :::;x

�0
ijSt)

0 = Wij
(k(S+1)�kN)

xt
(kN�1)

(A.3)

where Wij = (Wij;11; :::;Wij;rz; :::;Wij;NsS) is a (k(S + 1) � kN) �link�matrix de�ned by the value
weights with

Wij;rz =

8>>>><>>>>:

 
Ik

eS;z 
 !ij;rzIk

!
for i = r and j = z 

0k�k

eS;z 
 !ij;rzIk

!
otherwise,

where 0k�k is a (k � k) matrix of zeros and eS;z is an (S � 1) elementary vector with zth element equal
to one and zero otherwise.

For the purpose of impulse response analysis the process for the observed common components dt
needs to be de�ned, which was not required during the estimation stage of the �rm speci�c models. We

consider the following model for dt given by

dt = �d +
SX
j=1

gX
`=1

D1dj`�xj;t�` +

gX
`=1

D2d`dt�` + �dt, (A.4)

where

�xjt =

NjX
i=1

!ijxijt. (A.5)
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The �dt and vijt innovations are assumed to be uncorrelated, so that dt is weakly exogenous for xijt.

This is reasonable, as we do not expect that a single �rm can a¤ect the market or macro/�nancial

variables, conditioning on its industry and/or market. The multivariate AIC with a maximum lag-order

of 6 selects g = 1, however, the null of no error serial correlation is rejected for seven equations out

of eight. Increasing the g to 2,3,4 the number of rejected equations becomes 4, 4 and 1, respectively.

Therefore, g = 4 is chosen.21

Using the identity

(x0ijt;x
�0
ij1t; :::;x

�0
ijSt)

0 = Wij
(k(S+1)�kN)

xt
(kN�1)

(A.2) can be written as

Aijxt = �ijx +

max(p;q;g)X
`=1

Bij`xt�` +

max(p;q;g)X
`=0

�ijd`dt�` + vijt,

where

Aij
(k�kN)

= [Ik;� �ij10;��ij20; :::;��ijS0]Wij ,

Bij`
(k�kN)

=
�
�ij`;�ij1`;�ij2`; :::;�ijS`

�
Wij .

Stacking the above equations for all i and j we obtain

Gxt = �x +

max(p;q;g)X
`=1

H`xt�` +

max(p;q;g)X
`=0

�d`dt�` + vt,

where

G
(kN�kN)

=
�
A0
11;A

0
21; :::;A

0
NsS

�0
, H`
(kN�kN)

=
�
B011`;B

0
21`; :::;B

0
NsS`

�0
�d`

(kN�n)
=

�
�011d`;�

0
21d`; :::;�

0
NsSd`

�0
, vt
(kN�1)

=
�
v011t;v

0
21t; :::;v

0
NsSt

�0
.

Assuming that G is invertible, we have

xt = G
�1�x +

max(p;q;g)X
`=1

G�1H`xt�` +

max(p;q;g)X
`=0

G�1�d`dt�` +G
�1vt. (A.6)

Now de�ne
�Wj =

�
�Wj1; �Wj2; :::; �WjS

�
(k � kN)

with

�Wjz =

8<:
�

!1jPNj
i=1 !ij

;
!2jPNj
i=1 !ij

; :::;
!NjjPNj
i=1 !ij

�

 Ik for j = z

00Nz

 Ik otherwise,

so that

�xj;t�` = �Wjxt�`.

Further, de�ne D1d` = [D1d1`;D1d2`; :::;D1dS`] (n � Sk) and �W = [ �W0
1; �W

0
2; :::; �W

0
S ]
0 (Sk � kN), so

that (A.4) can be written as22

dt = �d +

max(p;q;g)X
`=1

D1d`
�Wxt�` +

max(p;q;g)X
`=1

D2d`dt�` + �dt. (A.7)

21The estimation results of equation (A.4) are not reported here, but are available upon request from

the authors.
22Note that the coe¢ cients for ` such that p; q; g < ` � max(p; q; g), are set to matrices of zeros.
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De�ning yt = (x0t;d
0
t)
0, equations (A.6) and (A.7) can be written as

yt = �+

max(p;q;g)X
`=1

�`yt�` +C�t

where

�
(kN+n�1)

=

"
G�1 (�x +�d0�d)

�̂d

#
,

�`
(kN+n�kN+n)

=

"
G�1 �H` +�d0D1d`

�W
�
G�1 [�d` +�d0D2d`]

D1d`
�W D2d`

#
,

and

C =

"
G�1 G�1�d0

0 In

#
, �t
(kN+n�1)

=

"
vt
�dt

#
, �t � iid(0;
�):

Note that vt and �dt are assumed to be uncorrelated.
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Figure 1: Generalised Impulse Responses of a Market-Wide Negative Unit (1 s.e.) Shock to Industrial Returns 

and its Effect on Industrial Returns 

 (Bootstrap Mean Estimates with 90 per cent Bootstrap Error Bounds) 
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Figure 2: Generalised Impulse Responses of a Market-Wide Negative Unit (1 s.e.) Shock to Industrial Returns 

and its Effect on Industrial Realised Volatily 
                 (Bootstrap Mean Estimates with 90 per cent Bootstrap Error Bounds) 
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Figure 3: Generalised Impulse Responses of a Market-Wide Negative Unit (1 s.e.) Shock to Industrial Returns 

and its Effect on Macro and Financial Variables 
                  (Bootstrap Mean Estimates with 90 per cent Bootstrap Error Bounds) 
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Figure 4: Generalised Impulse Responses of a Market-Wide Positive Unit (1 s.e.) Shock to Industrial Realised 

                    Volatility and its Effect on Industrial Returns 

               (Bootstrap Mean Estimates with 90 per cent Bootstrap Error Bounds) 
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Figure 5: Generalised Impulse Responses of a Market-Wide Positive Unit (1 s.e.) Shock to Industrial Realised  

Volatility and its Effect on Industrial Realised Volatily 
                 (Bootstrap Mean Estimates with 90 per cent Bootstrap Error Bounds) 
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Figure 6: Generalised Impulse Responses of a Market-Wide Positive Unit (1 s.e.) Shock to Industrial Realised  

           Volatility and its Effect on Macro and Financial Variables 

                  (Bootstrap Mean Estimates with 90 per cent Bootstrap Error Bounds) 
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