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Abstract

We investigate the e¤ect of competition on quality in health care markets with regulated

prices taking a di¤erential game approach, in which quality is a stock variable. Using a

Hotelling framework, we derive the open-loop solution (health care providers commit to an

optimal investment plan at the initial period) and the feedback closed-loop solution (providers

move investments in response to the dynamics of the states). Under the closed-loop solution

competition is more intense in the sense that providers observe quality in each period and

base their investment on this information. If the marginal provision cost is constant, the

open-loop and closed-loop solutions coincide, and the results are similar to the ones obtained

by static models. If the marginal provision cost is increasing, investment and quality are

lower in the closed-loop solution (when competition is more intense). In this case, static

models tend to exaggerate the positive e¤ect of competition on quality.
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1 Introduction

Quality is a major concern in health care. In recent years, health care markets in several countries

have been subject to reforms introducing competition between health care providers, at least

along some dimensions. In particular, the combination of prospective payment systems and free

patient choice aims at giving hospitals incentives to attract patients (and thus payments) by

improving their quality.1

The existing theoretical literature on quality competition in health care markets with �xed

prices is almost unanimous in reporting a positive relationship between competition �measured

either as a switch from monopoly to (imperfect) competition or as an increase in the degree

of competition intensity �and quality (see, e.g., Calem and Rizzo, 1995; Gravelle, 1999; Lyon,

1999; Gravelle and Masiero, 2000; Beitia, 2003; Nuscheler, 2003; Brekke, Nuscheler and Straume,

2007; Karlsson, 2007).2 This result is also in line with more general theoretical studies of quality

competition in regulated markets (see, e.g., Ma and Burgess, 1993; Wolinsky, 1997; Brekke,

Nuscheler and Straume, 2006; Matsumura and Matsushima, 2007).

The empirical evidence seems, however, to be more ambiguous. When empirically analysing

the e¤ect of competition on quality in health care markets with �xed prices, Kessler and Mc-

Clellan (2000) and Tay (2003) �nd a positive e¤ect, Gowrisankaran and Town (2003) �nd a

negative e¤ect, Shen (2003) �nds mixed e¤ects, while Shortell and Hughes (1988) and Mukamel,

Zwanziger and Tomaszewski (2001) �nd no e¤ects.3

In the present paper we revisit the modelling of quality competition in health care markets

in order to shed some more light on the apparent divergence between theory and evidence.

In most of the theoretical literature an important assumption is that quality can be adjusted

instantaneously and permanently (at some costs). This is obviously a simplifying assumption

1Examples include the UK, where hospitals are paid a tari¤ for every patients treated (Payment by Results) and
patients have been given a free choice of hospital. Similar reforms have been introduced in Norway, Denmark, Italy
and several other European countries. Our study is also relevant for the US Medicare system, where hospitals are
paid a �xed price per treatment within a speci�c diagnosis related group (DRG), a system that has been adopted
by many European countries.

2One exception is Brekke, Siciliani and Straume (2008) who show that the positive relationship between
competitition and quality might be reversed if health care providers have altruistic preferences.

3See Gaynor (2006) for a survey of theoretical and empirical literature on the relationship between hospital
competition and quality.
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that may be restrictive. A provider who wants to increase quality will have to invest in it. For

example, a hospital will have to train existing doctors, hire more quali�ed doctors, buy new

high-tech equipment and so on. Thus, there might be potentially important implications of the

dynamic nature of quality investments that are ignored in a static analysis.

We extend the above mentioned studies by modelling quality as a stock and by adopting a

dynamic approach. We develop a model of competition within a Hotelling framework, with two

horizontally di¤erentiated health care providers that potentially di¤er also with respect to the

quality of the good they provide. We assume that quality is a stock that can be increased only if

the investment in quality is higher than its deterioration. Modelling quality as a stock introduces

a dynamic element into the analysis, which turns the problem into a capital accumulation game

(Dockner, Jørgensen, Van Long and Sorger, 2000).

We use a di¤erential-game approach to derive the equilibrium quality, under two di¤erent

behaviour rules followed by providers: in the �rst setting, providers decide their optimal dynamic

plans at the initial period and then stick to it forever (open-loop solution); in the second setting,

providers do not commit to an optimal path and set their controls at any time in response to

the current value of states (feedback closed-loop solution). The �rst solution concept might be

appropriate when providers can commit to investment plans and stick to it for long periods of

time. The second one is appropriate when providers do not or cannot commit to investment

plans, but rather observe quality in each period and base their investments on this information.

Hence, under the closed-loop solution competition is more intense.

We �nd that if the marginal cost of provision is constant, the open-loop and closed-loop

solutions coincide: investment and quality are identical under the two solution concepts. This

result holds for a general speci�cation of the cost function (cost of quality is either zero, linear

or quadratic in quality; investment and quality are either substitutes or complements in costs).

We �nd, as is intuitive, that if the price is above marginal cost, a higher regulated price or

lower travel costs (i.e., more competition) increase investment, and thus quality, in steady state.

Cost complementarity (substitutability) between investment and quality will increase (decrease)

the steady state levels of both. A higher time preference discount rate reduces quality and
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investment under weak regularity conditions, while a higher depreciation rate reduces quality

but has an indeterminate e¤ect on investment.

Similar results are obtained under the open-loop solution when we assume that the marginal

cost of provision is increasing. However, in contrast to the case with constant marginal cost, in-

vestment and quality are lower under the closed-loop solution than under the open-loop solution.

Therefore, our model predicts that when (i) quality investment is costly, (ii) the marginal cost

is increasing and (iii) providers do not commit to investment plans, then the bene�cial e¤ects

from competition in terms of higher quality are lower than expected from existing theoretical

literature.

The intuition for this result is related to the fact that, when the marginal cost of provision is

increasing, quality investments are strategic complements. In a static setting, this yields strong

incentives for quality competition. However, in a dynamic setting, if the players use closed-loop

investment rules, lower quality investment by one provider will induce a future reduction in

quality investment by the other provider. Thus, due to these strategic dynamics, the players are

able to obtain a more collusive outcome in steady state, compared with the open-loop solution

or with the solution of a corresponding one-shot game. From the viewpoint of each player, the

instantaneous demand loss due to lower quality investments is weighed against the future gains

due to the strategic response �lower investment �by the competitor. As long as the players value

future pro�ts, the latter consideration reduces the incentive for quality investments, implying a

lower steady state level of quality in the closed-loop solution. Thus, the dynamic strategic e¤ect

identi�ed in the present paper may potentially help explaining the ambiguous empirical evidence

on competition and quality, which in some cases �nds no signi�cant association between the two

variables (Shen, 2003; Shortell and Hughes, 1988; Mukamel, Zwanziger and Tomaszewski, 2001).

The crucial assumption for the above described dynamics is that the marginal cost of pro-

vision is increasing. If, on the other hand, marginal production costs are constant, there is no

longer any strategic interaction between the players in terms of quality investments, since a �xed

price and constant marginal costs imply that marginal revenue is also constant. This explains

why the open- and closed-loop solutions coincide in this particular case. Even if the players are
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able to update their investment plans according to the evolution of quality states, the absence

of strategic interaction implies that the each player�s optimal investment rule does not depend

on the choices made by the other player.

Although quality competition between health care providers is what we have foremost in

mind, it should be noted that our model might also be interpreted in the context of pharmaceu-

tical markets. In most countries prices of prescription drugs are regulated and pharmaceutical

companies use a considerable amount of resources on marketing in order to capture market

shares. Although quality competition is not directly relevant in such markets, drug market-

ing and quality investments share the same essential feature, namely to increase consumers�

willingness-to-pay for the good.4 Thus, it is possible to reinterpret the quality variable in our

model as a marketing variable.

It should also be noted that our results are in contrast with the results obtained within capital

accumulation models with a Cournot framework (Dockner, 1992; Dockner, Jørgensen, Van Long

and Sorger, 2000). In these models, the providers compete a la Cournot but face capacity

constraints that can be relaxed by capital accumulation through investment. It turns out that

the investment under the closed-loop solution is in this case higher than under the open-loop one:

the more intense competition under the closed-loop solution generates an additional incentive

to invest. In contrast, within the regulated markets described in our model, the investment in

quality under the closed-loop solution is lower than under the open-loop one.5

The rest of the paper is organised as follows. The main assumptions of the model are

presented in Section 2. Section 3 derives and characterises the equilibrium quality under the

open-loop solution, while Section 4 derives and characterises the feedback closed-loop solution.

Section 5 concludes the paper.

4 In markets for prescription drugs, marketing activities are also directed towards prescribing physicians in an
attempt to increase their "willingness-to-prescribe" (see, e.g., Brekke and Kuhn, 2006; Königbauer, 2007).

5 In a related paper (Brekke, Cellini, Siciliani and Straume, 2008), we assume that providers can adjust quality
instantaneously but that the demand is sluggish. Sluggish demand implies that if a provider increases quality, it
will take some time before the potential demand increase is fully realised.
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2 Model

Our basic framework is the widely used Hotelling model (Hotelling, 1929) for quality competition

with regulated prices.6 Consider a market for medical treatment with two hospitals located at

either end of the unit line S = [0; 1]. On this line segment there is a uniform distribution of

patients, with total mass normalised to 1. We assume unit demand, where each patient needs �

and demands �one hospital treatment in order to be cured. Assuming full market coverage, the

decision patients make is to choose which provider to demand treatment from. The utility of a

patient who is located at x 2 S and seeking treatment at hospital i, located at zi, is given by7

U (x; zi) = v + kqi � � jx� zij ; (1)

where v is the gross valuation of medical treatment, qi � q is the quality at hospital i, k is

a parameter measuring the (marginal) utility of quality, and � is a travelling cost parameter.8

The lower bound q on hospital quality represents the minimum treatment quality hospitals are

allowed to o¤er, implying that q < q can be interpreted as malpractice. For simplicity, we set

q = 0. Moreover, we normalise the marginal utility of quality to one, i.e., k = 1, without loss of

generality. This implies that � can be interpreted as the marginal disutility of travelling relative

to quality. Thus, a low (high) � means that quality is of relatively more (less) importance to

the patient than travelling distance.

Since the distance between hospitals is equal to one, the patient who is indi¤erent between

seeking treatment at hospital i and hospital j is located at xDi , given by

v � �xDi + qi = v � �
�
1� xDi

�
+ qj ; (2)

6The Hotelling model in a di¤erential game framework is used, inter alia, by Laussel, de Montmarin and Van
Long (2004) and by Piga (1998). Di¤erently from our present paper, however, the former focuses on network
e¤ects and competition is on prices (rather than quality), while the latter studies the role of advertising and price
competition.

7There is strong empirical evidence showing that distance and quality are main predictors of patients�choice
of hospital, see, e.g., Kessler and McClellan (2000) and Tay (2003).

8We refer to distance in physical terms. However, one could also interpret the horizontal dimension in a disease
space, where the location of a patient is associated with the disease she su¤ers from, and the two hospitals are
di¤erentiated with respect to the disease they are best able to cure, re�ecting hospital specialisation or "service
mix" (see, e.g., Calem and Rizzo, 1995, and Brekke, Nuscheler and Straume, 2007).
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yielding

xDi =
1

2
+
qi � qj
2�

; (3)

which is also the demand for medical treatment at hospital i, given the assumptions of (i)

uniform patient distribution (with mass 1), (ii) exogenous locations of providers, and (iii) full

market coverage.

The provider with a higher quality gets a market share which is more than half. Notice how

lower travelling costs make it less costly for patients to switch between hospitals, increasing the

demand responsiveness to changes in quality.

Most of the literature assumes that quality can be increased instantaneously and permanently

(at some costs). This is, obviously, a simplifying assumption. Quality is a stock which may be

increased if the appropriate investment in quality is chosen. In the hospital context, there are

many examples of quality-enhancing investments. For instance, the purchase of MR-machines

and CT-scanners improve diagnosing, which in turn will increase the treatment quality. Hospitals

invest also in human capital in order to improve quality: they spend money on training of their

medical sta¤, they hire highly skilled physicians (specialists) and nurses, etc. Finally, hospitals

invest in facilities to improve, say, the quality of theaters, rooms, catering, etc.9

De�ne I(t) as the investment in quality at time t; and � as the depreciation rate of the quality

stock. Analytically, the law of motion of quality is given by:

dqi(t)

dt
� :
qi(t) = Ii(t)� �qi(t); (4)

where � is the depreciation rate. Such an accumulation law, à la Solow, is widely used in indus-

trial organization theoretical models to describe capacity accumulation (see Dockner, Jørgensen,

Van Long and Sorger, 2000, or Cellini and Lambertini, 2003, for literature reviews).

We assume that hospitals maximise pro�ts.10 The instantaneous objective function of hos-

9Some investments might not just in�uence quality but also capacity. For instance, a new MR-machine might
improve treatment quality, but also the number of patients that can be treated. Here, we restrict attention to
pure quality investments. Capacity accumulation has been analysed in detail in several other papers (Dockner,
Jørgensen, Van Long and Sorger, 2000).
10At �rst glance, this assumption may seem inappropriate for public and non-pro�t hospitals due to their

constraints on pro�t distribution. However, hospitals may add to their reserves the �nancial surplus obtained.
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pital i is assumed to be given by

�i (t) = T + px
D
i (qi (t) ; qj (t))� C

�
Ii (t) ; x

D
i (qi (t) ; qj (t)) ; qi (t)

�
� F; (5)

where p is a regulated price per treatment (patient) and T is a potential lump-sum transfer

received from a third-party payer (insurer).11

On the cost-side, each hospital i faces a �xed cost F and variable cost C(�) that depends

on the quality investment Ii and supply of xDi treatments at quality qi. We assume that C(�)

is increasing in the investment, CIi > 0, as investment in quality is obviously costly, at an

increasing rate, CIiIi > 0. We also assume that C(�) is weakly increasing in quality, Cqi > 0.

The cost function is also increasing in the number of patients treated, Cxi > 0. Below we

will distinguish the cases when the cost of treatment is linear (Cxixi = 0) and when it is convex

(Cxixi > 0).12 We will show that this assumption has important implications for the results.

We also make the simplifying assumption that the cost function is separable in the quantity xi,

implying that Cxiqi = CxiIi = 0.
13 ;14

In contrast, we assume that CIiqi ? 0. If CIiqi < 0, then quality and investment are comple-

ments and a higher quality reduces the marginal cost of investment. If CIiqi > 0, then quality

and investment are substitutes and a higher quality increases the marginal cost of investment.

De�ning � as the (constant) preference discount rate, the hospital objective function over

Alternatively, managers may spend the surplus to pursue other objectives: they might increase the physician
sta¤, the range of services, or even increase managerial perks (see e.g., Dranove and White, 1994, De Fraja, 2000,
Chalkley and Malcomson, 1998a,b). Importantly, the empirical evidence shows little support for di¤erent behav-
iour of for-pro�t and not-for-pro�t hospitals (Sloan, 2000), suggesting that pro�t maximisation is a reasonable
assumption.
11Alternatively, we could have assumed that the payments are collected directly from the consumers. It is,

however, straightforward to show that this will not change our results.
12A convex variable cost function is normally supported by the evidence suggesting that economies of scale

are quite rapidly exhausted in the hospital sector (see, e.g., Ferguson, Sheldon and Posnett, 1999, and Folland,
Goodman and Stano, 2004, for literature surveys).
13The assumption of cost separability between quality and quantity is widely used in the related literature

(see, e.g., Economides, 1989, 1993; Calem and Rizzo, 1995; Lyon, 1999; Gravelle and Masiero, 2000; Barros and
Martinez-Giralt, 2002).
14The assumption of separability between investment and quantity is done to focus on quality dynamics rather

than capacity dynamics. As mentioned above, we restrict attention to investments that a¤ect quality only.
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the in�nite time horizon is
+1Z
0

� (t) e��tdt: (6)

In reality, providers may not have an in�nite-time horizon, but may have reasonably long �nite

horizons. If the optimal path does not di¤er signi�cantly from the solution with a very large but

�nite horizon, the convenience of working with an in�nite-horizon model may be worth the loss

of realism (see Léonard and van Long, 1992, p. 285). Also, when doctors or managers retire,

they may well be replaced by other doctors and managers with similar utility functions, thus

generating an in�nite-time horizon.

In this type of dynamic models with strategic interactions �i.e., di¤erential games �there

are two main solution concepts: a) open-loop solution, where each hospital knows the initial

state of the system and then nothing else, i.e., each hospital knows the initial quality of the

other provider, but not in the following periods; b) closed-loop solution, where each hospital

knows the initial state of the system, but also later knows the state variable values, i.e., each

hospital knows the quality of the other provider, not only in the initial state, but also in all

of the subsequent periods. Within the closed-loop solutions, further distinctions can be made:

if one assumes that players take into account only the initial state and the current state, the

"memoryless" closed-loop solution is obtained; if players take into account the whole history of

states, the "perfect state" closed-loop is obtained; �nally, if players in each instant take into

account the current value of states (i.e., the whole past history is summarized by the current

value of states), the feedback rule is obtained. Typically, the feedback closed-loop solution is

obtained based on the Bellman equation.

In order to establish which one is the most appropriate solution concept, it is essential to

evaluate the relevant information set used by players when they take their decisions. In the

cases in which the collection of information over time is di¢ cult, it is reasonable to model the

choice according to the open-loop rule; on the opposite, when players can observe the current

state of the world and they behave accordingly, the closed rules are more appropriate. Clearly,

closed-loop solutions are more appealing, but solving for closed-loop is more di¢ cult. However,

in some cases �and health care markets can be a good example �players might have to commit
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to investment plans and stick to them for long periods of time. In this case, the open-loop

solution might be the relevant one. Nevertheless, there is a wide range of problems where the

two solutions coincide.15 Below, we compare the closed-loop and open-loop solutions. Section 3

provides the open-loop solution, while Section 4 provides the closed-loop one, under the speci�c

rule of feedback behaviour.

3 Open-loop solution

Provider i�s maximisation problem is given by

Maximise

+1Z
0

�i (t) e
��tdt; (7)

subject to
:
qi(t) = Ii(t)� �qi(t); (8)

:
qj(t) = Ij(t)� �qj(t); (9)

qi(0) = qi0 > 0; (10)

qj(0) = qj0 > 0: (11)

Let �i(t) and �j(t) be the current value co-state variables associated with the two state equations.

The current-value Hamiltonian is:16

Hi = T + px
D
i (qi; qj)� C(Ii; xDi (qi; qj) ; qi)� F + �i (Ii � �qi) + �j (Ij � �qj) ; (12)

15Games where this coincidence arises are presented in Clemhout and Wan (1974); Reinganum (1982);
Mehlmann and Willing (1983); Dockner, Feichtinger and Jørgensen (1985). See also Mehlmann (1988), Fer-
shtman, Kamien and Muller (1992), Dockner, Jørgensen, Van Long and Sorger (2000, ch. 7) for review.
16The indication of time (t) is omitted, to ease notation.
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The solution is given by (a) @Hi=@Ii = 0 , (b)
:
�i = ��i � @Hi=@qi, (c)

:
qi = @Hi=@�i, (d)

:
�j = ��j � @Hi=@qj , or more extensively:

�i = CIi ; (13)

:
�i = � 1

2�
(p� Cxi) + Cqi + �i (� + �) ; (14)

:
qi = Ii � �qi; (15)

:
�j =

p

2�
+ �j (� + �) ; (16)

to be considered along with the transversality condition limt!+1 �i(t)qi(t) = 0: The second

order conditions are satis�ed if the Hamiltonian is concave in the control and state variables

(Léonard and Van Long, 1992).17

Totally di¤erentiating equation (13) with respect to time we obtain
:
�i = CIiIi

:
Ii + CIiqi

:
qi

or, after substitution,
:
�i = CIiIi

:
Ii + CIiqi (Ii � �qi). Substituting into equation (14), and using

�i = CIi , under symmetry we obtain:

:
Ii =

� 1
2� (p� Cxi) + Cqi + (� + �)CIi � CIiqi (Ii � �qi)

CIiIi
; (17)

which, together with
:
qi = Ii � �qi, describe the dynamics of the equilibrium.

Totally di¤erentiating the locus of investment,
�
Ii = 0, and rearranging yields

@Ii
@qi
j :
Ii=0

= �
�
1
2�

�2
(Cxixi) + Cqiqi + (2� + �)CIiqi � CIiqiqi (Ii � �qi)

(� + �)CIiIi � CIiIiqi (Ii � �qi)
: (18)

Su¢ cient but not necessary conditions for the locus of investment,
�
Ii = 0, to be negatively

sloped are CIiqi > 0 and CIiqiqi = CIiIiqi = 0. The second locus is
:
qi = 0, or Ii = �qi, with

@Ii
@qi
> 0.

17This is the case since (a) HIiIi = �CIiIi < 0; (b) Hqiqi = �Cqiqi � [1= (2�)
2]Cxixi < 0; (c) HIiIiHqiqi >

(HIiqi)
2 or CIiIi

�
Cqiqi + [1= (2�)

2]Cxixi
	
> C2Iiqi .

11



The dynamics of investment and quality can be represented in matrix form as follows:

264 �
I(t)

�
q(t)

375 =

2666664
(� + �)� CIiIiqi

CIiIi
(Ii � �qi)

1

26664
�
1
2�

�2
(Cxixi) + (2� + �)CIiqi

+Cqiqi � CIiqiqi (Ii � �qi)

37775
CIiIi

��

3777775
264 I(t)
q(t)

375

+

264 � (p� c) =(2
�)
0

375 ; (19)

where the 2-by-2 matrix is the Jacobian J of the dynamic system. As for the dynamic properties

of the system, suppose that this is evaluated around the steady state (or alternatively that

third-order derivatives of the cost function are set to zero: CIiIiqi = CIiqiqi = 0). Then, it

is immediate to check that the Jacobian matrix J in (19) is such that tr(J) = � > 0, and

det(J) = ��(� + �) � ( 12� )
2
(Cxixi)+Cqiqi+(2�+�)CIiqi

CIiIi
< 0, implying that the equilibrium is stable

in the saddle sense. The solution is described in Figure 1.

[Figure 1 about here]

Let qs be the steady state level of quality and suppose we start o¤ equilibrium at level

q0 < qs. The solution is then characterised by a period of increasing quality and decreasing

investment in quality. Suppose instead that q0 > qs. In this case, we should observe a period of

decreasing quality and increasing investment. Notice how o¤ equilibrium investment and quality

move over time in opposite directions, while in the steady state investment is proportional to

quality (Ii = �qi).

In Figure 1 we have assumed the investment locus,
�
Ii = 0, to be negatively sloped , implying

that the equilibrium is a saddle point. The equilibrium can still be a saddle point also when
�
Ii = 0 is positively sloped, as long as it is not too positively sloped. This case arises, for example,

when the marginal cost of quality and the marginal cost of provision are constant but quality

and investment are complements, which implies CIiqi < 0. The equilibrium is still a saddle point

12



if det(J) = ��(� + �)� (2�+�)CIiqi
CIiIi

< 0.18

Figure 2 shows some comparative dynamics. Suppose the system is in an initial steady state.

Figure 2 shows the e¤ect of an unexpected increase in price or reduction in travel costs (more

competition) on investment and quality. The locus
�
Ii = 0 shifts upwards. The shock gener-

ates a positive jump in investment (overshooting), and it is followed by a period of decreasing

investment and increasing quality.

[Figure 2 about here]

In the following, we will consider two special cases: constant and increasing marginal cost

of treatment. Later on, the speci�cation of the treatment cost function will be shown to have

crucial implications with respect to the comparison of the open-loop and closed-loop solutions.

3.1 Constant marginal treatment cost

Suppose that marginal cost of treatment is constant, while it is quadratic in investment and

quality:

C(Ii; x
D
i ; qi) = cx

D
i +




2
I2i +

�

2
q2i + 'qiIi: (20)

With this speci�cation, the solution of the Hamiltonian system leads to

:
Ii = �

1

2�

(p� c) + (� + �) Ii +

1



[� + (2� + �)'] qi: (21)

In the steady state we have
:
qi = 0, implying Ii = �qi, which, substituted into

:
Ii = 0, yields

IsOL =
(p� c) �

2� [� + 
� (� + �) + ' (2� + �)]
(22)

and

qsOL =
IsOL
�
; (23)

18 If the determinant is positive, then we have an unstable node.
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where superscript s and subscript OL indicate the steady state levels in the open-loop solution,

respectively.

The results are reasonable. If the price is above the marginal treatment cost, then lower travel

costs (�) or a higher price (p) increase quality and investment. Similarly, a higher marginal cost

of quality (�) or of investment (
) reduce quality and investment. If quality and investment

are complements (' > 0), then quality and investment are higher in the steady state; if they

are substitutes, quality and investment are lower in the steady state. A higher time preference

discount rate (�) reduces quality and investment whenever 
� + ' > 0.19 Notice also how a

higher depreciation rate of quality (�) is associated with lower steady state quality, while the

e¤ect on investment is indeterminate.20

3.2 Increasing marginal treatment cost

Suppose that marginal cost of treatment is increasing, while it is still quadratic in investment

and quality:

C(Ii; x
D
i ; qi) =

c

2

�
xDi
�2
+



2
I2i +

�

2
q2i + 'qiIi: (24)

With this particular speci�cation, the solution of the Hamiltonian system yields

:
Ii = �

1

2�


�
p� c

�
1

2
+
qi � qj
2�

��
+
�



qi + (� + �) Ii +

'



qi (2� + �) : (25)

The symmetric steady state equilibrium,
:
Ii = 0 and

:
qi = 0, together with Ii = �qi, yield

IsOL =

�
p� c

2

�
�

2� [� + (� + �) 
� + ' (2� + �)]
(26)

19From (22) we obtain
@IsOL
@�

= � (p� c) � (
� + ')
2� [� + 
� (� + �) + ' (2� + �)]2

:

20From (22) we obtain
@IsOL
@�

=
(p� c)

�
�'+ � � 
�2

�
2� [� + ' (2� + �) + �
 (� + �)]2

:

The sign of this expression is determined by the sign of
�
�'+ � � 
�2

�
, which is indeterminate.
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and

qsOL =
IsOL
�
; (27)

which is similar to the solution with constant marginal cost, and requires no further comments.

4 Closed-loop solution

The open-loop rule is realistic in cases where the players compute their investment plans at the

beginning, and then stick to them forever. In other cases, however, players take their decisions

while observing the evolution of states, and the relevant rule is then of the closed-loop type. In

this section we derive the so-called feedback rule, where the controls set by the players depend on

the current level of states. Open-loop solutions are simpler to compute, but they are only weakly

time consistent. On the opposite, closed-loop solutions �which are more involved to compute

�are strongly time consistent. There is a wide body of literature on the cases of coincidence

between the time path of controls and states under di¤erent solution concepts. In the lucky

case in which they coincide, the (more easily computable) open-loop solutions are strongly time

consistent (see Mehlman, 1988).

4.1 Constant marginal treatment cost

Applying the cost speci�cation in (20), the optimal rule for player i in the closed-loop stable

solution is given by21

Ii(t) = �
CL
i (qi(t); qj(t)) =

1



[�1 + (�3 � ') qi(t)]; (28)

where

�1 =
p� c

�
h
�+

q
4�+�'+2�'
 + (�+ 2�)2

i > 0 (29)

21See Appendix A for the details of this solution. As we show in the appendix, there are three solutions, of
which two are unstable. We focus on the stable solution (Dockner, Jørgensen, Van Long and Sorger, 2000, p.
251-2).
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and

�3 � ' = 

��
2
+ �
�
�
r

 (� + �'+ 2�') + 
2

��
2
+ �
�2
< 0: (30)

Using that fact that Ii = �qi in steady state, it is shown in Appendix A that the only

stable steady-state equilibrium in the closed-loop solution coincides with the previously derived

open-loop steady-state equilibrium, given by (22)-(23), i.e., IsCL = IsOL = �qsOL = �qsCL. This

constitutes the �rst main result of the paper:

Proposition 1 If the marginal treatment cost is constant, the open-loop and closed-loop solu-

tions coincide in steady state.

The coincidence between the two solutions clearly holds also for the special cases when ' = 0

(or ' = � = 0). We can also show that the same result holds when the cost of quality is linear

rather than convex (i.e., C(Ii; xDi ; qi) = cx
D
i +



2 I
2
i + �qi + 'qiIi; the proof is omitted).

The important contributing factor to this coincidence result is that there is a constant mar-

ginal (instantaneous) revenue gain of quality investments, implying that the optimal dynamic

investment rule for each player, as given by (28), is independent of the quality level provided by

the other player. In other words, the optimal investment path for hospital i does not depend

on the quality stock of hospital j, implying an absence of strategic interaction in this particular

respect. Given that the cost function is separable in quantity, this feature �constant marginal

revenue �is always present when the treatment price is �xed and the marginal treatment cost

is constant. Consequently, our analysis suggests that, if the marginal cost is constant, the solu-

tion within a dynamic approach (regardless of the open- or closed-loop solution) is qualitatively

similar to the ones that would be obtained within a static approach. We can thus conclude that

the static analysis is reasonably robust in this particular case.

4.2 Increasing marginal treatment cost

Suppose instead that the marginal treatment cost is increasing, with the cost function given by

(24). To keep the analysis simple, we assume that quality does not a¤ect the marginal cost of

investment, i.e., ' = 0. Moreover, we set the marginal cost of investment 
 equal to one (
 = 1).
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This normalisation is without loss of generality. What matters is the marginal cost of quality �

relative to the marginal cost of investment 
. Clearly, as we have shown above, this does not

a¤ect the coincidence result in Proposition 1. With this speci�cation, the optimal investment

rule for player i is given by22

Ii(t) = �
CL
i (qi(t); qj(t)) = �1 + �3qi(t) + �5qj(t); (31)

where

�1 =
2p� c
4�

1

� + �� �3
> 0; (32)

�3 =
��
2
+ �
�
+
18�2

c
�35 �

�2
�
5c+ 16��2 + 16�2

��
2 + �

�2�
2c

�5 < 0; (33)

and

�5 =
1

6

vuut3c

�2
+ 8

�
� +

��
2
+ �
�2�

� 4

s�
� +

��
2
+ �
�2��3c

�2
+ 4

�
� +

��
2
+ �
�2��

> 0: (34)

As to the steady state of the dynamic system, note that applying (31)-(34) to the steady state

condition Ii = �qi, the only stable steady-state investment and quality in the closed-loop solution

are then given by

IsCL =
2p� c
4�

�

(� + �� �3) (� � �3 � �5)
> 0 (35)

and

qsCL =
IsCL
�
> 0; (36)

Thus, the investment and quality under closed-loop solution is positive and generally di¤erent

from the quality under open-loop solution. The following proposition compares the two solutions.

Proposition 2 If the marginal treatment cost is increasing, the steady state levels of investment

and quality are lower under the closed-loop solution compared to the investment and quality under

the open-loop solution, i.e. IsOL > I
s
CL and q

s
OL > q

s
CL.

22The derivation of the closed-loop solution with increasing marginal costs is presented in Appendix B. There
are four possible solutions of which three are unstable. We focus on the stable solution.
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See Appendix B for proof. When marginal treatment costs are non-constant, marginal

revenue is no longer independent of quality levels, since quality changes will a¤ect demand and,

in turn, the marginal treatment cost facing each hospital. This introduces a strategic interaction

in the sense that the optimal investment rule for player i depends, at each point in time, on

the quality stock of player j, as we can see from (31). This dynamic interaction is re�ected

in the parameter �5. More speci�cally, with increasing marginal costs, quality investments are

strategic complements (�5 > 0). A quality increase by hospital i will shift demand away from

hospital j, implying that the marginal cost of hospital j decreases. Since the price is constant,

this increases the pro�t margin of hospital j, making quality investments more pro�table on

the margin for this hospital. Conversely, a quality reduction by hospital i will be strategically

followed by a quality reduction by hospital j.

This strategic interaction has important implications for the players�dynamic competition

incentives. From the perspective of the pro�t-maximising providers, the business-stealing e¤ect

of quality investments constitutes a form of "destructive competition". This is particularly

pronounced in the case of inelastic total demand, where quality investments have a purely

business-stealing e¤ect.

Compared with the outcome of a static game, the open-loop solution in a dynamic setting

does not (qualitatively) produce a less competitive outcome, since it has the essential char-

acteristics of a one-shot game, where the players make once-and-for-all commitments to their

investment plans at the outset of the game. This is also true for the closed-loop solution in the

case of constant marginal costs, due to the aforementioned absence of strategic interaction.

However, the presence of increasing marginal costs introduces a dynamic strategic interaction

in terms of quality investments, as explained above. When the players revise their investment

plans according to the evolution of quality states, a decrease in quality investment by hospital

i will invoke an investment-reducing response by hospital j. From the viewpoint of hospital i,

the instantaneous loss in market share by reducing the supply of quality is weighed against the

future gain of a quality reduction �a strategic response �by hospital j. As long as the players

value future pro�ts, the dynamic strategic interaction will drive the supply of quality in the
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market to a lower level in steady state, muting the e¤ect of competition in the market.

To summarise the above analysis, our general message is that, in the presence of convex pro-

duction costs, when dynamic strategic interaction is taken into account, the closed-loop solution

indicates that the bene�ts of competition with respect to quality provision are overestimated in

the existing theoretical literature, which is based on static competition models.23

5 Conclusions

We have investigated the e¤ect of competition on quality in health care markets within a

Hotelling framework. Di¤erently from the existing literature we assume that quality cannot

adjust instantaneously, but rather is a stock variable which increases when investment in quality

is higher than the depreciation of quality. We investigate the optimal open-loop solution (when

providers commit to an optimal plan of investment at the initial period) and the equilibrium

closed-loop solution (under the feedback rule, where the providers move their investment in

response to the dynamics of the states).

We �nd that if the marginal cost of provision is constant, the open-loop and closed-loop

solution coincide: investment and quality are identical under the two solution concepts. This

result suggests that previous predictions obtained from static models are robust to a dynamic

speci�cation. For example, if the price is above the marginal cost, a higher regulated price or

lower travel costs (i.e., more competition) increase quality and investment. Moreover, we show

(di¤erently from static analyses) that a higher time preference discount rate reduces quality and

investment under weak regularity conditions. Also, a higher depreciation rate reduces quality

but has an indeterminate e¤ect on investment.

However, if we assume that the marginal cost is increasing, then the open-loop and closed-

loop solution do not coincide, which implies that the main results from closed-loop solutions

23We restricted the analysis to the case of constant or increasing marginal cost. Suppose that the marginal cost
is instead decreasing: C(Ii; xDi ; qi) = ax

D
i � b

2

�
xDi
�2
+ 


2
I2i +

�
2
q2i + 'qiIi, where a and b are positive parameters

with @C
@xDi

= a� bxDi > 0 and @2C
@2xDi

= �b < 0. Also assume that �� + b
(2�)2

< 0 to make sure the problem is well

behaved and the Second Order Conditions are satis�ed. The pro�t function is: �i = (p� a)xDi + b
2

�
xDi
�2� 


2
I2i �

�
2
q2i � 'qiIi � F , which is analogous to the problem already analysed, the only di¤erence being that the price is

now replaced with (p� a) and c = �b. It is straightforward to show that if the marginal cost is decreasing, then
the quality under the open-loop solution is higher than the quality under the closed-loop solution.
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departs from the predictions of static models. Investment and quality are lower under the

closed-loop solution than under the open-loop solution. Therefore, our model predicts that

the bene�cial e¤ects from competition in terms of higher quality are lower than expected from

existing theoretical literature.
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Appendix A. Closed-loop solution with constant marginal cost

We assume that the marginal cost of treatment is constant, while it is quadratic in investment

and quality so that C(Ii; xDi ; qi) = cx
D
i +



2 I
2
i +

�
2 q
2
i+'qiIi. The purchaser instantaneous objective

function is

T + (p� c)
�
1

2
+
qi � qj
2�

�
� 

2
I2i �

�

2
q2i � 'qiIi; (A1)

which � faced with the linear dynamic constraint � gives rise to a linear-quadratic problem.

Hence, de�ne the value function as

V i(qi; qj) = �0 + �1qi + �2qj + (�3=2)q
2
i + (�4=2)q

2
j + �5qiqj : (A2)

De�ne Ii = �i(qi; qj) and Ij = �j(qi; qj). The value function has to satisfy the Hamilton-Jacobi-

Bellman (HJB) equation:

�V i(qi; qj) = max

8><>: T + (p� c)
�
1
2 +

qi�qj
2�

�
� 


2 I
2
i �

�
2 q
2
i � 'qiIi

+V iqi(qi; qj) (Ii � �qi) + V
i
qj

�
�j(qi; qj)� �qj

�
9>=>; : (A3)

Maximisation of the right-hand-side yields V iqi = 
Ii + 'qi, which after substitution gives

Ii = �i(qi; qj) =
�1 + (�3 � ') qi + �5qj



: (A4)

Similarly, we obtain

Ij = �j(qi; qj) =
�1 + (�3 � ') qj + �5qi



: (A5)

Substituting Ii = �i(qi; qj), Ij = �j(qi; qj), V
i
qi(qi; qj) = �1 + �3qi + �5qj , V

j
qj (qi; qj) = �1 +

�3qj + �5qi, V iqj = �2 + �4qj + �5qi into the (HJB) equation, we obtain

�V i(qi; qj) =

8>>>>>>><>>>>>>>:

�
T + p�c

2

�
+ p�c

2� qi �
p�c
2� qj �



2

�
�1+(�3�')qi+�5qj




�2
��
2 q
2
i � 'qi

�
�1+(�3�')qi+�5qj




�
+(�1 + �3qi + �5qj)

�
�1+(�3�')qi+�5qj


 � �qi
�

+(�2 + �4qj + �5qi)
�
�1+(�3�')qj+�5qi


 � �qj
�

9>>>>>>>=>>>>>>>;
; (A6)
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which can be rewritten as

�
��0 � T �

p� c
2

� 1

2

�21 �

1



�1�2

�
+qi

�
�1 (�+ �)�

p� c
2�

� �1�3



� �2�5



� �1�5



+
�1'




�
+qj

�
�2 (�+ �) +

p� c
2�

� �2�3



� �1�4



� �1�5



+
�2'




�
+q2i

�
�3

��
2
+ �
�
� �

2
3

2

� �

2
5



+
�

2
+
'�3


� '

2

2


�
+q2j

�
�4

��
2
+ �
�
� �3�4



� �

2
5

2

+
'�4



�
+qiqj

�
�5

�
(�+ 2�)� 2�3



� �4


+
2'




��
= 0: (A7)

For the equality to hold, the terms in brackets in the above equation have to be equal to zero.

Notice that the last three terms do not depend on �0, �1 and �2 but only on �3, �4 and �5.

We therefore focus on the system of three equations in three unknowns �3, �4 and �5:

�3

��
2
+ �
�
� �

2
3

2

� �

2
5



+
�

2
+
'�3


� '

2

2

= 0

�4

��
2
+ �
�
� �3�4



� �

2
5

2

+
'�4



= 0

�5

�
(�+ 2�)� 2�3



� �4


+
2'




�
= 0

De�ne

A :=

r

 (� + �'+ 2�') + 
2

��
2
+ �
�2
: (A8)
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There are six possible solutions:

1) �3 = '+ 

��
2 + �

�
�A; �4 = 0; �5 = 0;

2) �3 = '+ 

��
2 + �

�
� 1

3A; �4 =
2
3A; �5 = �2

3A;

3) �3 = '+ 

��
2 + �

�
� 1

3A; �4 =
2
3A; �5 =

2
3A;

4) �3 = '+ 

��
2 + �

�
+A; �4 = 0; �5 = 0;

5) �3 = '+ 

��
2 + �

�
+ 1

3A; �4 = �2
3A; �5 =

2
3A;

6) �3 = '+ 

��
2 + �

�
+ 1

3A; �4 = �2
3A; �5 = �2

3A:

(A9)

We disregard solutions 4, 5 and 6 because �3 > 0, which implies that the maximisation

problem is convex rather than concave (those solutions provide minimum, not maximum). �3

is negative for solution 1 whenever ' � 0 or ' > 0 but su¢ ciently small (i.e. '2 < �
). �3 is

also negative for solutions 2 and 3 for su¢ ciently high �. Moreover, global asymptotic stability

requires (Dockner, Jørgensen, Van Long and Sorge, 2000, p.252): a) �3 + �5 < 0, which is

satis�ed under solution 1 and 2 but not for solution 3 as �3 + �5 = '+ 

��
2 + �

�
+ 1

3A > 0; b)

�3��5 < 0, which is satis�ed by solution 1 but not 2 as �3��5 = '+ 

��
2 + �

�
+ 1
3A > 0. We

therefore disregard solutions 2 and 3 as asymptotically unstable and focus on the only stable

solution 1.

Substituting solution 1 in the second equation of (A7) gives

�1 =
p� c
�

1

�+
q
4�+�'+2�'
 + (�+ 2�)2

: (A10)

Recall that Ii =
�1+(�3�')qi+�5qj


 = �1+(�3�')qi

 . Since in the steady state Ii = �qi, we obtain

that

IsCL =
�1



1

(1� (�3�')
�
 )

; (A11)

which after substituting for �1 and �3 gives

IsCL =
(p� c) �

2� [� + 
� (� + �) + ' (2� + �)]
(A12)
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which coincides with the steady state open-loop solution, as given by (22) in Section 3.

29



Appendix B. Closed-loop solution with increasing marginal cost

We normalise ' = 0 and 
 = 1. The purchaser�s instantaneous objective function is:

T + p

�
1

2
+
qi � qj
2�

�
� c

2

�
1

2
+
qi � qj
2�

�2
� 1
2
I2i �

�

2
q2i : (B1)

De�ne the value function as

V i(qi; qj) = �0 + �1qi + �2qj + (�3=2)q
2
i + (�4=2)q

2
j + �5qiqj : (B2)

The value function has to satisfy the HJB equation:

�V i(qi; qj) = max

8>>>><>>>>:
�
T + p

2 �
c
8

�
+
�
2p�c
4�

�
qi �

�
2p�c
4�

�
qj

�
�

c
8�2

+ �
2

�
q2i � c

8�2
q2j +

c
4�2
qiqj � 1

2I
2
i

+V iqi(qi; qj) (Ii � �qi) + V
i
qj

�
�j(qi; qj)� �qj

�
9>>>>=>>>>; : (B3)

Maximisation of the RHS yields

Ii = �i(qi; qj) = V
i
qi(qi; qj) = �1 + �3qi + �5qj ; (B4)

Ij = �j(qi; qj) = V
j
qj (qi; qj) = �1 + �3qj + �5qi; (B5)

V iqj = �2 + �4qj + �5qi: (B6)

After substitution, we obtain

�V i(qi; qj) =

8>>>>>>><>>>>>>>:

�
T + p

2 �
c
8

�
+
�
2p�c
4�

�
qi �

�
2p�c
4�

�
qj

�
�

c
8�2

+ �
2

�
q2i � c

8�2
q2j +

c
4�2
qiqj � 1

2I
2
i

+V iqi
�
V iqi � �qi

�
+V iqj

�
�j(qi; qj)� �qj

�

9>>>>>>>=>>>>>>>;
; (B7)
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which provides

�V i(qi; qj) =

8>>>>>>><>>>>>>>:

�
T + p

2 �
c
8

�
+
�
2p�c
4�

�
qi �

�
2p�c
4�

�
qj

�
�

c
8�2

+ �
2

�
q2i � c

8�2
q2j +

c
4�2
qiqj

�1
2

�
V iqi
�2
+
�
V iqi
�2 � �qiV iqi

+V jqjV
i
qj � �qjV

i
qj

9>>>>>>>=>>>>>>>;
(B8)

or

�V i(qi; qj) =

8>>>><>>>>:
�
T + p

2 �
c
8

�
+
�
2p�c
4�

�
qi �

�
2p�c
4�

�
qj

�
�

c
8�2

+ �
2

�
q2i � c

8�2
q2j +

c
4�2
qiqj

+1
2

�
V iqi
�2 � �qiV iqi + V jqjV iqj � �qjV iqj

9>>>>=>>>>; : (B9)

Recall:

V iqi(qi; qj) = �1 + �3qi + �5qj ; (B10)

V jqj (qi; qj) = �1 + �3qj + �5qi; (B11)

V iqj = �2 + �4qj + �5qi: (B12)

Substituting, we obtain

�V i(qi; qj) =

8>>>>>>><>>>>>>>:

�
T + p

2 �
c
8

�
+
�
2p�c
4�

�
qi �

�
2p�c
4�

�
qj

�
�

c
8�2

+ �
2

�
q2i � c

8�2
q2j +

c
4�2
qiqj

+1
2 (�1 + �3qi + �5qj)

2 � �qi (�1 + �3qi + �5qj)

+ (�1 + �3qj + �5qi) (�2 + �4qj + �5qi)� �qj (�2 + �4qj + �5qi)

9>>>>>>>=>>>>>>>;
: (B13)
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For the equality to hold, the following terms in brackets have to be equal to zero:

�
��0 � T +

c

8
� p
2
� �

2
1

2
� �1�2

�
+qi

�
�1 (�+ �)�

2p� c
4�

� �1�3 � �2�5 � �1�5
�

+qj

�
�2 (�+ �) +

2p� c
4�

� �2�3 � �1�4 � �1�5
�

+q2i

�
�3

��
2
+ �
�
+

c

8�2
� �

2
3

2
� �25 +

�

2

�
+q2j

�
�4

��
2
+ �
�
+

c

8�2
� �3�4 �

�25
2

�
+qiqj

�
�5 (�+ 2�)� 2�3�5 � �4�5 �

c

4�2

�
= 0 (B14)

Again, notice that the last three terms do not depend on �0, �1 and �2 but only on �3, �4 and

�5. We therefore focus on the system of three equations in three unknowns �3, �4 and �5:

�3

��
2
+ �
�
+

c

8�2
� �

2
3

2
� �25 +

�

2
= 0 (B15)

�4

��
2
+ �
�
+

c

8�2
� �3�4 �

�25
2

= 0

�5 (2� + �)� 2�3�5 � �4�5 �
c

4�2
= 0

De�ne

m : =
�

2
+ � (B16)

z : =
c

�2

B : =

q
3z + 8� + 8m2 � 4

p
(� +m2) (3z + 4� + 4m2)

C : =

q
3z + 8� + 8m2 + 4

p
(� +m2) (3z + 4� + 4m2)

where B > 0 as
�
3z + 8� + 8m2

�2 � 16 �� +m2
� �
3z + 4� + 4m2

�
= 9z2.

Solving the system of three equations in (B15) for �3, �4 and �5, we obtain six candidates
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for the solution:

1) �3 = m+
B3

12z �
(5z+16�+16m2)B

12z ; �4 = �1
6B; �5 =

1
6B;

2) �3 = m� B3

12z +
(5z+16�+16m2)B

12z ; �4 =
1
6B; �5 = �1

6B;

3) �3 = m+
C3

12z �
(5z+16�+16m2)C

12z ; �4 = �1
6C; �5 =

1
6C;

4) �3 = m� C3

12z +
(5z+16�+16m2)C

12z ; �4 =
1
6C; �5 = �1

6C;

5) �3 = m� 1
6

p
z + 4� + 4m2; �4 =

1
3

p
z+4�+4m2(�5z+16�+16m2)

4z+16�+16m2 ; �5 =

p
z+4�+4m2

3 ;

6) �3 = m+
1
6

p
z + 4� + 4m2; �4 = �1

3

p
z+4�+4m2(�5z+16�+16m2)

4z+16�+16m2 ; �5 = �
p
z+4�+4m2

3 :

(B17)

We disregard solution 2 and 6 because �3 > 0, which implies that the maximisation problem is

convex rather than concave (those solutions provide a minimum, not a maximum). The proof

that �3 > 0 for solution 6 is straightforward. For solution 2, after substituting for B, we obtain:

�3 = m+
B

12z

�
4
p
(� +m2) (3z + 4� + 4m2) + 2z + 8� + 8m2

�
> 0: (B18)

Moreover, stability requires that: �3 + �5 < 0. This is clearly not satis�ed for solution 5 as

�3 + �5 = m+
1
6

p
z + 4� + 4m2 > 0. It is also not satis�ed for solution 3, since

�3 + �5 = m+

�q
3z (� +m2) + 4 (� +m2)2 � 2

�
� +m2

�� C
3z
> 0: (B19)

Stability also requires that �3 � �5 < 0. This is not satis�ed for solution 4 since

�3 � �5 = m+
C

3z

�
z + 2

�
� +m2

�
�
p
(� +m2) (3z + 4� + 4m2)

�
> 0 (B20)

as
�
z + 2

�
� +m2

��2 � �� +m2
� �
3z + 4� + 4m2

�
= m2z + z2 + �z > 0. We are therefore left

with solution 1, for which all the regularity conditions are satis�ed, as we show below.

First, we need �3 < 0 (concavity condition). After substitution of B we obtain for solution

1 that

�3 = m�

�q
3z + 8� + 8m2 � 4

p
(� +m2) (3z + 4� + 4m2)

�
�
2
p
(� +m2) (3z + 4� + 4m2) + z + 4� + 4m2

�i
6z

: (B21)
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Therefore, �3 is negative ifvuuuut 3z + 8
�
� +m2

�
�4
p
(� +m2) (3z + 4� + 4m2)

0B@ 2
p
(� +m2) (3z + 4� + 4m2)

+z + 4
�
� +m2

�
1CA > 6zm: (B22)

Taking the square on both sides and subtracting the left-hand side from the right-hand side

expression, we have that �3 is negative if

z2
�
20� + 3z +

q
64� (3z + 4� + 4m2) + 64m2(3z + 4�) + (16m2)2 � 16m2

�
> 0: (B23)

which is clearly satis�ed.

Second, we need the stability condition �3 + �5 < 0 to be satis�ed. After substitution of B

we obtain for solution 1 that

�3 + �5 = m�

0B@ p
(� +m2) (3z + 4� + 4m2)

+2
�
� +m2

�
1CA
vuuut 3z + 8� + 8m2

�4
p
(� +m2) (3z + 4� + 4m2)

3z
: (B24)

Therefore, �3 + �5 < 0 if

0B@ p
(� +m2) (3z + 4� + 4m2)

+2
�
� +m2

�
1CA
vuuuut 3z + 8� + 8m2

�4
p
(� +m2) (3z + 4� + 4m2)

> 3zm: (B25)

Taking the square of both sides and subtracting the left-hand side from the right-hand side ex-

pression, we have that the condition is satis�ed if 9z2� > 0, which is clearly the case. Therefore,

for solution 1 we have �3 + �5 < 0.

Finally, stability also requires that �3 � �5 < 0. This is clearly satis�ed for solution 1 as

�3 < 0 while �5 > 0. We conclude that solution 1 is stable and also satis�es the concavity

condition.

We now calculate for solution 1 (i.e., the only stable solution) the values of �1 and �2. Notice

that for solution 1 we have �4 = ��5 which we can conveniently use to calculate �1 and �2.
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The second and third equation of the system (B14) are

�1 (�+ �)�
2p� c
4�

� �1�3 � �2�5 � �1�5 = 0; (B26)

�2 (�+ �) +
2p� c
4�

� �2�3 + �1�5 � �1�5 = 0:

Solving for �1 and �2, we have

�1 =
2p� c
4�

1

� + �� �3
> 0; (B27)

�2 = �2p� c
4�

1

� + �� �3
< 0:

The optimal investment rule is

Ii = �1 + �3qi + �5qj : (B28)

In the symmetric equilibrium and steady state, this implies �q = �1 + �3q + �5q, which gives

(recall that �3 + �5 < 0):

qsCL =
�1

� � �3 � �5
> 0: (B29)

Substituting for �1, we have

qsCL =
2p� c
4�

1

(� + �� �3) (� � �3 � �5)
> 0; (B30)

where

�5 =
1

6

vuut3c

�2
+ 8� + 8

��
2
+ �
�2
� 4

s�
� +

��
2
+ �
�2��3c

�2
+ 4� + 4

��
2
+ �
�2�

> 0 (B31)

and

�3 =
��
2
+ �
�
+
18�2

c
�35 �

�2
�
5c+ 16��2 + 16�2

��
2 + �

�2�
2c

�5 < 0: (B32)

Finally, we compare the closed-loop solution with the open-loop solution. First, note that when
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 = 1 and ' = 0, the steady-state quality under the open-loop solution is equal to

qsOL =
2p� c
4�

1

� + (� + �) �
: (B33)

Therefore, comparing with (B30), we have that qsOL > q
s
CL if (recall m = �

2 + �)

2

3

�
� +m2

�
� �

2

4
� �

12

q
3z + 8 (� +m2)� 4

p
(� +m2) (3z + 4� + 4m2) (B34)

+
1

6

p
(� +m2) (3z + 4� + 4m2)

> � + (� + �) �;

which can be re-written as

1

6

p
(� +m2) (3z + 4� + 4m2)� 1

3

�
�2 + ��+

�2

4
+ �

�
(B35)

>
�

12

q
3z + 8 (� +m2)� 4

p
(� +m2) (3z + 4� + 4m2)

Now, note that the LHS of inequality (B35) is positive as

�
� +

��
2 + �

�2��
3z + 4� + 4

��
2 + �

�2�
36

�
�
�2

3
+
��

3
+
�2

12
+
�

3

�2
=
z

12

�
�2 + ��+

�2

4
+ �

�
> 0:

(B36)

Therefore, we can take the square of the expression on the LHS and the RHS of inequality (B35)

and obtain

�
1

6

p
(� +m2) (3z + 4� + 4m2)�

�
1

3
�2 +

1

3
��+

1

12
�2 +

1

3
�

��2
(B37)

�
�2
�
3z + 8

�
� +

��
2 + �

�2�� 4p(� +m2) (3z + 4� + 4m2)
�

144
> 0;
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or, equivalently,

2

9

�
� + �2

�2
+
z

12

�
� + �2 + ��

�
+
�2

18

�
� + ��+ 5�2

�
+
4

9
��
�
� + �2

�
> (B38)�

��+ �2 + �
�

9

q
4m4 + 8m2� + 3zm2 + 4�2 + 3z�:

Taking the square of the expression on the LHS and RHS of inequality (B38) we obtain:

�
2

9

�
� + �2

�2
+
z

12

�
� + �2 + ��

�
+
�2

18

�
� + ��+ 5�2

�
+
4

9
��
�
� + �2

��2
(B39)

�
�
��+ �2 + �

�2
81

�
4
��
2
+ �
�4
+ 8

��
2
+ �
�2
� + 3z

��
2
+ �
�2
+ 4�2 + 3z�

�
=

z2

144

��
� + �2

�2
+ �

�
2�� + 2�3 + �2�

��
> 0,

which is always satis�ed. We conclude the the steady-state quality under the open-loop solution

is always higher than the steady-state quality under the closed-loop solution.
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dq/dt=0

I

q

Figure 1. Equilibrium is a saddle point

dI/dt=0

q(0)

q(0)

dq/dt=0

I

q

Figure 2. Increase in price or reduction in travel costs (more competition)

dI/dt=0

time

I

time

q
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